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Mission&Statement

—Provide a unified perspective for inverse problems in ToF imaging.

— Develop a Toolbox that is applicable to wide variety of applications for ToF Imaging.

— Demonstrate practicability of signal processing algorithms in context of ToF Imaging.

Example of Reconstruction
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Raskar / J. Davies (2005)

Velten et al Nature Comm.
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The&Rise&and&Rise&of&Depth&Imaging
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The&Rise&and&Rise&of&Depth&Imaging

— Applications beyond depth imaging: 

•Multi-bounce light decomposition
•Ultra-fast imaging
•Bio-imaging
•Scattering medium

Heide/Hullin

MIT Team
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Multiple&Depths&/&Mixed&Pixels&—&Problem
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r!t" # Γ!1$ s0 cos!ωt − ϕ"": (1b)
68
69 Here s0 and Γ ∈ %0; 1& are the signal modulation ampli-
70 tude and the reflection amplitude, respectively, ω is the
71 modulation frequency, and ϕ is the phase delay between
72 the reference waveform s!t" and the delayed version r!t".
73 For a co-located source and detector, the distance to the
74 object from the camera is given by the relation
75 d # cϕ∕2ω, where c is the speed of light.
76 Electronically, each pixel acts as a homodyne detector
77 and measures the cross correlation between the reflected
78 signal and the reference [6]. Denoting the complex con-
79 jugate of f ∈ C by f ', the cross correlation of two func-
80 tions, f and g, is

Cf ;g!τ"#
def lim

T→∞

1
2T

Z
$T

−T
f '!t$ τ"g!t"dt: (2)

81 Note that infinite limits are approximately valid when the
82 integration window 2T is such that T ≫ ω−1. A shorter
83 time window produces residual errors, but this is avoid-
84 able in practice. The pixel samples the cross correlation
85 at discrete times τq:

mω%q&#
defCs;r!τq"#

!2"Γ
!
1$

s20
2

cos!ωτq $ ϕ"
"
: (3)

86
87 Using 4-bucket sampling [7], we calculate the esti-
88 mated reflection amplitude and phase, ~Γ, ~ϕ, with four
89 samples τq # πq∕2ω with q # 0;…; 3:

~Γ #
#############################################################################
!mω%3& −mω%1&"2 $ !mω%0& −mω%2&"2

q
∕s20; (4a)

tan ~ϕ #
!
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mω%0& −mω%2&

"
: (4b)

90
91 Therefore we associate a complex value, zω, with a
92 pixel measurement:

zω # ~Γej ~ϕ!ω": (5)
93
94 Note that these results are formally equivalent to phase
95 reconstruction via phase-shifting digital holography [24].
96 When multiple reflections contribute to a single meas-
97 urement, the return signal comprises a sum. In phasor
98 notation, for K components,

r!t" # C0 $
XK−1

k#0

Γkej!ωt−ϕk!ω""; (6)

99 where C0 is a constant, ϕk!ω" # 2dkω∕c, and fdkgK−1
k#0 are

100 K depths at which the corresponding reflection takes
101 place. The reflection amplitude of the kth surface is
102 Γk. Each pixel records

mK
ω %q& # C0 $

s20
2
ejωτq

XK−1

k#0

Γkejϕk!ω": (7)

103Importantly, for a given modulation frequency ω0 (ignor-
104ing a constant DC term), mK

ω0
%τq& ∝ exp!jω0τq", i.e., there

105is no variation with respect to individual depth compo-
106nents fΓk;ϕkgK−1

k#0 [16], regardless of the sampling density.
107Equivalently, the camera measurement,

z!K"
ω # ~Γ!ω"ej ~ϕ!ω" #

XK−1

k#0

Γkejϕk!ω"; (8)

108is now a complex sum of K reflections, which cannot be
109separated without independent measurements. Thus, at a
110given frequency, the measured phase, and hence the
111depth, is a nonlinear mixture of all interfering com-
112ponents.
113Our method separates these components by recording
114the scene with equi-spaced frequencies ω # nω0 (n ∈ N)
115and acquiring a set of measurements z:

z # !z!K"
ω0 ; z

!K"
2ω0

;…; z!K"
Nω0

"T : (9)

116The forward model can be written compactly in vector-
117matrix form as z # Φg$ σ, whereΦ ∈ CN×K is identified
118as a Vandermonde matrix,
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119
120g # %Γ0;…;ΓK−1&T ∈ RK×1, and σ; represents zero-
121mean Gaussian i.i.d. noise, which controls the error ε0
122in our reconstruction algorithm. Our goal is to estimate
123the phases ϕ # %ϕ0;…;ϕK−1&T ∈ RK×1 and the reflection
124amplitude vector g.
125To recover these quantities, first note the similarity
126between Φ and an oversampled N × L discrete Fourier
127transform (DFT) matrix Ψ, with elements Ψnl #
128exp!jnl∕L". If L ≫ K , the discretization of Ψ is small
129enough to assume that the columns of Φ are contained
130in Ψ. We can also define a vector g0 ∈ RL×1, whose ele-
131ments are zero except for K reflection amplitudes
132fΓkgK−1

k#0 , such that z # Ψg0. We use the (K -) sparsity of
133g0 to regularize the problem:

‖z −Ψg0‖|$$$${z$$$$}
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134where the lp-norm is ‖x‖plp
#def

P
n jxnjp. The limit p → 0 is

135used to define ‖g0‖l0
as the number of nonzero elements

136of g0. Equation (11) demands a least-squares solution to
137the data-fidelity problem ‖z −Ψg0‖2l2

up to some error
138tolerance ε0, with the constraint that we accommodate
139up to K nonzero entries of g0. For three components
140(K # 3), we choose Ψ to have L # 62832 columns.
141Therefore, the resulting discretization error is)2π∕2L #
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Multiple&Depths&/&Mixed&Pixels&—&Solution

215 third-phase variance is wider because OMP computes the
216 first two components, leaving little residual energy, so
217 that several columns in Ψ can minimize the least-squares
218 error.
219 In principle, the technique can be extended to any
220 number of bounces, provided enough modulation
221 frequencies are used (though a first-principles derivation
222 is beyond the scope of this contribution). In practice,
223 however, the reflected amplitudes decrease with increas-
224 ing component numbers, so that higher-order compo-
225 nents diminish in importance. Furthermore, OMP need
226 not assume a number of components that is the same
227 as that of the physical implementation. If the assumed
228 number is greater than the physical number, OMP will
229 reconstruct all the physical components, with higher-
230 order ones having an amplitude on order of the system
231 noise. Conversely, if the assumed number is less than the
232 physical number, OMP will recover the strongest re-
233 flections.
234 Therefore the method is a generalization of global/
235 direct illumination separation and can decompose differ-
236 ent elements of global lighting. This is useful not only for
237 improved depth accuracy, but also imaging in the pres-
238 ence of multiple scatterers, such as diffuse layers, sedi-
239 ment, turbulence, and turbid media as well as in places
240 where third-component scattering must be extracted
241 [26]. Furthermore, because it is based on phase measure-
242 ments, this technique can be mapped to multiple scatter-
243 ing in holography [27] by substituting optical frequency
244 for the modulation frequency.
245 In conclusion, we implemented a multifrequency
246 approach for decomposing multiple depths for a ToF
247 camera. The result is general and holds for any number
248 of bounces, and it can be extended to nonharmonic sig-
249 nals [17]. Future work includes calculating bounds on
250 measurements and resolution. The method can be incor-
251 porated with structured illumination and pixel correla-
252 tions for edge detection and refocusing. The result
253 holds promise for mitigating and exploiting MPI for a
254 wide variety of scenes.

255 This work was supported by NSF grant 1115680,
256 Charles Stark Draper grant SC001-744, and ISN grant
257 6927356. R.W. was supported by a University of Waikato
258 Doctoral Scholarship.
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1 Resolving multipath interference in time-of-flight
2 imaging via modulation frequency
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11 Time-of-flight (ToF) cameras calculate depth maps by reconstructing phase shifts of amplitude-modulated signals.
12 For broad illumination of transparent objects, reflections from multiple scene points can illuminate a given pixel,
13 giving rise to an erroneous depth map. We report here a sparsity-regularized solution that separates K interfering
14 components using multiple modulation frequency measurements. The method maps ToF imaging to the general
15 framework of spectral estimation theory and has applications in improving depth profiles and exploiting multiple
16 scattering. © 2014 Optical Society of America

OCIS codes: (110.6880) Three-dimensional image acquisition; (100.6890) Three-dimensional image processing;
17 (150.5670) Range finding; (120.0280) Remote sensing and sensors.
18 http://dx.doi.org/10.1364/OL.99.099999

19 Time-of-flight (ToF) sensing offers solutions for several
20 optical ranging and surface profiling applications, such
21 as image-guided surgery [1], gesture recognition [2], re-
22 mote sensing [3], and shape [4] and phase [5] measure-
23 ments. Although ToF sensors can be impulse-based,
24 commercial versions often rely on the continuous wave
25 approach [6]: the source intensity is modulated at radio
26 frequencies (10 s of MHz), and the detector reconstructs
27 the phase shift between the reflected and emitted signals.
28 Distance is calculated by scaling the phase by the modu-
29 lation frequency [Fig. 1(a)]. This method, amplitude
30 modulated continuous wave (AMCW) ToF, offers suit-
31 able SNR for real-time, consumer applications [7–9].
32 However, AMCW ToF suffers from multipath interfer-
33 ence (MPI) [10–17]. Consider the scenes in Figs. 1(b) and
34 1(c). Light rays from multiple reflectors scatter to the ob-
35 servation point. Each path acquires a different phase
36 shift, and the measurement consists of the sum of these
37 components. The recovered phase, therefore, is incor-
38 rect. Such “mixed” pixels contain depth errors and arise
39 in global lighting conditions, when an observation point
40 is illuminated indirectly by, e.g., inter-reflections, trans-
41 lucent sheets, and subsurface scattering [18]. In some
42 cases [Fig. 1(d)], MPI comprises a continuum of scatter-
43 ing paths. Previous suggested solutions include struc-
44 tured light or mechanical scanning [19,20], but these
45 are limited by the source resolution. Computational
46 optimization schemes [21,22] rely on radiometric as-
47 sumptions and have limited applicability.
48 Here we resolve MPI via sparse regularization of multi-
49 ple modulation frequency measurements. The formu-
50 lation allows us to recast this problem into the general
51 framework of spectral estimation theory [23]. This con-
52 tribution generalizes the dual-frequency approach [13–
53 15] to account for more than two components. Thus
54 our method here has two significant benefits. First we
55 separate MPI from direct illumination to produce im-
56 proved depth maps. Second we resolve MPI into its com-

57ponents, so that we can characterize and exploit multiple
58scattering phenomena. The procedure has two steps:
59(1) record a scene with multiple modulation frequencies
60and (2) reconstruct the MPI components using a sparsity
61constraint. We also discuss the possible extension to
62continuous scattering [e.g., Fig. 1(d)].
63Consider first the single-component case. Mathemati-
64cally, the camera emits the normalized time-modulated
65intensity s!t" (here, we consider sinusoidal imaging,
66but the discussion is applicable to any periodic function)
67and detects a signal r!t":

F1:1Fig. 1. (a) ToF principle: the phase delay of an emitted AMCW
F1:2wave proportionally encodes the distance of the object. (b) Mir-
F1:3ror-like and (c) semitransparent reflections produce MPI and
F1:4yield an incorrect phase. (d) A complicated scene with continu-
F1:5ous MPI.
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[24] A. Bhandari, A. Kadambi, R. Whyte, C. Barsi, M. Feigin, A. Dorring-
ton, and R. Raskar, “Resolving multipath interference in time-of-flight
imaging via modulation frequency diversity and sparse regularization,”
Optics Letters, vol. 39, no. 7, 2014.
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Solving&Sparse&Problems?&
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What&about&Kinect?

*Jointly with Shahram Izadi
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*Jointly with Shahram Izadi



 Towards a Conceptual Unification ...



Model&Setup:&Inspiration&from&Linear&Systems
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Model&Setup:&Fredholm&
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• Convolution Kernels

h (t, z) = h (t � z) , m (t) = (h ⇤ x ⇤ x) (t)

c
m (!) = b

h (!) |bx (!)|2



Model&Setup:&Fredholm&
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Model&Setup:&Fredholm&—&MultiKPath&Interference

• Ex.1: Sparse Linear Opertors h (t) =
PK�1

k=0 µk� (t � 2dk⌫)

ref. ref.

ref. ref.

a) b)

c) d)

d~φ



Abstraction&of&Problem:&Degrees&of&Freedom&

Conceptually, we are interested in estimating (K,↵↵↵,⌧⌧⌧ ,���) from the measurements

observed through a filter ' such that:
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Model&Setup:&Fredholm&—&MultiKPath&Interference

• Ex.1: Sparse Linear Opertors h (t) =
PK�1
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Sensors
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System

The&MultiKFrequency&Case:&Hypothesis
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From&Sensor&to&Forward&Model
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Bounds&for&Depth&Resolution
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Conclusion

—Provide a unified perspective for inverse problems in ToF imaging.

— Develop a Toolbox that is applicable to wide variety of applications for ToF Imaging.

— Demonstrate practicability of signal processing algorithms in context of ToF Imaging.

Example of Reconstruction


