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Mission Statement

— Provide a unified perspective for inverse problems in ToF imaging.
— Develop a Toolbox that is applicable to wide variety of applications for ToF Imaging.

— Demonstrate practicability of signal processing algorithms in context of ToF Imaging.

Example of Reconstruction



Depth Imaging/3D Imaging
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Time of Flight work at MIT
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Time of Flight work at MIT

Femto-Photography: Visualizing Photons in Motion at a
Trillion Frames Per Second

Light in Motion: Combination of modern imaging hardware
and a reconstruction technique to visualize light propagation
via repeated periodic sampling.

Time-Lapse Visualization: Color coding of light with a delay of
few picoseconds in each period.

Ripples of Waves: A time-lapse visualization of
the spherical fronts of advancing light reflected
by surfaces in the scene.
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Time of Flight work at MIT

Decomposing Global Light Transport using Time of Flight Imaging

Di Wu, Matthew O'Toole, Andreas Velten, Amit Agrawal, and Ramesh Raskar.
Computer Vision and Pattern Recognition (CVPR), 2012. (Oral)
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The Rise and Rise of Depth Imaging

——

pmdtechnologies | MES_A
maging Microsoft
PrimeSense Kinect Microsoft Gooale
Kinect T 2
Canesta Softkinetic (ToF) ango
v l A/ l l

2000 2002 2005 2006 2007 2009 2013 2014



The Rise and Rise of Depth Imaging
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— Applications beyond depth imaging:

eMulti-bounce light decomposition
eUltra-fast imaging

eBio-imaging

eScattering medium

Heide/Hullin

Low-budget Transient Imaging using Photonic Mixer Devices

Felix Heide®  Matthias B. Hullin®  James Gregson Wolfgang Heidrich
The University of British Columbia

=

Figure 1: Left: Our capture setup for transient images (from left: computer, signal generator, power supply, modulated light source, PMD
camera). Middle: A disco ball with many mirrored facets. Right: The same sphere as seen by our transient imager when illuminated from the

left, colored according to the time offset of the main intensity peak.
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Coded Time of Flight Cameras: Sparse Deconvolution to
Address Multipath Interference and Recover Time Profiles

Achuta Kadambi! Refael Whytel:2 Ayush Bhandaril Lee Streeter?
Christopher Barsi! Adrian Dorrington? Ramesh Raskar!

1Massachusetts Institute of Technology —2University of Waikato

ACM Transactions on Graphics 2013 (SIGGRAPH Asia)




Depth from Continuous Wave Imaging
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Multiple Depths | Mixed Pixels — Problem
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Multiple Depths /| Mixed Pixels — Problem
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in W. We can also define a vector g’ € RE*1) whose ele-
ments are zero except for K reflection amplitudes
([, 11) such that z = Wg'. We use the (K-) sparsity of
g' to regularize the problem:

2
lz-We'|| <e suchthat |lg|| =K, (11)
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where the £)-norm is ||x||§p Hey > |2y [P. The limit p — 0 is
used to define ||g’||,, as the number of nonzero elements
of g'. Equation (11) demands a least-squares solution to



Multiple Depths [ Mixed Pixels — Solution
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Details ...

A. Bhandari, A. Kadambi, R. Whyte, C. Barsi, M. Feigin, A. Dorring-
ton, and R. Raskar, “Resolving multipath interference in time-of-flight
imaging via modulation frequency diversity and sparse regularization,”
Optics Letters, vol. 39, no. 7, 2014.

April 1, 2014 / Vol. 39, No. 7 / OPTICS LETTERS

Resolving multipath interference in time-of-flight
imaging via modulation frequency
diversity and sparse regularization
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What about Time Domain?

Measurement Decomposed Depth 1 Decomposed Depth 2
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Solving Sparse Problems?
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What about Kinect?
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Transient Movies?

*Jointly with Shahram lIzadi
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Towards a Conceptual Unification ...
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Model Setup: Inspiration from Linear Systems

H (wk)

—

0 (w— wg)



Model Setup: Fredholm
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Model Setup: Fredholm

ToF Waveform
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Model Setup: Fredholm — Multi-Path Interference

e Ex.1: Sparse Linear Opertors h (t) = Zf:_ol pid (t — 2dgr)
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Abstraction of Problem: Degrees of Freedom

Conceptually, we are interested in estimating (K, a,7T,7y) from the measurements
observed through a filter ¢ such that:
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Model Setup: Fredholm — Multi-Path Interference

e Ex.1: Sparse Linear Opertors h (t) = Zf:_ol i (t — 2dgr)




Mixed Pixel Problem at Sensor Level
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The Multi-Frequency Case: Hypothesis
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— No inter-reflections = M is finite.
— Static scene or *NO* functional dependence of shifts on time!
— Uniform frequency sampling: Fast Algorithms, Elegant Theory and Nice Bounds!
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From Sensor to Forward Model
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Bounds for Depth Resolution
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Conclusion

— Provide a unified perspective for inverse problems in ToF imaging.
— Develop a Toolbox that is applicable to wide variety of applications for ToF Imaging.

— Demonstrate practicability of signal processing algorithms in context of ToF Imaging.
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