Time-of-Flight Approaches to SPAD and SiPM Imaging

E. Charbon

<u>Short burst</u> or pulse of light; distance $d = \frac{c \cdot t_{TOF}}{c}$

© 2014 Edoardo Charbon

How short of a burst? How about a single photon?

Single Photons

Photons are indeed the smallest unit of energy defining light

... but they are strange particles or, better, quantum paths

Source: Neil J. Gunther

© 2014 Edoardo Charbon

Photons in a Laser Pulse Are <u>not</u> i.i.d.: Order Statistics

$$f_{k:n}(t) = n \begin{pmatrix} n-1 \\ k-1 \end{pmatrix} f(t)F(t)^{k-1}(1-F(t))^{n-k}$$

 $f_{k:n}(t)$: k-th order statistics f(t): probability density function F(t): cumulative density function **Assumptions:**

- Each photon is stat. independent
- The pulse has a Gaussian p.d.f.

Photon Counting in TOF Makes Sense!

- Single-photon detection can result in better statistics ... but multiple single photons must be detected
- Photon time-of-arrival must be accurate to the
- Photon <u>time-of-arrival</u> must be accurate to the picosecond (timestamping)
- For imaging many <u>simultaneous</u> photon detections are needed

Single-Photon Detectors

- Electron multiplication in vacuum
 - Photomultiplier tube (PMT)
 - Microchannel plate (MCP)
- CMOS APS
 - Amplifying pixel
- Electron multiplied charge-coupled device (EMCCD)
 - See lessons on CCD
- Avalanche photodiode (APD)
- Geiger-mode APD (GAPD) or Single-photon avalanche diode (SPAD)
- Silicon photomultiplier (SiPM)

Outline

- Photon counting & single-photon detection
- SPAD image sensors for TOF
- The silicon photomultiplier
- TOF in medical imaging
- Current & future challenges

Photon Counting & Single-Photon Detection

Avalanche Effect in Condensed Matter

- Suppose one can perform <u>impact ionization</u> in a solid, thereby achieving <u>very large gain</u> in an area of a <u>few tens of μm²</u> (thus at pixel level)
- This can be achieved in an abrupt one-sided junction

© 2014 Edoardo Charbon

CMOS SPAD

- Implemented entirely using standard layers and conventional process steps!
- Low breakdown voltage, low noise
- <u>Guard rings</u>: minimize edge breakdown, create a zone of constant electric field

Minimizing Edge Breakdown

Quenching

Quenching a SPAD in CMOS

• The SPAD becomes like any other digital device but it is triggered by a photon!

SPAD Non-Idealities

- Dead time
- Dark counts
- Photon detection efficiency (PDE)
- Timing resolution
- Afterpulsing

... and in SPAD matrices

- Cross-talk
- PDE Uniformity

Dark Counts: Dark Count Rate

- State-of-the-art SPADs in dedicated technology: 0.02~1Hz/μm²
- State-of-the-art CMOS SPADs: 0.1~10Hz/μm²

DCR Mechanisms

- Band-to-band tunneling generation
- Trap-assisted thermal generation
- Trap/tunneling assisted generation

Photon Detection Efficiency

PDE vs. Excess Bias

Tosi et al., 2009

Timing Resolution

Timing Resolution vs. Wavelength

- The depth of interaction (and thus wavelength) determines the presence of a tail in the response
- The width of the multiplication region also determines the tail

Timing Resolution vs. # Photons

Fishburn, Ph.D. Thesis, Delft, 2012

Timing Resolution vs. B-Fields

Time resolution in 9.4T

Delta FWHM < 10ps:

Test conditions:

- External laser source
- Internal TDC
- Integrated TDC

Fishburn and Charbon, EEE Nuc. Sci Symp (NSS), 2011

Active vs. Passive Recharge

SPAD Image Sensors for TOF

Direct Method for Measuring TOF

Measuring TOF in Many Pixels

On-pixel Electronics: MEGAFRAME

MEGAFRAME Pixel: 500 Transistors

The Megaframe-128 Chip

C. Veerappan, J. Richardson, R. Walker, D.-U. Li, M. W. Fishburn, Y. Maruyama, D. Stoppa, F. Borghetti, M. Gersbach, R.K. Henderson, E. Charbon, *ISSCC*, 2011

© 2014 Edoardo Charbon

Non-Deterministic Resolution Spread

C. Veerappan et al., ESSDERC, 2011

© 2014 Edoardo Charbon

Timing Jitter vs. Light Brightness (Compensated)

Single-Shot TOF Measurement (Compensated)

Fluorescence Lifetime Imaging Microscopy (FLIM)

FLIM Images

Intensity Image

Lifetime Image

Seed makeup is unclear, spot caused by intensity variations Nutrients in seed occupy a limited portion

On-Pixel Electronics: SPAD Gating

© 2014 Edoardo Charbon

Indirect Method to Measure TOF: Single-Photon Synchronous Detection

- Digital equivalent of lock-in method
- Continuously modulated illumination
- Gated SPAD with counters

Niclass, Charbon, et al., "Single-Photon Synchronous Detection", IEEE Journal of Solid-State Circuits (JSSC), 44(7), pp. 1977-1989, July 2009

SPSD Method

Outgoing light

Incoming light

$$A' = \frac{\sqrt{(C_3 - C_1)^2 + (C_0 - C_2)^2}}{2}$$
$$B' = \frac{C_0 + C_1 + C_2 + C_3}{4}$$
$$\varphi' = \arctan\left(\frac{C_3 - C_1}{C_0 - C_2}\right)$$

Improving Fill Factor

- Place complex electronics outside sensitive are
- Limited to line-pixel sensors
- 2D arrays require scanning

Column-Parallel Approach: LASP

Niclass, Favi, Kluter, Gersbach, Charbon, ISSCC2008, JSSC 2008

© 2014 Edoardo Charbon

LASP: First Fully Integrated Sensor

TCSPC Method for 3D Reconstruction

SPAD Arrays

Let us fast-rewind and go back to basics!

SPADs are the interface between photons and the digital world

Why not combine them into a single pixel and use scanning or coded-aperture?

The Silicon Photomultiplier (SiPM)

SiPM Concept

- Single- and multi-photon detectability
- Better fill factor
- Defect-driven noise can be isolated and eliminated
- Each diode is a SPAD

SiPM Concept

Two Flavors of SiPMs

- Analog silicon photo-multiplier (a-SiPM)
- Digital silicon photo-multiplier (d-SiPM)

a-SiPMs

<u>Cons</u>

- Cannot remove noisy SPADs
- Relative slow rise time due to loading (no differentiation/delay techniques)

d-SiPMs

- Only first photon detected

Column-Parallel or Multichannel d-SiPM

Multichannel d-SiPM: EndoTOFPET

© 2014 Edoardo Charbon

Hot Pixel Suppression

3D Integration: Flip-Chip

3D Integration: Through-Silicon Via

Source: STMicroelectronics

© 2014 Edoardo Charbon

3D Integration: Through-Silicon Via

- SPADnet
 - Front-side illuminated 8x16 mini SiPM matrix
 - On-pixel TDC
 - TSV to reduce gap

TOF in Medical Imaging

Positron Emission Tomography (PET)

PET visualizes β+ emission from ¹⁸FDG metabolized by cancer cells... in 3D!

Fluorodeoxyglucose (FDG)

Positron-Electron Annihilation

3D Reconstruction in PET

Time-of-flight PET

Line of response sinogram weighting

Time of flight sinogram weighting

What about the multichannel d-SiPM?

Why should we keep single-photon statistics?

Photons from a Scintillator Are <u>not</u> i.i.d.: Order Statistics

Cramer-Rao Limit

Robustness to Noise

Another Major Advantage: Coincidence Deferred to Network

- Scalability
- Multi-ring
- Simplicity
- Cost reduction

More details in Charbon et al., IEEE NSS/MIC paper (2013)

Current & Future Challenges

Delft/EPFL SPAD and SiPM Image Sensors (2003-13)

© 2014 Edoardo Charbon
Moore's Law for SPADs

Miniaturization vs. Complexity

Large Format Scalability

Assembly with similar TSV chips (Courtesy: STMicroelectronics)

Ge-on-Si SPADs

- CMOS compatible
- APD / SPAD functionality
- 3D integration compatible
- Backside illumination (BSI)
- Telecom wavelengths

Sammak, Aminian, Nanver, Charbon, IEDM11

New Applications

- TOF PET
- Fluorescence lifetime imaging microscopy (FLIM)
- Super-resolution microscopy
- Nuclear/fluorescent cancer tracers
- Förster resonance energy transfer (FRET)
- Fluorescence correlation spectroscopy (FCS)
- Selective plane illumination microscopy (SPIM)

Conclusions: 3 Take-Home Messages

- TOF is not only for 3D vision!
- Most photon bursts have complex statistics, the mathematical tools are well developed!
- Multiphoton detection, in combination with picosecond resolution and order-statistical tools, can yield far superior timing resolutions... robustly!

Acknowledgements

- Swiss National Science Foundation
- European Space Agency
- FP6 and FP7
- NCCR-MICS
- STW

http://cas.et.tudelft.nl

Selected Literature

Peer-Reviewed Journal and Proceedings Articles

- A. Rochas *et al.*, "Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology", *IEEE Rev. Sci. Instr.*, **74**(7), pp. 3263-70, 2003
- C. Niclass, A. Rochas, P.A. Besse, E. Charbon, "Toward a 3-D Camera Based on Single Photon Avalanche Diodes", *IEEE Journal of Selected Topics in Quantum Electronics*, **10**(4), pp. 796-802, Jul./Aug. 2004
- C. Niclass, A. Rochas, P.A. Besse, and E. Charbon, "Design and Characterization of a CMOS 3-D Image Sensor based on Single Photon Avalanche Diodes", *IEEE Journal of Solid-State Circuits*, **40**(9), pp. 1847-1854, Sep. 2005
- H. Finkelstein *et al.*, STI-bounded Single-Photon Avalanche Diode in a Deep-Submicrometer CMOS Technology, *IEEE Electron Device Letters*, 2006
- C. Niclass, M. Gersbach, R.K. Henderson, L. Grant, E. Charbon, "A Single Photon Avalanche Diode Implemented in 130nm CMOS Technology", *IEEE Journal of Selected Topics in Quantum Electronics*, **13**(4), pp. 863-869, July/Aug. 2007
- L. Pancheri et al., "Low-noise CMOS Single-Photon Avalanche Diodes with 32ns Dead Time", ESSDERC, 2007
- C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, "A 128x128 Single-Photon Image Sensor with Column-Level 10-bit Time-to-Digital Converter Array", *IEEE Journal of Solid-State Circuits*, **43**(12), pp. 2977-2989, Dec. 2008
- E. Charbon, "Towards Large Scale CMOS Single-Photon Detector Arrays for Lab-on-Chip Applications", J. Phys. D: Applied Physics, Vol. 41, N. 9, May 2008
- M. Gersbach, D. L. Boiko, C. Niclass, C. Petersen, E. Charbon, "Fast Fluorescence Dynamics in Nonratiometric Calcium Indicators", *Optics Letters*, **34**(3), pp. 362-364, Feb. 2009
- C. Niclass, C. Favi, T. Kluter, F. Monnier, and E. Charbon, "Single-Photon Synchronous Detection", *IEEE Journal of Solid-State Circuits*, **44**(7), pp. 1977-1989, July 2009
- D.L. Boiko, N. Gunther, B. N. Benedict, E. Charbon, "On the Application of a Monolithic Array for Detecting Intensity-Correlated Photons Emitted by Different Source Types", *Optics Express*, **17**(17), pp. 15087-15103, Aug. 2009
- L. Pancheri and D. Stoppa, "A SPAD-based Pixel Linear Array for High-Speed Time-Gated Fluorescence Lifetime Imaging", *IEEE European Solid-State Circuits Conference* (ESSCIRC), Sep. 2009
- M. A. Karami, L. Carrara, Y. Maruyama, M.W. Fishburn, and E. Charbon, "RTS Noise Characterization in Single Photon Avalanche Diodes", *Electron Device Letters*, **31**(7), pp. 692-694, Jan. 2010
- E. Charbon and S. Donati, "SPAD Sensors Come of Age", Optics & Photonics News (OPN), 21, pp. 35-41, Feb. 2010

- D.-U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, R., Henderson, "Real-time Fluorescence Lifetime Imaging System with a 32x32 0.13um CMOS Low Dark-count Single-photon Avalanche Diode Array", *Optics Express*, **18**(10), pp. 10257-10269, May 2010
- M. A. Karami, M. Gersbach, H.J. Yoon, and E. Charbon, "A New Single-photon Avalanche Diode in 90nm Standard CMOS Technology", *Optics Express*, **18**(21), Oct. 2010
- M. W. Fishburn and E. Charbon, "System Tradeoffs in Gamma-Ray Detection Utilizing SPAD Arrays and Scintillators", *Trans. Nuc. Sci.*, **57**(5), pp. 2549-2557, Oct. 2010
- G. Giraud, H. Schulze, D.-U. Li, T.T. Bachmann, J. Crain, D. Tyndall, J. Richardson, R. Walker, D. Stoppa, E. Charbon, R., Henderson, J. Arlt, "Fluorescence Lifetime Biosensing with DNA Microarrays and a CMOS-SPAD Imager", *Biomedical Optics Express*, **1**(5), pp. 1302-1308, Dec. 2010
- R.J. Walker, J.A. Richardson, R.K. Henderson, "A 128×96 Pixel Event-Driven Phase-Domain ΔΣ- Based Fully Digital 3D Camera in 0.13µm CMOS Imaging Technology", IEEE ISSCC, Feb. 2011
- E. Charbon, "Evolving CMOS Technology for High-Performance Single-Photon Detection", *Optics & Photonics News* (OPN), **22**, May 2011
- M. Fishburn, Y. Maruyama, E. Charbon, "Reduction of Fixed-Position Noise in Position-Sensitive, Single-Photon Avalanche Diodes", *IEEE Trans. Electron Devices*, **54**(8), pp. 2354-2361, Aug. 2011
- D. D.-U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, R.K. Henderson, "Video-Rate Fluorescence Lifetime Imaging Camera with CMOS Single-Photon Avalanche Diode Arrays and High-Speed Imaging Algorithm", *Journal of Biomedical Optics*, **16**(9), 096012, Sep. 2011
- J. Blacksberg, Y. Maruyama, E. Charbon, G. Rossman, "Fast Single-Photon Avalanche Diode Arrays for Laser Raman Spectroscopy", *Optics Letters*, **36**(18), pp. 3672-3674, Sep. 2011
- S. Mandai and E. Charbon, "A Wide Spectral Range Single-Photon Avalanche Diode Fabricated in an Advanced 180nm CMOS Technology", *Optics Express*, **20**(3), pp. 5849-57, Mar. 2012
- M. Gersbach, Y. Maruyama, M.W. Fishburn, D. Stoppa, J. Richardson, R. Walker, R. Henderson, E. Charbon, "A Timeresolved, Low-noise Single-Photon Image Sensor Fabricated in Deep-submicron CMOS Technology", *IEEE Journal of Solid-State Circuits*, **47**(6), pp. 1394-1407, June 2012
- S. Mandai and E. Charbon, "A 128-Channel, 8.9ps LSB Column-Parallel Two-Stage TDC Based on Time Difference Amplification for Time-Resolved Imaging", *IEEE Trans. Nuc. Sci.*, **59**(5), pp. 2463-2470, Oct. 2012

- R.J. Walker, E.A.G. Webster, J. Li, N. Massari, and R.K. Henderson, "High Fill Factor Digital Silicon Photomultiplier Structures in 130nm CMOS Imaging Technology", IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Oct. 2012
- E.A.G. Webster, L.A. Grant and R.K. Henderson, "A High-Performance Single-Photon Avalanche Diode in 130-nm CMOS Imaging Technology", IEEE Electron Device Letters, **33**(11), pp. 1589-1591, Nov. 2012
- D. Tyndall, B.R. Rae, D. Li, J. Arlt, A. Johnston, J.A. Richardson, R.K. Henderson, "A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13 μm CMOS", *IEEE Trans. Biomedical Circuits* and Systems, 6(6), pp. 562-70, Dec. 2012
- L.H. Braga, L. Gasparini, L. Grant, R.K. Henderson, N. Massari, M. Perenzoni, D. Stoppa, R. Walker, "A 8×16 pixel, 92k SPADs Time-Resolved Sensor with on-pixel 64ps 12b TDC and 100Msamples/s Real-time Energy Histogramming in 0.13µm CIS Technology for PET/MRI Applications", IEEE International Solid-State Circuits Conference (ISSCC), Feb. 2013
- Y. Maruyama, J. Blacksberg, and E. Charbon, "A 1024×8 700ps Time-Gated SPAD Line Sensor for Laser Raman Spectroscopy and LIBS in Space and Rover-Based Planetary Exploration", *IEEE International Solid-State Circuits Conference* (ISSCC), Feb. 2013
- R.K. Henderson, E.A.G. Webster and L.A. Grant, "A Dual-Junction Single-Photon Avalanche Diode in 130-nm CMOS Technology", IEEE Electron Device Letters, **34**(3), pp. 429-431, Mar. 2013
- S. Mandai and E. Charbon, "A 3.3-to-25V all-digital charge pump based system with temperature and load compensation for avalanche photodiode cameras with fixed sensitivity", *Journal of Instrumentation* (JINST), **8**(3), Apr. 2013
- M.W. Fishburn, H. Menninga, and E. Charbon, "A 19.6 ps, FPGA-Based TDC with Multiple Channels for Open Source Applications", *IEEE Trans. Nuc. Sci.*, **60**(3), pp. 2203-2208, June 2013
- E. Charbon et al., "SPADnet: A fully-Digital, Networked Approach to MRI Compatible PET Systems Based on Deep-Submicron CMOS", IEEE Nuclear Science Symposium and Medical Imaging Conference, Oct. 2013
- J.M. Pavia, M. Wolf, E. Charbon, "Measurement and Modeling of Microlenses Fabricated on SPAD Arrays for Fill Factor Recovery", *Optics Express*, **22**(4), Feb. 2014
- S. Mandai E.Venialgo, and E. Charbon, "Timing Optimization Utilizing Order Statistics and Multichannel Digital SiPMs, *Optics Lett.*, **39**(3), pp. 552-554, Feb. 2014

Theses

- C. Niclass, "Single-Photon Image Sensors in CMOS: Picosecond Resolution for Three-Dimensional Imaging", Ph.D. Thesis, Lausanne, 2009
- M. Gersbach, "Single-Photon Detector Arrays for Time-resolved Fluorescence Imaging", Ph.D. Thesis, Lausanne, 2009
- C. Favi, "Single-photon Techniques for Standard CMOS Digital ICs", Ph.D. Thesis, Lausanne, 2010
- J. Richardson, "Time Resolved Single Photon Imaging in Nanometer Scale CMOS Technology", Ph.D. Thesis, Edinburgh, 2010
- M. A. Karami, "Deep-submicron Quantum Sensing and Information Transmission", Ph.D. Thesis, Delft, 2011
- M. W. Fishburn, "Fundamentals of CMOS Single-Photon Avalanche Diodes", Ph.D. Thesis, Delft, 2012
- R.J. Walker (R.K. Henderson), "A Fully Digital, Phase-Domain ΣΔ 3D Range Image Sensor in 130nm CMOS Imaging Technology", Ph.D. Thesis, Edinburgh, 2012
- E.A.G. Webster (R.K. Henderson), "Single-Photon Avalanche Diode Theory, Simulation, and High Performance CMOS Integration", Ph.D. Thesis, Edinburgh, 2013
- D. Tyndall (R.K. Henderson), "A CMOS Sensor for High Throughput Fluorescence Lifetime Sensing using Time Correlated Single Photon Counting", Ph.D. Thesis, Edinburgh, 2013
- S. Mandai, "Multichannel Digital SiPMs for TOF PET Systems", Ph.D. Thesis, Delft, 2014

Edited Books

- E. Charbon, "Highly Sensitive Arrays of Nano-sized Single-Photon Avalanche Diodes for Industrial and Bio Imaging" in Nano-net, 4th International ICST Conference (Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering), Ed. A. Schmid et al., pp. 161-168, Oct. 2009
- E. Charbon and Y. Maruyama, "Nano-metric Single-photon Detector for Biochemical Chips", in Nano-Bio-Sensing, Ed. S. Carrara, 2010
- E. Charbon, L. Carrara, C. Niclass, N. Scheidegger, H. Shea, "Radiation-Tolerant CMOS Single-Photon Imagers for Multi-Radiation Detection", in Radiation Effects in Semiconductors: Devices, Circuits, and Systems, Ed. K. Iniewski, 2010
- E. Charbon and M.W. Fishburn, "Monolithic Single-Photon Avalanche Diodes: SPADs", in Single-Photon Imaging, Ed. P. Seitz and A. Theuwissen, pp. 123-156, Sep. 2011

P. Seitz & A. Theuwissen Eds., "Single-Photon Imaging", Springer 2011.

