International Time-of-Flight Workshop, 10.03.2014

Algorithmic Enhancement and Validation of Time-of-Flight Imaging

<u>Christoph Garbe</u>, Jens-Malte Gottfried, Daniel Kondermann, Frank Lenzen, Stephan Meister, Rahul Nair and Henrik Schäfer

Image Processing and Modeling Interdisciplinary Center for Scientific Computing University of Heidelberg

Combining local and global models

David Hockney, Sun On The Pool 1982, composite polaroid, 24 3/4 x 36 1/4 in

Project Overview

Theme 3: Evaluation

Time of Flight (ToF) Sensor

- active modulated illumination
- 200 x 200 pixels
- 8 images per shot at 4 different phase shifts
- suppression of background illumination
- phase shift φ (distance) and intensity image A (amplitude)

Combining Stereo and ToF

- Gray-value Cameras @1.3 K
- TOF Camera with 200 x 200 pixels.

The scaled-up version

11 sequences with a production rig @ 4k & 30 fps from Screen Plane

Ground Truth (Real Scene)

Approach

- Created test dataset with object of known geometry (HCI Box)
 - –Precision measurement of depicted object (< 1mm)</p>
 - –Supply 3D polygon mesh in commonly used data formats
 - –Recorded sequences with calibrated camera and known camera pose
- More at: <u>http://hci.iwr.uni-heidelberg.de/Benchmarks/</u> <u>document/hcibox/</u>

Ground Truth Data

RGB

Amplitude

Depth

The HCI-Box

Ground Truth (Synthetic Scene)

Approach

- Physically correct simulation of ToF output
 - –simulate correct light propagation using path tracing methods
 - -consider multipath and material dependent effects
 - –correct simulation of motion artifacts by handling of subframes
- Details at <u>http://hci.iwr.uni-heidelberg.de/Benchmarks/</u> <u>document/tof_bidirpathtracer/</u>

Ground Truth (Synthetic Scene)

 Details at <u>http://hci.iwr.uni-heidelberg.de/Benchmarks/</u> <u>document/tof_bidirpathtracer/</u>

Real vs Synthetic

Theme 1: Enhancement

Denoising ToF Data

- Goal: remove noise contained in ToF data
- Advantage: accurate depth measurement at low SNR
 - -objects with low reflectivity
 - -higher depth ranges

Denoising strategies

- We investigated several denoising strategies for ToF at different stages, e.g.
 - Earliest stage : denoise four raw images by bilateral filtering
 - -Intermediate data: Denoising complex-valued data
 - Latest stage: denoise depth map with anisotropic second order total variation (TV)

Lenzen et al, Denoising Strategies for ToF data, Time-of-Flight and Depth Imaging: Sensors, Algorithms, and Applications, Springer, 2013, DOI: 10.1007/978-3-642-44964-2_2 http://ipm.uni-hd.de Christoph.Garbe@uni-heidelberg.de ITOF Workshop, 10.03.2014

Denoising strategies

http://ipm.uni-hd.de Christoph.Garbe@uni-heidelberg.de ITOF Workshop, 10.03.2014

- 1. Stage: edge detection
 - -multimodal edge detection
 - -suppress artefacts of ToF device
- 2. Stage: adaptive, anisotropic denoising
 - -no smoothing across object boundaries
 - -smooth image gradients

1. Stage: Edge Detection

- Find edges in depth and intensity data
- Remove texture edges
- Identify shadow casting depth edges along with shadows (intensity edges)
- Remove the later while keeping the former
- Determine edge normals

Edge Detection

Schäfer, H. and Lenzen, F. and Garbe, C.S., Depth and Intensity Based Edge Detection in Timeof-Flight Images, 3DTV-Conference, IEEE, pp. 111-118. 2013. DOI: 10.1109/3DV.2013.23

Edge Detection

Schäfer, H. and Lenzen, F. and Garbe, C.S., Depth and Intensity Based Edge Detection in Timeof-Flight Images, 3DTV-Conference, IEEE, pp. 111-118. 2013. DOI: 10.1109/3DV.2013.23

2. Stage: Denoising

- Use anisotropic second order total variation (penalizing L1-norm of image gradient)
- Adapt to the local noise level (amplitude-dependent)
- Reduce smoothing across edges, smooth mainly parallel to edges.
- Second order reduces stair-casing (typical for first order TV)

Lenzen, F. and Schäfer, H. and Garbe, C.S., Denoising Time-Of-Flight Data with Adaptive Total Variation, Advances in Visual Computing, LNCS 6938, pp. 337-346. 2011. DOI: 10.1007/978-3-642-24028-7_31

The model formulation

variational approach

intensity dependent noise

$$\min_{u \in \mathbb{R}^{n,m}} F(u) := \min_{u} \sum_{i,j} w_{i,j} (u_{i,j} - d_{i,j})^2 + \phi(u).$$
$$\min_{u} \sum_{i,j} \frac{A_{i,j}^2}{\sigma_0^2} |u_{i,j} - d_{i,j}|^2 + \phi(u),$$

the regularizer

$$\phi(u) := \sum_{i,j} \left(c_{i,j} \sqrt{\left(\begin{array}{c} D_x u_{i,j} \\ D_y u_{i,j} \end{array} \right)^T G_{i,j} \left(\begin{array}{c} D_x u_{i,j} \\ D_y u_{i,j} \end{array} \right)} + (1 - c_{i,j}) \gamma_{i,j} \left\| \left(\begin{array}{c} D_{xx} u_{i,j} \\ D_{yy} u_{i,j} \\ D_{xy} u_{i,j} \end{array} \right) \right\|_F \right),$$

edge direction

$$G_{i,j} = \alpha_{i,j}^2 v_{i,j} v_{i,j}^T + \beta_{i,j}^2 (\text{Id} - v_{i,j} v_{i,j}^T)$$

Lenzen, F. and Schäfer, H. and Garbe, C.S., Denoising Time-Of-Flight Data with Adaptive Total Variation, Advances in Visual Computing, LNCS 6938, pp. 337-346. 2011. DOI: 10.1007/978-3-642-24028-7_31

Lenzen, F. and Schäfer, H. and Garbe, C.S., Denoising Time-Of-Flight Data with Adaptive Total Variation, Advances in Visual Computing, LNCS 6938, pp. 337-346. 2011. DOI: 10.1007/978-3-642-24028-7_31

Software package available (C++, GPL license):

see <u>http://hci.iwr.uni-heidelberg.de/Staff/flenzen/?page=tof_denoising</u> for details. Code available upon request: please send email to <u>frank.Lenzen@iwr.uni-heidelberg.de</u>

Conclusion

- Data sets for validation are available
 - -real scenes, combined with stereo
 - -synthetically rendered scenes
 - ToF specifics such as multi-path included
- Denoising
 - -several denoising strategies have been tested
 - —most accurate based on adaptive, anisotropic higher order TV of depth data
 - -source code available on request

Funding

Partners of the Heidelberg Collaboratory for Image Processing (HCI)

Filmakademie Baden-Württemberg GmbH

SONY make.believe

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386