

Please contact me for PPT version w/ media files: hullin@cs.uni-bonn.de

Computational Transient Imaging

Matthias Hullin, University of Bonn

IToF Workshop Ein Gedi, Israel, 3/9/2014

Why is computer vision hard?

- Because images are ambiguous.
- Every pixel value stands for a high-dimensional integral

$$I(x,y) = \int \cdots \int L(x',y',\theta_x,\theta_y,\lambda,\dots,t) \, d\mathbf{A} \, d\mathbf{\omega} \, d\lambda \, \cdots \, dt$$

Most of this gets lost

- For any given image, there are infinitely many possible explanations
- Option 1: Imitate how our brain does it
- Option 2: Provide more information

Vision on generalized images

• λ: Spectral imaging [Cao11]

• θ_x, θ_y : 4D light fields [Wanner12]

• Light transport probing [O'Toole12]

Filming light in flight (= transient imaging)

[Abramson78] •

http://youtu.be/n1uszBv4MGo

Transient imaging is important because...

$$I_{\text{out}}(x, y, t) = I_{\text{in}}(t) \underset{t}{\overset{*}{\underset{t}{\rightarrow}}} I_{\text{response}}(x, y, \tau)$$

• Impulse responses fully characterize linear time-invariant systems.

• Optical path length \leftrightarrow scene geometry and reflectance

Research goals

 Instrumentation Make it affordable and practical

2. Image reconstruction and capture strategies Fast and accurate acquisition of transient data

3. Multi-path image formation Understanding and inversion (More on that from Ayush, Refael, Yebin)

Transient image as temporal impulse response

Femtosecond laser \$ 60,000+

Streak camera

\$ 200,000+

Low-Budget Transient Imaging using Photonic Mixer Devices

with Felix Heide, James Gregson, Wolfgang Heidrich SIGGRAPH 2013 Technical Paper

Capturing modes

• Direct temporal sampling: streak sensors, fast photodetectors

• Temporal coding

[Heide13] [Kadambi13] [Bhandari14]

Photonic Mixer Devices PMDTechnologies PhotonICs® 19k-S3

2. Jeda Tamara

3/9/2014

Hardware: PMDTechnologies CamBoard nano

Modifications to the hardware

Late-2013 version: Max mod. frequency 180 MHz, stable up to 150 MHz

Observed pixel value:

 $\tilde{g}_{\omega}(t) = \alpha g_{\omega}(t-\tau)$

Time of flight au

Amplitude α

$$H_{\omega,\phi} = \int_{0}^{T} \tilde{g}_{\omega}(t) f_{\omega,\phi}(t) dt$$
$$= \alpha \int_{0}^{T} g_{\omega}(t-\tau) f_{\omega,\phi}(t) dt$$
$$\begin{bmatrix} g_{\omega}(t) = \sin(\omega t) \\ f_{\omega,\phi}(t) = \sin(\omega t+\phi) \end{bmatrix}$$
$$= \alpha \frac{T}{2} \cos(\phi - \omega \tau)$$

Traditional time-of-flight imaging: Solve for τ , α for each pixel

3/9/2014

Illumination Reference $f_{\omega,\phi}(t)$ $g_{\omega}(t)$

Discretize τ :

 $H_{\omega,\phi} = \int_0^T \sum \alpha_k g_{\omega}(t - \tau_k) f_{\omega,\phi}(t) dt$ $=\sum \alpha_k \int_0^T g_\omega(t-\tau_k) f_{\omega,\phi}(t) dt$ $c_{\omega,\phi}(\tau_k) = \frac{T}{2} \cos(\phi - \omega \tau_k)$

Correlation coefficient

Transient pixel $\alpha(\tau)$: Superposition of delayed and attenuated reflections ("backscatter" in Daniel Freedman's nomenclature)

Vary
$$\omega = \omega_j$$
:
Linear system
 $H_j = \sum_k \alpha_k c_{j,k}$
 $\mathbf{h} = \mathbf{Ci}$

Capturing modes

• Direct temporal sampling: streak sensors, fast photodetectors

• Temporal coding

[Heide13] [Kadambi13] [Bhandari14]

3/9/2014

Better: application-specific [Heide14]

Demo at SIGGRAPH 2013

SIGGRAPH 2013 E-Tech implementation: 3 frequencies only; fully automatic calibration in 2 min, TI capture 30 sec

Comparison

	Streak camera [Velten12]	Correlation- based [Heide13]
Slicing	Scanline	Frequency/Phase
Cost	\$300,000	\$500
Ambient illum.	Very sensitive	Insensitive
Capture time	Hours	Seconds
Resolution	> 2ps	Scene-dependent

Camera we actually used in SIGGRAPH 2013 submission

 (bonus slide for IToF2014 handouts)

Research goals

Instrumentation

Make it affordable and practical

• Image reconstruction and capture strategies Fast and accurate acquisition of transient data

Multi-path image formation
 Understanding and inversion

Indirect Diffuse Time-of-Flight Imaging

2010, with Johannes Hanika, Hans-Peter Seidel, Hendrik Lensch

All this light comes from the rear side of object – can we use it to reconstruct the geometry outside line of sight?

What can **indirect diffuse** light tell us about an unknown scene?

"Looking around corners"

• How can it work?

• Diffuse reflection destroys angles, but leaves time intact

Pilot experiment (2010)

Diffuse mirrors

with Felix Heide, Lei Xiao, Wolfgang Heidrich To appear at CVPR 2014 (oral)

"Looking around corners"

[Velten12]

Scene

- Lambertian scene and wall
- Single-bounce, occlusionfree scattering in the scene

[Heide14]:

- Introduce generalized albedo v
- Linear image formation model:

 $\mathbf{i} = \mathbf{P}\mathbf{v}$

Joint solution

• Direct temporal sampling [Velten12]:

• Temporal coding:

Inverse problem

Learn how to solve this at CVPR! :-)

3/9/2014

Results

Reconstruction

Effect of ambient light on geometry:

Room lights off:

All room lights on:

3/9/2014

Albedo

Reconstructed depth

Diffuse cardboard:

Albedo

Slice through volume

Polished whiteboard:

Depthmap

Slice through volume

Mirrors:

Depthmap

Slice through volume

Brushed metal and diffuse whiteboard:

Depthmap

Slice through volume

Unknown scene

Conclusion

- Lowered entry barrier for transient imaging
 - No more laser lab required

- ToF-sensor based setups can do things that used to require much more expensive gear
 - Looking around corners

Future work

- Lots! From theoretical foundations to new applications
 Alternative sensors Microsoft, SoftKinetic?
- Your project ideas here 7 imager systems available

Thanks

 People: Felix Heide, Lei Xiao, James Gregson, Wolfgang Heidrich, Hendrik Lensch, Johannes Hanika, Hans-Peter Seidel

• [Heide14] supported through Max Planck Center for Visual Computing and Communication