

Exploring new avenues in motion picture production: A groundbreaking RGB+Z camera demands cuttingedge TOF technology

Johannes Steurer Ein Gedi, 10 March 2014

A Filmmaker's Vision

Capture depth channel together with image stream

Derive mask signals from the depth map for post production

- Substitute green screens,
- Artificial shallow depth of field

Build moving 3D model of the real scene for visual effects

- e.g. shadow casting, interactions between real and virtual characters
- Modify real captured scenes as easily as CGI models: Substitute textures, warp shapes, etc.
- "Object oriented image processing"

Filmmaker's reality

Today

VFX Production Today

VFX Production Today

VFX Production Today

Film Producers Vision

With RGB+Z Camera – Depth Map

VFX Applications

- o Selective Color Grading with depth map as segmentation mask
- o Modifying optical characteristics like **shallow depth of field** after the fact with depth map as key for blurriness (objects farther from a distinct z-plane are more blurry)
- o **Depth-Keying** depth map as mask for foreground background distinction
- o **3D-Interaction between real and virtual actors** and other scene elements, like casting shadows generate 3D models from depth map
- o **Virtual lighting** of real scenes depth map generated 3D models casting shadows on real and virtual backgrounds
- 2D → 3D Conversion measured depth maps to start with rather than a hand-painted (invented) depth map
- o **Auto-stereoscopic displays** calculate intermediate camera perspectives by means of depth based warping

Camera Applications

o **Focus Assistance** – measure the distances of actors and objects to support the focus puller

o **Follow Focus** – measure the distance of objects, follow the objects by image tracking adjust focus of lens

o **Self localization** of the camera – position and orientation in the set environment

Requirements for depth imaging apps.

EU-funded Research Project SCENE

SCENE: Novel scene representations for richer networked media

Duration: 11/2011 – 10/2014 (3 years)

Goal: Novel Scene

SEVENTH FRAMEWORK

- Novel Scene representation (SRA)
 - Manipulate real captured content like CGI
 - Give CGI content natural emotion like real capture

Motion Scene Camera (MSC)

- Based on an ARRI ALEXA Studio camera
- Extended by depth sensing capabilities using a Time-of-Flight module
- Synchronous capture of RGB and Z image data
- Complemented by VFX meta data like lens data (aperture, focus, focal length)

ARRI ALEXA Studio

Time-of-Flight Depth Camera

Opto-mechanical Integration

Alexa Studio

Image resolution

Active area

Frame rate

Sensitivity

Exposure latitude

Rotating mirror shutter

2880 x 2160 pixel 23.76 x 17.82 mm 1 – 60 fps El 160 to El 3200 14.5 stops

Time-of-Flight Camera

Active illumination & CMOS sensor

- \rightarrow "Photo mixer device PMD"
- NIR-LED radiates light pulse
- CMOS sensor measures round travel time of light
- 1 nsec ≜ 70 mm

Image resolution Illumination Units Depth range

Depth noise

352 x 288 pixel 870 nm (NIR) 7 m ~80 mm

Motivation

Why using a Time-of-Flight camera for depth measurement?

- Independent depth information for each (ToF) sensor pixel
- Technology suitable for real-time applications
- Low computational load for depth measurement
- High frame rates
- Competes with triangulation approaches due to contrary requirements (e.g. no contrast needed)
- Systematic depth error: ToF ($\Delta Z \sim \text{const.}$) vs. Stereovision ($\Delta Z \sim Z^2$)
- Small size and light-weight

Mirror Shutter Details

Hardware Integration

 Control computer for TOF Sensor Sensor-control, preview, processing, storage

Motion "Scene" Camera - Prototype

- ✓ ALEXA camera enabled to capture additional depth information
- ✓ Occlusion-free RGB+Z using the same entrance pupil
- ✓ Synchronous capture
- ✓ Prototype used in field-testing
- ✓ Early stage of <u>research</u>

Ongoing research

- ➤ timing and frame rate
- light distribution of active illumination
- depth range and resolution
- denoising and upsampling of low-res depth maps

Measurement Errors

- Systematic "wiggling" around real distance
- 8 cm within the range of 7.5 m (high NIR reflectance)
- Statistical error due to:
 - Sensor noise
 - Decreasing active light intensity with increasing distance an object

Sample 1

Sample 1

Sample 1

Signal Processing and Data Fusion

- Extraction of the depth map from raw TOF data
- Geometrical calibration of depth map
- De-noising and refining of depth
- RGB-aided up-scaling of depth
- Data storage in a suitable container (2-layer-representation in OpenEXR)

Challenges for depth sensing technologies

Current limitations and required parameters

Parameter	Current	Production ready	Optimum
Pixel resolution	350 x 290	1k x 0,5k	4k x 2k
Depth accuracy	0,1m	0,02m	<0,01m
Depth noise	0,1m	0,02m	0,01m
Range	<5m	10m	>10m
Frame rate	8fps	60 fps	200 fps
Multiple cameras on set	1	5	20

→ More, faster, better depth-pixel, please!

Opportunities

Sensor size is not a limit – could be larger Modulation type – handle interferences, and non ambiguity range Joint filtering of RGB + Z to mutually improve signals

Acknowledgement

Part of the research leading to these results has received funding from the European Commission's Seventh Framework Programme under the project SCENE.

Thank You!