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Zusammenfassung

ie multispektrale Bildgebung wird im Rahmen verschiedenster Anwendungsgebiete

D eingesetzt. Neueste technologische Fortschritte, wie die Entwicklung von kostengiin-
stigen und kompakten Multispektralkameras, zeigen die anhaltende Beliebtheit dieses
bildgebenden Verfahrens. Aufgrund dieser Beliebtheit, besteht ein hoher Bedarf an gener-
ischen Losungsansidtzen mit denen Benutzer fiir eine Vielzahl von Anwendungsbereichen
einen Zugang zu den relevanten Informationen erhalten, z.B. konstituierende Spektren. Doch
aufgrund der typischerweise hohen Dichte der spektralen Informationen ist die Interpretation
der Daten zum einen komplex fiir Benutzer und zum anderen zeitaufwendig fiir Computer.
Dementsprechend benétigt die anspruchsvolle Interpretation der Daten Unterstiitzung durch
effiziente Algorithmen zur Datenanalyse und intuitive Visualisierungsmethoden, um das Ver-
standnis fiir die Daten zu verbessern und letztlich einen Nutzen aus ihnen ziehen zu kdnnen.

Diese Arbeit befasst sich mit den genannten Herausforderungen vor allem durch die
Prisentation von effizienten, intuitiven und generischen visuellen Analysemethoden zum
einen zur multispektralen Bildsegmentierung und zum anderen zur spektralen Mischungs-
analyse. Die Schliisselfunktion dieser Methoden ist hier jeweils die Einbindung des Be-
nutzers durch visuelles Feedback, welches eine zielfithrende Exploration erlaubt. Basierend
auf dieser visuellen Unterstiitzung, wird es dem Benutzer ermoglicht Ergebnisse von automa-
tischen Analysemethoden zu explorieren, zu beurteilen und diese, falls erforderlich, auch zu
optimieren.

Mit dem Ziel ein weitergehendes Verstindnis fiir die Verarbeitung von multispektralen
Bilddaten zu schaffen, werden neben den visuellen Analysemethoden auB3erdem eher grundle-
gende Herausforderungen und Konzepte der Verarbeitung diskutiert.
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Abstract

ultispectral imaging is applied in the context of various applications. Recent techno-

logical advances, like the development of low-cost and compact multispectral imaging
cameras, show the ongoing popularity of this imaging technique. Because of this popular-
ity, there is a high demand for generic solutions to enable a user to get access to relevant
information, e.g. constituent spectra, for a large variety of application domains. But, due to
the typically high-density of spectral information, usually the interpretation, on the one hand,
is complex for humans and on the other hand, is time-consuming for computers. Thus, the
challenging task of interpretation consequently requires efficient data analysis algorithms and
intuitive visualization methods to support the understanding of the data and to finally make
use out of them.

This thesis addresses the identified challenges mainly by the presentation of efficient, in-
tuitive and generic visual analysis methods for both, multispectral image segmentation and
linear spectral unmixing. The key function of these methods is the involvement of a user by
visual feedback to enhance the guidance in the exploration. Based on the visual support, the
user is enabled to explore and assess results of automatic analysis algorithms and to optimize
them, if necessary.

In addition to the visual analysis methods and with the aim to provide a further under-
standing of the processing of multispectral image data, also more fundamental challenges and
concepts of the processing are discussed.
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Introduction

n the last years, multispectral sensors have been applied in a growing number of application
Iareas, like remote sensing, astronomy, physics, museum, cosmetics, medicine, biometrics,
safety, high-accuracy color printing and computer graphics, because of their strong poten-
tial [HSBO2]. Recent technological advances in spectral imaging, like the development of
low-cost and compact multispectral imaging cameras [HKW12] or 3D scanning systems that
incorporate hyperspectral imaging [KHK*12], further show the popularity of this imaging
technique.

In general, multispectral imaging yields an image series of a specific range of frequencies
across the electromagnetic spectrum. Commonly, these data are often referred to as multi-
spectral image cubes that have three dimensions, two spatial dimensions representing the sur-
face position and one spectral dimension that represents the spectral distribution, allowing for
a very deep investigation of scene characteristics. Thus, each pixel in the multispectral image
does not provide only grayscale or color information but in fact has associated a spectrum, i.e.
n-dimensional vector of values with each value being the measurement of the reflectance for
a specific spectral band. Based on this, one can differentiate materials not only on color but
also on spectral properties beyond the visible range. But, due to the typically high-density of
spectral information in multispectral image cubes, usually the interpretation, on the one hand,
is complex for humans and on the other hand, is time-consuming for computers. Thus, the
challenging task of interpretation consequently requires efficient data analysis algorithms and
visualization methods to improve the understanding of the data and to finally make use out
of them. Moreover, because of the increasing popularity of this imaging technique, there is a
high demand for generic solutions to enable a user to get access to the relevant information,
e.g. constituent spectra, i.e. materials, for a large variety of application domains.

Problem Statement

Visual analysis [KAF*08], combining automated analysis techniques with interactive visual-
izations allows users to explore data in an efficient and intuitive way for an effective under-
standing, reasoning and decision making on the basis of very large and complex data sets.
Keim et al. [KAF*08] states that the aim of visual analysis includes the creation of tools and
techniques to enable users mainly to detect the expected and discover the unexpected. Here,
regarding the authors, it is also vital to synthesize information and derive insight from mas-
sive, dynamic, ambiguous, and often conflicting data. In the context of multispectral imaging
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such an interactive exploration approach poses, beside intuitive interaction methodologies, the
main objectives in three areas:

1. High-Dimensional Data Analysis: The data analysis of multispectral data is not a
straight forward issue, e.g. to determine a complete set of constituent spectra, and has
to deal with challenges like imperfections in the data or low signal-to-noise-ratio (SNR).
Moreover, the similarity measures for vectors in high-dimensional space are challenging
itself, due to many reasons, e.g. high-information loss due to mapping down to single
scalar values or due to the fact that the choice of similarity measure strongly depends
on the analysis task itself.

2. Scientific Visualization: The visualization must provide specialized methods to syn-
thesize the analysis results and spectral information. Here, a general visualization prob-
lem is the high spectral information at each pixel, which makes it difficult, right up to
impossible, to visualize all aspects in one single image [PvdHO1].

3. Processing Speed: The usual complexity of multispectral image cubes needs efficient
processing methods to provide the user in a timely manner with visual feedback during
the interactive exploration.

In this dissertation, techniques and methods, which address the three challenging areas, are
presented mainly with the focus to achieve descriptions of efficient, intuitive and generic
visual analysis methods in order to facilitate the interpretation of the data and to enhance the
knowledge. Thus, mainly is aiming to involve the user in the multispectral analysis process in
order to achieve opportunities to explore, assess and to optimize results.

In addition to the visual analysis methods and with the aim to provide a further understand-
ing of the processing of multispectral image data in general, also more fundamental challenges
and concepts of the processing are discussed.

Contributions

As presented before, the aim of this dissertation poses the significant challenges in three areas.
Correspondingly, the specific contributions are divided with respect to these areas:

1. High-Dimensional Data Analysis

e A semi-automatic endmember extraction method for unsupervised generic con-
stituent determination in multispectral data. Here, the robustness of automatic
endmember extraction algorithms is improved by an interactive preprocessing step
for outlier masking [LBK12]

e A general method for the assessment of vector attribute variability by measure the
minimum efforts needed to transform a variable vector into a representation of
maximum similarity with a target vector [SLKV11, SLB11].
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e Compensation of geometric and chromatic aberration in the acquisition of RGB-
images, also with application to multispectral imaging, by high-quality estimation
of point spread functions (PSF) and a cross-channel prior that enforces gradient
consistency [HRH*13].

2. Scientific Visualization

e A juxtaposed complementary view for the evaluation of the completeness of end-
member sets, also including several exploration means [LBK12].

e Expressive spectral error visualization which purposefully provides user guidance
in a visual analysis approach in order to finally enhance the results of spectral
mixture analysis [LUK13].

e A Radviz-based visual analysis tool for the semi-automatic segmentation of multi-
spectral images. This approach also includes a novel cluster evaluation view which
subdivides cluster that consist of different constituents in order to improve the seg-
mentation, if necessary [LPK13].

3. Processing Speed

e The computation of non-negative coefficients for spectral mixture analysis with
respect to a modified endmember set is accelerated by utilizing the information
of a previous unmixing in order to predict the coefficients of the modified set.
Moreover, a progressive unmixing scheme is included that allows user interaction
during time-consuming calculations [LBK12].

e An approach that directly estimates non-negative coefficients on the basis of resid-
ual errors that are generated by successive orthogonal subspace projections of al-
ternating endmembers [LK13]. Thus, compared to the previous approach, needs
no information of a earlier unmixing run.

Outline

The structure of this dissertation consists of the following six chapters:

Chapter I provides the underlying terminology of this thesis and the necessary fundamentals
about multispectral image processing.

Chapter 2 shows some exemplary application scenarios of multispectral imaging to provide
some general impressions of application tasks. But, the focus of this chapter is the discussion
of requirements and challenges of multispectral image processing in order to conclude in final
design goals for the proposed visual analysis methods.

Chapter 3 discusses reasons for blur in multispectral imaging and qualitatively evaluates
the consequences for the data analysis. Moreover, a conceptional proposal of a deblurring



4 Introduction

approach is proposed for multispectral imaging, which uses means of computational photog-
raphy. The chapter ends with a summary of the observations.

Chapter 4 focuses on distinct aspects of multispectral data analysis. Starting with the, more
fundamental, discussion of similarity measures in high-dimensional data spaces, the chapter
continues with an unsupervised approach for the generic determination of constituent spectra
for spectral mixture analysis. Before the general speedup of inverse operations in spectral
mixture analysis is discussed, the improvement of automatic analysis algorithms by interac-
tive preprocessing is shown. The chapter concludes with a summary.

Chapter 5 introduces visualization method for purposeful user-interaction. First, it explains
a complementary visualization method, including exploration means, for the evaluation of
spectral mixture analysis results. Subsequently, methods for expressive spectral error visual-
izations in the context of spectral mixture analysis are presented. Before the chapter finally
summarizes the achievements, a semi-automatic and Radviz-based segmentation approach
for multispectral data is presented.

Chapter 6 shows an application example to demonstrate the usage of the proposed visual
analysis methods.

Finally, the dissertations ends with a summary and conclusions, which also discuss some
aspects of future work.
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Chapter 1

Fundamentals

his chapter mainly gives a general overview of multispectral image processing. The ex-

planation is oriented on an abstract processing pipeline to group the various techniques.
Before the overview of the pipeline is presented, the underlying terminology and notation of
this thesis is defined in the first section.

1.1 Terminology and Notation

In general, multi- and hyperspectral imaging yield high dimensional datasets with high-
density spectral information. Commonly, these datasets have three dimensions, two spatial
dimensions and one spectral dimension, and are often denoted as multi- or hyperspectral im-
age cubes (see. Fig. 1.1). Here, each pixel (x,y) in fact has associated a spectrum 5(x,y),
which is usually regarded as a n-dimensional vector, where n is the number of spectral bands
(wavelength A). Consequently, each scalar value 5(x,y,A) in such a cube is the measured
reflectance (or absorbance) value of a specific spectral band at (x,y).

Considering common literature related to multi- and hyperspectral imaging [Cha03,
GGBO07], the distinction of both imaging techniques is not well-defined. However, the con-

'
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Figure 1.1: Multispectral image cube illustration (left) and a spectrum of an image location
(right). A spectrum with n spectral bands is usually considered as a n-dimensional vector.
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Figure 1.2: Illustrative comparison of RGB camera and multispectral imaging. As can be
seen, multispectral imaging achieves a more accurate representation of the continuous spec-
trum. Thus, allows to for instance distinguish a mixed and a pure yellow tone.

sensus of the literature poses that, the distinction mainly is related to the number of spectral
bands and the spectral density:

e Hyperspectral imaging usually consists of hundreds of narrow bands that typically cover
a large part of the electromagnetic spectrum.

e Multispectral imaging usually consists of a smaller number of bands, typically lower
than 100, and the spectral density is broader and covers a smaller part of the electro-
magnetic spectrum, e.g. 400 - 1000 nm.

Since there is no strict definition of the term hyperspectral and for the sake of simplicity,
both techniques multi- and hyperspectral imaging and the corresponding data are collectively
referred to as multispectral imaging and multispectral data in this thesis.

1.2 Multispectral Image Processing — A General Overview

Multispectral imaging is the process of acquiring images series of a specific range of fre-
quencies across the electromagnetic spectrum. As seen in the previous section, this image
series also can be considered as an multispectral image cube, where each pixel in fact has as-
sociated a discrete spectrum, which approximates the continuous electromagnetic spectrum.
Compared to traditional RGB cameras, where the continuum of an electromagnetic spectrum
is converted into three discrete values, the denser sampling and more narrow filters used in
multispectral imaging lead to a more accurate, but still discrete representation of the con-
tinuum of a spectrum, please see Fig. 1.2. Based on the more detailed representation of a
continuous spectrum, one can more precisely differentiate materials, not only according to
color but also according to spectral properties beyond the visible range. However, due to the
associated complexity of the multispectral data, the creation of a visual representation to get
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[ Acquisition J (Data Analysis] [Visualization] [ Knowledgej

Basic Imaging Systems Determination of Pattern Intuitive Representations Access to Rich Information
e Point-Scanner e Preprocessing for data e Image-based e Classified Image
e Line-Scanner / Spectro- enhancement e Plot-based e Constituent Spectra
meter (Push-Broom) e Spectral Matching e Feature-based e Insight into Mixtures
e Plane-Scanner e Image Segmentation e Multiple Linked Views e Spatial and Spectral
e Dimensionality Reduction Realtionships
Raw Data Processed Data Visual Representation

Figure 1.3: Conceptional overview of a multispectral image processing pipeline.

access to the rich information is not a straightforward issue and usually needs sophisticated
analysis or human interaction.

Common principles and methods of multispectral image processing are discussed in the
following. Here, a general and conceptional multispectral image processing pipeline is in-
troduced to achieve a more structured introductory discussion. The processing pipeline is
illustrated in figure 1.3. Starting with the acquisition of the multispectral raw data, the next
step usually corresponds to the data analysis, which determines pattern in the multispectral
data, e.g. to extract spectral characteristics. After the analysis typically a visualization step
follows to create intuitive visual representations of the processed data or achieved analysis
results. Finally, based on the intuitive visual representations a human can gain knowledge of
the high-dimensional data and gets access to the rich information. Here, rich information can
be:

e a segmented or classified multispectral image,
e the constituents of the data to get insights to spectral mixtures,

e insights to the spectral distribution to identify spectral ranges of convergence or diver-
gence,

e contextual relationships between spectral and non spectral features, e.g. relation of
absorbance values and the water content of plants,

just to name a few. Thus, the basic goal of multispectral image analysis is mainly the classi-
fication or discrimination of objects [BG04]. Next, the essentials of the mentioned stages of
the pipeline are discussed.

1.2.1 Acquisition

Multispectral imaging has a long history and originates from the field of remote sensing.
Here, the high spectral density was used to facilitate the identification of materials [VG88]. In
general, a multispectral imaging system mainly is composed of three elements:
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Figure 1.4: Overview of the three basic multispectral imaging setups: point scanner, line
scanner and plane scanner. The images are taken from [GGBO07].

1. alight source (covering the electromagnetic range of interest),
2. afiltering device to disperse the light into distinct spectral bands and
3. asensor to detect and store the spectral contributions of a sample [GGBO7].

Accordingly to Geladi et al. [GGBO07], typically, the utilized filtering device defines the cam-
era configuration, which basically can distinguished by the type of acquired spatial informa-
tion: point scan, line scan, or plane scan (cf. Fig. 1.4). These three basic camera configurations
are briefly described in the following paragraphs according to Geladi et al.

Point Scanner In this camera setup a spectrum is measured at a time for a single position
on a sample. In order to measure a whole multispectral image of the sample, the sample has to
be moved systematically in the two spatial dimensions, such that the whole surface is covered.
Due to the continuous repositioning of the sample, the acquisition of a complete dataset can
be very time consuming. But, on the other hand these kind of setups are able to acquire very
stable and high resolution spectra. Common devices that are based on this basic principle are
interferometer or confocal Raman microscopy (CRM).

Line Scanner (Spectrometer) The line scanning devices acquire all spectra at a time of a
spatial line by using a dispersing element, e.g. prism, that disperses the incident light into
the single wavelengths. Thus, these devices make use of the physical principle that the re-
fraction index of a material typically is wavelength dependent. When acquiring a complete
two-dimensional multispectral dataset the sample or the device has to be moved in one spatial
dimension. Because of this successive line by line measuring, these scanning devices are also
called push broom scanner. The movement of a sample most often is done by using assembly
lines, e.g. for food quality inspections. When the device has to be moved there are mainly two
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common ways, first by mounting the devices on e.g. airplanes or satellites, or second by using
a rotating mirror to sweep across the sample. Since a whole spectral scan-line can be mea-
sured at a time, without changing the filter elements, these setups need less time to acquire a
complete dataset than the point based scanners. The acquisition time is mainly limited by the
read out time of the camera sensors. These scanning principle has a long history in the field
of remote sensing, e.g. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) [VGC*93]
or Hyperspectral Digital Imagery Collection Experiment (HYDICE) [BCA95].

Plane Scanner The plane scanning devices use bandpass filter in the optical path between
the optical lens and the camera sensor. These filter-based scanners acquire a two-dimensional
image of a selected wavelength. By successive adjusting the bandpass filter and capturing,
a complete multispectral dataset is acquired. Here, the simplest example of a device is the
utilization of a computer-controlled filter wheel that holds glass filters of different wave-
lengths, e.g. as described in [BSA10]. These setups usually are quite affordable. However, as
they operate in a mechanical manner, they are quite slow and have a very limited number of
bands, e.g. ten. The utilization of electronically tunable filter, like liquid crystal tunable filter
(LCTF) [HSBO2] or acousto-optic tunable filter (AOTF) [SOKHO8], is very common for this
scanning principle. These filter usually are quite costly, partially due to a small number of
manufacturers. Beside the high costs, the major drawbacks are, that about the half of the
transmittance is lost by the utilization of a LCTF and that an AOTF requires collimated light.
However, compared to mechanical devices the acquisition is faster and the spectral resolution
is much higher, e.g. by considering a full width at half maximum (FWHM) of 10 nm the
number of spectral bands is 31 for the visible wavelength range.

In summary, the common multispectral imaging systems remain complex, expensive and due
to the huge amount of data they pose significant challenges in data management in terms of
storage and processing [HSB02]. Moreover, typically no scanning device is able to acquire
high-resolution spectra of moving samples, especially not for point scanners. Thus, unex-
pected movements of samples usually would cause image registration problems for filter-
based scanners or uncontinuous spatial measures for spectrometers. In other words, moving
objects of interest lead to spectral errors in filter-based measurements or to spatial errors for
spectrometers. Comparing both, a filter-based system has the advantage, that the band selec-
tion is much more flexible and therefore the acquisition process can be accelerated by e.g.
capturing only spectral bands that are of interest for a specific analysis task.

1.2.2 Data Analysis

Mutlispectral image data contain rich information, but the processing of the data poses sev-
eral challenges, like computational requirements, information redundancy, the identification
of relevant information, and the modeling accuracy [BG04]. The part of data analysis can
be divided into two parts, on the one hand there is the preprocessing of the data to enhance
the image quality, e.g. reducing the noise, and on the other hand, there is the general multi-
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spectral data analysis e.g. revealing spectral characteristics. Analysis tasks of the general
data analysis stage commonly are

e similarity measures, so-called spectral matching,
e segmentation, or
e redundancy reduction.

Necessary details of all analysis tasks and methods for this thesis are presented within the
upcoming sections.

Preprocessing of Multispectral Image Data

Considering the field of remote sensing, Bioucas-Dias and Plaza [BDP10] stated that the
atmosphere attenuates and scatters light, so that its presence affects the radiance at the sensor.
According to the authors, these effects usually are compensated in a preprocessing step by
an atmospheric correction, where the radiance is converted into reflectance, which is an
intrinsic property of the materials, especially when these effects are not equally distributed for
all pixels.

For an application independent view, a more important preprocessing task is the image
enhancement by noise reduction. Based on the main idea that each channel is smoothed
independently, the main challenge is to estimate how much each channel has to be smoothed.
Many methods have been proposed in the literature for the noise reduction of multispectral
data. One of the first attempts for noise reduction in multispectral data and some of the
standard solutions in remote sensing are the maximum noise fraction (MNF) [GBSC88] and
the noise adjusted principal components (NAPC) [LWB90], where NAPC mathematically is
equivalent to MNF [BDP10]. Both methods order the channels in terms of image quality,
1.e. they maximize the SNR. Here, noise reduction is achieved by smoothing or removing
the noisiest channels. Moreover, also wavelet-based methods have been proposed, like in
[Sch04] where a multiband thresholding method for multivalued images is presented. Here,
the principle of usually exiting redundancies between multivalued bands is exploited with
the assumption that the sensor noise typically is decorrelated and is modeled as a Gaussian
random vector with independent components of equal variance [Sch04]. All these methods
individually smooth the different channels by applying a constant smoothing level to each
image. Acton and Landis [AL97] presented the first approach to apply anisotropic diffusion
to multispectral images. The main idea was to use the local gradient magnitude to influence
the level of smoothing, e.g. inhibit smoothing at edges. Based on Acton and Landis, an
approach that combines MNF with anisotropic diffusion was presented in [LMHMO02]. One
challenging task of anisotropic diffusion is the identification of edges in multispectral images,
since not all materials are visible throughout all bands, because of the wavelength dependent
index of refraction. Here, a very recent method have shown a very promising demonstration of
the edge identification by computing the distances of materials in the space of a self organizing
map [JA11]. Beside the challenge of edge detection in the context of anisotropic diffusion in
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general, all methods, as mentioned above, require a robust parameter estimation in order to
enhance the data without destroying spectral characteristics.

Spectral Matching

Measuring the similarity between two spectra is called spectral matching and is an important
task in multispectral data analysis, e.g. for classification of found spectra by matching them
against a spectral library [VGO08] or for target detection [RG05]. The basic principle of the
matching is, that two spectra are called similar, when the distance between them is rather
small. Here, the most important aspects are the choice of distance measure and the threshold
used for differentiation between similarity and dissimilarity [RG0S5]. The mostly used distance
measures are:

e Spectral Angle Distance (SAD) Eq. B.1

e Spectral Correlation Angle (SCA) Eq. B.2

e Spectral Information Divergence (SID) Eq. B.3
e Spectral Gradient Angle (SGA) Eq. B.4

e Normalized Euclidean Distance (NED) Eq. B.5.

Beside these metrics, also the euclidean distance often is applied, whose deviate is the NED,
which provides a clear range of resulting values. Such a clear interval of the resulting values is
very important for unsupervised analysis methods to apply appropriate thresholds, as most of
the metrics does. In multispectral data analysis the most frequently used distance measure is
the SAD, mainly since its measuring angle is invariant to the scaling of spectra [Kes03]. Ro-
bila and Gersham [RGO0S5] have tested most of these matching functions and have discovered
in their experiment that NED and SID had outperformed SAD, SCA and SGA. While SAD
and SCA perform comparably, the SGA performs worst in this experiment. Recently, Jordan
and Angelopoulou [JA12] also have tested the influence of different metrics with respect to
multispectral image segmentation results. The authors figured out, that SAD and NED per-
form comparable and most successful, but are prone to noise in dark image regions. Moreover,
they included SID in their test, which often achieves results comparable to the other two, but is
not as reliable due to a high standard deviation. Considering both, [RG0S5] and [JA12] already
demonstrates that the choice of measure depends on the application and on the data itself, e.g.
noise level. Finally, there is no general recommendation of a single metric that performs best
with all conditions. Thus, a multispectral analysis approach usually should consider the usage
of different metrics to achieve the best possible result. But at the same time, a vast collection
of different measures can easily confuse a user by the choice of an appropriate measure which
is suitable for his current problem.
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Multispectral Image Segmentation

Unsupervised classification is a very common approach when no previous knowledge about
the data, e.g. unlabeled data, is available. Typically clustering algorithms perform an un-
supervised analysis to group unlabeled pattern into meaningful clusters that are obtained
solely from the data [JMF99]. In the majority of cases, multispectral image data are un-
labeled and therefore need unsupervised data analysis approaches, like clustering methods
to achieve a segmented multispectral image. One of the most used and simplest algo-
rithm is the k-means [Mac67]. Starting with randomly or user-based selected initial clusters,
k-means keeps reassigning the pixels to clusters based on similarity measures between clus-
ter means and pixels until convergence is reached [Mac67]. However, the simplicity of this
famous algorithm introduces mainly two limitations:

1. The number of initial clusters has to be specified by the user. Since k-means does not
automatically change the number of clusters, e.g. by splitting or merging, the initial
number of clusters immediately is the final number of clusters.

2. The final clustering result heavily depends on the initial cluster selection.

Thus, a sophisticated results needs previous knowledge about the data in terms of both, ex-
pected number of clusters and good seeding points. According to [Mac67], these limitations
have led to adaptive variants of k-means, e.g. ISODATA [BH65]. ISODATA allows to find
optimal clusters for arbitrary initial cluster selections by splitting and merging of clusters with
high variance or high similarity, respectively. An optimal result, for sure, implies an appropri-
ately thresholding and choosing of similarity measure. In addition, the nonparametric Mean
Shift [CMO02] algorithm can be applied, which recursively estimates the nearest and dens-
est region for each pixel. The densest region of each pixel is computed by defining a local
search window for each pixel, whose center is shifted to the position of its mean value, until
convergence.

Automatic segmentation methods often ignore the spatial topology. In order to exploit the
spatial topology, often graph cut [BJO1] methods are applied to achieve a user-guided image
segmentation. Here, a user mostly seeds source and sink pixels, which then are separated by
considering the segmentation task as graph cut problem. Recently, Couprie et al. [CGNT09]
introduced a mathematical framework, so-called power watersheds, that extends common
seeded segmentation methods, like graph cuts, to optimize more general models. Based
on power watersheds, Jordan and Angelopoulou [JA12] have presented a supervised multi-
spectral image approach. But, as mentioned before, the authors determined that the segmen-
tation result heavily depends on the chosen similarity measure.

Redundancy Reduction of Multispectral Image Cubes

As seen before, one of the basic goals in multispectral data analysis is to classify or dis-
criminate objects. Bajcsy and Groves [BG04] state that a higher dimensionality does not go
along with better classification or discrimination accuracy, due to spectral redundancies in
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the data which can cause convergence instabilities of models. Moreover the authors mention,
that noise can lead to variations in redundant data which can be propagated in data analysis
models. Thus, before the actual data analysis, often a dimensionality/redundancy reduction
approach is applied. Beside the reason of redundancy, also the computational requirements
for processing large multispectral datasets often is a reason for applying redundancy reduction
methods. Approaches for redundancy reduction typically split into two categories:

e Dimensionality Reduction uses all spectral bands of the data and typically achieves
less information loss.

e Band Selection uses only a subset of spectral bands of the data and can lead to infor-
mation loss.

In the following, for both categories, common exemplary methods are briefly presented.

Dimensionality Reduction Beside unsupervised non-linear methods, like multidimensional
scaling (MDS) [Kru64], locally linear embedding [RS00], or Isomap [TDSLO0O], one of the
most popular and well-known multivariate statistical method to perform a dimensionality re-
duction is principal component analsysis (PCA) [Jol02]. PCA is an unsupervised method,
which finds patterns, i.e. principal components, in high dimensional data which are uncorre-
lated and represent data space directions along a descending sequence of variance. Dimen-
sionality reduction is achieved by choosing only a small number of principal components
with higher variance. Since multispectral data have spatial as well as a large spectral dimen-
sion, PCA is well-suited to be applied on these data to discover high-dimensional patterns
[KBF*07].

Results of dimensionality reduction methods typically lead to distinguishable clusters for
distinct materials. But, since these methods do not focus on the spectral nature of the data, the
resulting embeddings only have little resemblance to the original wavelengths.

Band Selection The band selecting methods focus on the nature of the multispectral image
data and have the goal to remove redundant bands. Thus, to reveal the significant information
which still resemble the spectral characteristics of the original wavelengths. In order to find
the most significant bands a variety of criteria based on, e.g. PCA [MKL90], indipendent
component analysis [DQW™*03], entropy [BG04], mutual information [SPKO04], and so on,
have been used to rank the influence of each band. Since worse ranked bands are removed
from the data, these methods can lead to a high information lost when unsupervised method
are not able to find optimal results, e.g. because of low SNR.

Dimensional Reduction: Spectral Mixture Analysis

So far it have been left out the aspect that spectra can be composed of a mixture of several
distinct materials, i.e. constituent materials. In such cases, it is the aim to identify the con-
stituents, i.e. pure materials, that are present in the mixture and their proportion [Kes03].
The notion pure material can be subjective, i.e. interest of an expert, and problem dependent,
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Linear mixture model Non-linear mixture model

Figure 1.5: Illustration of linear and non-linear mixture models. While the linear mixture
model assumes checkerboard ordered materials, the non-linear mixture model allows that
incident light multiple can scatter with different materials.

i.e. required measures of specific materials, thus the definition of the constituent spectra,
so-called endmembers, can depend upon the application [BDPD*12]. The procedure which
decomposes mixed spectra into a set of endmembers and the corresponding coefficients that
indicate the proportion of each endmember in each pixel is called spectral mixture analysis
(SMA), also often referred to as spectral unmixing. Alternatively, SMA can be seen as com-
pressing the spectral data [VP06], with minimal loss of application specific information, thus
also achieves a dimensional reduction. Spectral unmixing has been an alluring exploitation
goal from the earliest days of multispectral imaging to nowadays [PMP*10]. One reason for
the large interest in SMA is that it provides capabilities to explore subpixel details [Kes03].
Thus, this approach allows a holistic exploration of the multispectral data to get a very deep
understanding. Before the details of the mixing models are discussed, first the reasons for
mixed spectra are introduced. Keshava [Kes03] states that mixed spectra arise for one of two
reasons:

e The spatial resolution is too low, so that adjacent endmembers can jointly occupy a
single sensor pixel. Thus, will composite a mixed spectra. This kind of mixture often
is called macroscopic mixture and for instance occurs often in applications of remote
sensing.

e Homogeneous mixtures by the combination of distinct materials (e.g. soil and grass or
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the overlay of semi-transparent materials) are the second reason and occur regardless of
the imaging system. This kind of mixtures also are referred to as intimate mixtures.

An satisfactory unmixing requires first a description how constituent spectra in a pixel are
combined to yield a mixed spectrum. The literature here distinguishes two, linear and non-
linear, mixing models that attempt to represent the underlying physics that are the foundation
for the inverse unmixing task [Kes03]. Both mixing models are conceptionally illustrated
in figure 1.5. As can be seen, the non-linear mixing model describes the more realistic,
but also more complicated, scenario. Compared to the linear model, the materials are not
checkerboard ordered and incident radiation can scatter several times with different materials.
Thus, resulting mixed spectra may not uphold linear proportions of the constituent spectra,
as in the simpler linear model [Kes03]. Although many research on the non-linear model
is already in progress, the current research level is immature compared to the linear mixing,
which has been paid a tremendous research attention in the past decade, as stated by Bioucas-
Dias et al. [BDPD*12]. The authors further mentioned, that the general requirement of a
priori knowledge about the endmember in the data is one of the major limitations of the non-
linear-based unmixing. A more detailed discussion of the non-linear mixture model would be
beyond the scope of this thesis. Therefore readers that are interested in more details about
this topic are referred to the common literature, where [Kes03, BDPD*12] are good starting
points.

Although the linear mixture model assumes minimal secondary reflections and/or multiple
scattering effects in the data collection procedure [PMP*10], the spectral unmixing based on
the linear mixing model, also called linear spectral unmixing (LSU), has become a standard
method that is applied in various applications, e.g. remote sensing [PMP*10] or confocal
Raman microscopy [DHT10], and the number of applications is still increasing [QFMSP12].
Figure 1.6 illustrates the process of LSU, which usually consists of two steps [Kes03], an
initial endmember extraction step and a consequential step for the computation of the cor-
responding coefficients. The details of both steps are discussed in the following paragraphs.

Endmember Extraction: This step identifies the set V = {Vy,...,V,} of constituent spectra
(endmembers), where g is the number of endmembers V;. According to Keshava [Kes03],
there are two viewpoints for the identifications of endmembers:

e Mathematical: The search for V is comparable to the estimation of a non-orthogonal
subset of basis vectors.

e Physical: Non-negativity of the spectra is required to be physically realizable. More-
over, the physical characteristics of the constituent substances should be retained by the
endmembers.

The autonomous determination of endmembers with the constrained to satisfy both view-
points is a challenging task and is the hardest part of the unmixing problem [Kes03]. At once,
for a high unmixing quality a proper determination of endmembers is most crucial. Beside
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Figure 1.6: The process of linear spectral unmixing: In the first step the endmembers are
selected, e.g. by automatic algorithms and then the corresponding coefficients are computed
by inverse operations. Based on both, the endmember set and the coefficients maps, the
original cube can be reconstructed and mixtures can be explored.

manual- and reference database-based selection of endmembers, this task is mostly done by
endmember extraction algorithms. These algorithms usually search for the extreme spectra
in a dataset. This process can also be seen as identifying spectra which generate the convex
hull of all spectra in the whole dataset (cf. Fig. 1.7). However, because of some reasons, e.g.
available sensor spatial resolution, the dataset yields no pure pixels and consequently the algo-
rithm expresses mixed pixels by a mixture of other mixed pixels [PMPP04]. Supplementary
to this fundamental introduction, more details of common endmember extraction methods are
discussed after the next section.

Computation of Coefficients: As illustrated in figure 1.7, each spectrum s(x,y) of the
dataset is expressed as a linear combination with respect to V, assuming a linear superpo-
sition of the endmembers in each pixel, i.e.

|| Me

i(x,y) -V +7i(x,y) with Za]xy )=1,0<qxy) <1, (1.1)
j=1

where 7i(x,y) is a noise vector of the current pixel (x,y). The coefficients o;(x,y) of the linear
combination are also called fractional coverages, or abundances. In this model usually two
constraints are imposed, abundance non-negativity constraint (ANC) and abundance sum-to-
one constraint (ASC), to ensure physical plausibility. Typically both, ANC and ASC, are
enforced so that Eq. (1.1) is a convex combination and in this case LSU is called fully con-
straint LSU (FCLSU). LSU is referred to as non-negative constraint LSU (NCLSU) when only
ANC is imposed and consequently called unconstrained LSU (UCLSU) when no constraint is
enforced. Based on Eq. (1.1), inverse operations, e.g. Image Space Reconstruction Algorithm
(ISRA) [DWMS86] Eq. (B.13), are applied to compute the coefficients. Due to the constraints
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Figure 1.7: Two-dimensional example illustration of the linear mixture model, which is based
on the endmembers ;. The quality of the reconstruction mainly depends on the correctly
estimated set of endmembers, which define the convex hull of the dataset (left). In case of
FCLSU, i.e. convex combination, it is obvious that a not optimal estimated set of endmembers
(right) lead to insufficient reconstructions (red points).

of the convex combination, it is obvious that the quality of the unmixed result strictly depends
on the quality of the set of endmembers.

Endmember Extraction Methods

The overall LSU quality, in terms of reconstruction quality based on the constrained formula-
tion in Eq. (1.1), relies on on a well-determined set of endmembers V [PMP*10], please also
see Fig. 1.7. Therefore, this part of the unmixing chain is most crucial for good results. Ac-
cording to Plaza et al. [PMPP04], common methods for the determination of V' can be grouped
into two ways:

1. Deriving the endmembers directly from the observed dataset
2. or from a reference database.

When utilizing a reference database, the challenges are that the database spectra and the spec-
tra of the observed dataset are rarely acquired under the same conditions [PMPP04], e.g.
different lighting conditions, different wavelength range or FWHM. These challenges are
avoided when the search of constituents is directly done in the observed data. In the following
an overview of manual and automatic endmember selection methods are shown.

Manual Endmember Selection Early endmember determination approaches were based
on the expert knowledge of humans, for instance the prior knowledge about the contents of
the imaged terrain was used to select some candidate endmember spectra from a reference
database [VGOS]. But this task can be quite challenging, as already seen above. Furthermore,
reference databases also can be incomplete [BC93]. Therefore, especially in cases of new
application domains, the determination of endmembers within the observed dataset is a very
important analysis task. Bateson and Curtiss [BC93, BC96] have presented a method for



18 CHAPTER 1. FUNDAMENTALS

manual selection of endmembers, that is based on PCA and parallel coordinate plots (PCPs)
[ID90]. Initially, the dataset is projected into the space of the first two principal components.
The extremes, i.e. points on the convex hull, of the resulting scatter plot can be interactively
added to the set of endmembers. Consequently, the visualization is 2D for the first three
selections and 3D of the fourth selection, which gets cluttered in high-dimensional space.
Here, a PCP is applied to overcome this visualization shortcoming. According to the authors
[BC93, BCI6], the main weaknesses of this method are:

e The requirement of human intervention time in order to judge the endmember set.
e The possibility that different analysts can achieve somewhat different endmembers.

More information about the mentioned visualization techniques are provided in the upcoming
section 1.2.3 .

Endmember Extraction Algorithms Many algorithms can be found in the literature that
perform an automatic search for the constituent spectra of a dataset. Complementary to the
representation of data as convex combination of endmembers, there are methods based on
vector space quantization by data centroid assignments [Gra84], including specialized data
metrics [KV11]. Here, we focus on the more widespread use of endmembers for the spec-
tral unmixing procedure. Over the past decade several endmember extraction algorithms
have been developed [PMPP04]. These algorithms roughly can be categorized into spectral-,
spatial-spectral- and heuristic-based algorithms [PMZ09, VGOS].

heuristic-based: Pixel Purity Index (PPI) algorithm [BKG95] is one of the most commonly
applied endmember extraction approaches [PMPPO02]. PPI considers the spectra as n-
dimensional vectors and generates a large number of random n-dimensional unit vec-
tors, where n is the number of spectral bands. These random vectors are also referred as
skewers. Each pixel spectrum is then projected onto each skewer. After the projection of
all pixels onto each skewer, the most extreme projections (minimum and maximum) are
selected. Next, the PPI scores are computed by counting the number of times a pixel has
been selected as extreme. Pixels with a score equal or higher than a user defined thresh-
old are finally considered as endmember candidates. The rationale of this approach
is that random projections are asymptotically distance-preserving, thus, frequent map-
pings of given vectors to extreme scalar values also indicate boundary positions in the
original high-dimensional space.

spatial-spectral-based: The Automated Morphological Endmember Extraction (AMEE)
algorithm [PMPP02] is a prominent example in this category of methods. Inspired by
mathematical morphology, i.e. the definition of multispectral erosion and dilation oper-
ators, the neighborhood around each pixel (x,y) is searched for the most spectrally pure
p and most highly mixed pixel m [PMP*10]. Subsequently, the distance between p and
m is calculated, for example by using SAD. The resulting distance is then assigned as
score to a score-map at the corresponding pixel position of p. This score is referred to



1.2. MULTISPECTRAL IMAGE PROCESSING - A GENERAL OVERVIEW 19

as morphological eccentricity index (MEI). The size of the neighborhood (the search
area around a pixel) is increased iteratively and at each iteration the scores for the found
pure pixels are updated as described above. The procedure results in a two-dimensional
score-map, with equal spatial resolution as the multispectral data, where maxima corre-
spond to endmember candidate pixels [VGO8].

spectral-based: Orthogonal Subspace Projection (OSP) [HC94] is a very popular hyper-
spectral imaging technique that has become a standard and can be used in many different
applications [Cha05]. This algorithm recursively selects the maximum projection in the
orthogonal subspace which is linearly spanned by the already discovered endmembers
[PMP*10]. Usually the spectrum with the maximum length of the data is considered as
the first endmember v and defines the first column of the matrix U. Basedon U,an xn
orthogonal projection matrix P is calculated

PL=1-UvU" withu" = (UTU) 'UT (1.2)

where U™ is the pseudo inverse of U, I is the identity and n is the number of bands. By
applying P to each pixel, the dataset is projected into an orthogonal subspace, where
the endmember signatures, which are represented by the columns of U, are eliminated.
Then, the maximum absolute projection, i.e. residuum, is selected as the second end-
member v, which is added as second column to U. Considering the modified U matrix,
P~ is recomputed to find the third endmember in the same manner as described above.
This process is repeated until a desired number of endmembers is identified. Note that,
because of the orthogonality of OSP, the number of endmembers found by this approach
is limited to the number of spectral bands n.

The Vertex Component Analysis (VCA) [ND04] makes use of the concept of orthogonal
subspace projections. The VCA algorithms exploits that endmember are vertices of a
simplex and that the affine transformation of a simplex is also a simplex [PMP*10]. A
positive cone is modeled by the data and then projected onto a hyperplane. The result
is projected to a random direction and then the maximum projection is selected as first
endmember. Subsequently, the algorithm proceeds in the manner of OSP.

The N-FINDR [Win99] algorithm inflates a simplex inside the data in order to discover
the set of spectra with the largest possible volume [PMP*10].

Since these algorithms typically only extract a single standard endmember spectrum for each
endmember class, they usually do not incorporate the spectral variability within an endmem-
ber class (see Fig. 5.16), which has been identified as one of the most profound sources of
error in the estimation of abundances [SZPA12]. The recent literature presents solutions to
improve the abundance estimation, e.g. the multiple endmember spectral mixture analysis
(MESMA) [RGC*98] algorithm, please see the review of Somers et al. [SATC11] for further
approaches and details. However, the premise of these solutions is the availability of a spectral
library that allows the modeling of the endmembers variability, thus introducing limitations
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when measurements are not available or incomplete [SZPA12]. Furthermore, experimental
results comparing different endmember variability reduction techniques are very scarce mak-
ing it hard to identify the most robust and most effective technique to build an understanding
of how to match application and endmember reduction strategies [SATCI11].

Moreover, there is still the general question of unsupervised multispectral data analysis:
how many endmembers are present in the data? Here, many methods can be applied as pre-
processing to estimate the number of endmembers. Conceptually they are comparable to the
above mentioned noise reduction methods, e.g. based on the variance or the SNR of the data.
Thus, they typically also require a robust parameter estimation to achieve good estimation
results. Here, the proposed method of Chang and Du [CDO04], called virtual dimensionality
(VD), tries to automatically estimate good thresholds for variance- and SNR-based meth-
ods, but likewise needs a parameterisation for the configuration of false-alarms. The hyper-
spectral signal subspace identification by minimum error (HySime) approach were presented
by Bioucas-Dias and Nascimento [BDNOS] and has the goal to be parameter free. After an
initial estimation of the signal and noise correlation matrices, the algorithm selects the first
eigenvectors that contain the most of the data information [BDNOS].

Moreover, as mentioned in Sec. 1.2.2, a dataset also can consist only of mixed spectra.
This challenge recently was addressed by an approach of Eches et al. [EDT10]. Based on
the assumption that the spectra of the data are linear combinations of an unknown number of
random endmembers, the authors propose a semi-supervised hierarchical Bayesian algorithm
to estimate the mixture coefficients as well as the number of endmembers.

As there are circumstances where the automatic estimation is very challenging, the results
of these algorithms should be considered as a first guess of a preprocessing step. Therefore, the
estimated number of endmembers is subject to change and has to be verified in the subsequent
data analysis.

1.2.3 Visualization

Creating visual representations to provide insights to multispectral image data is not a straight-
forward issue, since it is difficult to visualize all aspects of a spectral image in one picture
[PvdHO1]. Thus, different visualization techniques typically are combined by multiple linked
views, e.g. scatterplots and image-based representations. Here, typically the user can specify
a subset of interest by brushing, i.e. drawing selections onto the visual representation of a
view [FHO9]. In general, each visualization technique has their own pros and cons, therefore
the final aim of the multiple linked views is the best possible compensation of the respec-
tive drawbacks of the used visualization techniques. The common visualization techniques
roughly can be grouped into three categories:

e Image-based visualization of spatial relationships,
e Plot-based visualization of spectral characteristics, and

e Feature-based representation to group similar spectra.

Examples for each categories are discussed in the following paragraphs.
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Figure 1.8: Example of a PCA-based false-color image, based on the dataset Watercolors
(see Appendix A). The top row shows some single spectral bands of the dataset. The bottom
row shows the first three principal components, in total representing a variance of 99.2%, and
the corresponding false-color representation.

Image-based Visualization One of the most simplest techniques to visualize a multispectral
image, is to scroll through the spectral bands one by one, or to select three spectral bands to
map these bands to the color primitives R, G, and B to achieve a false-color interpretation.
However, a meaningful manual selection of three bands in terms of the best describing vari-
ance of the multispectral data is very time consuming for humans. Thus, it is common to apply
dimensionality reduction methods like PCA and then to map the resulting principal compo-
nents to the color primitives. Figure 1.8 shows an example for such a typical false-color
image. In addition, weight functions can be applied to the spectra in order to reduce them to
the color primitives. Typically, these weighting achieves also a false-coloring. But, when the
spectra cover the visible range, then the CIE standard observer color matching functions can
be applied to achieve a true color image [PvdHO1].

Yet, the aim of the methods were to assign colors to spectra in a meaningful way to dis-
criminate distinct spectra. However, it is also very common in multispectral data visualization
to first apply multispectral data analysis approaches and then to utilize the analysis result to
achieve a more classification-based visualization, like in [AGDJ09] . Conceptually, the visu-
alization works as follows. First, an unique color is assigned to each found class, e.g. cluster,
of the initial data analysis step. Then, each pixel of the dataset is colored according to the
class it belongs to in order to achieve a classification/segmentation result.

One observation in multispectral data visualization is, that different features can be found
at different resolutions in different spectral bands. Therefore, many approaches can be found
in the literature that aim a multiresolution fusion, e.g. based on wavelets [LMM95], Laplacian
[SWO02], Markov random field [Mig10], or MDS [LAK*11]. These methods typically perform
best, when the spectral dimensionality is relatively low, a maximum of about ten bands.
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In summary, all methods provide good opportunities to get insights of spatial relationships,
but, it is obvious that they provide no access to the spectral distribution of the data.

Plot-based Visualization The visualization of a spectrum typically is achieved by using a
two-dimensional plot, spectral bands verses the absorbance or reflectance values [PvdHO1].
Typically, such a plot represents only one spectrum, or relative few spectra, thus is loosing
insights to the spectral distribution of the complete data. To get a more complete overview
of the spectral characteristics, also multivariate visualization techniques like PCP [ID90] can
be used. In the line with usual two-dimensional plots, the parallel vertical lines in a PCP
represent the spectral bands. Plotting all, spectra in one PCP typically may easily result in a
cluttered representation, which can be improved by clutter reduction methods, e. g. [EDO07],
[ZYQ™*08], in order to gain better insight into the spectral characteristics.

Furthermore, Radviz [HGM™*97] can be used to place the n-dimensional spectra in a planar
radial plot of equal dimensionality. This means, that each spectrum 5(x,y) is represented by a
2D-point p(x,y) in the Radviz plot. To do so, the Radviz plot makes use of spring constants,
where n springs are attached with one end to the respective dimensions. The remaining ends
are connected to a point p(x,y) and the spring constants K; are defined by corresponding
attribute values of 5(x,y) (cf. Fig. 1.9). Here, the attributes of 5(x,y) usually are normalized to
have values in the range [0, 1]. The position of p(x,y) can be computed with

AZ d\l §(x7yal)

p(x,y) = , (1.3)
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where d; ,, 18 a vector that points from the center of the plot to the position of the respective
dimension on the circle. At the final position of p(x,y) the sum of all spring forces is zero.
Compared to PCP the spectral characteristics are getting lost again. But, Radviz allows the
intuitive exploration of spectral similarities, since similar spectra should appear close to each
other.

While such plotting techniques allow to gain insights into the spectral characteristics or
spectral similarities, at the same time the spatial relationship is lost. Thus, typically a spectral
plotting technique mostly is used in combination with a supplementary visualization tech-
nique, like image-based visualizations, to compensate this major drawback.

Feature-based Visualization As seen before, dimensionality reduction methods, like the
popular PCA, are applied to facilitate the visualization of high-dimensional data, e.g. by
composing a false-color image based on three principal components. In addition, the high-
dimensional data elements also can be represented as points in a lower-dimensional scatter
plot, where the coordinates are defined by features, e.g. found principal components. Here,
similar elements are close to each other (cluster) and are apart from other clusters which are
defined by dissimilar elements, see Fig. 1.10 for an example. The dimensionality of these
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Reflectance/Absorbance

Wavelength A

Parallel coordinate plot Radviz plot

Figure 1.9: Conceptional illustrations of two multivariate plotting techniques: PCP in the left
and the Radviz mapping in the right.

Scatter plot of the first two principal components Scatter plot of the first three principal components

Figure 1.10: Example of PCA-based scatter plots, again based on the dataset Watercolors
(see Appendix A). The left 2D scatter plot is based on the first two principal components and
the 3D scatter plot additionally uses the third principal component.
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plots typically is limited to two, or three dimensions [PvdHO1]. Thus, a meaningful selection
and combination of the features is required to achieve good discriminating scatter plots.
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Chapter 2

Design Goals — Requirements and
Challenges

n the introduction of this thesis, the main aim of this dissertation was already presented,
which is the proposal of visual analysis methods to facilitate the generic analysis of multi-
spectral image data. Moreover, also rather fundamental challenges of multispectral image
processing will be discussed. Based on these general aims, this chapter presents an general
overview of requirements and challenges for software solutions, which are imposed in the
distinct stages of the before presented processing pipeline. Thus, to finally conclude in design
goals. The structure of this chapter is divided into four parts, whose subjects are as follows.
The first section presents a brief overview of applications fields. Here, the overview has
two aims. First, to present the variety of applications in order to underline the necessity of
generic analysis approaches. Second, the applications scenarios should present impressions
about some typical processing tasks to provide some background information.
Having the overview of some applications in mind, the requirements and challenges of the
abstract multispectral processing pipeline are pointed out and discussed in the second section.
Following the discussion of challenges and requirements, the third section presents the
prior work to finally conclude in a conceptional discussion of design goals for visual analysis
methods within the scope of this thesis.

2.1 Application Scenarios

As mentioned before, due to the ability of performing a very deep analysis of materials or
scene characteristics multispectral sensors are very popular in many application fields. In the
following, a brief overview of exemplary chosen application scenarios is given to provide
some background knowledge for the upcoming discussions.

Remote Sensing The development of multispectral sensors for remote sensing has improved
the capability of ground-based data collection in many fields [BDP10]. Beside mineralogy
[KBHO3], surveilance [SBH*02], and so on, one popular application field is the analysis of
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Realtive leaf water content of trees

Figure 2.1: Example application for agriculture. The realtive leaf water content of trees by
the analysis of the absorbance is shown. The picture was taken from [Spel2].

vegetative health and agriculture. Here, the multispectral imagery allows the identification,
classification and detection of vegetation phenomena [Spel2]. For instance, figure 2.1 shows
a results of the analysis of the relative leaf water content of trees by the analysis of the ab-
sorbance.

Recycling Another application field is recycling. Since many different materials can be
distinguished by their spectral characteristics, multispectral imaging is used to improve the
quality and efficiency of automatic sorting of the different materials [KEG*13]. In this context,
the figure 2.2 shows an example of a dataset with different materials, e.g. glass, plastics, paper,
and the associated classification map. As can be seen, also the two bottles in the bottom left
and bottom right of different plastics can be distinguished by their spectral characteristics.

Dataset Classification map

Figure 2.2: Example application for recycling. The left image shows a color image of the
used dataset and the right image illustrates the classification result. The images were taken
from [KEG*13].
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Detection of melanoma (cyan) Oxyhemoglobin in blood (in %)

Figure 2.3: Examples for medical applications. The left image image shows a false-color
image of skin where a melanom was identified [Pho09]. The right image shows the oxy-
hemoglobin in blood for both, with temporarily restrict blood flow in a finger and released
restriction that caused a hyperfusion [ZFS*08].

Medical Multispectral imaging has become affordable, reliable and usually noninvasive
method for many medical tasks. Beside others, during the recent years many studies have
applied multispectral imaging for the early detection and diagnostics of cancer [AUK*11].
Also the distinction of melanoma from other skin diseases is in the focus of research, as ex-
emplarily shown in figure 2.3 [Pho09]. Moreover, the concentration of oxyhemoglobin in
blood can be analyzed by the utilization of multispectral imaging, e.g. to assist surgeons
[ZFS*08]. A simple example of the detection of oxyhemoglobin concentration is shown in
Fig. 2.3.

Food Quality The potential for material analysis of multispectral image data also has been
studied for the analysis of food quality. The potential of multispectral imaging has been
analyzed for a huge variety of foods, e.g. the ripeness of tomatoes [PVAHY02] or the quality
of meat and fish [Sun12] and so on. In figure 2.4, the coherence that the absorbance of band
676 nm exhibits a strong inverse correlation with the sugar content of melons was used to
visualize the sugar distribution [Sun12].

°Brix sugar content

Unripe Mature Fully mature

Figure 2.4: Examples for food quality inspection. The °Brix sugar concentration of melons of
different ripeness are shown together with their color images [Sun12]. Images are overtaken
from [Sun12].
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“,:3 -3
Original image Revealed tear at 1050 nm Original image Near-IR reveals underdrawings

Figure 2.5: Example for analysis of arts. In the left, a tear gets visible in the near-IR image
which is quite difficult to observe in the original image [KZD*10]. The right images show the
potential to examine design changes (marked regions) and strokes of the artist by the use of
near-IR [AIOS].

Analysis of Arts The visualization of high resolution images of different wavelengths al-
lows to examine information and details of paintings or historical documents at different levels
of depth. Moreover, the nowadays digital images contain more details that an artist would be
able to see, because the color accuracy of the digital images contains more color levels than
the human eye is able to see [CPLP06]. Multispectral imaging for instance can be used for
forensics of arts to e.g. reveal damages like tears (see Fig. 2.5) [KZD*10]. Furthermore, this
imaging technique can be applied to perceive subtle information on the painter’s technique,
e.g. by viewing of underdrawings (again see Fig. 2.5) [CPLP06].

Document Verification The verification of documents is also a popular application domain
of multispectral imaging. One reason of this popularity is the ability of noninvasive capturing
of documents. One famous example out of the everyday life is the verification of banknotes.
For instance, the euro banknote incorporates several security features to verify its genuineness.
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The front (left) and the back (right) of a five euro banknote under infrared light

I

Figure 2.6: Example for document verification. Some security features of banknotes are only
visible under specific light, e.g. infrared light. The images of the banknotes are taken from
[Eurl3].
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Conventional TIR image Multispectral imaging based image

Figure 2.7: Example for application field of biometrics. A conventional TIR image is com-
pared to a composed multispectral fingerprint image of one finger. As can be seen, fine

structures are visible throughout the multispectral image. The images were overtaken from
[RNBOS].

Beside features that can be simply felt or seen, there are also additional features that are getting

visible under specific illumination, e.g. see Fig. 2.6 to see a five euro banknote under infrared
light [Eurl3].

Biometrics Nowadays, multispectral imaging can be used to compensate uncontrolled con-
ditions, like insufficient illumination or low scanning resolutions, to improve the detection of
features in biometrics [BLGK11]. In the field of fingerprint acquisition, typically total in-
ternal reflectance (TIR) sensors are used that acquire the points of optical contact between
sensor platen and material. Comparing this conventional sensors to a multispectral based sen-

sor reveals that fine structures of fingerprints are visible throughout the multispectral image
(cf. Fig. 2.7) [RNBOS].

2.2 Requirements and Challenges

Having some application domains in mind, this section will now present subtle requirements
and challenges of the distinct parts of the introduced multispectral processing pipeline with
respect to the main aims of this dissertation. Which are, the proposal of visual analysis meth-
ods to facilitate the generic analysis of multispectral image data and the discussion of more
fundamental challenges when processing multispectral image data in general.

Acquisition The acquisition of multispectral images is not the focus of this thesis. However,
since a lot of applications require a satisfying determination of spectral characteristics, e.g. to
identify cancers in medical applications, and the main scope of this thesis is the analysis of
the data, to reveal spectral characteristics, at least some observed aspect should be roughly
mentioned. As seen in the fundamentals, many multispectral data suffer from noise, but also
other reasons for image degradation, like outlier and blur, can frequently be found in such data.
Therefore, such imaging device based issues has to be considered in particular for applications
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which have high requirements on the precision of the analysis, e.g. in medical application in
order to plan or assist surgeries.

Data Analysis As introduced in the fundamentals 1.2.2, the complexity of the data poses
significant challenges for its analysis. Compared to nowadays hardware capabilities, the data
reduction with the goal to better meet the hardware limitations of past decades has faded out
of the spotlight of research. Here, the new trend is to process the full data with the help of
recent hardware developments, like parallelization on a graphics processing unit (GPU). On
the one hand, this avoids wrong results because of incorrect data reductions, but on the other
hand, the challenge of high-dimensionality, e.g. redundancy or choice of similarity measure,
to determine and provide access to the rich information of the data remains the same. As
seen in the brief overview of the applications there exist several goals that are desirable to
be achieved. Here, one major goal is the discovery and understanding of relationships, e.g.
the inverse correlation of the °Brix sugar content and the absorbance of a specific band (676
nm) in case of melons. But before the understanding of relationships in the data can be
extracted, typically it is the first and very important goal to determine the constituent spectral
characteristics. Constituent spectral characteristics can be both, the spectrum itself as spectral
signature of a material, or specific wavelength ranges to discriminate different materials. Here,
recycling applications can serve as a example where the distinction of different materials is
of major interest. Thus, it is a central requirement to gain insight and knowledge of the data,
especially for rather new application domains.

Beside the analysis of the data itself, another central challenge is the presence of imper-
fections, e.g. noise, outliers, or blur, as seen in the previous section. These imperfections
can harm the results of automatic data analysis or in worst cases, can lead to useless anal-
ysis results. As discussed in the fundamentals 1.2.2, when analyzing data that are subject
to imperfections typically a preprocessing step is applied in order to reduce the influence
of imperfections. Thus, to achieve better results by improving the conditions for the auto-
matic data analysis. But, preprocessing methods very often are subject to parameterization,
where a wrong parameterization also can corrupt the information. For instance, noise reduc-
tion often is achieved by smoothing of specific bands, but the question is how much should a
band smoothed without loosing information by destroying spectral charcteristics, e.g. spectral
peaks. Therefore, another requirement is an effective preprocessing in order to enhance the
quality of the data without loosing rich information.

In summary, the analysis part has to pay attention to several points:

e Influences of image degradations have to be considered in data analysis strategies in
general.

e preprocessing has to enhance the quality of the data in order to improve the robustness
of analysis approaches, without destroying spectral characteristics.

e The data analysis itself has to be capable of determining desired spectral characteris-
tics and relationships in high-dimensional space. While the high-dimensionality itself
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poses already significant challenges, like the choice of similarity measures and it conse-
quences for the analysis, the challenge is further intensified by the claim of determining
sophisticated results for a wide variety of applications.

e Since it is desired to process the full-data, it is important to consider the computation
time, especially in the context of user-based analysis.

Visualization In general, visual analysis has the goal to incorporate the human in the data
exploration process, which has proven to be a high value in exploratory data analysis [Kei02].
Moreover, these approaches are especially useful when the initial knowledge about the data is
quite low and the exploration goals are vague. However, to get insight into the data it is vital to
first present the data in an appropriate visual form that enables a user to interact with the data
or analysis results. But, as discussed before, mutlispectral images contain much more image
bands than can be displayed on a usual three channel display, which requires the projection
to a lower dimensional space, typically RGB color space [CRHWO09]. However, this down
projection usually leads to an information loss which can be challenging, since it is often very
hard to visualize all spectral aspects in one image. Therefore, as already seen in the funda-
mentals 1.2.3, different visualization techniques typically are combined by multiple linked
views in order to mutually compensate each pros and cons. Considering this visualization
challenge and the recent literature, the main requirements for multispectral data visualization
are summarized by Jacobson and Gupta [JGO5] which have formulated two questions:

e What is a good visualization of multispectral data to enable the best interaction?

e How can the information loss of the down projection in the visualization process be
judged?

2.3 Prior Work

This section focuses on the discussion of the prior work to overview the state-of-the-art solu-
tions also with respect to the challenges and requirements that were discussed in the previous
section 2.2.

One central requirement is the ability to process multispectral datasets in a generic way
to allow the analysis of a large variety of application domains. But, most of the available
visualization solutions mainly present approaches for specific domains. Beside earth ob-
servation data [KLB*93, CRHWO09, JG05], some other examples are analysis of paintings
[CPLPO6], astrophysical data [LFHOS8], hyperspectral data of historical documents [KZD*10],
biological related visualization of spectrometry data [BvL05] and color visualization of hyper-
spectral data in general [Migl0]. Beside, these visualization solutions, there are also freely
available analysis toolboxes available. Here, the Hyperspectral Image Analysis Toolbox
(HIAT) [Cen05] is a common example and provides a collection of functions that build
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upon MATLAB and extends its functionality in terms of image processing methods for multi-
spectral data. Some features of HIAT are classifiers, feature extraction and selection, as well
as pre- and post-processing algorithms.

Beside, these solutions, software for analysis and visualization is mainly available for
multispectral datasets from the field of remote sensing.

Here, one of the most popular commercial tool is the software ENvironment for Visu-
alizing Images (ENVI) [EXE13] from EXELIS Visual Information Solutions. Combining
advanced spectral image processing and geospatial analysis technology, and based on the ex-
tensible modular software design, ENVI is one of the leading solutions, especially for the field
of remote sensing. In excerpts, some analysis opportunities are: time depended change detec-
tion in images, anomaly detection, feature extraction, measurement of relative water depth,
registration of images to maps, and many more.

Another commercial tool is Geomatica [PCI13] from PCI Geomatics, which especially
addresses the field of remote sensing, like Synthetic Aperture Radar (SAR) images. Beside,
data enhancement capabilities, like atmospheric corrections, the software provides accelerated
workflows by using 64-bit and parallelization.

Beside, these commercial solution, several freely available software solutions can be
found. Here, MultiSpec [BLO02] is a very popular tool and a good representative of analy-
sis software for multispectral remote sensing data. It provides means for classification, e.g.
by clustering methods, whose results can be overlaid on a grayscaled single band of the multi-
spectral image cube. Furthermore, the spectrum of a pixel can be plotted. When more then one
pixel is selected, the mean, standard deviation and minimum and maximum of the selection is
plotted.

Developed by the U.S. Army Geospatial Center, Hypercube [U.S12] is another freely
available software that addresses geospatial processing tasks. For instance Hypercube enables
spectral classifications using both imagery and spectral libraries. Moreover, it provides the
functionality to e.g. filter, warp, photogrammetrically project multispectral data.

The DS9 [JMO03] is a complete astronomical imaging and data visualization application
that is provided by the Smithsonian Astrophysical Observatory. This very popular application
provides 2D as well as also 3D views, and comes with many advanced features that are focused
and designed for astrophysical data.

As shown in the fundamentals 1.2.2, Linear spectral unmixing (LSU) is a very popular
analysis method to get a holistic understanding of a multispectral image. Recently, Jimenez
et al. [JMP12] developed a comprehensive open-source tool, called HyperMix, that allows
performing all steps of the LSU chain for remotely sensed multispectral data. The authors
implemented several popular algorithms, e.g. OSP or AMEE, and allow to do a quantitative
comparison of the implemented algorithms based on both, using reference spectral libraries
and common metrics like RMSE.

Many of the mentioned solutions come with the ability to enhance the data by prepro-
cessing, e.g. HIAT provides resolution enhancement and dimensionality reduction or Geo-
matica [PCI13] allows atmospheric corrections, like haze or cloud removal. Moreover, many
applications provide solutions for classification or extraction of spectral characteristics, e.g.
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MultiSpec [BLO2], HIAT [Cen05], or ENVI [EXE13]. Several of these approaches are also
surveyed by Jordan and Angelopoulou [JA10]. The authors certify that the current state-of-
the-art solutions, on the one hand, visualize multispectral data and/or provide comprehensive
methods to analyze them, but, on the other hand, have a lack in universality and support of
reflectance analysis. To overcome these lacks, they propose their generic open-source frame-
work, Gerbil [JA10]. Gerbil is highly interactive with combined viewports, PCP for spectral
distribution and spectral gradient distribution views as well as a spatial view of a single wave-
length image. Beside the combined viewports, Gerbil provides possibilities for labeling the
data using supervised and unsupervised image segmentation.

2.4 Discussion of Design Goals

Based on the previous sections of this chapter, the following discussion should reveal final
design goals and requirements that have to be considered in this thesis.

Software that processes multispectral data has a long history and mainly focuses on re-
motely sensed or astronomical data, as seen before. For these application domains, the cur-
rent state-of-the-art solutions already have achieved remarkable solutions. However, many of
these solutions focus more on analysis algorithms and less on a intuitive and comprehensive
visualization. Jordan and Angelopoulou [JA10] also reported some restrictions of the visu-
alization opportunities, e.g. MultiSpec [BL02] does not provide a spectral distribution view,
Hypercube [U.S12] provides a user to mainly scroll through the spectral bands, even the pop-
ular ENVI [EXE13] is restricted to viewing single bands or false-coloring images. So far,
Gerbil [JA10] allows most insights to topological and spectral information, mainly to achieve
segmentation of a multispectral image. Moreover, because of the highly interactive design it
allows a domain independent exploration of multispectral data. However, apart from unsuper-
vised segmentation methods, like the Mean Shift [CM02] algorithm, Gerbil would benefit by
more comprehensive user guidance, e.g. by emphasizing of predetermined constituent spectra
or the display of deviations in single clusters.

Taking together, it should be the aim to use successful analysis concepts of well known
application domains and to combine them with intuitive and comprehensive visualizations
methodologies to achieve more generic, but powerful, solutions. Here, the user holds the key
role, since the visualization should be able to enable him, as an expert, to judge the quality of
the analysis result and to reveal hidden information. Finally, as shown in Fig. 2.8, the visual
feedback should enable an analyst to make adjustments or corrections in the distinct stages of
the pipeline to achieve a refined result, if necessary. Thus, achieving a visual analysis cycle
which is terminated by the user, when a satisfactory result is found.

As discussed in the fundamentals and in the previous section, the LSU is a very popular
analysis method to get a holistic understanding of a multispectral image, because this concept
allows the understanding of subpixel details. Although LSU is very popular and its results
provide a comprehensive overview of the observed data, yet, the concept has not achieved a
comparable popularity in the context of user-based visual analysis of multispectral data. Even
though, as seen in the previous section, HyperMix [JMP12] already allows to perform all
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Figure 2.8: Conceptional overview of the proposed extension of the abstract processing
pipeline.

steps of the LSU-chain, it focuses on the comparison of results of different algorithms and not
on the interactive analysis. One reason for the restrained usage of the concept in interactive
solutions may can be found when considering that the runtimes for the endmember extraction
and/or the inverse unmixing operations can be very high, as discussed later on. Moreover,
when considering the common literature, it gets obvious that the major research focus for
LSU was the development and comparison of automatic algorithms, e.g. for endmember
determination, mainly for the field of remote sensing. Anyway, the usage of LSU in a visual
analytics approach sounds very promising, since the analysis potential meets the requirement
of very detailed understanding of the data to reveal information and relations. Thus, it is
worth to identify and discuss the corresponding challenges and benefits of LSU in the context
of interactive approaches. The detailed discussion of this topic and the proposal of a system
design is presented within the major parts of chapters 4 and 5.

Beside LSU, Gerbil [JA10] has shown a successful realization of an exploration concept,
based on PCP, for the interactive segmentation of multispectral image data. Taking this suc-
cessful solution as inspiration, the utilization of other multivariate visualization techniques,
like Radviz (cf. Sec. 1.2.3), should be discussed to reveal new opportunities or challenges in
the context of generic analysis concepts as well. The discussion of such a system concept is
presented in Sec. 5.3.

Before closing this section, finally some general design remarks are presented with respect
to the previously identified requirements:

e As seen before, the preprocessing of multispectral data, in term of removing imperfec-
tions to enhance the analysis, often is necessary. Here, the visualization should provide
means for an analyst to ensure that no spectral characteristics are destroyed by the cur-
rent parameterization.

e The quality of determined analysis results should always be visually represented to
allow an analyst to judge the quality. Moreover, the proposed methods should provide
further assistance tools to deeper explore and finally to correct the results, if necessary.
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Here, the assistance tools should follow an intuitive and problem specific design concept
to enable the best incorporation of user-based expert knowledge.

e Because of the typical high-dimensionality of the data, the user guidance in the explo-
ration process is very important to achieve a focused exploration.

e Moreover, very time-consuming methods, e.g. data analysis algorithms, should be par-
allelized, if applicable, to achieve a faster response for an user to again keep him fo-
cused.

Taking together, it is the overall goal to involve the user as good as possible in the analysis
process by visual feedback and exploration tools to incorporate the expert knowledge, e.g. to
fine-tune paramterizations, correct automatic results, and to finally reveal rich information for
various applications.

Finally, apart from the main scope of this thesis, the fundamental aspect of blur in multi-
spectral data, due to limitations of imaging devices, should be addressed to at least give some
impressions of eventual consequences for the data analysis in general. This discussion is
provided in the upcoming chapter.
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Chapter 3

Blur in Multispectral Image Data

his chapter discusses the observation that multispectral image data often consist of spec-

tral bands which are blurred. This is mainly due to the reason that typically no lenses
exist that are able to focus in the full spectral range of an imaging system. While a detailed
discussion of this topic is beyond the scope of this thesis, the main aim of this chapter is more
a fundamentally discussion to point out some related challenges and to finally provide a con-
ceptional proposal for compensating the blur of filter-based multispectral imaging systems.
The structure of this chapter is subdivided into two sections, whose subjects are as follows.

The first section provides further details of the problem by discussing general reasons of
the blur in multispectral data. Moreover, a qualitative evaluation is presented to discuss the
consequences of the blur in the context multispectral data analysis.

The last part presents a conceptionally proposal for the compensation of image artifacts,
e.g. blur, in multispectral imaging by means of computational photography.

Publications: The set of computational photography techniques has been presented by
Heide et al. [HRH*13]. Here, the discussion of the deblurring process is focused on de-
graded RGB images when using simple lenses instead of highly complex lens systems. This
work is an advanced result, whose general idea basically stems from the master thesis of Felix
Heide [Heil 1] at the University of Siegen.

3.1 Problem Discussion

First the discussion of reasons for blur in multispectral images is provided, which starts with
the description of the utilized multispectral imaging system. After having the main reasons
for the blur in mind, the next section is dedicated to a qualitatively evaluation of consequences
of blurred images in the context of multispectral data analysis.
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3.1.1 Blur in Multispectral Imaging

In this section, the Nuance EX imaging system from Perkin Elmer [Per13], former Cambridge
Research & Instrumentation (CRi), is used in this basic test scenario. The system is a filter-
based (plane scanner; see Sec. 1.2.1) imaging device that uses a LCTF as bandpass filter
that operates with a FWHM of 10nm in the spectral range from 450nm to 950nm. Here,
the Sony ICX285 CCD sensor (2/3-inch) with 1.4-megapixel (1392x1040) is used to capture
the bands. Moreover, the sensor is cooled to minimize thermal noise. As lens, a standard
consumer Sigma 30mm F1.4 EX DC HSM is used. This lens is optimized for the visible
wavelength range. But, as will be seen in the following, also in the optimized range blurring
artifacts will get visible. Therefore, the consideration of more complex optimized lenses,
especially including the non-visible range, are not considered in the following.

Typically, a large variety of different image degradations can appear, e.g. thermal noise,
out of focus blur, or illumination-based over-exposures, and many more. Readers who are
interested in more information may consider [Sch94] as staring point. But, by neglecting all
this different variations, mainly one source of aberration can be identified which in particular
affects filter-based multispectral imaging. Due to the fact, that the imaging system covers a
wide spectral range, which is sequentially captured by adjusting the bandpass filter, in this
case LCTF, mainly dispersion-based blur can be assumed. Leading to blur that will vary
over the spectral range, because not all different wavelengths will be equally focused on the
sensor. This type of aberration is frequently also called chromatic aberration. Based on the
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Figure 3.1: The basic illustration of the used measurement setup in this chapter.
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illustrative measurement setup depicted in Fig. 3.1, multispectral images of a resolution chart
were acquired to show this effect. Roughly the measurement process works as follows:

1. One spectral band is selected to focus the lens.
2. Then the sequential capturing of all bands starts.

In this test, the middle band, i.e. 700nm, were used to focus the lens and based on the FWHM
of 10nm image cubes with 51 bands were acquired in the range of the LCTF. Moreover,
measurements for four different apertures were made, resulting in four image cubes. The
cubes are represented by close-ups, showing the bands of the two most extreme ends as well
as the middle band of the whole range, see Fig. 3.2. The varying sharpness in the spectral
range can be seen, when comparing the images for 700nm to the corresponding two extreme
ends of the range, for all apertures. Here, as mentioned above, it also gets visible that the
450nm bands, which are in the optimized range of the lens, are blurred.

Comparing the close-ups of 700nm among themselves, reveals spatial blur with respect to
the selected aperture, due to lens aberrations. Here, also close-ups for the center of the resolu-
tion chart are depicted (blue) for the focused band in order to better represent this observation.
Moreover, also when the lens is stopped down to F16 in order to reduce the aberration of the
lens to a minimum, it can be seen that the blur in the two correspondingly shown bands still
is present.

Beside the observation of spatial blur with respect to the different apertures, it also can be
observed long acquisition times, especially for the aperture F16 (cf. Fig. 3.2). This behavior
is due to the high lost, about the half, of transmittance by the utilization of the LCTF, as seen
in Sec. 1.2.1. Thus, requires higher exposure times in the acquisition process to compensate
the lost of transmittance.

3.1.2 Qualitative Evaluation of Consequences for Analysis

While the previous section has revealed the presence of aberration in multispectral data, which
are mainly caused by chromatic aberration, the following discussion provides a qualitative
evaluation of the consequences of the blur for multispectral data analysis.

For this evaluation, two multispectral datasets, the Egyptian statue and the Balloons are
considered. As can be seen in the appendix A, these datasets are taken from a multispectral
image database and are also acquired by the usage of an LCTF. Although these datasets were
acquired for the visible spectral range and when assuming that a lens that is optimized for the
visible range was used, these datasets are also affected by blur, which strengthens the previous
discussion independently from the previous test. Two blur channels of both datasets are ex-
emplary shown in Fig. 3.3. In the case of the Balloons dataset, the blur is easily noticeable, for
instance by considering the letters. In case of the statue the blur is not that obvious, therefore
the middle band (550nm) is also included for comparison.

However, in the following these data are artificially blurred in different magnitudes in
order to examine the consequences for the data analysis. Here, the artificial blurring is done by
pixel-based applying a circular averaging filter in the following way, which also is illustrated
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Figure 3.2: Resolution charts and acquisition times for different wavelength and apertures.
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Figure 3.3: Illustration of the blur in the used datasets.

in Fig. 3.4. The middle band of a dataset is assumed as focused, where no artificial blur is
added. Based on the middle band, then in both directions all other bands are blurred. Here, the
radius of the blur kernel linearly is interpolated with respect to the distance between the current
band and the middle band. Starting from zero at the middle band up to a defined maximal blur
radius, which defines the magnitude. The artificial blur was added in both datasets and for
four different radii (1.0, 1.5, 2.0, and 2.5) in order to achieve the test data.

Now, two analysis strategies are applied to both type of test data. One is the nonparametric
Mean Shift algorithm to achieve a cluster-based segmentation result and the other one is the
technique of LSU. In case of LSU, OSP was applied to determine the constituents of the
dataset in a more objective way, since this algorithm requires no user-based thresholding of

( No blurring Maximal blur radius>\ )
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Figure 3.4: Illustration of the artificial blurring process.
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a score map to determine the final constituents. The results for both types of test data, the
Egyptian statue and the Balloons are shown in figures 3.5 and 3.6, respectively. For the results
of the LSU, the pixels of determined endmembers are marked in the corresponding average
image of the image cube in order to illustrate differences between the results. Moreover, the
residual error, based on NED, is depicted to show the reconstruction qualities of the unmixing
process. For both types of data, remarkable residual errors can be observed, also for the
case when no artificial blur was added. Please note, also an increasing of the corresponding
limitations of OSP would not dramatically improve the results. The discussion of reasons for
those deviations, e.g. presence of high absorbance spectra which is although true in these
cases, is provided in the upcoming chapters of this thesis and are therefore not in the focus of
this discussion. Thus, the evaluation is focused on the qualitative differences of the results in
order to conclude with observations.

Egyptian statue Considering first the results of the Egyptian statue, the following observa-
tions can be made. Comparing the initial data, no artificial blurring, of the first column to the
second column, it mainly gets visible that the lips are not represented any more. Because of
the spectral similarity of the lips and the skin (face, neck, and right ear), this issue introduces
higher errors in this areas. Beside this degradation, however, two spectra were found in the
lower part of the statue, which is not the case in the first column. Although this leads to an
improved representation of the lower part, still high error values can be noted, which were not
present in the first column. Considering the color image of the statue in the appendix, it gets
obvious that these areas are colored red. Thus, the reason for this failure is due to the drop
of the constituent of the lips. Regarding the lips it can be observed, that these are only found
in the first and third column. Considering the third column in more detail, it can be seen that
here only one constituent was found in the lower part. Additionally, the spectrum of the left
eye was not determined in this column, which is also true for the upcoming columns four and
five. The results of the last two columns are relatively equal. Compared to the other columns
it can be seen, that here the first time a constituent of the skin (ear) was found and again two
spectra were determined in the lower part.

The results of the Mean Shift can not be evaluated that comprehensively as the LSU-
results, because the automatic color-coding may can lead to wrong impressions, due to com-
parable color levels or the change of cluster-colors between the columns. However, what
objectively can be observed is that the number of determined clusters are varying with respect
to the different blur levels.

Taking together the observations of the first test case, then it logically gets revealed, that
especially endmembers within finer spatial structures suffer most by the presence of blur, for
instance consider the determined constituent of the lips. Therefore, it is appropriate to assume,
in case of LSU, that blur has low influence as long as the spatial areas of the endmembers are
large enough. Since the concept of LSU provides the capability to describe subpixel details,
also the presence of an endmember, for instance in blurred fine structures, i.e. mixture, is not
problematic, as long as redundant information from corresponding larger more homogeneous
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Figure 3.5: [Egyptian statue: Qualitative comparison of analysis results based on different
blur levels. The endmembers were determined by OSP, which was limited to 10. Moreover,
the number of determined clusters by the Mean Shift algorithm is provided.

areas are available. Certainly this assumption is only true for spatially equally distributed blur,
which is not always the case as seen in the previous section.

Such mixed pixels can not be distinguished that easily by methods which are not con-
sidering subpixel information, like the Mean Shift. Here, mixtures often consequentially are
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Figure 3.6: Balloons: Qualitative comparison of analysis results based on different blur
levels. The endmembers were determined by OSP, which was limited to 5. Moreover, the
number of determined clusters by the Mean Shift algorithm is provided.

considered as separate cluster. Moreover, small areas can get lost by the assignment to an
other cluster.

Balloons Considering the second, i.e. Balloons, test case, these previous assumptions are
getting confirmed. Comparing all the achieved LSU-results, especially the positions of the
determined constituents, does not reveal any noticeable changes. This is due to the fact that
this dataset contains less finer structures the the previous one. When considering the specular
highlights of this dataset, which are much larger than in the other test case, then the relation of
spatial area and the determination of the endmembers gets obvious. The results of the Mean
Shift are not as constant as the results of theLSU, because of the lack to express subpixel
details.

Taking together, it can concluded that blur can have influences with respect to the data
analysis. Here, it has been observed that the influence logically has a strong relation to details
of targets, e.g. fine structures seems to suffer more. Certainly, the presence of blur has a strong
influence when its the goal of the analysis to match measured spectra to reference spectra
of other measurement setups, which is in particular true for instance when using reference
libraries. Yet, a more detailed final statement of the influence can not be given and needs
more research of this particular problem, which would exceed the scope of this thesis.
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3.2 Conceptional Proposal of a Deblurring Approach

The here discussed proposal is based on the set of computational photography techniques that
has been presented by Heide et al. [HRH*13]. The discussion of Heide et al. is focused on
the deblurring process of RGB images that are degraded, because of the utilization of simple
lenses instead of highly complex lens systems. Here, the involving aspects for multispectral
imaging systems are only marginally discussed and are part of joint future work. Thus, the fol-
lowing explanation focuses on a conceptional overview of the proposed, but already promis-
ing, deblurring approach. Here, the main aim is to achieve a more lens independent image
acquisition, which has turned out to be the main reason for blur in multispectral images.

Starting with an rough overview of the approach, including also the underlying image
formation model, the next two sections describe the two main elements of the computational
photography tool set. The last section presents a first result of this proposed approach and
discusses current shortcomings, which are part of joint future work.

3.2.1 Overview

As seen before, many variations and reasons for blur in images can appear in an optical system.
Typically, a linear and general image formation model is assumed in order to describe the
process of blurring as well as of the deblurring. In the notation of [HRH*13], this model
consists of four quantities:

The acquired blurred image.

The blur kernel that describes the PSF.
The underlying sharp image.

The additive image noise.

2~ <~

With respect to the image resolution n x m, all these quantities are € IR"*”*. When considering
B.j.i and n as the corresponding quantities in matrix-vector form, the linear model can be
formulated as

j=Bi+n. (3.1)

Based on this formulation and when neglecting n, the blur of an image solely depends on B.
Thus, the process of image deblurring tries to solve the inverse problem of Eq. (3.1) in order
to achieve i. When B is known, then the deblurring process is called non-blind, otherwise it is
called blind.

In the following, a proposal of a non-blind deblurring process is presented. Therefore, the
process roughly can be seen as a two step approach, consisting of

1. a calibration step to estimate B, i.e. the PSFs, and

2. the final non-blind deblurring step to achieve the sharp image.
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Both steps are discussed in the upcoming two subsections. Since the aim of this section is
the conceptional discussion of this deblurring approach in order to present the big picture,
the following technical explanations and the discussion of the prior work are reduced to a
minimum. Readers, who are interested in an in-depth discussion, therefore are referred to the
based work [HRH*13].

3.2.2 Estimation of Point Spread Functions

The estimation of the PSFs is a fundamental requirement of the non-blind deblurring. Here, it
does not matter if a PSF was measured in a laboratory situation, or any other existing estima-
tion method was used. Since, PSFs typically are spatially varying, here, a calibration pattern
based approach is used. Based on the discussion of noise targets in [BSA10], the calibration
pattern consists of several random white-noise patches, where each patch will generate one
PSF in the estimation. Figure 3.7, in the top left, shows an example of a calibration pattern.
Here, white borders help to achieve physically correct boundary conditions. Certainly, it is
important, that the patches have a flat spectral reflectance in the applied spectral range.

Considering the image formation model in Eq. (3.1), when both images, j and i, of the
calibration pattern are known, then the PSF estimation can be proposed as an inverse opti-
mization problem in order to achieve B. While it is trivial to achieve the blurred image j of a
calibration pattern, the corresponding sharp image can be achieved by stopping the lens down
to an almost pinhole aperture in order to avoid lens aberrations, as also was done in Fig. 3.2.
In the context of multispectral imaging, this means, that i of the pattern is acquired for the
focused band. Whereas the usual acquisition of a complete image cube of the calibration pat-
tern leads to a dataset, where each band is considered as a j. Now, the PSFs for each band
can be estimated by solving the minimization problem, which in more details is discussed in
[HRH*13]. Exemplary, the Fig. 3.7 shows the estimated PSFs for three spectral bands, where
the 700nm band was focused. Here, also the spatial dependence of the PSFs can be well
noticed, especially for the 950nm band.

The PSF estimation typically has to be done once as preprocessing step in order to achieve
a calibrated setup. Then the typically acquired multispectral image data can be deblurred with
respect to these PSFs.

3.2.3 Non-Blind Deblurring

Now, assuming that the PSFs are already given, the deblurring process itself is the focus of
the explanation. The idea of image deblurring is not new and a lot of recent work exist to
compensate aberrations in images. Here, the inverse problem of Eq. (3.1), typically, can be
assumed as ill-posed. Therefore, recently a lot of work has been done in order to incorporate
prior knowledge of images in the deblurring process, e.g. by including convex terms as total
variation, please refer to Heide et al. [HRH*13] for an in-depth discussion of the related work.

In the context of multispectral imaging, based on the work with simple lenses for RGB
acquisition, the idea has raised to also incorporate cross-channel information in the deblurring
process of multi-channel images. With more detail, in comparison to complex lenses that
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Figure 3.7: Calibration pattern, consisting of several white-noise patches, and corresponding
exemplary estimated PSFs of the measurement setup depicted in Fig. 3.1.

try to compensate the chromatic aberration in the visible range, the usage of simple lenses
have revealed very limited abilities to compensate chromatic aberration in RGB images. This
is due to fact, that typically one channel is significantly better focused than the other two
channels. Because of this behavior, the here imposed problem is quite comparable to the
observed blurring problem of the multispectral imaging in Sec. 3.1.1.

In order to simplify the presentation of the idea of this prior, the case of RGB is assumed
in the following discussion. The independent deblurring of color channels j;; 3} based on
their corresponding PSFs By 3, has revealed to not in general produce good results. Since,
frequencies in some channels may be distorted beyond recovery. By the proposal to share
information of channels in the deblurring process, successfully preserved frequencies in a
channel should help to recover lost frequencies in another channel. Based on two assumptions,

1. edges in images appear in the same place in all images and

2. hue changes are sparse throughout the image,
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with respect to a channel pair /, k, the following cross-channel gradient prior is achieved
Vik/ik ~~ Vil/il < Vi -ij = Vi; -ig, 3.2)

where both operators, multiplication and division, are pixel-wise applied. By the usage of this
prior, the following optimization problem can be formulated

5 2
(ic)opr = arg.min IBcic _JCH% + 0 Z [[Haicl[; + Zﬁcl Z [Haic - i; — Halp -] (3.3)
1c a=1 l#c a=1

for a single channel, where the first term is a standard least-squares data fitting term, the
second term is a image prior, and the last term is the presented cross-channel prior. As can
be seen, for both priors an /; norm is used to ensure that the optimization problem is con-
vex. Moreover, H defines convolution matrices, where Hyy 5} are corresponding to the first
derivatives and Hy3 s are corresponding to the second derivatives. Additionally, both pri-
ors, the image prior and cross-channel prior, are weighted by a.,B.; € R, where for RGB
¢,/ € 1...3. In case of multispectral imaging, the cross-channel prior is applied for all pairs
of spectral bands.

Readers that are interested in the implementation of the minimization of Eq. 3.3, are re-
ferred to Heide et al. [HRH*13], where the minimization algorithm is discussed in full detail.

3.2.4 A first Result for Multispectral Imaging

The application domain of this approach mainly was intended for the compensation of aber-
ration in RGB images, which were acquired by the usage of simple lenses. While the results
for RGB are already discussed in many details and are, with good success, compared to other
state-of-the-art deblurring methods in the underlying work, the evaluation for multispectral
imaging has not achieved the same level up to the finalization of this thesis. Although, first
results are looking quite promising, as exemplary depicted in Fig. 3.8, this should not hide
the fact that further research is needed. Because, the assumption of fixed PSFs for each spec-
tral band often can be violated. For instance, the assumption can fail to properly reconstruct
metamers which will have different blur kernels. Thus, will lead to errors in the data fitting
term of Eq. (3.3).

However, the presented computational photography tools show a first step into the direc-
tion of a more lens independent and proper acquisition of multispectral image cubes. Which,
beside the improved sharpness, also have high potential to achieve reduced acquisition times,
since the utilization of slowed down apertures, to achieve sharper images, fades into the back-
ground.

3.3 Summary

This chapter has mainly discussed the presence of aberrations in multispectral images by
focusing on plane-based multispectral imaging. Instead of providing a full detailed discussion
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Figure 3.8: A first deblurring result for multispectral imaging after mapping to sRGB.

of this topic, the main aim of this chapter was a more fundamentally discussion to widen the
view for this challenge.

The first section has provided a problem discussion, that had revealed issues for blurred
multispectral data and furthermore has presented a qualitative discussion of noticeable con-
sequences for the data analysis. Here, the qualitative evaluation of the consequences was
based on artificially blurred datasets and was exemplary done for the Means Shift clustering
algorithm and the technique of LSU.

The last section has presented a conceptional proposal of a two step multispectral imaging
approach, that allows the compensation of blurring. Here, the main goal was to acquire images
more independently from limitations of lenses. The presented first result already achieved
good deblurring result, but, assumes fixed PSFs for each spectral band, which is not true for
all cases, e.g. in case of metamers.

Taking together, although an influence of blur with respect to the data analysis is notice-
able, yet, a final statement about the consequences in data analysis can not be provided and
mainly depends on further developments and evaluations of the proposed deblurring process.
However, the analysis results of the LSU have shown easily noticeable residual errors in all
cases. Among others, this fact is a key aspect that is further discussed within the following
main scope of this thesis, which mainly presents a concept of visual analysis to verify and
optimize LSU-results in general.
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Chapter 4

Multispectral Data Analysis

s mentioned in section 2 the analysis of multispectral data is a challenging task due to
Aa variety of defiances, e.g. imperfections, or the high-dimensionality in general. This
chapter presents and discusses several aspects of multispectral data analysis, but mainly
focuses on challenges of the analysis concept of LSU and the possibilities for visual analysis
approaches. The structure of this chapter is subdivided into four parts, whose subjects are as
follows.

The first part addresses the assessment of high-dimensional vector attribute variability to
determine the minimum transformation effort, when transforming one vector to another one.
Although the presented method is applied to multispectral image data, the here addressed
question regarding distance metrics in high-dimensional data spaces is answered in a more
fundamental way.

The second part deals with the first part of a visual analysis system, whose aim is the
generic determination of constituent spectra based on the analysis concept of linear spectral
unmixing. This approach introduces a generic workflow that combines automatic analysis
approaches and user interaction to semi-automatically find an optimal set of endmembers.

Multispectral analysis results in general and results of endmember extraction algorithms
in particular can be dramatically influenced by imperfections, like outliers, as described in
section 2. This third part of the chapter therefore introduces a modular outlier masking
scheme to improve the robustness of automatic endmember extraction algorithms.

The calculation of abundances in LSU commonly involves non-negative inverse methods,
which can be computationally very expensive by itself [VGOS]. Since, LSU is also utilized in
interactive approaches, for instance in the second part of this chapter, this part covers methods
to enhance the calculation speed of the inverse operations. Thus, achieving a better utilization
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of LSU in a visual analysis approach.

Publications: The generalized similarity assessment of high-dimensional vectors has been
presented in [SLKVII, SLBI1]. The generic determination of constituent spectra, as well
as the outlier masking and progressive unmixing scheme, including also the prediction of
coefficients, has been subject in [LBKI12]. In the context of efficient coefficients calculation
in spectral mixture analysis the general coefficient estimation method has been presented in
[LK13].

4.1 Similarity Measure in High-Dimensional Space

This section presents a general method for the assessment of data attribute variability, which
plays an important role in initial screening of high-dimensional datasets. Instead of the com-
monly used second centralized moment, known as variance, the proposed method allows a
mathematically rigorous characterization of attribute sensitivity given not only Euclidean dis-
tances but partial data comparisons by general similarity measures. Applied to multispectral
image data, different spectral features are getting highlighted in dependence of the choice of
measure, this way creating new image segmentation aspects.

Starting with some background information in section 4.1.1, the section 4.1.2 introduces
a method for the assessment of attribute variation of two high-dimensional vectors. Based on
this method, two ways for the attribute variance assessment are presented in Sec. 4.1.3. Results
of this generalized method, applied to multispectral image data, are shown in section 4.1.4.

4.1.1 Background

Multispectral image data provide a wealth of data that impose challenges on the analy-
sis, because of the size, the complexity, and the typically non-Euclidean nature of spectral
datasets [Cha07]. Recent work allows to effectively address the size problem by employing
multi-central processing unit (CPU) or GPU-accelerated computing [TNI*10]. Non-Euclidean
nature is addressed by general data similarity measures like Minkowski distances [KWHO06],
matrix metrics [SBS*10], Pearson correlation [SSVS09], or its descendant, the SAD, or, re-
cently, divergence measures [VHS*10].

Depending ultimately on data measures, the nearest neighbor search is one of the most
important operations in data processing models, such as hierarchical clustering [Joh67], vec-
tor quantization [Gra84], endmember detection [VGOS, PMP*10, BDPD*12] or morpholog-
ical operations [HR98]. In supervised scenarios, the selection of the 'right’ measure can be
alleviated by data-driven adaptive metrics. For example, weighting factors of the adaptive Eu-
clidean distance can be learned from the data for scaling individual data attributes according
to optimizing features such as class discrimination [HV02]. Other examples include learning
a matrix metric [SKS*09], or adaptive Pearson correlation [SSS*06].
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Initial data exploration in unsupervised scenarios of yet unknown or unlabeled high-
dimensional datasets often starts with the calculation of basic statistics of the dataset attributes,
e.g. histograms or statistical moments e.g. mean, variance, skewness and kurtosis. Relation-
ships between attributes are usually characterized by the covariance matrix which is also the
main ingredient for PCA, one of the most widely utilized dimension reduction methods, as
also seen in the fundamentals. Along with variance and covariance quantities come normal-
ization methods like z-score transformation, i.e. mean-centered attribute divided by attribute
variance, and whitening, i.e. linearly de-correlated attributes with identity covariance matrix.
All these concepts are based on the implicit assumption of underlying Euclidean data spaces.
Particularly, the growing popularity of alternative similarity measures requires a reconsidera-
tion of variance quantification. The main reason is consistency of the analysis pipeline. For
example, if clustering based on Pearson correlation similarity is desired, it might be adverse to
choose standard PCA for data preprocessing, or z-score normalization of spectral data might
be prohibited if the main processing part utilizes a divergence measure.

In the following, a very general variational approach is presented for unsupervised assess-
ment of attribute (co-)variability (sensitivity) for differentiable metrics (similarity measures)
taking real-valued vectors as arguments.

4.1.2 Assessment of Attribute Variation

In the following, metrics, divergence measures, and dissimilarities will be addressed as dis-
tances in the non-mathematical intuitive way. Generally, if two vectors X,w € IR” from a
dataset are given, the key idea pursued here is to measure the minimum efforts needed to
transform the variable vector w into a representation of maximum similarity with the target
vector X. Such an optimum transformation typically poses two challenges,

1. cancellation by potential vector symmetry and
2. optimum paths of point to point measures can be different,

both challenges are illustrated in figure 4.1. Motivated by these two challenges, the minimum
transformation effort is measured by

1. magnitudes of channel changes and
2. variational path integration

during the optimum transformation. This procedure, called distance pursuit (DP), can be
formalized and solved for each data pair of interest in a mathematically rigorous optimization
framework. As a result, the attribute variability explaining a directed relationship of data
vectors is quantified for a given data measure. In a summarization step, all recorded attribute
changes are turned into a common notion of variability analogous to standard covariance for
Euclidean distance.
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Figure 4.1: Illustration of two challenges of an optimum transformation in high-dimensional
space.

Algorithm 1 distance pursuit DP }(7< W, 1)

// input X X target vector; w source vector ; f number of steps

g+ 0; b « 0, // Initialize target variables

/I Visit distance sequence elements, excluding my

for m < m; to m; do
V < argming. |m — d(X, w*)| / optimum vector at m, starting at w* = w
A « ¥ —w // differential displacement
W < WA // move on to identified location w = ¥
b« b+All integrate changes per attribute

g < g+ \/(A)? // line integral

end for
: return g, b

R A O A e

,_.,_
—_ O

Distance pursuit Formally, even for plain vector pairs, it is impossible to find closed form
analytical solutions to optimum vector transformation in the general case. Yet, arbitrary good
approximations can be obtained in an iterative way outlined in Algorithm 1 and in principle is
illustrated in figure 4.2.

First, a monotonic distance sequence m = {mg = d(X,w),...,m; = diarger} from the
initial vector distance mq to the maximum possible degree of similarity d;qee 18 created
with d;qrger = O for metrics and divergence measures and d;4rg.; = 1 for Pearson correlation.
An equidistant sampling of # = 10 sub-intervals, such as done in this work, is pragmatic but
not mandatory. The vector w moves along the minimum path following increasing steps of
similarity towards the target vector X. During the transformation of w, the two quantities are
collected:

1. g, the overall line integral summing up path fragment lengths and

2. b, the integrated differential attribute vector.
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Figure 4.2: Euclidean illustration of the distance pursuit principle.

Thus, a piecewise linear approximation in n-dimensional Euclidean space is conducted to
effectively assess attribute properties of the data under the distance measure of interest.

Line 5 of the Algorithm 1 provides the important identification of the next position of
vector w for getting a bit more similar to vector X. Gradient-based optimization methods
can be used for minimizing the distance discrepancies between the current position and the
next step of the target distance imposed by line 4. For distances d(X,w*), the Minkowski
distance (B.7), the Pearson correlation (B.9), and the y-divergence (B.11), see Appendix , are
utilized in this method. The gradient of the arg min operation, required for optimization, is

§ = —sign(s — d(X, ")) - 9d(X, ") /" 1)

Alternatively, a least squares expression can be employed in line 5, but it tends to generate
numerical underflows during convergence.

Common gradient-based methods find zero discrepancy solutions desired in line 5. Yet,
since optima for reaching a given similarity s are not unique, only minimum norm results for A
are valid to get minimum path lengths. Else, for example with Minkowski metrics usually
two points along the search line would yield valid optima at distance s to the target vector X.
Possible oscillations would be integrated out in line 8 for attribute variability, but the line
integral in line 9, based on repeated calculations of (3)2 = <Z, K) would be over-estimated.

Different gradient-based optimizers were tried using a reference implementation of
Minkowski metrics with line integrals being standard Euclidean distance and attribute vari-
ability being standard variance, irrespective of the choice of the metric order p. Memory-
limited Broyden-Fletcher-Goldfarb-Shanno (BFGS) turned out to provide the best mix of
speed, memory requirement, and accuracy, in comparison to full BFGS, conjugate gradients,
and steepest gradient descent.

4.1.3 Generalized Partial Covariance

The result of the distance pursuit algorithm is used as building block in a general formula for
measuring attribute variability of dataset X = (xk);=1...mk=1..» With m data vectors (in rows)
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containing n attributes. The reformulated text book term of standard variance
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can be transformed into the generalized partial covariance expression
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These values Qy; quantify the overall attribute contribution of all desired pairs of data vec-
tors X; connected to vectors indexed by .#‘. For each pair, the contribution of attributes [
and k is calculated using the ASC algorithm. Thus, Equation 4.3 quantifies attribute variabil-
ity given data connectivity and distance measure.

The normalization constant G =2+ (—z+ Y™, |.#|) is twice the number of pairwise com-
parisons, excluding the number z of non-contributing self-comparisons i = .#! ]‘ For all pairs

of data .#' = {1...m} for i = 1...m this leads to G = 2 - (—m +m?) which yields an unbiased
estimation of the variance G,? = Oy of the k-th attribute for the Euclidean distance. This case
allows a connection to Equation 4.2, because the ASC algorithm yields the simple difference
b—& @

The partial generalized covariance matrix Q is necessarily symmetric due to the commuta-
tive calls to ASC in Equation 4.3. This matrix can be used to calculate the partial generalized
correlation matrix R according to the formula

Riu = Ou/ / Qi Qur - 4.4)

For all data pairs and Euclidean distance R contains exactly what could be calculated much
more efficiently with pairwise Pearson correlation Eq. (B.9). Else, the runtime complexity of
ASC is O(t - G- n?) for covariance and ¢t - G) for variance which can easily become a bot-
tleneck. Yet, the proposed method allows custom data connectivities and similarity measures.
Euclidean assumptions like mean values iy of data vectors are not needed, because distance-
specific centers of gravity are implicitly computed by the double sum in Equation 4.3.

4.1.4 Application to Multispectral Image Data

Food analysis is important for quality control and nutraceutics, thus, a representative multi-
spectral image of a sliced cucumber fruit (see Appendix A) is taken as analysis target. The two
targeted complementary perspectives for partial generalized attribute variance assessment are:
per pixel variance involving pairs of channels and frequency channel correlations involving
pairs of pixels.

Pixel variance is assessed for adjacent channels using the index set .’ =i+ 1 clipped
to valid indices. This requires ASC for 100 pairs of channels represented by one of the 51



4.1. SIMILARITY MEASURE IN HIGH-DIMENSIONAL SPACE 57

Standard Euclidean Partial Euclidean Partial Pearson Corr. Partial v — divergence
o .
[} «
C
0 “
—
© o
>
o .
n‘ jos
c .
o oss |
e o
L. S
[J]
- 5 2% gl
—
o o
o
C o7
C «
@© o6s
g o

Figure 4.3: The top row shows the pixel variance and the bottom row shows the frequency
channel correlation of the Cucumber dataset (cf. Appendix A) for different distance measures:
From left to right, standard (all pairs) Euclidean distance and partial (adjacent data pairs)
Euclidean distance, Pearson correlation, and y-divergence for ¥ = 0.1 (brighter means higher).

frequency-specific monochrome image layers, resulting in an image of partial generalized
variance per pixel. Involving adjacent channels uses only local differences for detecting more
subtle relative changes than by global comparisons of distant and different frequency chan-
nels. This is shown in the first two images in the top row of Fig. 4.3 changing from stan-
dard (i.e. global) to partial (i.e. local) variance. For Pearson correlation and y-divergence the
shadow cast rather than the cucumber peel gets emphasized. This is, because both measures
are (3-scaling invariant to vectors 3 - X and thus optimally aligned with respect to scaling,
i.e. being able to highlight variability in non-alignable structures like noise-containing shad-
ows, which is useful for filtering different aspects.

Channel correlations are assessed in the first local neighborhood of each pixel ij with
I = (i,j) + {(=1,-1),(=1,0),(-1,1),(0,—1),(0,1),(1,-1),(1,0),(1,1) as index set.
The resulting partial generalized correlation matrices of all pairs of 51 channels are shown
in the bottom row of Fig. 4.3. Generally, there are two major clusters split in the middle
(at about channel 25), and the first two channels are a bit outstanding. The range for partial
Euclidean correlation (0.45—1) is a bit larger than for global correlation (0.59-1). Even richer
are the partial correlation patterns for Pearson correlation (range: -0.6—1) and for y-divergence
(range: 0.29-1) which reveals four clusters along the diagonal line (two large, two small).

The application to multi-spectral data has shown the ability to provide richer partial covariance
structures by utilizing local comparisons. Furthermore, data invariance properties of Pearson
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correlation and y-divergence allowed to identify shadow areas rather than interior fruit seg-
ments being highlighted by Euclidean distance. Thus, due to different similarity impressions,
the choice of similarity measure strongly depends on the analysis task itself, e.g. identification
of shadows. Unsupervised and supervised data analysis tasks along data processing pipelines
with other than Minkowski distances will benefit from the proposed method, because the
measure-specific assessment of attribute variability is a very fundamental requirement. Sev-
eral tightly connected methods like generalized whitening operation and PCA are yet to be
exploited in future research.

4.1.5 Summary

This section has presented an approach for the assessment of attribute variability when trans-
forming one vector into a representation of maximum similarity with a target vector. Here,
the typically posed challenges of cancellation by vector symmetry and that the optimum paths
of point to point measures can be different were addressed by a progressively distance pur-
suit algorithm. This algorithm measures the magnitudes of attribute changes and the variation
path integration to address the two main challenges. For large datasets, the current implemen-
tation requires extraordinary runtime, because multiple nonlinear optimizations are required
for each compared vector pair. Thus, in the context of this dissertation, has a rather more
fundamental aspect. What can be learned fundamentally from this approach and the appli-
cation to multispectral data, presented in section 4.1.4, is that the similarity assessment of
high-dimensional vectors, i.e. spectra, strongly depends on the chosen metric, e.g. different
similarity impressions, and the analysis task, e.g. detection of shadows. The general aspect of
different similarity impressions of different similarity measures are revisited in the context of
section 5.2.

4.2 Generic Determination of Constituent Spectra

The SMA requires the complete knowledge of the image endmembers, whose determination,
on many practical occasions, may not be realistic [DRCO03]. One reason is that every different
endmember extraction algorithm has its own merits and no single approach is optimal and
applicable to all cases [QFMSP12]. Moreover, as introduced in Sec. 1.2.2, the presence of
pixels that represent pure substances depends on the acquisition device, e.g. sensor resolution
or the chromatic aberration of a lens, as seen in Sec. 3.1.1. Consequently, there are possible
situation where certain algorithms determine mixed pixels instead of the desired pure pixels
[PMPPO0O4]. Additionally, Plaza et al. [PMPPO04] points out the increasing number of endmem-
ber identification methods and the resulting necessity of a standardized strategies to evaluate
the quality of selected endmembers.

In this section, a visual analysis approach is presented to close the gap between limita-
tions of automatic algorithms and an optimal set of endmembers of an observed multispectral
dataset. The strength of the presented approach is the utilization of automatic extraction al-
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gorithms in an interactive approach to combine the benefits of both, manual and automatic
endmember selection. This approach consists of two steps:

1. In a first step automatic algorithms and user-based parameter fine-tuning are combined
in a semi-automatic endmember extraction part.

2. As second step, the resulting set of endmembers is manually refined in a visual analysis
cycle, where analysts can bring in their expert knowledge.

First, a conceptional overview of the approach, including both steps, is presented in sec-
tion 4.2.1. After the overview, the first part of this approach, the semi-automatic endmember
extraction, is explained in section 4.2.2. Since, the aspects of the second part of the approach
are mainly related to the visualization of multispectral data, the details of this part are dis-
cussed in the visualization chapter (see section 5.1) later on.

4.2.1 Conceptional Overview

This section gives an overview of a generic and problem-adopted way to extract endmembers
from an observed dataset. In unsupervised multispectral data analysis, as discussed in the
fundamentals 1.2.2, there is no a priori knowledge, e.g. number of endmembers, about the
data available. Moreover, often automatic algorithms suffer from bad circumstances in the
data, e.g. low SNR or outliers. Therefore, this analysis approach focuses on visual feedback
to enable the user to assess the quality of an endmember set and to optimize it, if necessary,
to finally achieve an application specific optimal set of constituent spectra.

A conceptional overview of the processing pipeline is depicted in figure 4.4. As can be
seen, this process brings together the concepts of automatic and manual endmember selection.
Therefore, the process can roughly be subdivided into two parts: semi-automatic endmem-
ber extraction and manual refinement of the endmember set. Before the workflow and
analysis part of the pipeline is discussed in more detail, first an overview of the four key
components is presented:

1. Outlier masking: The outlier detection is an optional step in order to improve the ro-
bustness of the endmember extraction algorithms (see Sec. 4.3.2).

2. Endmember extraction: Endmember extraction algorithms are applied for automatic
data analysis in order to find an initial set of characteristic spectra (see Sec. 4.2.2).

3. Unmixing: In the unmixing step, the coefficients are computed and a binary unmixing
is done by computing the nearest neighbors for each endmember (see Sec. 4.4).

4. Complementary visualization: The two results of the unmixing step are visualized with
two views, where each view is enhanced by an associated error image view. Further-
more, the four views are extended by several exploration options for deeper insights.
More details of the visualization and exploration means are discussed in Sec. 5.1.

The workflow description of the pipeline is as follows:



60 CHAPTER 4. MULTISPECTRAL DATA ANALYSIS

User interaction User interaction User interaction

Outlller Endmember Unmixing [— ! _» [Complementary
: Masking : Extraction ! Visualization

Coefficents maps

.....................

Visual Analysis

o Manual A S electi >
=] threshold > | ”i% : P election o
8'"* selection N endmembers

A ¢
l ~
v

Raw Data Endmembers

I 1

Semi-Automatic Endmember Extraction Manual Refinement of Endmember Set

Figure 4.4: The exploration process is divided in two parts. First, semi-automatic endmember
extraction and second, manual refinement of the endmember set within the visual analysis
cycle. The rhombuses represent the main stages where analysts can refine the result and visu-
alization. The complementary visualization is the main feedback and enhances the application
specific information content in order to gain knowledge. In the case that data contain uncer-
tainties, an optional outlier detection can be applied in order to improve the robustness of the
endmember extraction.

Semi-Automatic Endmember Extraction The initial set of endmembers is discovered by
applying endmember extraction algorithms as a first step. The parameters of the algo-
rithms, if necessary, can be fine-tuned till a convincing initialization is found. In the
case of uncertainties in the raw data, e.g. in the presence of outliers, the optional outlier
masking can be applied before the endmember extraction step in order to improve the
robustness of the automatic analysis. Based on the set of endmembers, the linear spec-
tral unmixing coefficients and the nearest neighborhood (NN) for each endmember are
calculated subsequently in the unmixing step.

Manual Refinement of the Endmember Set. After the initialization, the unmixing results
are visualized by four complementary views, two views for the calculated results and
two for the associated unmixing error images. Additionally, the user has means to fur-
ther explore the results, thus to enhance the knowledge about the data. Whenever the
user modifies the set of endmembers (select, deselect or add endmembers), the dataset
is instantaneously unmixed and the views are updated immediately in order to ensure an
adequate visual feedback. Furthermore, the principle of modification underlies an in-
teractive exploration process where the analysts can bring in their domain-based expert
knowledge in a visual analysis cycle. Based on their expert knowledge, the users should
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be enabled to confirm their expectations and to discover the unexpected [KAF*08]. Fi-
nally, when a good set of endmembers is found, the error images usually show no or
negligible deviations for the whole spatial area or for regions of interest.

4.2.2 Semi-Automatic Endmember Extraction

As discussed above, the generic extraction of the constituents of an observed multispectral
dataset utilizes common endmember extraction algorithms to find an initial set of endmem-
bers, which afterwards interactively can be verified and optimized by the user. However, the
high dimensionality of multispectral image data makes it necessary to reduce the visual com-
plexity for the user in an interactive exploration approach. Thus, the reduction to a small
number of constituents by automatic algorithms also can be regarded as a first reduction of
visual complexity and to facilitate meaningful visualization and exploration methods. Since
the current section focuses on the determination of the initial endmembers set, for the moment
it is enough to know that these visualization and exploration methods provide the user with
comprehensive tools to evaluate as well as to enhance the quality of a discovered set (details
are provided in Sec. 5.1).

When applying endmember determination algorithms in the context of an interactive anal-
ysis approach mainly three challenges can be identified:

1. These extraction algorithm are usually rather time-consuming.
2. For some algorithms the parameters have to be manually fine-tuned.
3. The presence of imperfections in multispectral datasets.

The corresponding approaches for these challenges are discussed in the following paragraphs.

Time-consumption Commonly, a huge amount of data has to be processed in order to find
the set of endmembers. This is a rather time-consuming operation. Recent works [SPT*07,
SPTTO8, SP10, SMP10] have shown the performance improvements that can be achieved with
GPU-based implementations in the context of multispectral data processing. Therefore, after
studying the literature in terms of accuracy and speed as well as based on own investigations,
one popular method for each category of the endmember extraction algorithms (see Sec. 1.2.2)
have been selected and implemented in CUDA to exploit the parallelization of a GPU. Here,
the following algorithms were selected: AMEE, PPI, and OSP. For PPI an existing CUDA-
based implementation of Sanchez and Plaza [SP10] was utilized.

In figure 4.5, the runtimes of the implemented algorithms are compared for four datasets.
As can be seen, the runtimes of all methods depend very much on the spatial- and spectral
resolution. In all cases, the CUDA-based implementation of OSP has achieved the lowest
runtime, especially for the dataset Glass tiles. However, by comparing to all results, none
of the implemented algorithms achieves interactive runtimes in each case, especially not for
datatsets that have both, high spatial and high spectral resolution. Therefore, its proposed to
utilize these algorithms in the manner of a preprocessing step in a visual analysis approach.
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Figure 4.5: Runtime comparison of some endmember determination algorithms for four
datasets (cf. Appendix A). Here, the runtimes of the CUDA-based implementations of AMEE,
PPI, and OSP are compared. Moreover, the runtimes of optimized Matlab implementations
of OSP and PPI are listed for further comparison. In each case, OSP was limited to 10 end-
members, PPI has used 5000 skewers, and AMEE has executed 100 iterations. Please note:
Compared to all other methods, the CUDA-based implementation of AMEE is one of the
slowest. Therefore, much slower Matlab implementation was excluded in this test scenario.
The test system was equipped with an Intel Core 17 2.67GHz CPU, 12GB main memory and
a NVIDIA GeForce GTX 480 (1536MB) graphics card and the used version of Matlab was
R2010b (64-bit).

Parameter fine-tuning In case of PPl and AMEE, the number of resulting endmembers
strongly depends on user thresholds of the corresponding score maps and the SNR of the data
which can result in subsets of very similar spectra. For these algorithms, the first unrefined
set of endmembers thus is considered as a set of endmember candidates, which in most cases
includes subsets of very similar spectra. Traditionally, the final set of endmembers is derived
by calculating the mean of similar spectra or by choosing one representative spectrum of
each group. In this context Plaza et al. [PMP*10] suggests to use OSP to further reduce the
set of candidate spectra. In order to not belatedly introduce orthogonal restrictions to PPI
and AMEE the decision was not to utilize OSP for this task. Moreover, the calculation of
a mean spectrum can change the characteristics of a spectrum in case of incorrect grouping
of spectra, e.g. by wrong thresholding in the spectral matching. Consequently, the focus is
on the selection of a representative spectrum for each group in order to bypass changes of
the spectral characteristic that may occur when calculating the mean. Yet, the challenge of the
spectral matching, when group similar spectra, is not solved. But, now the user gets immediate
visual feedback after modifying the parameters, i.e. mostly the choice of common similarity
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Figure 4.6: Examples for parameter fine-tuning in the semi-automatic endmember extraction
for an artificial dataset Five Endmembers (cf. Appendix A). The parameter fine-tuning for
AMEE is depicted in the top and the middle illustrates the fine-tuning process for PPI. For the
sake of completeness, also the result of OSP is depicted. All determined endmembers are good
representatives for this simple dataset. However, OSP was the only algorithm which was able
to find the exact positions for each endmember (found positions are marked in corresponding
coefficients maps).
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measures (cf. Sec. 1.2.2) and the fine-tuning of thresholds. Fig. 4.6 shows simple examples
for the parameter fine-tuning. Here, the corresponding error images can be considered as a
simple example for the visual feedback. As can be seen, the process of parameter selection is
visually guided and allows to find the best possible initialization result.

Presence of imperfections As mentioned in the fundamentals (cf. Sec. 1.2.2) the endmem-
ber extraction algorithms typically search for the extreme spectra that generate the convex hull
of a dataset. Therefore, these kind of common algorithms are sensitive against outliers. So if
a dataset contains outliers, with a high probability these are identified as endmembers, which
can lead to a unsatisfying result, as presented in the upcoming result section. In such cases,
the usage of the optional preprocessing (see Sec. 4.3.2) is proposed to mark outliers, which
then are not processed by endmember extraction algorithms in the following.

4.2.3 Usage Examples

In the following, results for two datasets, Lemons and Graphene, are discussed (cf. Ap-
pendix A).

Lemons The figure 4.7 illustrates the parameter fine-tuning of PPI, where the case with the
19 endmembers depicts the best result that was achieved with PPI. Since OSP was the most
successful algorithm in the example with artificial dataset (cf. Fig. 4.6), also a result of the
OSP was depicted. As can be seen, in this case the result of OSP is not as good as the best PPI-
result. Although OSP was configured to search for 31 endmembers, which is the maximum
for this dataset. While the representation of the Lemons look comparable for both, PPI and
OSP, especially the background area is not as good represented in the OSP-result. However,
also the PPI-result has still some deviations left which a user easily can notice. Thus, a user
based verification and refinement of the endmember set, as discussed in Sec. 5.1, in general is
highly recommended.

Graphene While the results of the previous case are not perfect, but already quite accept-
able, the results for the Graphene dataset are throughout unsatisfactory, please see Fig. 4.8.
The reason for these inaccurate results is due to the presence of imperfections in the data.
Especially OSP, which is a greedy algorithm, suffers from such circumstances. As discussed
before, in such cases the usage of a preprocessing is supposed to enhance the robustness of
automatic analysis results. Therefore, this challenging dataset is reconsidered in a usage ex-
ample in the upcoming explanation of the supposed outlier masking scheme (Sec. 4.3.2).

4.2.4 Summary

This section has presented the first part, the semi-automatic endmember extraction, of the
proposed visual analysis approach for the generic identification of constituent spectra. The
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Figure 4.7: PPI-results are shown to illustrate the parameter fine-tuning in the semi-automatic
endmember extraction for the Lemons dataset (cf. Appendix A). The PPI-results are compared
to OSP, which was the most successful algorithm in the example with the artificial dataset
(cf. Fig. 4.6). As can be seen, here the results are not as comparable as in the case with the
artificial dataset. Especially OSP has high deviations in the background area.

here discussed first part mainly has addressed the challenge to achieve a proper parameteri-
sation for endmember extraction algorithms, if necessary. Without discussing details of the
visualization of the second part, the discussed usage examples have shown the general po-
tential of visual feedback to find the best parameterization in a fine-tuning step. The details
of the second part, the manual refinement of the endmember set, are subject in section 5.1.2.
Thus, to mainly tackle cases where these algorithms are not able to determine a reliable set
of constituents. Beside these quality aspects of a set, also the runtimes of the endmember
extraction algorithms for datasets with different spatial as well as spectral resolution were
discussed. This discussion has turned out that these algorithms can be rather slow, therefore
should preferably used as preprocessing in a visual analysis approach.

Moreover, this section already has revealed one major circumstance, i.e. outliers, in the
data, which can prevent a reliable automatic extraction result. Beside the user-based correction
in a post-processing step, the next section proposes a outlier masking scheme as preprocessing
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Figure 4.8: Three results that have been achieved with the semi-automatic endmember deter-
mination principle are compared. As can be seen, the reconstruction quality of AMEE (left),
PPI (middle), and OSP (right) is quite comparable. But, in all cases the reconstruction quality
is not fully satisfying, since all error images still reveal high error values.

to improve the robustness of these algorithms. Thus, to improve the initially found result to
consequently reduce the refinement effort of a user in the second part.

4.3 Outlier Masking for Endmember Extraction

Since endmember extraction algorithms (see Sec. 1.2.2) are searching for extremes in a
dataset, outliers can dramatically harm the resulting constituent set, as seen before. This sec-
tion therefore discusses a preprocessing scheme to handle outlier in data and to consequently
improve the robustness of automatic endmember extraction algorithms.

This section starts with an overview to give background information about imperfections
in multispectral data (Sec. 4.3.1). Based on the background information, an outlier masking
scheme for multispectral data is described in Sec. 4.3.2 and exemplary results are shown in
Sec. 4.3.3.
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Figure 4.9: This plot shows spectra of the Graphene dataset (cf. App. A). Here, the wavelength
range is limited to the interesting spectral bands. The blue line is a spectrum that contains a
cosmic ray at wavelength 616nm (the negative peak is because of integer overflows in the
sensor). Compared to the average spectrum of the corresponding local neighborhood (red
dashed line) it is noticeable that a cosmic ray affects only a single pixel.

4.3.1 Background

The task of endmember extraction algorithms is the determination of spectra that are phys-
ically meaningful, which in itself is challenging enough. However, this challenge is com-
pounded by the fact that these algorithms also have to perform for environments having limited
and imperfect information [Kes03]. In contrast to statistical techniques like PCA, endmember
extraction techniques are capable of also determining spectra with a relatively low spatial dis-
tribution in the dataset. Therefore, also pixels that contain imperfections which may arise by
atmospheric phenomena or sensor artifacts may also be extracted as endmembers. As a con-
sequence, these algorithms perform best with data that are free from artifacts that can create
spurious results [Kes03].

In many applications, multispectral data are preprocessed to reduce impurities to improve
the analysis result (cf. Sec. 1.2.2). For instance in the application domain of confocal Raman
microscopy, the datasets typically are preprocessed to smooth the spectra, remove the fluo-
rescence background or remove atmospheric phenomena, e.g. cosmic rays that result in high
peaks, usually, in single spectral band in a single pixel (see Fig. 4.9). Still, it is challenging to
find a suitable parameterization in the preprocessing without losing too much spectral Raman
information [DHT10]. Therefore in general it is recommended that any spectroscopic soft-
ware allow the preview of the resulting spectrum to judge the current parameterization by an
expert [DHT10].
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Algorithm 2 Pseudocode of an outlier detection module for cosmic ray identification

Initialize outlier mask (OM)

OM[X, Y] // X and Y are the spatial resolution of the source image
—> initialize OM with FALSE

Search for deviations to determine outlier

for each pixel(x,y) do
for each wavelength do
numDeviations = 0
// Proof the local 3 x 3 neighborhood
for each adjacent neighbor do
// Difference of the current wavelength intensities
curDist = abs(curPixel-curNeighbor)
/I Tyser 18 a user defined threshold
if curDist > T, then
numDeviations = numDeviations+1
end if
end for
if 3 < numDeviations then
OM(x,y) = TRUE
end if
end for
end for

4.3.2 Qutlier Masking

As presented in the background information, the preprocessing of multispectral datasets can
be necessary when data are containing imperfections which prevent good analysis results.
But, the search for a proper paramterization in the preprocessing typically is a balancing act
between good data enhancement and loosing of spectral characteristics, e.g. due to too much
smoothing. Therefore, the here presented preprocessing scheme has the aim to improve the
robustness of the automatic analysis in cases where the data contain outliers, without loosing
any information.

This aim is achieved by the use of a two-dimensional binary lookup-table (LUT), where
aberrant pixel (x,y) are marked as outlier. The LUT is referred to as outlier mask (OM)
in the following. In the automatic analysis, the OM is used to check if a pixel should be
processed. In the case of an outlier, the associated pixel is skipped. Note that these outlier
pixels are only skipped in the automatic endmember extraction. In subsequent calculation,
e.g. to determine the reconstruction quality, the complete dataset should be processed. By
the subsequent processing of the whole dataset, no information can get lost, since this non-
destructive editing has the advantage that false selections consequently lead to high values in
the error images so that the analyst can directly react (see Sec. 4.2.1).

In general, the outlier masking follows a modular design and allows the usage of applica-
tion specific methods for outlier detection, like centroid-based outlier detection in multivariate
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data [EM98] or support vector data description [TDO04]. In the following, an example for out-
lier detection in the context of confocal Raman microscopy [DHT10] is shown. Here, as men-
tioned above, cosmic rays are one of the impurities frequently encountered in multispectral
datasets, 1.e. confocal Raman datasets. As can be seen in Fig. 4.9, an outlier spectrum, caused
by a cosmic ray, significantly differs from its local spatial neighborhood, at least at one spec-
tral channel. Due to its relatively simple characteristic, a straight forward algorithm can be
applied to identify cosmic rays. The approach (see Alg. 2) checks the 3 x 3 neighborhood of
each pixel and marks a pixel as outlier, i.e. OM(x,y) = TRUE, if, in at least three spectral
bands, intensity variations can be perceived which are larger than a user-defined threshold

TMS@V'

4.3.3 Usage Example

Confocal Raman microscopy (CRM) is a combination of confocal microscopy, delivering
a sharp 3D image of semi-transparent materials, and Raman spectroscopy, which provides
multispectral data in high spatial resolution. The main application for CRM is the determi-
nation of the chemical composition of the specimen. Here, the main goal of analysts is the
identification of the constituents in the dataset. In this section the robustness improvement of
automatic analysis by the presented outlier masking scheme is exemplary discussed for CRM.
The following results are achieved by using the Graphene dataset, which mainly consists of
graphene and silicon as substrate. Here, graphene appears in two different layer thicknesses,
a thicker, larger flack and two smaller, thinner flacks at the bottom and the right of the dataset,
which have different spectral characteristics. Please see the Appendix A for further details
about this dataset. Applying a PCA directly reveals the major challenges in confocal Raman
datasets (see Fig. 4.10): A sensor specific “noise” pattern (here in the first principal compo-
nent) and cosmic rays dominate the dataset.

The importance of proper preprocessing is demonstrated by applying automatic endmem-
bers extraction with and without outlier masking. As shown in Sec. 4.2.3, the automatic end-
member extraction algorithms PPI, AMEE and OSP yield comparable reconstruction quali-
ties. Since, OSP suffers most from the presence of outliers, the result of OSP (limited to 10
endmembers) is considered (see Fig. 4.11, left) in this test scenario to best possible show the
effect of the outlier masking. Based on the OSP-result, the two most influencing constituent
spectra are manually selected. Furthermore, the colors have been exchanged for easier subse-
quent comparison to the result with enabled outlier masking, later on. In both cases without
outlier masking the associated error images entirely show large error values, especially for
the substrate silicon. Actually, all detected endmembers are severely influenced by cosmic
rays, thus are no good representative spectra. Yet, the poor distinction of graphene and silicon
is only possible because of the lucky circumstance that dominating cosmic rays are present
in both materials of interest. If this would not be the case, for instance when assuming that
outliers are only present in one material, e.g. silicon, then the automatic determination would
not find graphene until at least all dominating outliers have been found before. Fore sure, this
scenario is a worst-case scenario, but shows the high-influence of outliers in the automatic
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Figure 4.10: The high noise level of the Graphene dataset is shown with the help of the first
three principal components in an increasing order (from left to right).
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Figure 4.11: Result for the Graphene dataset. Initialization result with ten endmembers (left),
manual refinement and color selection of initial endmembers without outlier masking (middle)
and after applying the proposed outlier masking (right). The red (and green) areas belong to
graphene while blue represents the silicon as substrate (middle and right).



4.3. OUTLIER MASKING FOR ENDMEMBER EXTRACTION 71

( N\
No outlier masking ‘ With outlier masking
) | !
(o} 5
© B 0.8
= e
4‘9 S : 0,6
[
2 - 04
(®) 3 ’
-
() 0.2
g i
Silicon Graphene Silicon Graphene Graphene
(substrate) . (substrate) (greater thickness)  (lower thickness)

Ve

Figure 4.12: The coefficient maps for both, without (/eft) and with outlier masking (right).
All images are normalized. The lower values, that are poor representations of the selected
material, are represented by green, while high values, indicating proper material assignments,
are colored red.

determination of constituents and also the importance of visual feedback in order to allow an
analyst to judge the quality of the determined result.

Applying the outlier masking technique in combination with automatic endmember ex-
traction, the resulting initial set of endmembers contains all relevant spectra, i.e. the silicon
substrate and both, the thicker (colored red) and two thinner graphene flacks (colored green).
Selecting these characteristic spectra achieves the final result in Fig. 4.11, right, without any
further manipulation of the set of endmembers, except from the exchange of representative
colors. The skipped outliers can still be seen in the error images as bright pixels. Thus, the
analyst can still examine the spectra of these single pixels, e.g. to confirm the exclusion or
to perform corrections if necessary. Finally, Fig. 4.12 shows the quality difference between
non-preprocessed (left) and preprocessed results in terms of the coefficient maps of the corre-
sponding endmembers.

4.3.4 Summary

This section has discussed an outlier masking scheme that is capable to improve the robustness
of automatic endmember extraction algorithms. While the focus of the discussion was laid
onto the detection of cosmic rays for CRM, the modular design of this scheme also allows
the integration of application specific outlier detection methods. Beside the major aim, the
improvement of robustness, the second aspect of this scheme is that no information can be
lost in a visual analysis approach. Applied to the challenging Graphene dataset, this usage
example has shown, in comparison to the result of Sec. 4.2.3, that the automatic algorithms
were able to determine a reliable set which needs no further refinement by a user.
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4.4 Unmixing Coefficients for Interactive Applications

Beside the important determination of a proper set of endmembers, the LSU reconstruction
requires an inversion process in order to achieve the necessary coefficients ¢;(x,y) for the
endmembers V; in each pixel. As seen in Sec. 1.2.2, typically both physical constraints, ANC
and ASC, are enforced to achieve physical plausibility. In these cases, the calculation of
the coefficients can be very expensive, especially for complex high-dimensional multispectral
data with a large set of endmembers [SL11]. Therefore, interactive applications should utilize
the LSU as preprocessing and focusing on the exploration of the static results. But, when
the exploration leads to the result that a modification of the endmember set is necessary,
then an analyst is interested in getting a fast response when modifying the set. Typically,
modifications on a set of endmembers are done in a progressive way, which implies a frequent
usage of inverse operations. Thus, this section presents three approaches that allow a more
efficient utilization of LSU in interactive applications, i.e. visual analysis-based approaches.

Starting with an overview of the related work in section 4.4.1, the next section discusses
a progressive utilization of the inversion step. The section 4.4.3 shows a method for the
prediction of new coefficients in case of modification of the endmember set and section 4.4.4
discusses an efficient OSP-based solver for the computation of ANC coefficients. Results of
the last two approaches are presented in section 4.4.5.

4.4.1 Background

Applying UCLSU, e.g. using least-squares methods like Moore-Penrose pseudoinverse,
achieves fast results, but do not incorporate the physical plausibility as when impose ANC
and ASC. UCLSU can result into negative coefficients which consequently lead to unnat-
ural negative endmembers. But, as discussed above, if the non-negativity constraint is
claimed, non-negative methods, e.g. [CHO0O, HCICO1], are involved which can be compu-
tationally very expensive by itself [VGOS]. Furthermore, ISRA Eq. (B.13) [DWM&86, DP93],
which guarantees convergence in a finite number of iterations, can be applied. Recently,
Séanchez et al. [SMPC10] presented a CUDA-based implementation of ISRA that has turned
out to be a great improvement in terms of runtime. In a test scenario, the authors gained a
significant speedup of the GPU version (~126 sec) compared to a sequential CPU implemen-
tation (~3351 sec). But in terms of an interactive exploration, it is far too slow.

4.4.2 Progressive Unmixing Scheme

In interactive applications, a key-factor is the visual feedback which has to enable a user to
sufficiently steer the application and to extract the significant information. However, when a
set of endmembers V is found or an existing set is modified the unmixing has to be applied
in order to update the visual feedback, e.g. the complimentary visualization described in
Sec. 5.1. But, as discussed before, the inversion step for NCLSU as well as FCLSU typically
is too time consuming for interactive approaches. Therefore, a progressive unmixing scheme
is presented where a user is able to trace the evaluation of the unmixing, moreover is able to
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Figure 4.13: The workflow of the progressive unmixing, where Q,., is a quality threshold for
the averaged relative /-error A’j.

proceed with the analysis or stop the time consuming calculation, when modifications on V
are getting necessary (see Fig. 4.13). Due to the iterative operating principle of ISRA (see
Appendix B.2), the implementation of Sanchez et al. [SMPC10] can be utilized very well in
the progressive unmixing scheme that is discussed in the following.

Since this optimization algorithm works in an iterative manner, a termination criterion is
recommended in order to avoid unnecessary iterations. Therefore, the computation is stopped
after a defined number of iterations / and for each endmember the averaged relative />-error
A’J which is a measure for convergence, is computed:
||OC;(X,y) - a;'_l(xay)||2

[0 (x, )2

X Y
]:XL ZZ;xy W1th5(xy) 4.5)
Here, (X} are the coefficients of ¥/; where i is the number of executions (i < maxjoops) and X as
well as Y represent the spatial resolution in x- and respectively y-dimension. The algorithm
terminates when all Az- are less than a user-defined quality threshold Qe i.e. maX(A;) <
Quser With 0 < j < g, where ¢ is the number of endmembers in V. Whenever the algorithms
stops for this termination check the associated visualizations are updated. Thus, the user can
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follow the progressive refinement of the LSU-result and has the option to stop the inverse
calculation, e.g. to further modify the endmember set.

4.4.3 Prediction of New Coefficients for Refined Endmember Sets

At the beginning of the coefficients calculation by ISRA, all coefficients are usually initialized
to one. Typically, the unmixing is restarted whenever a new set of endmembers is to be
applied. This is also necessary, when only minor modifications on V have been applied,
e.g. when one endmember has been added, in an interactive approach. The idea of this
prediction approach is to make use of prior unmixing results and the fact that the altered set
of endmembers typically only differs by a single spectrum, that has been added or removed.
For the prediction, between these two possible cases is distinguished: the removal of an
endmember and the insertion of a new endmember. In the following explanation, a set of
endmembers V is notated as V" = {¥]",¥',..., v} to make it indexable by m.

Removal of an endmember In this case, the new set of endmembers is
ymtl —ym\ fymy (4.6)

where \7’21 is the removed endmember. Based on V" *!, the formulation

2
— min 4.7)
2

q
W =) BV}

j#k

is optimized with a singular value decomposition-based least squares method. Thus,
the weight [8; resembles the best approximation of V™1 to the skipped spectrum V7,
see Fig. 4.14. The estimated weights f3; are then used for the prediction of the new
initialization values by distributing ¢,;" to the remaining endmembers

a}mﬂ =o'Bi+al, j#k (4.8)

with respect to the removed endmember V). Note, that the 3;’s are computed once for
the whole dataset and the prediction is applied to all individual pixel using Eq. (4.8).

Insertion of an endmember The set of endmembers is considered in the same manner as
before, but now the new set is defined as

Vil =y v, ), 4.9)

where V1 is the inserted endmember. The main idea here is to reduce the current
per-pixel error with respect to the prior set of endmembers, i.e.

(4.10)

MQ

e(x,y) =5(x,y) —
J:
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Figure 4.14: Conceptional illustration of the idea of the coefficient prediction for both, the
removal (left) and the insertion (right) of an endmember.

where 5(x,y) is the source spectrum and the convex combination is the current mixed
spectrum with respect to V.

The assumption is, that, in average, the best correction can be achieved in the direction
of the projection of the newly introduced endmember Vv, ; with respect to the prior
set of endmembers. Therefore, first the approximate orthogonal projection of v, is
calculated by solving the following least squares problem

2

— min. (4.11)
2

q
Vq—H - Z ﬁj‘_;;n
J=1

Based on the per-pixel error e(x,y) and the calculated weights 3;, now, the equation

2

— min (4.12)
2

e(x,) = (x,) (Vg1 — Z Bivy

can be optimized in order to achieve the per-pixel correction coefficient y(x,y), see
Fig. 4.14. Finally, the previous coefficient values (x}" are adjusted as follows

a}nJrl(x,y):a’."(x y)_'y(x,y)-ﬁj, j=1,...0k (4.13)
O‘(lel( y) = 7(x,y). (4.14)

For performance reasons, in both cases non-constrained least squares methods are used. Non-

constrained methods may lead to undesired negative coefficients of some pixels.

In such

cases the resulting coefficients are clamped to a value close to zero. Here, it is important
to not clamp to zero to allow the subsequent coefficient calculation in ISRA (cf. App. B.2).
Beside ISRA, the presented prediction method can be applied for all solvers which assume

initial coefficients.
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4.4.4 OSP-Based Coefficient Estimation

This section presents a method or the estimation of endmember coefficients by applying the
underlying OSP-principle (see Sec. 1.2.2) that undesired signatures can be eliminated with
Eq. (1.2), which is referred to as Orthogonal Subspace Projection based coefficient estimator
(OSPCE). The foundation of this idea is based on Du et al. 2003 [DRC03] who have shown
that OSP and constrained energy minimization are closely related.

Assuming that the determined endmember matrix U, where endmembers are column-wise,
contains the significant endmembers V of the dataset, then the coefficients of an endmember
Vj are computed by removing V; from U

Uy =U\{¥}. (4.15)
Concerning LSU, Eq. (1.1) can be reformulated into

5(x,y) = aj(x,y)¥;+ Y oi(x,y)Vi+7i(x,y) (4.16)
i€F\j

where F = {f1, f2,..., f4} is the set of all endmember indices. Now, the orthogonal subspace
projector le is computed according to Eq. (1.2) with U ;- When projecting Eq. (4.16) with

PjL and the noise is neglected the following equation is achieved

§h () =o(x )i+ Y ailxy)vt (4.17)
i€F\j
with ¥ = Pj-%; =0 fori € F \ j. (4.18)

The endmember signatures V; are eliminated in the subspace orthogonal to U A and therefore

the remaining signal of 5 (x,y) is due to \7} so that
§h(x,y) = Otj(x,y)\'/'f (4.19)

Based on this, the coefficient o;(x,y) is estimated with
oj(x,y) = (5-(o), 55 ) / (5,7 ) (4.20)

where \7]4 and 5 (x,y) are the projected current endmember ¥; and the current spectrum 5(x, y)
of a pixel (x,y)

Vi =Py, 5 (x,y) = Pis(x,y). (4.21)

Thus, the coefficient o;(x,y) lies in [0, 1], as long as the underlying estimated set of endmem-
bers V is reasonable. There are issues when spectral vectors are falling outside the convex
hull generated by V, due to wrong endmember determination. For instance, when a 5(x,y) of
the data is spectrally equal to a V; but the intensity level is higher, then the estimated o;(x,y)
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is greater than one. Since there is no active enforcement of the ANC, in the most unfavor-
able case it may happen that when significant endmembers V; are missing in V' the achieved
oj(x,y) gets negative. The inversion method ISRA itself guaranties positivity, also when the
set of endmembers is not adequate, but, the reconstruction then is also not satisfying. So,
this is more a general problem of solving since the set of endmembers is incomplete. Thus,
preventative a negative ¢;(x,y) is clamped to a positive value close to zero at the end of the
calculation. Here, again it is not clamped to zero to allow the subsequent coefficient calcula-
tion when the OSPCE method is combinded with ISRA (cf. App. B.2), see below.

The coefficients for both, the other pixels and remaining endmembers are calculated in the
same way. So far, the coefficients are non-negativity constrained. In addition, the calculated
abundances o of all endmembers can be normalized in order to achieve fully constrained
coefficients.

As sown in Algorithm 3, the whole approach is divided into two parts, the calculation of
the orthogonal projectors and the coefficients. This division is due to the facts, that the orthog-
onal projectors (cf. Eq. (1.2)) are on the one hand constant for the whole process as well as for
all pixels and on the other hand can be computed fast on the CPU. The remaining calculations
for all pixels are calculated in parallel by using CUDA which results in a decreased runtime.
The CUDA-kernel can be seen in Fig. 4.15. Here, the precalculated orthogonal projectors are
accessed via the memory memP j, where all P are stored one after the other. The computed
coefficients are finally stored in resCoeff.

As can be seen in the upcoming section 4.4.5, the coefficients of the OSPCE method are
already quite accurate and the iterative ISRA has a longer runtime to achieve comparable
results. However, by combining both methods the general results can be improved in terms
of both, accuracy and performance. Here, as also discussed in section 4.4.3, it is again the
aim to achieve a faster convergence of ISRA by a proper initialization of the coefficients.
Therefore, the calculated coefficients of OSPCE can be used to initialize the coefficients for

Algorithm 3 OSP-based Coefficient Estimation

Calculate orthogonal projectors

for each endmember V; on CPU do
(Eq. (4.15))
(Eq. (1.2))
end for

Compute coefficients

for each pixel (x,y) in parallel do
for each projector P;- in parallel do
(Eq. (4.21))
a;(x,y) (Eq. (4.20))
o (X Y )
end for
endmembers
end for
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__global  void g OSP LSU(float* MS DataSrc,
float* memPj, int nElemXY, int numBands,
float* endmembers, int numEMs, float* resCoeff)

int idx = blockDim.x * blockIdx.x + threadIdx.x;
~ _shared  float s _curEM[NUM BANDS];
// For P_i do the orthogonal projections
for (int emIdx=0; emIdx<numEMs; emIdx++) {
__syncthreads();
// Copy the current EM to shared memory
if (threadIdx.x == 0) {
for (int 3=0; j<numBands; Jj++) {
s _curEM[J] = endmembers[j+ (emIdx)*numBands];
}
}
__syncthreads();
// Compute the orthogonal projection
float alpha=0, curEMProj=0;
int P_iIdx = emIdx*numBands*numBands;

for (int rowIdx=0; rowIdx<numBands; rowIdx++) {
float tSpecProj=0, tEMProj=0;
for (int sIdx=0; sIdx<numBands; sIdx++) {
int oIdx = sIdx+rowIdx*numBands;
float spec = MS DataSrc[idx+sIdx*nElemXY];
tSpecProj += memPj[oIdx+P iIdx]*spec[sIdx];
tEMProj += memPj[oIdx+P iIdx]*s curEM[sIdx];
}
alpha += tSpecProj*tEMProj;
curEMProj += tEMProj*tEMProj;
}
float coeff = max(~0, alpha/curEMProj);
resCoeff[idxtemIdx*nElemXY] = coeff;

}

Figure 4.15: CUDA-kernel for the calculation of OSPCE-based coefficients.

ISRA. Doing so, the number of iterations for ISRA decreases while still maintaining results
of the same quality.

4.4.5 Results

This section presents the results of the prediction approach for refined endmember sets
(cf. Sec. 4.4.3) and of the OSPCE (cf. Sec. 4.4.4). Thus, the section is divided into two
corresponding parts: the Prediction of New Coefficients for Refined Endmember Sets and
the OSP-Based Constraint Unmixing. In both parts, the test system again was equipped
with an Intel Core 17 2.67GHz CPU, 12GB main memory and a NVIDIA GeForce GTX 480
(1536MB) graphics card.
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Figure 4.16: This illustration shows the quality of the coefficients for the three final endmem-
bers. The first two rows show the final normalized coefficient maps for the default initializa-
tion (fop) and the initialization with prediction (middle). The bottom row shows the associated
difference images of the coefficient maps (default minus prediction). This test scenario was
based on the Graphene dataset (cf. App. A) and the quality threshold Q. was 0.1.
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Prediction of New Coefficients for Refined Endmember Sets

The results of the presented coefficient prediction approach are shown by the usage of ISRA,
where both coefficient initialization methods, default with one and the predicted coefficients,
are discussed in comparison. For both initialization approaches, two test scenarios are done
to reflect the results, first focusing on the quality, i.e. difference of the final coefficients, and
second discussing the speedup.

Quality-focused Evaluation In this first test scenario, the Graphene dataset (cf. App. A)
was used, which already is known from Sec. 4.3.3. At the beginning of this test, three end-
members were already selected. During the test, first two endmembers were removed and
then two new endmembers were added.

As we can see in Fig. 4.16, the coefficient maps of the three endmembers are quite compa-
rable for both approaches. Especially the difference images of the coefficient maps (prediction
subtracted from default) show that there are a few small areas which are not as good as in the
default case. The reason for this is that ISRA typically terminates earlier in the case of the
prediction, although some smaller areas need more optimization iterations, especially, when
some endmembers have a high influence in huge parts of the data, since the averaged relative
[>-error value is used for the termination check. Nevertheless the results are quite comparable.

Speedup-focused Evaluation In the second test scenario, for five datasets, the runtimes
were measured and the quality was compared to the default initialization. The scenario was
as follows: Initially, ten endmembers (EM) were already selected for each dataset. During
the time measurement endmembers were removed (-) and added (+) by following a constant
scheme that can be seen in the header of Table 4.1. This Table shows the time consumption of
each action, the complete- and averaged runtimes. In some cases, the prediction was slower
as the default initialization. But, by considering the total time consumptions, the prediction
method overall was faster than the default initialization. Based on this scenario, an average
speedup of about 24% was measured. Furthermore, the quality difference of both initializa-
tions of this scenario is shown in Table 4.2. As can be seen, the maximum absolute difference
values of this comparison are in some cases quite high, while the standard deviation and mean
values are quite low for all tests. The reason for this effect is already discussed above in the
first test scenario.

OSP-Based Coefficient Estimation

The results of the OSPCE are presented in comparison to the results of ISRA from Sanchez
etal. [SMPCI10]. ISRA computes ANC coefficients and FCLSU is achieved by the normaliza-
tion of the coefficients. The methods are applied to three datasets, first for the field of remote
sensing and second for artificial datasets. The Appendix A gives some details on the selected
datasets.
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Initialization| Data [|-EMO[-EMS5|-EM9[+EMO|+EM5 |-EM8|+EM9|+EM8|| ¥ | O |
Default Lemons || 4.5s | 3.1s | 3.0s | 3.5s | 52s | 4.5s | 53s | 6.1s ||35.2s| 4.4s
Prediction Lemons 24s | 41s | 2.5s | 34s | 43s | 22s | 4.77s | 5.4s |[29.1s| 3.6s
Default Glass tiles || 6.0s | 52s | 42s | 48s | 6.5s | 52s | 6.0s | 6.8s ||44.7s| 5.6s
Prediction |Glasstiles|| 7.6s | 1.5s | 2.8s | 7.4s | 82s | 1.9s | 5.7s | 6.1s |[41.3s| 5.2s
Default Flowers || 5.1s | 43s | 3.4s | 5.7s | 7.3s | 52s | 6.0s | 8.8s |/45.8s| 5.7s
Prediction Flowers 20s | 2.1s | 19s | 4.6s | 59s | 5.1s | 5.0s | 5.8s |[32.4s| 4.0s
Default Graphene || 6.3s | 49s | 3.8s | 49s | 73s | 49s | 7.3s | 10.5s ||50.0s| 6.3s
Prediction | Graphene || 1.0s | 2.5s | 1.2s | 4.1s | 4.2s | 1.6s | 3.1s | 52s |/23.0s|2.54s
Default Peppers || 3.2s | 2.6s | 2.6s | 3.8s | 4.6s | 3.5s | 42s | 5.5s ||30.1s| 3.8s
Prediction Peppers || 1.4s | 43s | 22s | 29s | 42s | 2.6s | 39s | 5.0s [|26.7s| 3.3s

Table 4.1: Measured runtimes of the second test scenario. Initially ten endmembers (EM)
were already selected by OSP. During the time measurement endmembers were removed (-)
and added (+) by following a constant scheme. The quality threshold Q. was 0.1 in each
case. Please see Appendix A for more details about the used data.

Data | Values [ EMO [ EMI | EM2 [ EM3 | EM4 | EM5 | EM6 |EM7|[EMS [EM9 | @ |
Lemons | max|d| || 0.60 [ 0.10 [ 0.09 [ 0.14 [ 0.10 [ 0.14 [ 0.54 [ 0.39 [ 0.93 [ 0.26 [[ 0.33
mean || -0.01| 0 0 0 0 0 | 001002003001 001
std || 0.06 | 0.02 | 0.01 | 0.01 | 0.01 | 0.01 | 0.05 | 0.05 | 0.10 | 0.04 || 0.03
Glass tiles | max |d| || 0.43 [ 0.42 [ 023 [ 0.88 | 0.42 | 0.36 | 0.45 | 0.62 | 0.84 | 1.95 || 0.66
mean || -0,01 | 0 0 0 0 0 0 |0.01 002|002 | 0.002
std || 0.03 | 0.01 | 0,02 | 0.04 | 0.04 | 0.01 | 0.03 | 0.05| 0.05 | 0.06 || 0.04
Flowers | max|d| || 0.16 | 0.15 [ 0.02 [ 0.12 [ 0.19 | 0.10 [ 0.11 [ 0.08 [ 0.14 | 0.15 || 0.12
mean || -0.01 |-0.01| 0 [-001| 0 0 001 0 |001]|001| O
std || 0.02]001| 0 |001]001]|002]001]001]0.01]0.02| 001
Graphene | max|d| | 0.62 | 0.46 | 0.25 | 0.46 | 0.47 [ 0.72 [ 0.97 | 0.43 | 0.68 | 0.79 || 0.59
mean | O |-0.02| 0 |0.02 -0.01]0.01]|005]|0.01]002]0.02| 001
std || 0.03 | 0.07 | 0.01 | 0.07 | 0.03 | 0.04 | 0.16 | 0.04 | 0.06 | 0.07 || 0.06
Peppers | max|d| || 0.62 [ 030 [ 0.11 [ 0.19 [ 0.59 | 0.24 [ 0.37 [ 0.58 | 0.75 | 0.48 || 0.42
mean | O |-0.01| O |0.01|0.03[-001]/002| 0 |0.03]0.03]| 001
std || 0.03 ] 0.05|001|002]|0.11| 003 |0.07 003|006 | 007 || 0.05

Table 4.2: Based on the differences of the coefficients (prediction subtracted from default),
the values of the maximum absolute difference max |d|, mean and standard deviation are men-
tioned to show the quality of the second scenario. Please see Appendix A for more details
about the used data.
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Figure 4.17: The quality of the applied methods is shown by the coefficients-maps of four
selected endmembers and corresponding RMSE reconstruction errors (in percentage). On
the left side, the OSPCE method is compared to ISRA and to the combined version OS-
PCE+ISRA, all fully-constrained. Comparing column 1 and 2, it can be seen that OSPCE
achieves more accurate results with a lower runtime than ISRA with a low number of itera-
tions. Column 3 shows improved ISRA-results when combined with OSPCE. On the right,
a comparison of the combined version OSPCE+ISRA and ISRA alone is shown for NCLSU.
As can be seen, the combined version achieves results comparable to ISRA alone, but needs
fewer iterations.

Remote Sensing Here, the very common Cuprite dataset was used. The endmembers in this
test have been extracted directly from the data by applying the OSP algorithm, limited to ten
endmembers.

In comparison, the results of OSPCE-FCLSU and ISRA-FCLSU are shown in the left part
of Fig. 4.17. As can be seen, the result of OSPCE-FCLSU is accurate and the runtime is
shorter as ISRA with 50 iterations. Moreover, the combination of OSPCE and ISRA shows
that the initialization of ISRA with the estimated coefficients of OSPCE improves the ISRA
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Figure 4.18: This diagram shows, based on the Cuprite dataset, the normalized averaged
RMSE reconstruction error trend and the runtimes for ISRA and the combination of OS-
PCE+ISRA. OSPCE has a runtime of 5.6 seconds.
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Figure 4.19: This diagram shows the normalized averaged RMSE reconstruction error trend
and the runtimes for ISRA-NCLSU for two artificial datasets, four and five endmembers.
OSPCE-NCLSU achieves, after a runtime of 0.45 seconds, an averaged RMSE of 0.0004 for
the dataset with four endmembers. Moreover, for the other dataset an averaged RMSE of
0.006 is achieved after 0.56 seconds.
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result. Here, the number of iterations was chosen low intentionally in order to demonstrate
the influence of the combination and to give a feeling for the runtimes. In the following, this
combination is called OSPCE+ISRA and is evaluated also for higher iteration numbers of
ISRA-NCLSU. In Fig. 4.18, the runtimes and normalized RMSE reconstruction error trends
of ISRA and OSPCE+ISRA are compared. As can be seen, the OSPCE-based initialization of
ISRA decreases the RMSE-values. For instance, with 800 iterations (160 sec.), OSPCE+ISRA
achieves a comparable result as the typical usage of ISRA with 3200 iterations (610 sec.). This
also can be seen in the right part of Fig. 4.17. Also the combination of OSPCE-NCLSU and
ISRA has been tested. But it has turned out, that the differences of the coefficients regarding
OSPCE-FCLSU and OSPCE-NCLSU are to small to have noticeable impact with respect to
accuracy and performance.

Artificial Data The results for two artificial datasets, four endmemberss and five endmem-
bers, are shown in the following. Since the number of constituents and exact positions are
known for these two datasets, eventual errors because of an improper endmember set are im-
possible. Moreover, these data are free from noise. In order to prevent eventual reconstruction
errors due to the scaling of the coefficients to achieve FCLSU, in all upcoming cases ISRA
as well as OSPCE are applied to achieve ANC coefficients. Thus, deviations between the raw
data and its corresponding reconstruction are mainly due to the applied inversion process in
the following.

The ISRA error trend is depicted in Fig. 4.19. As can be seen, all RMSE-values are
very low. However, compared to OSPCE, the achieved values with ISRA are all greater. In
detail, OSPCE achieves, after a runtime of 0.45 seconds, an averaged RMSE of 0.0004 for the
dataset with four endmembers and for the other dataset an averaged RMSE of 0.006, after 0.56
seconds. Since the error trends are focused on averaged values, also the resulting coefficients

Four Endmembers o Five Endmembers

Coefficients Maps
OSPCE-NCLSU  ISRA-NCLSU 1600 ISRA-NCLSU 50

Figure 4.20: Comparision of coefficients maps for OSPCE and ISRA in case of two artificial
datasets.
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maps are depicted in Fig. 4.20 in order to provide a better impression of the quality. Here, the
results of ISRA with 50 and 1600 iterations are shown in comparison to OSPCE.

4.4.6 Summary

This section has proposed several methods to more efficiently utilize inverse unmixing meth-
ods for interactive applications, especially when ANC is enforced. Beside a progressive uti-
lization of ISRA combined with a termination criteria to achieve a better integration in the
explorative workflow, mainly two methods are presented to speedup the coefficient computa-
tion.

First, a method that utilizes previously calculated coefficients to predict coefficients in case
of modifications on the set of endmembers. Here, it was proposed to utilize these predicted
coefficients as initialization of ISRA to achieve a faster convergence. The shown results, in
comparison to ISRA, have proven a good quality of the predicted coefficients and in a test
scenario this method had achieved a speedup of 24%.

Second, the OSPCE method was proposed, that estimates the coefficients of each end-
member by successively eliminating all other endmembers, based on the OSP-principle, from
the spectra to determine the respective endmember influence. Compared to the prediction-
based method, the OSPCE has the advantage that it needs no previous unmixing result to
estimate the coefficients. Since, potential inaccuracies in results of OSPCE, e.g. based on
orthogonal restriction, are corrected and ISRA certainly needs less iterations to achieve good
results, this combination has turned out to be a general improvement in terms of runtime and
accuracy.

4.5 Summary

This chapter has discussed several aspects of multispectral data analysis. Beside the more
fundamental aspect of the similarity measure in high-dimensional space, the reminder of the
chapter was focused on analysis aspects with respect to interactive analysis concepts in the
context of LSU. Here, mainly three challenges have been identified.

First, it has turned out, that it cant be guaranteed that endmember extraction algorithms
for each circumstance or application will find a reliable set of constituents. Thus, a visual
analysis concept was proposed for the verification and refinement of the determined result.
Moreover, it has been shown that the resulting set of constituents often depends on a good
parameterization, whose fine-tuning greatly benefits from visual feedback.

Second, outiers in multispectral data can prevent automatic algorithms to find good repre-
sentative constituents of datasets. The usage of the proposed outlier masking scheme has been
proven to be capable to improve the robustness of these algorithms in such cases, without the
risk that any information can be lost within the proposed visual analysis concept.

Finally, the often time-consuming inverse operations of the LSU were addressed in this
chapter. Beside a progressive scheme, mainly two methods were presented to speedup the
calculation of the coefficients for interactive applications.
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Taken together, the presented approaches and concepts provide means to utilize the LSU in
a visual analysis approach. Thus, to achieve reliable set of constituents for a broad variety of
application domains and also for datasets that suffer from imperfections by incorporating the
expert knowledge of an analyst. Here, an adequate visual feedback implicitly was assumed as
key aspect to ensure a proper verification or refinement, but, the discussion of the visualization
aspects was skipped. Therefore, the next chapter discusses the open aspects and challenges
from the visualization point of view.
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Chapter 5

Multispectral Image Visualization

reating visual representations in order to provide insights to multispectral image data is
C not a straightforward issue, since it is difficult to visualize all aspects of a spectral image
in one picture [PvdHO1]. The following sections mainly cover visualization means which
are embedded in visual analysis approaches to purposefully enable users to get insights into
the essential spectral characteristics of an image. The chapter is structured in three parts,
where the first two parts address challenges in the domain of LSU and the last part discusses
a semi-automatic segmentation approach.

The first part addresses the complementary visualization for the evaluation of the com-
pleteness of endmember sets. This visualization and the therewith introduced exploration
means together build the second part of the approach for Generic Determination of Con-
stituent Spectra presented in section 4.2.1.

The second part presents global expressive spectral error visualizations in order to pur-
posefully provide user guidance in a visual analysis approach to finally enhance the results of
spectral mixture analysis. The presented visualization methods enhance the user guidance on
the one hand, by enhancing the interpretation of typical distance measures and on the other
hand, by discriminating spectral errors in different error classes.

The last part of the chapter deals with a multispectral image segmentation approach, that
is based on a common multivariate visualization technique. This approach achieves the seg-
mentation in a semi-automatic manner and in general allows a user to get insights into the
spatial topology of multispectral image data.

Publications: The complementary visualization as well as the associated exploration methods
have been published in [LBKI12], while the expressive spectral error visualization-based vi-
sual analysis approach for enhanced spectral mixture analysis was subject in [LUKI13]. The
Radviz-based multispectral image segmentation has been presented in [LPKI3].
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5.1 Complementary Visualization

This section discusses a juxtaposed complementary visualization for the evaluation of the
completeness of endmember sets, which was already mentioned before as the second part,
so-called Manual Refinement of the Endmember Set, in Sec. 4.2.1. The complementary
visualization consists of two views for the calculated results of the unmixing as well as two
additional views for associated distance-based error images. The details of these views are
presented in Sec. 5.1.1. Additionally, supplemental exploration tools ensure that analysts are
able to utilize their exploration experiences as well as their expert knowledge to evaluate
and refine an endmember set, if necessary. This exploration possibilities are presented in
Sec. 5.1.2.

5.1.1 Visualizations

The assessment of the reconstruction quality of LSU is an important step for judging a set
of endmembers V. In this context, a complementary visualization is introduced in order to
provide a more comprehensive quality visualization than by using a typical single error image,
as discussed later on. As shown in figure 5.1, this visualization is composed of four views that
are arranged in a matrix like style and provide the main feedback for an analyst.

The columns represent the reconstruction results of the LSU Eq. (1.1), based on the com-
puted coefficients (see Sec. 4.4), and of a binary unmixing step which computes the NN of
each endmember. In detail, the binary unmixing is performed by computing the distance of a
spectrum 5(x,y) to all endmembers of the current set V.

distyn(x,y) = gni{/l d(5(x,y), V) (5.1)
Vi
mapNN<x7y) = argmin d<§(x7y)7‘_;l) (52)
VeV

The endmember with the shortest distance, i.e. the nearest neighbor, is then assigned to the
currently observed pixel. In addition, the associated distance is stored as well. For the dis-
tance measurement d the user can choose between the distance metrics that are listed in the
Appendix B.1. This nearest neighbor selection is done for all pixels of the multispectral data
and achieves a labeling based on the set of endmembers.

The top row of the complementary visualization shows the reconstruction based on false-
color representations, while the bottom row shows the distance between the raw data and the
respective reconstruction. Details of both visualizations are discussed in the following.

Reconstruction views Note that each endmember has an assigned color which is used for
the graphical representation. This means on the one hand that in the LSU visualiza-
tion the colors of the endmembers are mixed for each pixel according to the calculated
coefficients. In the NN-based visualization, the color of the closest endmember is as-
signed to a pixel when the stored distance distyn(x,y) is below a user defined sensitivity
threshold. When the distance is too large, black is assigned. By adjusting this threshold,
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Figure 5.1: Overview of the complementary visualization which consists of four views: The
results of the LSU and of the binary unmixing, each with the associated distance-based quality
view beneath. In this example the Lemons dataset was utilized (cf. App. A). Together, the three
marked areas reveal that the right lemon is not represented that well by the endmembers as
the left lemon. This is not that clearly reflected in the LSU-based visualization alone.

the user easily can explore the spatial distribution of the endmembers depending on the
distance. Thus, the resulting visual representation is quite comparable to cluster-based
segmentation results.

One general problem is the initial choice of colors for the endmembers, directly af-
ter the endmember extraction. Here, the aim is to achieve a color setting, that already
resembles spectral similarities, thus supporting the user to identify possibly redundant
endmembers. This is achieved by computing a PCA-based false-color image of the
observed multispectral image, as explained in the fundamentals in Sec. 1.2.3. Since
the spatial resolutions of the PCA-based false-color image and the multispectral image
are the same, the initial colors assigned to the endmembers are given by selecting the
false-color at the corresponding pixel of the endmember position (x,y). Furthermore,
the colors of the endmembers can be freely exchanged later on.
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Distance-based quality views The associated grayscale distance images show the current
distances, i.e. errors, between the reconstructed data and the raw spectrum. In case
of the binary unmixing the distances are already given by distyny. The distances of
the LSU are computed between the reconstructed spectra and the raw spectra, i.e.
d(s(x,y), X oj(x,y)V;). Like in the binary unmixing, the applied metric can be cho-
sen from the methods presented in Appendix B.1. These error images guide the user
directly to insufficiencies in the current set of endmembers, e.g. missing characteristic
spectra.

The strength of this kind of visualization is, that the four single views are supplementary to
each other. Thus, compared to a single error image, it gives a more widespread impression
of the completeness of the endmember set, e.g. spatial distribution of endmembers. Please
consider again the example of figure 5.1. Beside the more obvious shortcomings, like the
representation of the background or the color-checker, also minor deviations are noticeable
when taking together all views. For instance, the three marked regions reveal that the right
lemon is not that well represented compared to the left one. This consequently reveals that
both lemons are at least slightly different. Such an issue can be noticed very well by a user,
which now can verify or modify the set of constituents by utilization of exploration tools, as
discussed in the upcoming section.

5.1.2 Exploration Methods

It is very essential for a visual analysis approach that meaningful visualizations, which reveal
information, are supplemented by exploration possibilities. In such a way, that a user is able
to directly apply the received information to e.g. further refine the visualization, change the
parameterization of algorithms, or to manually modify results. Therefore, this section presents
exploration methods which are able to supplement the previous presented complementary
visualization in order to ensure that the determined set of endmembers can be meaningfully
evaluated and modified, i.e. removal and insertion of endmembers. Thus, to improve the
reconstruction quality, if necessary. This aim is achieved by three exploration widgets:

1. Residual error segmentation for the identification of pixels with a similar error behav-
ior.

2. Spectrum exploration widget for the estimation of the capability of a selected spec-
trum s(x,y) to serve as additional endmember.

3. Endmember set exploration widget for the evaluation of the influence of each end-
member.

As more detailed explained in the following, these views ensure that analysts are able in order
to comprehensively utilize their expert knowledge to evaluate a set of endmembers and to
refine it, if necessary.
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Figure 5.2: These illustrations are based on the Flowers dataset (cf. App. A). The LSU visual-
ization and the associated residual error image is shown on the left. Next to, from left to right,
the flowers, the background and the leafs are segmented (red) by defining different ranges
of interest with respect to the residual error. The chosen distance metric was the spectral
correlation angle (see Appendix B.1)

Residual error segmentation As pixels with similar residual error very frequently are be-
longing to the same object or material, the distance-based quality views can be used for ex-
plicit object and/or material segmentation. Therefore, the user can define a range of interest
with respect to the residual error. A color overlay is applied to the pixels with distances that
are within the range of interest. Based on this color overlay, pixels with similar error behavior
are getting highlighted to ensure a more focused exploration of a user. Fig. 5.2 illustrates
this simple, yet very efficient segmentation approach. However, this approach strictly ignores
the fact that the resulting residual scalar values of distance measures have the potential to be
ambiguous. Thus, a specified error range can result in the segmentation of objects of dis-
tinct materials. Moreover, their is the chance that no specific error range exists that results in
a clear disjoint grouping of objects. When considering Fig. 5.2, it for instance can be seen
that partially different objects are segmented in one error range, e.g. leafs and parts of the
background (right). Anyway, the idea of grouping pixels with similar error behavior, has re-
vealed high potential to further guide a user in the exploration process. Therefore, based on
the discovered observations, a more advanced and expressive spectral error visualization is
presented in Sec. 5.2 to tackle these issues, thus to further minimize the user interaction by a
more improved guidance.

Spectrum exploration widget At the beginning of the exploration, the set of endmembers
V consists of the result of the endmember extraction analysis (see Sec. 4.2). As described
before, the aim of the complementary visualization is the proper reflection of the reconstruc-
tion quality and to guide a user to spectra that have potential to improve the reconstruction, if
necessary. A spectrum that has high potential of improving the result typically has a high error
value in at least one of the distance images, or has no assigned endmember in the NN-based
visualization. Thus, these indications are used to purposefully draw the attention to such in-
teresting pixels. A mouse click on an interesting pixel in one of the four views launches an
exploration widget (see Fig. 5.3) to evaluate the selected spectrum 5(x,y), e.g. to reveal its
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Figure 5.3: The spectrum exploration widget for the evaluation of a selected pixel, i.e. spec-
trum. Additional distance images are depicted for different distance thresholds to exemplarily
show the spatial impact evaluation. By modification of the threshold, the similarity of the
current spectrum compared to all other pixels can be explored. Furthermore, the spectral plot
allows to interpret the spectral characteristics, also compared to the endmember set.

potential to decrease the residual error. The widget mainly contains a spectral plotter in or-
der to show the spectral distribution of §(x,y) and a corresponding distance image that shows
the distances between 5(x,y) and all other pixels, i.e. spectra. The spatial impact of the se-
lected spectrum 5(x,y) in the grayscaled distance image can be further explored by adjusting
a similarity threshold value to explore how much 5(x,y) is related to the other pixels. By this
predictive evaluation of the influence, unnecessary inverse unmixing calculation are prevented
which can be very time-consuming (as discussed in Sec. 4.4).

Furthermore, the plot of the current spectrum allows experts to interpret the spectral char-
acteristics and to directly compare them to the current set of endmembers V. Here, the visual-
ization of all endmember provides the opportunity to examine the spectral distribution of V at
the same time in comparison to the currently selected spectrum. Thus, an analyst can see how
different the distributions are, e.g. to see if they partly converge or diverge. Focusing on the
current selection, an analyst easily can see which endmember resembles the current spectrum
best. Or the other way around, it can be seen how distinct the current spectrum is compared
to V. Thus, to see how good it can serve as a new endmember. Finally, when 5(x,y) fits the
users requirements, it can directly be added as a new endmember to V.
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Figure 5.4: The screenshot shows the widget for the exploration of the endmembers. The end-
members are listed in two lists, distinguishing active and inactive endmembers. By selecting
one endmember, the analyst can mainly examine the corresponding coefficients map and the
spectrum. Again, the spectrum also can be compared to the spectral distribution of all active
endmembers (cf. Fig. 5.3).

Endmember set exploration widget So far, the evaluation of the current set of endmembers
V was out of the focus. Thus, in order to more carefully reveal the influence of an endmember
in the LSU result, a more detailed evaluation of V is achieved by another widget that contains
a list of all endmember, active and inactive (see Fig. 5.4). Here, inactive declares endmember
that were active in previous LSU runs. These are kept to easily reactivate them in case of a
misapprehension of a user.

By choosing one of the endmembers, the properties of the selected element are presented.
Here, the properties view mainly contains the coefficients map and a spectral plot. The co-
efficient map gives a very good overview of the influence of the selected endmember at each
image location. Thus, inappropriate endmembers , i.e. endmembers whose coefficients are
very low or concentrated on one pixel, e.g. in case of an outlier, can be detected. In conjunc-
tion with the spectral distribution in the plot, users can get a quick and broad overview. As
in the spectrum exploration widget, the single spectrum again can be compared to the spec-
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tral distribution of all current endmembers at once, by plotting them combined in the same
manner as in the spectrum exploration widget. Doing so, the user can check if and how dis-
tinct the endmembers are and identify wavelength ranges which are most interesting for the
application.

Furthermore, the properties view contains text fields for both, the name of the endmember
and user notes. Thus, the analysts can exchange the name of the element and/or add additional
notes to record observations and hypotheses. This is necessary in order to keep track of
increasing or bigger endmember sets. Finally, it is possible to exchange the color or directly
disable endmembers for the upcoming update cycle.

5.1.3 Usage Examples

The presented visualization approach is capable of evaluating the completeness of endmember
sets and if needed to refine the set. The interactive analysis approach is applied to three
datasets from three different applications in order to show that the technique can be applied
to a broad variety of data exploration problems. Here, in each case only ANC is enforced in
the inverse operation of the unmixing to avoid issues that are imposed by the variability in an
endmember class. The aspect of endmember variability in LSU is discussed in more details
in Sec. 5.2 later on.

In the first example, the multispectral dataset Lemons with comparably low spectral di-
mensionality is reconsidered. The second scenario shows a result for the very high spectral
dimensional confocal Raman dataset Diamond. Next, the Washington DC Mall dataset from
the field of remote sensing is analyzed. Details about these datasets again can be found in the
Appendix A. Finally, the usage examples closing with a discussion of technical and general
limitations of this approach.

Multispectral Imaging

The Lemons dataset mainly contains a real and an artificial lemon placed at the right and
left, respectively (see Appendix A). The utilization of this dataset in the usage examples of
the Semi-Automatic Endmember Extraction (see Sec. 4.2.3) already has shown, that here the
PPI algorithm performs better than the OSP, but, that both algorithms are challenged by the
distinction of the two lemons. Therefore, it is now the goal to more carefully identify the
characteristic spectra for the two lemons. In order to stress the visualization approach, the
more inaccurate result of PPI, consisting of eight endmembers is considered as the initial
result (cf. Fig. 4.7).

In the result of the automatic endmembers extraction, two major deficiencies can clearly
be observed, i.e. the background component has not been identified, as shown in the error
image, and the characteristic spectra of the lemons, especially of the real lemon, are not well
captured, as can be seen in the NN-visualization and in the error images. The background has
a high absorption almost over the whole wavelength range, which leads to low intensity val-
ues. Consequently, the background is hard to identify for endmember extraction algorithms,
which search for extremal spectral values. As seen in Sec. 4.2.3, PPI was able to find the
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Initial PPI-Result Added Right Lemon and Background Added Left Lemon and Shadow Exchanged Colors of Lemons, Shadow
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Figure 5.5: The images show the different intermediate exploration results of the Lemons
dataset as follows: The initialization result with eight endmembers and initial colors from the
false-color image (left). By examining the initial set, it can be seen that the background and
the lemons are not well represented by the initial endmembers. Therefore missing endmem-
ber were manually added to the set: First, spectra for both, the left lemon and the background
(second image from left). Second, a better constituent for the left lemon and also on repre-
sentative for the shadows were added (third image from left). Finally, the initial colors were
manually exchanged to achieve an easier distinction of both lemons. The dark shades (low
values) in the error images indicate the modeling success.

background with an other parameterization. But, when reconsidering this result, also PPI was
not able to determine a good representative for the shadowed areas, which are also consisting
of low intensity values. Anyway, applying the interactive visual analysis approach to the
initial result, both types of defects can easily be removed by adding the appropriate spectra
to the set of endmember. The refinement success can be followed in Fig. 5.5. First, a repre-
sentative spectrum for the real lemon and also for the background were added (second image
from left). A more detailed analysis of the left lemon furthermore reveals, that the automat-
ically identified endmember mainly represents the specular highlights of the lemon. Thus,
adding another, non-highlight spectrum to the set of endmembers, yields the intermediate re-
sult (third image from left). Here, in addition, also one representative for the shadowed areas
were added. Finally, the colors of the new endmembers were exchanged to mainly allow an
easier differentiation of both lemons. Since the focus of this analysis was achieving a better
representation of the lemons, the refinement of the color-checker was not addressed. How-
ever, when requested, the refinement would continue in the same manner as presented. As can
be seen by this example, an analyst is also able to focus on specific analysis task to reveal the
desired information.

Confocal Raman Microscopy

The Diamond dataset mainly consists of a diamond and some imperfections, i.e. some isolated
dust particles, causing high amplitude peaks, and an area with high fluorescence illumination
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PCA-based false-color image Outlier mask

Figure 5.6: The Diamond dataset is dominated by a small region with high fluorescence in-
tensity (close-up), which is shown by the PCA-based false-color image (left). The right image
depicts the outlier mask, beside the high fluorescence, potentially attributed to noise and small
imperfections of the probe.
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Figure 5.7: Results of the proposed method for the Diamond dataset. The left and middle
images show the representation of the data based on eight endmembers. In the left, red is
the diamond (two endmembers), magenta are areas of high fluorescence intensity in the mid
of the wavelength range (three endmembers), blue are mainly the regions which contain lit-
tle to average fluorescence intensity (two endmembers), and green represents regions where
the spectrum of the excitation laser is very prominent (one endmember). The middle image
shows exactly the same set of endmembers, but the colors of the two endmembers which are
corresponding to the excitation laser and little fluorescence intensity are changed to black in
order to emphasize the regions with the laser and middle fluorescence intensity as well as the
diamond endmembers. The right image depicts the same set of endmembers, but without the
endmember of the excitation laser.
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Figure 5.8: The first three principal components of a PCA for the Washington DC Mall dataset
(see Appendix A) are shown in the left column. Furthermore, the right column shows three
composed false-color images that are permutations of the three principal components.

in the lower left corner (possible resulting from a human finger print). Both artifacts create
considerable challenges to the spectral analysis since they dominate the dataset.

The dominant influence of these fluorescence effects are getting clearly visible in the PCA-
based false-color image, please see Fig. 5.6 (left). Consequently, the endmember extraction
algorithms mainly find endmembers in the set of outliers, as also seen for the Graphene dataset
in Sec. 4.3.3. Thus, applying the preprocessing improves the result of the automatic endmem-
ber extraction. Pixels that are skipped for the endmember extraction can be seen in the outlier
mask (see Fig. 5.6, right). Based on the initial set of endmembers, computed with the OSP
method (limited to 10 endmembers), eight prominent spectra were selected manually (see
Fig. 5.7). Different color codings are applied in order to emphasize several meaningful end-
members, e.g. the diamond or excitation laser. Furthermore, the error images of the linear
spectral unmixing, in case of eight endmembers, are only containing negligible values, indi-
cating that the current set of endmembers is a good representation of the whole dataset.

Remote Sensing

Remote sensing datasets usually have a high spectral dimensionality. A main task of this
application field is the identification of geological and urban structures at the sensed region
of the earth. In this section, the results for the Washington DC Mall dataset are shown in
comparison to the work of Landgrebe [Lan02]. In his work Landgrebe shows an example
analysis of the test dataset, based on the MultiSpec Software [BLO2]. This example analysis
results in a thematic map that shows seven classes, which are Roofs, Road, Gras, Trees, Trail,
Water and Shadow. The goal is to achieve comparable results with the presented interactive
visual analysis system.
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Since utilizing PCA is very common in the application of remote sensing in order to get a
first impression of the data, also a comparison to PCA-based false-color images is provided in
Fig. 5.8. The left column shows the first three principal components of the test data, whereas
the right column shows three composed false-color RGB-images that are samples of three
permutations of the three principal components. Especially the first two principal components
give a good overview of the structures of the data. These structures are further emphasized
by the composed false-color images. However, there is no explicit relation between single
principal components and specific structures, like water, grass or roofs.

In contrast to the CRM example before, non of the automatic endmember extraction al-
gorithms was able to deliver an initial set of endmembers that includes all relevant structures.
For example, OSP was applied four times, delimited to 10, 20, 30 and 50 endmembers, and
in all initializations no proper representation for the classes shadow, road, tree and water was
present. One reason is, that that some classes exhibit quite similar spectral characteristics, fur-
thermore, classes like water have a high absorption (similar to the background in the Lemons
dataset). Both effects make it extremely hard, if not impossible, to automatically select all
relevant spectra as endmember.

Based on the initial set of automatically extracted endmembers, as given in Fig. 5.9 (ini-
tialization result), the complementary visualization directly draws the user’s attention towards
the missing characteristic spectra. Refining the initial set of endmembers by applying the pre-
sented approach, yields the result as presented in Fig. 5.9 (manual refined result). Note, the
distinguished endmembers (classes) are colored in a similar fashion as in [Lan02] to make the
results comparable.

Fig. 5.10 presents a close-up around the "Lincoln Memorial". Both, linear spectral unmix-
ing and the nearest neighbor images, show detailed structures. However, it can be discovered,
that the unmixing of the road around the "Lincoln Memorial" and the roof of the Memo-
rial exhibits a too strong influence of the shadow-endmember, i.e. it gets comparably high
coefficients in the convex combination of the corresponding pixels. However, also the used
reference image has shortcomings. For instance, some pixels around several trees are classi-
fied as water. This is also the case for some of the pixels in the presented LSU-result. These
shortcomings are due to the similarity of these classes, e.g. shadows, roads, and water are all
classes with high absorbance. Thus, this issue goes back to the general problem of similarity
measure in high-dimensional spaces.

Discussion

As shown by the usage examples above, the visual analysis approach allows the user to assess
and to progressively refine an endmember set. Here, the complementary visualization and the
proposed exploration means allow an analyst to incorporate his expert knowledge to achieve
the best possible application specific result. However, the approach is subject to some general
technical limitations:

e The number of endmembers in general is limited by the number of spectral bands.



S5.1. COMPLEMENTARY VISUALIZATION 929

[
=]
0
()
—_
c

.0

el
©

.N

©

B

=

i
>
0
()
—

gel
()]
=

=
()

—

©
=]

c
@©

=

© Grass @ Water ® Trail @ Shadow
L ®Trees © Roofs ® Road )

Figure 5.9: The result of the presented approach for the Washington DC Mall data (see Ap-
pendix A). The columns show the result of the linear spectral unmixing and nearest neighbor
visualization for the initial result, based on OSP limited to 10 endmembers, (top) and the
manual refined result (bottom). Both results are shown with corresponding grayscaled error
images respectively beneath.

Linear Spectral Unmixing Nearest Neighbor Reference (Landgrebe, 2002)

Figure 5.10: This figure shows a close-up of the final result around the area of the "Lincoln
Memorial". Compared to the nearest neighbor visualization (middle), smooth and detailed
structures are visible in the linear spectral unmixing (/eft). Furthermore, it is obvious that the
corresponding endmember of shadow has too high influence in the convex combinations for
the road and the roof of the Memorial. For comparison, also a close-up of the corresponding
area of the result from [Lan02] is shown in the right.
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e The stability of the LSU-coefficients naturally depends on the independence and com-
pleteness of the set of endmembers; see Fig. 5.10.

e endmembers with comparable spectral characteristics or with comparably low spectral
intensities are hard to be identified in automatic processes.

Beside these general technical limitations, also some limitations of the presented approach
can be identified which prevent a more sophisticatedly incorporation of an analyst in the ex-
ploration process.

Distance images The usage example presented with the Lemons dataset shows that different
residual errors can lead to indistinguishable ambiguous scalar values in the distance im-
ages, as also discussed in Sec. 5.1.2. Please consider the error values of the two distinct
lemons in the almost left image of Fig 5.5, which are indistinguishable at all. Thus,
these distance images alone do not allow the distinction of both lemons. Although the
NN-based visualization is capable to reveal the difference of both lemons, the short-
coming of the grayscaled distance images offers good potential for improvements.

Reconstruction quality The proposed approach mainly relies on low deviation values in the
distance images. However, so far their is no opportunity to evaluate the reconstructed
spectra more carefully in comparison with the raw spectra. Thus, does not allow an an-
alyst to judge deviations comprehensively, e.g. to see if a deviation is due to a constant
magnitude or a narrow peak. For instance, a narrow peak in total can lead to a compa-
rable low error value. But, since a peak can be characteristically for a specific material,
the deviation should be proved by an expert to ensure a reliable endmember set. This
would not be the case, when only looking for high deviation values.

Sequentially presentation of information The evaluation of a set of constituents can be
done by the proposed endmember set exploration widget (cf. Sec. 5.1.2). The ratio-
nale of this widget is the selection of a single element, i.e. constituent, to examine
its properties. Although it is possible to compare the currently selected spectral char-
acteristics to the spectral distribution of the complete set of constituents, the instantly
comparison of other properties, e.g. coefficients maps, takes place in a sequential order.
Thus, leads to an non intuitive exploration process, e.2. when revealing in which area
which endmember has influence.

5.1.4 Summary

This section has presented a visual analysis approach for interactive exploration, verification
and optimization of LSU-results, which defines the second part of the process for generic
identification of constituents spectra, see Sec. 4.2. Based on a complementary visualization,
containing views for the LSU, the NN visualization and respective distance images, an analyst
is enabled to verify the completeness of an endmember set. Several exploration tools allow an
analyst to incorporate his expert knowledge to further assess or refine the set of constituents,
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if necessary. The benefits of the interactive exploration approach has been demonstrated for
various application domains. Finally, also limitations of the here discussed concept have been
discussed, which are subject of the upcoming section.

5.2 Expressive Spectral Error Visualization

The previous section has presented an visualization approach to assess the quality of an end-
member set. The rationale of the visualization mainly relies on low deviation values in the
supplementing distance images. However, as the discussion of this approach as revealed, this
concept has two major shortcomings that have potential for improvements, which are mainly
the possible ambiguity of distance values and a more detailed verification of the reconstruction
of a spectrum.

Therefore, this section introduces expressive spectral error visualization concepts in order
to enhance and supplement typical distance measures. The presented expressive error visual-
izations are used as key components, in terms of more purposefully user guidance, in a visual
analysis approach in order to supplement the previous presented complementary visualization.
Thus, to address the revealed issues for improvements.

The remainder of this section is organized as follows. The problem statement is discussed
in more details in section 5.2.1. Then the conceptional overview of the approach is presented
in Sec. 5.2.2, while the details of the expressive spectral error visualizations are subject in
the upcoming two sections 5.2.3 and 5.2.4. The section 5.2.5 shows the general means and
exploration possibilities of the supplemented visual analysis approach which embeds the ex-
pressive visualizations. The results are presented by usage examples for multispectral imaging
and CRM in Sec. 5.2.6.

5.2.1 Problem Statement

SMA has been a very active research field in recent years [JMP12]. Here, the quality of
the final result, i.e. the residual error between the raw and the reconstructed data, strongly
depends on the selected endmembers and automatic endmember extraction algorithms can
fail to determine a complete set of endmembers as seen before. Additionally, one of the
most profound source of error in LSU lies in the lack of the ability to account for sufficient
temporal and spatial spectral variability [SATC11]. An example of this variability is shown in
Fig. 5.16, where a multiplicative scaling effect is clearly evident in the spectra, but the shape of
the spectra itself is nearly invariant [Kes03]. Thus, manual intervention can be mandatory in
many applications in order to improve the unmixing, as already shown in sections 4.2 and 5.1,
which have introduced a visual analysis approach for a generic and more precise identification
of constituents. But, manual intervention leads to the requirement of efficient user guidance
and visual exploration methods, for example to identify missing endmember candidates, i.e.
missing materials, that have high potential to improve the quality of the unmixing.

Spectral error evaluation can be done by comparing the results to accurate ground truth
references, when available. But typically the accuracy of LSU is mainly quantified based on
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Distance Image (RMSE) : Color Signatures (a) Spectral Error Classific. (c)

Colored Distance Metrics (b)

Figure 5.11: A typical distance image that expresses the quality of a LSU-result and which
can be used as basis for a refinement of an endmember set is shown (left) and compared to
the contributions of the here presented approaches (right). Distinct residual errors are eas-
ier distinguishable with the color signatures, which can be combined with common distance
images and then are called colored distance metrics. Additionally, a spectral error classifi-
cation discriminates pixels in terms of missing endmembers (red), variability error (blue) and
neglectable deviations (green).

the fit between the reconstructed data Sy s/, obtained by using Eq. (1.1), and the raw data Sgaw
[SATC11]. Here, several metrics (cf. Appendix B.1) can be applied in order to evaluate the
quality by pairwise computation of the distances between Sgaw (x,y) and 575y (x,y) for each
pixel, resulting in a distance image. Keshava and Mustard [KMO2] state, that it is still unclear
what combination of physical and mathematical modeling can optimally extract information
from hyperspectral signals and as consequence they see no single distance metric that is use-
ful in all circumstances. Thus, different metrics can lead to different quality impressions.
Moreover, the common distance metrics lead to a single scalar error value per pixel. This
mapping results in severe information loss, since different spectral residual errors may lead to
the same, i.e. ambiguous, scalar error. Manual inspection of individual spectral residual er-
rors, on the other hand, is extremely time-consuming and does not provide global information
about the distribution of the spectral error. Only a few approaches exist in the literature that
are aiming the evaluation of spectral unmixing quality in a comprehensive way. Beside the
in Sec. 4.2 presented approach, the most recent approach is HyperMix [JMP12], as discussed
in Sec. 2.3. However, both approaches map the spectral residual errors to single scalar error
values, incorporating a significant loss of information, and do not allow detailed local (spec-
tral) explorations. In contrast, this section presents a visual analysis approach which enhances
LSU-results by expressive spectral error visualizations in order to efficiently guide a user to
specific spectra for local exploration. These visualizations consist of a qualitative coloring
scheme, called color signatures, for easier differentiation of distinct errors by visually group-
ing in a global sense. Colored distance metrics, the combination of color signatures and
typical distance images, are used to reduce the ambiguity of scalar error values, see Fig. 5.11
(a, b). The colored distance metrics also can be interactively modified by the design of trans-
fer functions to freely highlight or determine error regions of interest. Beside the coloring,
also a spectral error classification is presented to mainly provide the distinction between
residual errors caused by endmember variability or by missing endmembers, see Fig. 5.11 (c).
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Figure 5.12: Conceptual overview of the proposed extension of the previous visual analysis
approach (dark gray in the left). The analysis starts from the current LSU-result. In the guided
exploration process the global expressive spectral error visualizations sophisticatedly guide
an analyst to pixels of interest for local verification and exploration of the reconstruction
quality of a spectrum. All visualizations are linked to allow effective knowledge extraction.
If necessary, the set of endmembers can be instantly refined in the same manner as presented
before.

5.2.2 Conceptional Overview

A conceptual overview of this approach is depicted in Fig. 5.12. As can be seen, this approach
supplements the pipeline of the generic determination of constituent spectra (cf. Sec. 4.2).
Compared to the before presented approach, here, it is vital to examine and understand the
influence of each endmember for both, the complete dataset (global) and also single pixels
(local), e.g. to compare Sgaw (x,y) and Szsy (x,y). Thus, to address and compensate the main
limitations of the complementary visualization (cf. Sec. 5.1.3). In addition, beside the verifi-
cation of the quality, this approach also allows the more comprehensive interactive exploration
of the LSU-result in order to facilitate the knowledge gathering process of previously unknown
datasets, e.g. to explore the distribution or the influence of endmembers in mixed spectra.

Starting from the current LSU-result, endmembers and corresponding coefficients maps,
the exploration process is driven by local and global visualizations. While the applied local
visualizations allow the detailed examination of the reconstruction quality and the composi-
tion of a spectrum, the global views provide visual guidance by expressive spectral error
visualizations in order to sophisticatedly guide an analyst to pixels of interest. All visualiza-
tions are linked to allow effective knowledge extraction. If necessary, the set of endmembers
can be refined in the same manner as presented before.

As a simple example, consider a typical LSU-result: Usually the unmixing quality is
proved by applying similarity measures, which can lead to different quality impressions and
the results can be ambiguous since different spectral errors can lead to same error values
(see Sec. 2.3). Moreover, errors based on endmember variability can lead to conspicuous
distance values. In a typical distance image, these distance values can not be distinguished
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from distance values that are originate from missing endmembers. Therefore, endmember
variability can compromise the detection of endmembers which are missing completely. In
an interactive approach, this at the end would mean, in a worst-case, that an analyst has to
explore all pixels in order to validate the unmixing result, which is undesired. In order to
encounter these challenges and to reduce the interaction effort, mainly two global expressive
spectral error visualizations are presented.

Colored Distance Metrics enhance the typical distance images to achieve a visual grouping
of pixels with a similar error behavior. Thus, it reduces the ambiguity of distance values
by coloring.

Spectral Error Classification is done in order to classify pixels in three terms: neglectable
spectral errors and spectral errors that are caused by endmember variability or by miss-
ing endmembers.

Based on these global impressions, the analysts sophisticatedly can identify pixels of interest
for comprehensive local validation. The details of both global visualizations are presented in
the following two sections.

5.2.3 Colored Distance Metrics

Focusing on typical distance images, the differentiation of error values is improved by a pro-
posed qualitative coloring of residual spectral errors, so-called color signatures, to visually
group comparable residues. Thus, it reduce ambiguity scalar values by color. In Fig. 5.13, a
typical challenge of grayscaled distance images can be seen. Due to ambiguous distance val-
ues, distinct residual errors are indistinguishable. In contrast, the proposed color signatures
allow a qualitative distinction of the residual errors by their colors. In order to best possibly
express the distinct residual errors by a color, the variance of the residuals is used to achieve
optimal color distribution and saturation. An enhanced distance image, where residual errors
with same error behavior are visually grouped, is achieved by weighting a color signature
with a common distance image.

In the following the calculation of the color signatures is discussed. Based on both,
Sgaw (x,y) and 515y (x,y), the residual error 7(x,y) and the absolute residuum 74(x, )

?(x,y) = ERAW(xay) _§LSU(x7y) and ?abs(xﬂyal) = |?(x7yal)| for all 4 (5.3)

are calculated for each pixel. Then the 7,4 (x,y) is considered as a spectrum and transformed
into a RGB-color. Here, one of the goals is an intuitive interaction concept. Therefore, a
spectrum transformation is presented, which is intuitive and allows a user to assume a residual
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Figure 5.13: Based on the artificial dataset Five endmembers (cf. Appendix A), the benefit
of the proposed colored distance metrics is exemplary depicted for two metrics. In this
example, only the centered endmember was selected. Thus, the four missing endmembers lead
to distinct residual errors. While the residuals are indistinguishable in the typical grayscale
images, they are easily distinguishable in the color signatures enhanced distance images
(combined).

characteristic from its color. Thus, the RGB-values are computed

1 &

B=— Z rabs(x,y,).,),kB: 15 ZBZMB (54)
UB ) Zhp
1 &

G=—~— Z ?abs(x,y,l),kG:lB-i-l, lc = kg +uc (5.5)
UG ) 2
1 &

R=— Z ?abs(xa%a’)’kR:lG‘Fl, lR:kR+MR (56)
UR ) Zkx

by splitting the whole residual spectrum 7,(x,y) in three intervals to correspond with the
RGB color model. The deviations of each interval are summed up and averaged in order to
achieve the RGB-values. In order to achieve the maximum brightness, the color values R, G
and B are normalized by dividing through the maximal component value

_ R -
R=——— G,Banalog. 5.7
max(R,G,B) 0 08 7

In order to achieve the best possible color distribution and saturation, the size of each interval
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(ur, ug and up) is selected in the way that the standard deviations o) of the spectral bands

1 X Y 2 1 X Y
o) = X—Z Z Fabs(6.,4) = 12)", where iy = == 3} Fans(x.3,) - (5:8)
x=1y=1 x=1y=1
are consistent in all three intervals
12 ug uptug+1 up+ugt+ur+1l=n
3 Z AR ) o R ) o). (5.9)
A=1 A=1 A=up+1 A=up+ug+1

Here, 75(x,y,A) is the residual value of band A at pixel (x,y) and X, Y are the spatial resolu-
tion.

Based on the color signatures, a user can intuitively estimate from the colors in which
of the three intervals the error occurs, e.g. red color means last third or magenta means error
in the first and third range. Errors in nearly the complete range will lead to white, while a
black color will mean, that the reconstruction error is low in all ranges. The color signatures
are computed for all pixels, leading to an color signature image that element-wise can be
weighted by arbitrary distance images, resulting in a colored distance metric. Figure 5.13
shows a simple example, based on a synthetic dataset. Since different metrics can lead to
different quality impressions of results, this approach also allows an analyst to simultaneously
overview the distance images of all implemented metrics as well as the color signature image
at the same time allowing an intuitive combination, please see example in Fig. 5.14.

Modification of Color Signatures by Transfer Functions So far the result of the color
signatures depends on the variance-based sizes of the three intervals R, G and B. Sometimes
itis desired to freely highlight or determine residual error characteristics of interest. Moreover,
since light emission often is not uniform and sensors provide smaller intensity values in the
infrared range, an adjusted weighting is useful in order to manually compensate such issues.

Based on residual statistics, that illustrate the error trend, a global view is proposed that
allows the interactive design of transfer functions (TF) to fine-tune the initial intervals of R, G
and B, see Fig. 5.15. Moreover, color signatures also can be completely changed, since the
number of TFs is not limited to three. The error trend view shows the current residuum 7(x, y)
as well as several global average residual errors. In detail, the average residual error 7, and
also the average positive aJvFg as well as average negative 7,,,, residual error are included. The
averages are computed

~ 1 X Y 1 X Y
Fove = ¥ Z’ Z x,y) and 7,5, = T Z Z (x,), 4y analog (5.10)

with respect to all pixels, where

T(x,y,A) = max {F(x,y,A),0} and 7 " (x,y,4) = min {F(x,y,A),0}. (5.11)
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Figure 5.14: The simultaneously overview of distance images simplifies the process of dis-
tance metric selection. By this, direct and easy comparison of the different metrics is allowed.
Beside the usual grayscaled images, also the possibility of jet-coloring is provided. More-
over, the metrics can be combined with the results of the color signatures, achieving a colored
distance metric, to emphasize comparable distances. A close-up of the current selection (com-
bination) is always shown on the right.
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Figure 5.15: The error trend view, where the white line is the average residuum, the green and
red line represents the positive and negative averages of the residues. The dashed white line
represents the local residuum of the current pixel. Here, the TFs of the color signatures of
Fig. 5.13 are modified.
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Here, Pt and P ~ are the number of positive and negative error values, respectively. Fur-
thermore, for each band, also the min- and maximum error value is depicted to show the
maximum variance at the same time. The TFs can be defined via trapezoids and are related to
the bands. Here, the width and the height of a Trapezoid defines the wavelength interval and
the weighting factor, respectively. Based on the user-defined TFs tf;(4),...,tf,(4) and their
corresponding colors RGB(tf;), the new RGB-values are composed by

h n; .
R(x,y) = Z (/ ?(x,y,l) '[f,()t) d)t) % , with AA; = m; — n; (5.12)

i—1 =m; ¥abs
G<x7y) ) B(X,y) analog7

where & is the number of TFs, m; and n; define the corresponding interval [m;,n;] of atfj(1)
and ?a'gfx is the maximal absolute error value of a all residual values.

5.2.4 Spectral Error Classification

While the aim of the colored distance metrics is the qualitative grouping of comparable
residual errors, the aim of the spectral error classification is to mainly distinguish errors
introduced by endmember variability form errors due to missing endmembers, to more pur-
posefully guide an analyst to missing endmembers.

Beside missing endmembers, as mentioned in Sec. 5.2.1, the endmember variability also
is one of the most profound sources of error in the estimation of abundances [SZPA12]. The
reason for this is, that typically FCLSU is applied to achieve a physically reasonable result.
But, for instance, when in a pixel low coefficient values ¢j(x,y) < 1 are necessary because
of the variability and the sum of all coefficients is not the unity, then the enforced ASC intro-
duces errors in the abundance estimation. An example of this issue is illustrated in Fig. 5.16
(right), where an optimal Y aj(x,y) is 0.72. But, because of the ASC in FCLSU the indi-
vidual a(x,y) are scaled to sum up to one, which leads to an error that is introduced by the
variability. As can be seen, when only ANC is enforced the reconstructed spectrum 575y (x,y)
is comparable to sgaw (x,y). This circumstance serves as idea to identify errors based on
endmember variability. In detail, the spectral error classification is based on two results
of LSU, i.e. NCLSU and FCLSU. Since the fully constrained coefficients can be obtained
directly from the NCLSU-coefficients by scaling the coefficients to fulfill the ASC, the com-
putational effort is comparable to the typical FCLSU calculation. Based on both results, two
corresponding RMSE-values are computed for each pixel

d"° (x,y) = RMSE (Sgaw (x,y), SncLsu (x,)) (5.13)
d"C(x,y) = RMSE (Sgaw (x,y), Srcrsy (x,9)). (5.14)
The two calculated deviation values are used to classify the type of deviation:
Neglectable deviation if 0 < dVC(x,y), d"C(x,y) <v
sec(x,y) = { Variability deviation else if 0 < dC(x,y) <v (5.15)
Missing endmember  else,
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Figure 5.16: The left figure shows an example for the variability in an endmember class. The
variability based abundance estimation error in FCLSU is illustrated on the right, in compari-
son to NCLSU.
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Figure 5.17: Two examples of the proposed spectral error classification. First, based on the
LSU-result already presented in Fig. 5.13 (left). Because of low variability errors in the first
example, also a second scenario is depicted for more obvious illustration of the weighting in
SEC,, (right).

where v is a user defined quality threshold. When both deviation values are smaller than

v, a pixel is classified as neglectable deviation, while in all other cases dV¢(x,y) is used to
distinguish the remaining types of deviations. Applying sec(x,y) to all pixels generates a
classification image SEC, see Fig. 5.17 for an example. Moreover, SEC can be weighted
resulting in SEC,,,

dN C

sec(x,y) — s (El)lcfygixels)) if Neglectable deviation (5.16)

fxy)

secy(x,y) =
S€C(X,y)m else

q

with f(x,y) = abs (1 — Ocj-vc(x,y),> (5.17)

J=1

in order to easier discover pixels that have major deviations. Here, ¢ is again the number of
endmembers and for a pixel that is classified as missing endmember, the normalized dV€ (x,y)
is used as weighting factor for sec(x,y). In all other cases, the endmember variability is ex-
pressed in sec,,(x,y) by the difference between the sum of the coefficients of the endmembers
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of the NCLSU Ocj.vc(x, y) and the FCLSU, which is one. Consider again Fig. 5.17 for an
example of this weighting scheme.

5.2.5 Interactive Exploration

The graphical user interface of this supplemented visual analysis approach is shown
in Fig. 5.18 and consists of several linked views. Beside several 2D data visualizations, e.g.
sRGB color representation, the global visualizations mainly consists of the two proposed ex-
pressive spectral error visualizations for global guidance to identify pixels for further local
investigations. The local visualizations allow the analysts to explore the currently selected
pixel to validate the reconstruction, e.g. by exploring the composition of a mixed spectrum.
In the reconstruction and composition views, the white line shows the raw spectrum Sgaw (x,y)
and the blue line/area represents the reconstruction 57y (x,y). The visualization of the resid-
ual error 7(x,y) helps to determine the wavelength range in which errors occur and which
quantity they have, if present.

Compared to the previous endmember set exploration widget (cf. Sec. 5.1.2), with its
weak point of sequential exploration, here the properties of the endmember are presented
simultaneously in one view. Here, the view shows all coefficients maps at once to give an
overview in which region which endmember has influence and to what extent. Each map
is colored in the respective color of the corresponding endmember, which can be modified
and is consistent in all proposed views. Moreover, an endmember instantly can be activated
and deactivated within the properties of the corresponding coefficients map. Additionally, the
current pixel position can easily be moved to the position of the dataset where the endmember
was found by clicking onto the pin icon of a coefficient map. By this, the spectrum of an
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Figure 5.18: Overview of the graphical user interface, that focuses on several linked views,
achieved coefficients maps, global spectral error views and per-pixel views for detailed local
investigations.
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endmember can be easily found for further exploration in one of the other views. Finally,
this view can be filtered in term of hiding maps that are unnecessary for the moment, e.g.
deactivated endmembers or maps of endmember which have no influence in the currently
observed pixel, in order to reduce the visual complexity.

All visualizations allow zooming into details and are linked. Thus, zooming or clicking
on a pixel in a global view leads to an direct update in all views. In each global view, the
current pixel position is highlighted. The user can visually explore the LSU-result step-by-
step to gain insight. Based on this supplementing insights, the user is able to get a more
comprehensive impression of the reliability of the current endmember set and can be more
focused in the refinement. Thus, a user can directly use the perceived knowledge in case
of wrong or incomplete sets in order to refine the LSU-result, by removal or insertion of an
endmember.

5.2.6 Results

At first usage examples of the presented approach are shown for two domains, CRM and
multispectral scene data. Before the limitations of this approach are discussed, first, the eval-
uations of domain experts are reflected.

Usage Examples

Since, the focus is the validation of LSU-results and not the endmember detection algorithms
itself, details of the detection process are omitted. Mainly two common methods, OSP and
PPI, are utilized in the following. The inverse operation is done by using the implementation
of the image space reconstruction algorithm of Sdnchez et al. [SMPC10].

Graphene: As already discussed in Sec. 4.3.3, the Graphene dataset (cf. Appendix A) con-
tains some imperfections, e.g. peaks because of cosmic rays, that are quite challenging for au-
tomatic algorithms. Here, the usage of the proposed outlier masking already allows the direct
determination of the constituent spectra. Thus, further interactive refinement by the user can
be omitted. However, when assuming that their is no preprocessing available, then the initial
result of this dataset is a kind of worst-case scenario for the interactive refinement. As shown
in Fig. 5.19, all distance images present high error values, especially for the NED. While two
error regions are already distinguishable in the distance image of the SGA, the NED-image
reflects a worst-case, where no errors are distinguishable. Anyway, the interpretation of both
distance images are improved by the combination with our proposed color signatures. As a
result of this, different error regions are getting visible in all colored distance metrics. Also
two other small error parts, see marked areas of SGA, are now noticeable. So far, the two dif-
ferent thicknesses of the graphene are not distinguishable with the default color signatures.
But, this issue can be addressed by modifying the color signatures by transfer functions, also
shown in Fig. 5.19. By means of the expressive spectral error visualization, the shortcomings
of the automatically estimated set of endmembers (applying OSP) can be easily noticed. Thus,
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Figure 5.19: The OSP-result for the Graphene dataset. Compared to the usual distance im-
ages, error values are easier distinguishable in the proposed colored distance metrics (SGA
images are zoomed in). Moreover, the two different layer thicknesses of graphene can be
distinguished in the modified colored distance metrics.

the result can be refined from ten to only three spectra. The quality improvement of such a
change was already shown in Sec. 4.3.3 in the context of the outlier masking.

Peppers: The Peppers dataset (cf. Appendix A) mainly consists of two red, two green and
two yellow peppers. For each color, one artificial pepper was used. Figure 5.20 shows the
initial reconstruction quality for both algorithms, PPI and OSP. Please note, in both cases, the
algorithms have not found the dark background. In order to facilitate the upcoming explana-
tion of the verification process, a corresponding background-spectrum was manually added to
the set of endmembers. In both depicted results the discriminability of the error values is im-
proved by the proposed colored distance metrics. Moreover, the spectral error classification
view supports the analyst in the determination of missing constituent spectra. Comparing the
marked areas of the OSP-result, it is getting obvious that not all high error values are missing
endmembers. On the one hand, the magenta colored area shows error values that are quite
high, but the reason for this is the endmember variability and not a missing constituent. On
the other hand, the errors in the yellow area are due to missing endmembers, which are distin-
guishable in the colored distance metrics. The quality of the reconstructions, based on the
OSP-, PPI- and the refinement, are illustrated in Fig. 5.21 by showing the SRGB transformed
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Figure 5.20: Results of OSP and PPI for the Peppers dataset, both with an added background
spectrum. The interpretation of the results is facilitated by the two proposed global visual-
izations, colored distance metrics and spectral error classification, in terms of both, easier
discriminability of different residual errors and easier identification of missing endmembers.

reconstructed multispectral datasets. In order to judge the quality, also the SRGB-image of the
raw data is included.

Evaluation

The approach has been demonstrated to four experts from the domains of multispectral data
processing and sensor development. Here the approach was applied in the context of three
application areas, multispectral scene analysis, remote sensing and CRM. Each expert was
asked to judge the functionality and usability of our approach to verify the completeness of
endmember sets and to indicate areas that need further research. Their reports are summarized
in the following paragraphs by pointing out the pros and cons.

The evaluation of the reconstruction quality of the spectral unmixing focuses on the com-
pleteness and quality of an endmember set. Furthermore, there are also questions about the
inverse operation itself, when for instance the reconstructed spectrum differs only in a con-
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Figure 5.21: The reconstruction quality is shown by sRGB-transformed datasets of the re-
spective results and the raw data. As can be seen, mainly the green peppers are not well
represented in the initial results of OSP and PPI. In case of OSP, also the red peppers are not
satisfactorily reproduced.

stant magnitude from the raw spectrum, e.g. in case of endmember variability. The domain
experts stated, that such issues can be perceived very well by the guided and simultaneous
exploration of local and global views.

In general, the experts like the opportunity to see the several distance metrics juxtaposed to
instantly compare them. Also, the emphasizing of similar distances with color signatures has
proven to be helpful in the exploration process. Moreover, the definition of transfer functions
to focus on errors of interest has also been rated as good.

Additionally, most of the experts like the consistent coloring of the endmembers, which
facilitates the insight, e.g. to be able to see in which area which endmember is present. How-
ever, some experts would be interested in a stronger quantification by numbers to see how
much influence an endmember has with respect to the entire dataset. But, since the common
distance metrics have problems to achieve comparable quantification results, up to now, it is
an open question how this can be solved. Also, the sparsity of coefficient maps cannot be used
meaningfully, since materials also can be present only in a comparably small area of the data.
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Limitations

As shown before, the common grayscaled distance images can be improved with our proposed
color signatures in order to achieve colored distance metrics. Here, residues are roughly
subdivided into three intervals. It may happen that different errors can produce comparable
colors, when e.g. one error has deviations in the first part of an interval and another error has
deviations in the second part of the same interval, while the remaining parts of both errors are
comparable. The analyst can still notice the wavelength range of interest, but can not distin-
guish the different errors so easily. Here, the manually modification of the color signatures
by TF design in the error trend view can be used to enhance the analyzes and highlight the
affected bands separately. However, a complete change of TFs may result in a less intuitive
color representation, especially when mixed colors are applied as representative TF-colors.

5.2.7 Summary

This section has introduced two global expressive spectral error visualizations in the context
of SMA to addresses the limitations of the complementary visualization, see Sec. 5.1. Thus,
to mainly improve the efficiency of the guidance process in order to more focused identify
specific spectra for local exploration. Color signatures are used to enhance common distance
metrics, so-called colored distance metrics, in order to reduce the ambiguity of distance
values by coloring. Furthermore, the color signatures are freely adjustable by the design of
transfer functions, based on residual statistics. In addition, the global error impressions are
facilitated by a spectral error classification view. All these means help to make correlations
visible, thus guide a user more focused to interesting pixels for detailed local investigation.
The benefits of the introduced expressive error visualization concepts have been demonstrated
by usage examples of two domains. Moreover, a discussion of limitations and an evaluation
of domain experts that state the pros and cons of the approach have been included.

5.3 Radviz-based Multispectral Image Segmentation

This sections describes a method, apart from the concept of SMA, to get insights into the
topology, i.e. spatial distribution of spectra, in multispectral image data and to finally achieve
a segmented image in a semi-automatic manner by utilizing the multivariate visualization
Radviz [HGM*97] (cf. Sec. 1.2.3).

The remainder of this section is organized as follows. Sec. 5.3.1 discusses the problem
statement. A conceptional overview of the approach is presented in Sec. 5.3.2, while the
technical details are discussed in the sections 5.3.3 and 5.3.4. The results are presented by
usage examples for multispectral imaging in Sec. 5.3.5.
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5.3.1 Problem Statement

The aim of the here discussed approach utilizes, as Gerbil [JA10] (see Sec. 2.3), a multivariate
visualization technique in order to get insights to multispectral images. But, in contrast to Ger-
bil [JA10], the here presented method utilizes the multivariate visualization Radviz [HGM*97]
instead of PCP [ID90]. As described in the fundamentals 1.2.3, Radviz is a lossless visual-
ization, which is conceptional comparable to PCP. The main difference is that in Radviz the
n-dimensional attributes of the dataset are equidistantly placed on a circle instead of a straight
coordinate. A n-dimensional element of a dataset then is represented by a 2D-point in the
space of the circle. Comparable to PCA, similar elements should appear close to each other.
According to Hoffman [HGM*97] this method preserves certain symmetries of the multidi-
mensional dataset and allows an intuitive representation. Therefore, the intrinsic clustering of
Radviz is used in this approach for achieving a semi-automatic segmentation of an observed
multispectral image. Moreover, Hoffman states that clusters with dissimilar characteristics
can, partially, overlap which can harm the interpretation of a multivariate visualization. Fur-
thermore, huge numbers of projections are possible for high-dimensional datasets which can
lead to a stunning evaluation task in interactive analysis [AEL*10]. In this context, Albu-
querque et al. [AEL*10] recently have proposed a quality measure to achieve improved place-
ments of elements for multivariate visualizations like Radviz. The here discussed approach
also utilizes this proposed method in order to initially achieve a good cluster distribution. But,
additionally, a cluster evaluation view is presented to examine and to improve the spectral
similarity within a cluster, especially in cases where automatic methods may fail. Here, a
major challenge is the first reduction of visual complexity to reduce the amount of user in-
teraction. Therefore, an automatic detection of the main constituent spectra of the cluster is
desired. As discussed before, prominent algorithms that determine the constituent spectra of
a multispectral dataset are endmember extraction algorithms, see fundamentals 1.2.2. There-
fore, the here explained approach applies OSP in the cluster evaluation in order to determine
the set of constituents in a observed cluster. Thus, to achieve the desired first reduction of
visual complexity.

5.3.2 Conceptional Overview

The aim of the here presented approach is to assist a user with the interactive evaluation
and segmentation of multispectral images in order to provide easier access to the wealth of
information. The visual complexity of multispectral data initially is meaningfully reduced by
automatic cluster segmentation in the Radviz plot to provide a good starting point for the user
based evaluation part. An overview of the whole approach is illustrated in Fig. 5.22. As can
be seen, the approach is divided into two parts:

1. Radviz-based Semi-Automatic Analysis: A Radviz plot is linked with an image-based
visualization. Where the image shows the connection between individual pixel areas
[PvdHO1]. Beside manual brushing of pixels in both views in order to show corre-
sponding elements, also an automatic segmentation of clusters in the Radviz view is
included.
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Figure 5.22: Conceptional overview of the Radviz-based image segmentation approach.

2. Cluster Evaluation and Refinement: The cluster evaluation view shows automatically
determined constituent and/or freely chosen constituent spectra of the cluster in a spec-
tral plot. Furthermore, the nearest neighborhood of each constituent can be evaluated in
order to show spectral correlation in the spatial area.

The workflow description is as follows: The first part gives an overview of the cluster-based
segmented multispectral image. Furthermore, it is possible to express the standard deviation of
the clusters by the color-coding to draw the attention of a user to particular clusters of interest.
Desired clusters can be evaluated meaningfully and refined to improve the segmentation of
the dataset. The details of both parts are discussed in the upcoming two sections.

5.3.3 Radyviz-based Semi-Automatic Analysis

As described before, this part consists of two juxtaposed and complementary views: a Radviz
plot and an image-based visualization (cf. Fig. 5.23). Here, the focus is the initial segmenta-
tion of a multispectral image. Before the two associated main issues are discussed, consisting
of segmentation and the coloring of the pixels and clusters, first the details of the Radviz
generation are explained.

Radyviz plot The Radviz plot is generated as explained in the fundamentals 1.2.3. But, in
addition to the common way, the recently presented method of Albuquerque et al. [AEL*10]
is applied to best possibly reduce the overlap of clusters in an automatic manner. The authors
propose a greedy incremental optimization to improve the placement of elements in Radviz.
In short, the optimization works as follows: Initial a Radviz plot is created based on the
first three dimensions. Then, all possible Radviz plots are created and for each plot, the
quality, i.e. number of clusters, is determined. The sequence with the best quality is kept
for further processing. This kept sequence is then complemented by another dimension and
the evaluation loops as described above until all dimensions are processed. Since this process
is a greedy method and the maximum intensities of a spectrum have the most influence in
the placement of the points p(x,y), the dimensions of the dataset are sorted according to the
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Figure 5.23: Overview of the graphical user interface of the first part consisting of two
juxtaposed and complementary views: a Radviz plot and a image-based visualization.

maximum intensities before the optimization. By the sorting is achieved, that the dimensions
with higher influence are processed first.

Segmentation of the dataset is achieved by brushing in the Radviz plot or in the image-
based visualization. Furthermore, an automatic search and segmentation of clusters based on
the clusters in the Radviz view is allowed. In order to determine clusters and also measure
its sizes and densities, the Radviz plot is subdivided into a virtual grid. Based on the cells of
the virtual grid, it is possible to count how many points are placed in each virtual grid cell, in
order to determine clusters in an automatic way.

The process of cluster determination sequentially processes all grid cells. The first local
neighborhood of each cell with a higher value as a user defined threshold is checked if one of
the neighbor cells is already related to a cluster. If this is the case, the current cell is assigned
to the neighbor with the most comparable cell value. Otherwise, a new cluster is defined.

Tests have shown that the resolution of the virtual grid should have twice the resolution of
the processed multispectral image in order to achieve good clustering results and interactive
run-times.

Coloring is achieved by brushing or assignment of default colors to already determined
clusters. As default, the intensity of colored segments (pixels/points) represent the corre-
sponding cell density (number of s(x,y) in a cell). Moreover, the density scale can turned off
to focus on the segmented regions which may be hard to perceived because of a lower cell
density. The coloring also can be applied to single bands or the average image of the cube.

Beside the coloring of the segments, also two more coloring methods, PCA-based and
variance-based, are made available:
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PCA is applied to the whole multispectral dataset in order to achieve a false-color image of
the dataset that already resembles spectral similarities (cf. Sec. 5.1.1). This false-color
image can be used to colorize both views to compare the clustering in Radviz with the
grouping achieved with a PCA (cf. Fig. 5.26). This is also helpful as initial orientation,
when users want to segment the dataset mainly by brushing.

Variance-based coloring is appropriate when clusters are already found. Here, the aim is
that a user easily can determine clusters of major interest by the visualization of the
standard deviation of each cluster. Therefore, for each cluster j the standard deviation
of the enclosed spectra is computed
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where §;; are the corresponding spectra and m; is the number of spectra in cluster j.
The resulting o are color coded in an overlay-map, where green and red means low and
high standard deviation, respectively. The colors for the 0; values between the extremes
are appropriately interpolated between red and green, e.g. a value of the middle range
appears in a yellow tone (cf. Fig. 5.26).

5.3.4 Cluster Evaluation and Refinement

The second part of this approach is dedicated to the detailed evaluation of the individual
clusters, e.g. clusters with a high standard deviation. This evaluation is introduced for two
reasons: First, to gather more local knowledge of the data, i.e. spectral and spatial distribution
in the cluster. Second, to further improve the clustering by subdivision, in case that automatic
optimization of the Radviz clustering is not convincing. In the following, the main aspects of
this view,

e automatic reduction of visual complexity,
e spatial and spectral distribution of constituents,
e and refinement by subdivision,

are described.

Automatic reduction of visual complexity: Constituent spectra of the selected cluster are
automatically determined by an endmember extraction algorithm (see fundamentals 1.2.2).
As mentioned before, such a search for endmembers is comparable to determine the spectra
that define the convex hull. Here, OSP is applied to the spectra of the currently observed
cluster and the algorithm terminates when the maximum residuum converges or the number
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Figure 5.24: Overview of the cluster evaluation view. The initial set of constituents was
refined in the right by a user selected additional constituent spectrum (yellow). Pixel that do
not belong to the cluster are gray-colored in the nearest neighbor view.

of found spectra is equal to the number of bands n. The discovered constituents are the basis
of the detailed evaluation in this view and achieve a first visual reduction of visual complexity
to sophisticatedly guide the user in this view.

Spatial and spectral distribution: The spatial distribution is visualized by the NN of
each constituent, which is achieved by spectral matching (cf. fundamentals 1.2.2) in the same
manner as presented in the complementary visualization in Sec. 5.1. In detail, the spectral
similarity for each constituent to each spectrum of the cluster is computed, e.g. by apply-
ing SAD. For each spectrum of the cluster the constituent with the highest similarity is then
assigned as nearest neighbor. Thus, achieving a labeling based on the set of constituents in or-
der to show the spatial distribution within the observed cluster (see Fig. 5.24 nearest neighbor
area). For easier comparison of the quantitative influence, i.e. number of nearest neighbors, of
each constituent, a distribution bar plot (see Fig. 5.24 parameters area) is displayed which also
allows the intuitive selection of constituents. Furthermore, the shortest distance for each spec-
trum and nearest neighbor pair is stored for subsequent evaluation of the spatial distribution
based on user-defined thresholding of the applied similarity range.

A spectral plot shows the currently chosen constituent spectrum. For further orientation,
additionally, the average, the minimum, and the maximum intensity values are shown in this
plot. Especially, the extreme lines (minimum and maximum) are helpful for the comparison of
the spectrum of interest directly with the intensity range of all cluster-spectra (see Fig. 5.24).

Refinement by subdivision: The set of constituents can be refined by removing constituents
or adding freely chosen spectra, that beforehand can be evaluated in the same manner as
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described above, as new constituents. When the user comes to the conclusion that a division
of the cluster is needed, then the cluster is subdivided into subclusters, where each constituent
and its associated nearest neighborhood defines one subcluster. The Radviz plot and the linked
image-visualization are immediately updated after the subdivision.

5.3.5 Usage Examples

The Radviz-based visual analysis approach was applied to a RGB test image and two multi-
spectral scene data, Flowers and Watercolors (see Appendix A). A third result (Glass tiles) is
already shown in Fig. 5.23.

RGB: A RGB test image was used to present a simple result in Fig. 5.25. Since white and
black lead to the same position in the Radviz plot, the initial clustering does not allows to
differentiate both colors. Thus the standard deviation of the corresponding cluster is very
high. By using the proposed subdivision approach both colors can be separated.

Flowers: In figure 5.26, the refined result is compared with the initial- and PCA-result.
Comparing the PCA- and refined result, it can be seen that the different flowers, the leafs, the
background and the color-checker are segmented more precisely with the proposed method.
The major improvement between the initial and refined result is that the leafs and the squares
of the color-checker are separated. The remaining deviations in the refined result are due to
the variability of the spectra in the corresponding cluster, e.g. the squares represent different
gray levels.

Watercolors: This example shows another comparison of an initial and refined result. As
shown in Fig. 5.27, the details of the watercolors-painting are finer separated in the refined
result. Furthermore, the big cluster that represents the frame of the color-checker and the
background has been visually merged.

5.3.6 Summary

This section has presented a Radviz-based analysis approach that enables users to get insight
into the topology, i.e. spatial distribution of spectra, of multispectral image data to finally
achieve a segmented image in a semi-automatic manner. As main part of the approach a
meaningful cluster evaluation view was introduced to gain insight to the spectral distribution
of a cluster. Based on this views an analyst is enabled, on the one hand, to explore clusters, and
on the other hand to refine the clustering by subdivision, ergo the segmentation, if necessary.
The usage of the interactive approach was demonstrated with three datasets.
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Figure 5.25: The initial and refined result for a RGB test image.
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Figure 5.26: Results for the Flowers dataset: PCA-based coloring, standard deviation for the
initial and for the refined result, where the remaining deviations are due to different intensity
levels of the spectra. Finally, the segmentation visualization of the refined result is shown.

Initial Refined

Figure 5.27: Results for the Watercolors dataset: the initial and refined result, where the
details of the watercolors-painting are finer separated.
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5.4 Summary

In this chapter mainly interactive visualization methods have been presented with the aim to
assist analysts in the knowledge gathering process in order to get insights to the essential spec-
tral characteristics of a multispectral image. The main challenge to get access to the wealth
of information in multispectral data is the high-dimensionality of the data, which usually pre-
vents to visualize all aspects of the data in one visual representation. Thus, beside automatic
analysis algorithms, e.g. for dimensionality reduction, typically an analyst has to steer the
visualization process in order to set the focus of the exploration and to reveal the informa-
tion. Here, focusing on both, SMA and multispectral image segmentation, challenges were
discussed and solutions were proposed.

In the context of SMA it was shown, that the reliability of an automatically determined
set of endmembers can be easily verified by an analyst with proper visualization methods.
More essential, it has been shown that there can be circumstances which prevent automatic
algorithms to determine a fully reliable set and that in such cases the presented visualization
means assist analysts to achieve an improved set of constituents by refinement. Thus, to
finally allow a reliable and holistic exploration of multispectral datasets in order to get a very
deep understanding, also of subpixel details. Finally, based on these visualization means, the
concept of SMA can be applied to a huge variety of application domains.

With the focus to achieve a segmentation of a multispectral image, it was shown that
the intrinsic clustering of certain symmetries in a Radviz plot can be utilized to achieve a
segmented multispectral image. Again, visualization means help to reveal clusters that can
profit by a user-driven refinement of the segmented area in order to progressively enhance the
complete segmentation result.

Taking together, the presented visualization means and exploration concepts provide com-
prehensive and generic tools for the user-driven exploration of multispectral image data.
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Chapter 6

Application Example

he search for a specific target spectrum in multispectral datasets is a very common anal-
ysis task in multispectral data analysis. This search is done, for instance, to see whether
the target signature is present in the data or not. Moreover, when a signature is contained in
the data, then an analyst typically is interested in which areas the target is present and with
which magnitude.
Before different analysis strategies are demonstrated in the following application scenario,
the section first describes the used data and the analysis goal.

6.1 Application Scenario

In this application example, an domain expert was interested to see in which areas of a mea-
sured dataset the energetic material RDX is present. Here, the dataset and a reference spec-
trum of RDX were acquired by the utilization of THz time-domain spectroscopy, please see
[FG88] for more details about this acquisition method. The dataset has a spatial resolution
of 2626 and covers a frequency range of 0.23-1.92 THz (~156-1289um) with 30 bands.

RDX

0.23

Terahertz

Figure 6.1: The measured reference spectrum of the energetic material RDX. The marked
region shows the characteristic area.
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Moreover, the dataset mainly consists of a substrate and a sample of RDX. For the substrate,
a polymethacrylimide rigid foam was used, which is very common, since it has remarkable
dielectric properties, e.g. an extremely low refractive index and a low absorption in the range
from 0.1 to 2.0 THz [RIS*04]. The reference spectrum of the RDX can be seen in Fig. 6.1,
which is based on the measurement of a RDX sample that was not embedded in a substrate,
but, was created by a pressing process to achieve a plane parallel surface.

Spectral Matching Since the task was to determine in which areas RDX is presented in the
dataset, first the spectral similarity between the reference and each pixel of the dataset was
computed. The results for SAD and SID are shown in Fig. 6.2. In this particular case, the
expectations of the domain expert were not fulfilled by the results of the spectral matching.
Because, surprisingly, the lower distance values correspond to the substrate, instead to the
RDX. Further analysis with the domain expert have revealed several issues for this behavior:

1. The peaks of the RDX in the dataset are more narrow than in the reference.
2. The peaks are a bit shifted.

3. In large parts of the dataset, the RDX-spectra are mixed with the substrate. Please also
compare with the PCA-result in Fig. 6.2, where the third principal component shows a
quite homogeneous result.

While the shift of the peaks could be manually corrected, the other two issues prevented a
successful spectral matching. Beside the general challenge of matching spectra of different
measurements (cf. Sec. 1.2.2), e.g. based on reference libraries, this example mainly shows
the importance of expert knowledge during the analysis. Because, without this knowledge, an
other analyst would may assume that RDX is not present in the data and finish the analysis
task. Anyway, it was decided to analyze the dataset in the following without the reference
spectrum. Since, one of the reasons is the mixture of the substrate and the RDX the focus of
the following discussion is on the SMA. But, before this discussion, first a short overview of
multispectral image segmentation results is given to provide a complete impression.

Multispectra Image Segmentation In Fig. 6.3 the results of the before presented Radviz-
based approach for multispectral image segmentation are shown. As can be seen, the initial
result of the plot does not allows to discriminate both materials as good as in the plot with
the optimized ordering of the bands. The close-ups with different colorings show the suc-
cessful distinction of both materials. The reliability of this differentiation is confirmed by the
variance-based image, which shows no major deviations in the both clusters. Comparing to
the PCA-result of Fig. 6.2 and the PCA-based coloring of the plot, reveals the positions of the
pixels (yellow and cyan colors) which are corresponding the corona like ring structure, which
is visible in the second principal component. According to the domain expert this structure is
due to refraction of the light on the border of both materials. Now, a user would be able to
manually refine the selection to optimize the segmentation, if desired, which was not the case
in this scenario. The bottom row of the figure shows the segmented multispectral images for
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SAD SID PC1 PC 2 PC3 False-color image
) Variance: 53% Variance: 20.8%  Variance: 6.8% )
Spectral Matching Principal Component Analysis

Figure 6.2: Results of the spectral matching and PCA.
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Figure 6.3: Radviz-based segmentation result in comparison to the result of the Mean Shift
algorithm in the bottom row. The corresponding Radviz plots are in the top row and demon-
strate the influence of the optimization for the placement of elements. Moreover, different
colorings are shown as close-ups.
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Figure 6.4: LSU results. The top row shows a comparison of the achieved initialization
results of AMEE, PPI, and OSP by their corresponding complimentary visualizations. Below
the final LSU-result is depicted, which was achieved by manual refinement and based on the
expert knowledge.

both, with and without weighting by the cell density (cf. Sec. 5.3.3). As can be seen, the acti-
vated cell density reveals areas with lower density, which show some similarities to the results
of the spectral matching and the PCA-result in Fig. 6.2. Finally, the Radviz-based segmen-
tation result is compared to a unsupervised result of the nonparametric Mean Shift algorithm
(cf. Sec. 1.2.2).

Spectral Mixture Analysis As mentioned before, large parts of the RDX-sample are mixed
with the substrate. Thus, after discussing the results of the multispectral image segmentation,
now the results of the LSU are presented to achieve a deeper knowledge about the proportion
of each material in each pixel. Based on the complementary visualization, the Fig. 6.4 shows
the best achieved initial results of the three implemented endmember extraction algorithms,
AMEE, PPI, and OSP. The number of found endmembers by PPI in comparison is that high,
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because the paramterization was adjusted till also a proper constituent of the substrate was
determined. Please note, all distance images are based on NED to also show the positions
of the found endmembers (black pixels). The remaining errors are mainly due to noise in
the data. As can be seen, all results are capable to represent the corona like ring structure.
Anyway, some of the determined constituents are quite redundant and were selected because
of noise-based deviations. Moreover, the positions of the constituents are not consistent, but
quite comparable. Compared to the before shown PCA-result, which serves as color initial-
ization of the endmembers, the result of PPI resembles the false-color image the best. This
is mainly due to the fact that a better representation of the substrate was found. Additionally,
especially in the NN-visualization it can be seen, that the substrate is not well represented in
the result of the OSP. In summary, the results are quite comparable, but all have their own
merits, e.g2. AMEE has the lowest number of endmembers. Finally, based on the presented
exploration means, the best representatives for the substrate and the RDX were determined
by manual exploration and refinement, based on the knowledge of the domain expert. The
achieved result of the refinement is illustrated in the bottom row of Fig. 6.4. The proportions
of the RDX and the substrate can be seen in the corresponding coefficients maps. Based on
the coefficients maps and the resulting mixed colors, the before mentioned mixture of RDX
and the substrate is now more obvious. Moreover, the before mentioned difference of the
RDX-peaks between the reference and the dataset are getting visible when comparing the plot
of the final result and the plot in Fig. 6.1.

6.2 Summary

This chapter has discussed an application scenario where a domain expert was interested to see
in which areas of a measured dataset the energetic material RDX, whose signature separately
was measured, is contained. Typically for such tasks, first spectral matching was used to
compute the distances between the measures reference spectrum and the pixels of the dataset.
Due to the expectations of the domain expert, the results were classified as failure. Thus, the
dataset itself was analyzed without the reference spectrum in the the following. While the
applied segmentation approaches were able to differentiate both materials, the result of the
LSU also had revealed subpixel details, i.e. the proportion of each material in each pixel.

Taking together, this application example has shown the importance of expert knowledge
during the analysis. Moreover, the domain expert was able to focused explore the dataset to
reveal the information of interest.
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Summary and Conclusions

ultispectral imaging mainly originates from the domain of remote sensing, but nowadays
M is applied for various applications, like recycling, medical, food quality, analysis of arts,
document verification, biometrics and many more. Due to the high popularity of this imaging
technique, there is a high demand for generic solutions to enable the user to get access to
relevant information, e.g. constituent spectra, for a large variety of application domains. But,
due to the typically high-density of spectral information, usually the interpretation on the one
hand, is complex for humans and on the other hand, is time-consuming for computers. Thus,
the challenging task of interpretation consequently requires efficient data analysis algorithms
and intuitive visualization methods to support the understanding of the data and to finally
make use out of them.

This thesis proposed the usage of visual analysis methods which are efficient, intuitive and
generic to address the identified challenges. Thus, the main aim of the presented work was to
demonstrate that the involvement of the user in the analysis process is possible and feasible in
order to achieve good analysis results and to facilitate the interpretation.

For the development of such visual analysis methods, beside the discussion of processing
speed, the challenges mainly were posed in two parts, the data analysis and the visualization.
Taking together all the discussions, two novel exploration methods were introduced:

Generic Determination of Constituent Spectra Based on the popular multispectral analy-
sis technique LSU, a concept was presented in order to find the best application specific
parameterization of endmember extraction algorithms and consequently to explore, as-
sess, and refine the set of endmembers. The exploration and assessment of the results
are driven by various assisting visualizations, mainly a complementary visualization
and an expressive spectral error visualization for better user guidance. Moreover, the
robustness of the automatic algorithms can be improved by an optional outlier masking
scheme and the calculation time of inverse unmixing operations can be reduced by the
introduced coefficients estimation methods.

Radviz-based Multispectral Image Segmentation With the focus to achieve a segmenta-
tion of a multispectral image, it was shown that the intrinsic clustering of certain sym-
metries in a Radviz plot can be utilized to achieve a segmented multispectral image.
As main part of the approach, a cluster evaluation view was introduced in order to gain
insight to the spectral distribution of a cluster and to subdivide it, if necessary. Again,
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visualization means assist a user to reveal clusters that can profit by such a subdivision
in order to progressively enhance the segmentation result.

Moreover, also rather fundamental challenges and concepts of the multispectral data process-
ing are discussed to provide a further understanding of processing in general. Here mainly
two aspects were discussed:

Blur in Multispectral Image Data By focusing on plane-based multispectral imaging, rea-
sons for the blur were revealed and a qualitative discussion of noticeable consequences
for the data analysis was provided. Moreover, a conceptional proposal for a two step
multispectral imaging approach was discussed to compensate the blur in multispectral
images.

Similarity Measure in High-Dimensional Space A distance pursuit algorithm was dis-
cussed in order to assess the attribute variability, when transforming one vector into
a representation of maximum similarity with a target vector. By the consideration of
this general method in the context of multispectral images the influence of different
similarity measures have been demonstrated. Which has turned out, that the similarity
assessment of spectra strongly depends on the chosen metric and the analysis task itself.

Taking together the main aspects of this thesis, the presented visual analysis methods provide
comprehensive and generic means for an expert knowledge-driven and guided exploration of
multispectral image data. In particular, when achieved automatic analysis results are insuf-
ficient because of both, challenging datasets that suffer from imperfections and/or specific
analysis tasks, e.g. when an expert is interested in specific information.

Especially the LSU-based visual analysis has turned out to achieve a holistic understand-
ing of observed data. Moreover, based on the resulting constituents, an expert is enabled to
more easily identify spectra and spectral characteristics of interest for further research. Cer-
tainly, this approach is only able to determine pure constituents in data, when the data contain
pure spectra. Here, it may is also worth to consider a subsequent unmixing of the determined
constituents based on reference libraries in the future, but, which itself is a challenging task
as exemplary can be seen when considering the aspect blur in multispectral imaging or also
has been shown in the application example (see Chapter 6).

Another challenge that needs further investigations, also for the domain of library based
unmixing, is the possibility of ill-posed mixtures. For instance, consider a spectrum with two
peaks. It is unclear, if this spectrum is a constituent or if it is a mixture of two corresponding
spectra. Such cases can be meaningfully handled only by experts. Thus, future work should be
dedicated to reveal such issues and provide means to constrain the upcoming inverse unmixing
operations.

Finally, the here presented methods suggest a generic usage to mainly achieve an unsuper-
vised understanding of multispectral datasets. It has been shown, that the methods success-
fully can be applied in the context of various application domains, i.e. remote sensing, CRM,
typical scenes and also in the terahertz domain. However, the means of these presented ap-
proaches may can support from specialized methods for specific applications. For instance, to
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include prior knowledge of a specific application domain to initially determine more sufficient
sets of constituents.
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Appendix A

Datasets

Multispectral Scene Data

Balloons

Spatial: 512x512
Spectral: 31 bands
Range: 400nm—700nm
Device: LCTF

Source: CAVE

sRGB-image PCA-based false-color image

Cucumber

Spatial: 416x408
Spectral: 51 bands
Range: 450nm-950nm
Device: LCTF

Source: CGMM

sRGB-image PCA-based false-color image
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Egyptian statue

Spatial: 240x450
Spectral: 31 bands
Range: 400nm—700nm
Device: LCTF

Source: CAVE

Note: The dataset was cropped
to the area of the statue.

sRGB-image PCA-based false-color image

Flowers

Spatial: 512x512
Spectral: 31 bands
Range: 400nm-700nm
Device: LCTF

Source: CAVE

sRGB-image PCA-based false-color image

Glass tiles

Spatial: 512x512
Spectral: 31 bands
Range: 400nm-700nm
Device: LCTF

Source: CAVE

sRGB-image PCA-based false-color image
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Lemons
Artificial (left) and real (right) lemons

Spatial: 512x512
Spectral: 31 bands
Range: 400nm—700nm
Device: LCTF

Source: CAVE

Peppers

Artificial and real peppers

Spatial: 512x512
Spectral: 31 bands
Range: 400nm-700nm
Device: LCTF

Source: CAVE

Watercolors

Watercolors painting

Spatial: 480x376
Spectral: 31 bands
Range: 400nm—700nm
Device: LCTF

Source: CAVE

Note: The dataset was cropped
to the area of painting.

sRGB-image

PCA-based false-color image

PCA-based false-color image

PCA-based false-color image
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Remote Sensing

Cuprite

Patch: 970619t01p02_r02_sc03.a.rfl

Spatial: 614x512
Spectral: 224 bands
Range: 370nm-2506nm
Device: AVIRIS

Source: NASA e 8
PCA-based false-color image

RGB-image

Note: Bands were reduced to
192, by removing 19 channels
that only contain zero data.

Washington DC Mall

Spatial:  1280x307
Spectral: 191 bands
Range: 401nm-2473nm
Device: HYDICE

RGB-image

Source: MultiSpec

PCA-based false-color image
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Confocal Raman Microscopy

Diamond
Diamond and small areas with high flu-

orescence

Spatial: 512x512
Spectral: 510 bands
Range: 322nm-870nm
Device: CRM

Source: HiFreq

sRGB-image PCA-based false-color image

Graphene

Graphene and silicon as substrate

Spatial: 256x256
Spectral: 510 bands
Range: 322nm-870nm
Device: CRM

Source: HiFreq

sRGB-image PCA-based false-color image

Artificial Datasets

Concept: Five constituent spectra, i.e. actinolite, barite, calcite, datolite, dry grass, were
taken from the U.S. Geological Survey (USGS) mineral library and placed at particular po-
sitions in the spatial domain. Then, the influence of each constituent was linearly decreased
away from the particular position, resulting in a linearly mixed multispectral image cube.
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Five Endmembers

Spatial:  100x 100
Spectral: 473 bands
Range: 200nm-3000nm

Source: USGS

Note: Four constituents were
placed at the four corners and
one constituent was placed at
the center position.

Four Endmembers

Spatial: 100x 100
Spectral: 473 bands
Range: 200nm-3000nm

Source: USGS

Note: In each corner one con-

stituent was placed.

Conceptional image PCA-based false-color image

Conceptional image PCA-based false-color image

Sources:

CAVE http://www.cs.columbia.edu/CAVE/databases/multispectral
CGMM The CRM datasets are kindly provided by the Research Group for Computer Graphics and Multimedia Systems

at the University of Siegen (http://www.cg.informatik.uni-siegen.de/en).

HiFreq The CRM datasets are kindly provided by the Research Group for High Frequency and Quantum Electronics

at the University of Siegen (https://www.hge.eti.uni-siegen.de/en).

MultiSpec https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html

NASA http://aviris.jpl.nasa.gov/html/aviris.freedata.html

USGS http://speclab.cr.usgs.gov/spectral.lib06/ds231/datatable.html


http://www.cs.columbia.edu/CAVE/databases/multispectral
http://www.cg.informatik.uni-siegen.de/en
https://www.hqe.eti.uni-siegen.de/en
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://speclab.cr.usgs.gov/spectral.lib06/ds231/datatable.html
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Appendix B

Formulas

B.1 Distance Measures

Distance metrics are applied to two n-dimensional spectra (vectors) X and y; ux and uy
denote the mean values of vectors X and ¥, respectively; (-,-) is the inner product; (-)? is
the sum of squares of vector components; {-,-} is the cross product of two vectors; sign
refers to the signs of vector components; o is the component-wise Hadamard product; vec-

tor powers operate as powers on each vector component; 1 is the n-dimensional vector of ones;

Spectral Angle Distance

SAD(%,¥) = arccos (%) (B.1)
[X[[21171]2
Spectral Correlation Angle
SC(%,7) + 1 X — LUF, 5 — uy
SCA(X,y) = arccos (M) with SC(X,¥) = q<x itx,yq “yz (B.2)
2 [1X — ux[|2 |y — uyll2

SC(%,) yields values between -1 and 1. The final spectral correlation angle is calculated with
SCA(X,¥) to achieve an angle-like distance [RGO5].

Spectral Information Divergence [Cha99]

S x X y
SID X, ={ —=— —_,,10 — —1lo - B.3
(&3) </le Hy g(.ux) g(.u)’>> ()

Spectral Gradient Angle

SGA(%,y) = SAD (SGy, SGy) (B.4)
with SGy = (x2 —x1,x3 —X2,...,X, —X4—1), SGy analog
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Normalized Euclidean Distance

o X y
NED(E) = | - 2
IXll2 ll2 1l
Root Mean Square Error
RMSE(X, ) = Z [ ]é
- n:

Minkowski distance

n
MD(%,5) = (Y |% —5i|7)"/?
i=1

dMD(%,y)/ 9y

i=1

where real values p > 1 are allowed.

Pearson correlation [SSVS09]

il 1 1
—sign(@—5) o|¥ =517+ (Y | —wil?) 7!

\/<5<'—Hz>2'<fV—l~‘i>2
o . X— Uy )_)’—,u-‘ 5(»_.“)_67.)7_“_'
8PC(x,y)/8y:< S ﬁ'ﬁt_ R fz) i -
{X— e, ¥— byt (% — py) \/(X—uﬁz'(w—“ﬁz

Y-divergence

GD(X,y) =

{x7’+1 1}1/ y-(7+1)) {)77/4—1,‘1‘}1/()/4—1)

{x _’?’}1/7

IGD(%,7)/05 =

a choice of y € [0; 1] is recommended [VHS*10].

B.2 Inverse Unmixing Operation

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

Image Space Reconstruction Algorithm (ISRA) [DWMS6] iteratively estimates non-
negative coefficients, for any input set of endmembers, per pixel (x,y) and achieves con-

vergence in a finite number of iterations.

li vi(A)5(x,y,A)

Y vi(A >2vl< ) ot (x, )"
A=1 i=

0j(6,y)} ! = o,y)}-

(B.13)
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Where m is the index of the iteration and again n and g are the numbers of the bands and
endmembers, respectively.
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BN

5(x,y, 1)

Coefficient of an endmember for pixel (x,y) 16,
71,76, 77

Endmember (one constituent of dataset) 15, 71,
73,76, 77

Set of endmembers 16, 7274, 76, 88, 91-93
Spectral dimension that contains discrete spectral
bands over a continuous spectral range. 5

Pixel position that represents the 2D-location of
a spectrum 35, 16, 18, 68, 76, 77, 89, 105, 142
Noise vector of a pixel 16

The number of spectral bands 1, 5, 18, 19, 22,
115,119, 143

The number of endmembers in a set 73, 143
Discrete spectrum of a pixel 5, 16, 22, 75, 76, 88,
90-92, 118

Intensity value of a band A at a pixel (x,y) 5
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Glossary

A

AOTF Acousto-optic tunable filter (AOTF) for electronically controlling of the spectral trans-
mittance based on the interaction of electromagnetic and acoustic waves [SOKHO08]. 9

C

Chromatic aberration In optics many types of distortions can arise. One of them is the
chromatic aberration which is the wavelength depended miss-focusing of colors by a
lens. 38, 39, 47, 58

CRM Confocal Raman microscopy (CRM) is a combination of confocal microscopy, deliv-
ering sharp 3D image of semi-transparent materials, and Raman spectroscopy, which
provides multispectral data in high spatial resolution. 8, 69

E

Endmember Endmembers are constituent spectra of a mixed spectrum. 13-20, 34, 4244,
51, 52, 58-85, 87-104, 106-114, 116, 119, 123, 128, 129, 131, 146

F

FWHM Full width at half maximum (FWHM) expresses the difference between to function
arguments which represent the half of the maximum function value. 9, 17, 38, 39

L

LCTF Liquid crystal tunable filter (LCTF) for electronically controlling of the spectral trans-
mittance [HSBO02]. 9, 38, 39, 135-137

LSU Linear spectral unmixing (LSU) is the decomposition of a mixed pixel into its con-
stituents by assuming a linear mixing model of the constituent spectra. 15, 16, 32, 34,
41,42, 44,49, 51, 52,71-73, 85, 87-91, 93, 94, 98-104, 108, 110, 111, 128, 129, 131,
132
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Metamers Different spectra that produce the same tri-stimulus response. 48, 49

R

Raman Raman spectroscopy is a popular method used to examine the chemical composition
of measured samples since each distinct molecule structure has a different fingerprint in
its Raman spectrum. Thus, the Raman spectra of a mineral show unique characteristics
related to mineral’s chemical composition. 8, 67—69, 94

S

SMA Spectral mixture analysis (SMA), also referred to as spectral unmixing, is the procedure
which decomposes mixed spectra into a set of constituent spectra, so-called endmem-
bers, and the corresponding fractions that indicate the proportion of each endmember in
each pixel. 13, 14, 58, 101, 115, 123, 126
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