
A Fine-grained Version and Configuration Model in Analysis and Design

Dirk Ohst, Udo Kelter
Praktische Informatik, Fachbereich Elektrotechnik und Informatik,

Universiẗat Siegen, D-57076 Siegen,
{ohst|kelter}@informatik.uni-siegen.de

Abstract

In this paper we present a model of version and config-
uration management in the early phases of software devel-
opment and an implementation of this model. We assume
that software documents are modeled in a fine-grained way,
that they are stored as syntax trees in XML files or a repos-
itory system, and that tools directly operate on these syntax
trees. In contrast to file-based systems, structural changes
in the document, e.g. the shifting of a method between two
classes, can be identified in our model. Configurations al-
low us to manage groups of single modifications; such a
group will mostly correspond to a specific design task or a
similar activity. Configurations are thus a means to estab-
lish a connection to a change management system.

Index Terms – fine-grained data model, versions, config-
uration, design transaction, software engineering environ-
ments

1 Introduction

Software configuration management (SCM) is an indis-
pensable part of high-quality software development pro-
cesses. SCM is well established and common practice in the
late phases of software development, notably during pro-
gramming and integration. It is less commonly practiced in
the early phases, i.e. analysis and design, for a number of
reasons.

One of the reasons is that there are usually not many ver-
sions (and hardly any configurations) of analysis and de-
sign documents. Thus, occasionally making backup copies
is often sufficient. However, object-oriented development
methods (e.g. the Unified Process) lead to a significant in-
crease in the complexity and the number of versions of the
documents in early phases.

A second reason is that usual SCM systems are not well
adapted to the needs and circumstances of document man-
agement in the early phases. A large number of SCM sys-
tems and concepts is available [2]. However, virtually all

of them (incl. systems such as RCS, CVS and SCCS) work
only on files, to be specific, files containing lines of text in
pretty-printed format. These systems are not aware of the
logical structure of the document contained in a file. Their
usefulness heavily depends on the assumption that a modifi-
cation of the document, e.g. the insertion of a statement in a
program, typically has the net effect that one or a few adja-
cent lines of the text are inserted, deleted or modified. They
fail to work reasonably under three conditions which occur
often in document management in the early development
phases and/or with object-oriented development methods:

1. Documents are not text, but diagrams (e.g. the dif-
ferent types of UML diagrams). Diagrams are often
stored in files, either in proprietary (printable) formats
or in XML formats. In the case of a class diagram,
each class might be represented by a few lines of text
in the file. The order of these sections of text is irrele-
vant! The position where a class symbol appears in the
diagram is explicitly stored in layout data. Therefore,
diagram drawing tools can store the sections represent-
ing classes or other diagram elements in arbitrary or-
der. As a consequence of this, even small changes in
the diagram can lead to a complete reshuffling of the
file contents and a large number of significant textual
differences.

2. In object-oriented development methods, analysis, de-
sign and implementation are considered as parallel ac-
tivities (rather than sequential ones as in the waterfall
model). As a result, even simple modifications can af-
fect several files, or parts of files, belonging to differ-
ent development phases. Conventional SCM systems
have substantial problems to correctly represent such
complex changes.

3. Some tools which support the development of informa-
tion systems use a database (e.g. a relational one or a
specific repository system) to store entity relationship
diagrams, database schemata and similar documents.
The documents are stored as a set of tuples or objects



and references connecting them; basically, a syntax
tree is represented by these data. This approach of
modeling and storing documents is commonly called
fine-grained data modeling. Conventional SCM sys-
tems cannot handle this situation at all.

In some cases changes of documents are very complex
due to several reasons, e.g. extending the functionality or
restructuring of components. This leads to the creation of a
large number of versions. Some of them are only of tempo-
rary interest because a developer wants to store some con-
sistent and intermediate versions of a document while work-
ing on a task or phase of a project. Conventional version
management systems do not support temporary versions or
relations between versions and tasks or phases of projects.
When using these systems the developer can only create
successive or parallel versions which can also be accessed
by other developers even if this is not desired.

This paper presents concepts and an SCM system which
are applicable under the above conditions. One basic as-
sumption is that tools use an internal storage system which
follows the approach of fine-grained data modeling. The
concepts presented here are applicable independently of
whether XML files, a proprietary file format, a relational
or object-oriented database is used. The SCM system pre-
sented here is integrated in a repository system known as
H-PCTE [4], which is a structurally object-oriented DBMS.

The rest of this paper is organized as follows. Section 2
presents our versioning concept, starting with a discussion
of the limitations of file-based versioning of structured doc-
uments (section 2.1). An introduction to the used data
model is given in section 2.2. The versioning model itself is
presented in section 2.3. Section 3 describes the limitations
of file-based versioning in structuring the version tree (sec-
tion 3.1) and presents a solution (section 3.2) which is inte-
grated into the version model. In section 4 we present ver-
sioning concepts which are related to our approach. Con-
cluding remarks are given in section 5.

2 Version and Document Model

2.1 Limitations of File-Based Version Manage-
ment

During its development a software product passes
through several development cycles. During the analy-
sis one creates a model which consists of the conceptual
classes. They are changed later in the design phase and ex-
tended with further classes. Due to later extensions with
new functions or due to the correction of errors, the soft-
ware architecture, i.e. the class structure, is usually mod-
ified again and again. As a simple example, we consider
the classPanel shown in figure 1(a). This class represents

a container for graphical elements. Our system is later ex-
tended by a classScrollPane , which offers a comparable
functionality, however extended by scrollbars.

Panel

add ()

(a) Before extension

ScrollPanePanel

add()

Container

(b) After extension

Figure 1. Example of a class structure

Both classes contain operations with the same function-
ality, e.g. the methodadd , which adds a new graphical el-
ement to the container. Therefore the developers extend the
model with a common super classContainer which re-
alizes this and similar methods (s. figure 1(b)); the common
methods are shifted from the classPanel into the class
Container .

The shifting of methods from one class into another cor-
responds to the shifting of a block of text between two files
or within one file. In either case, conventional SCM sys-
tems based on state comparison cannot identify this shift
correctly. These systems interpret this as the deletion of
one block of text at the first location and the insertion of a
new block of text at the second location.

Fine-grained data modeling in combination with version
management make it possible to detect the shift of a method
(and similar modifications in the structure of documents)
because a method is represented by a unique object and be-
cause objects have an identity.

2.2 Document model

In a fine-grained data model all elements of a UML dia-
gram are modeled as separate objects, for example the doc-
ument itself, all classes, methods, attributes and parameters
of methods. An example of a meta-model of a fine-grained
model for UML class diagrams is shown in figure 2. Be-
tween the object types there are component relationships,
e.g. a document contains classes, a class contains methods



Layout

x
y

specification
name

is_abstract
name
return_type
implementation
is_static
constraints

Methode

Document

name
specifiaction

type

is_static

Attribute

Parameter

typeClass

documentation
is_abstract
position
size

author
name

Association name
default_value

position

Inheritance

Figure 2. Meta model of a fine-grained data model

and attributes and so on. Further kinds of relationships be-
tween object types which represent classes can express in-
heritance, aggregation or association relationships between
classes. All relationships are assumed to be bi-directional,
so that the object structure can be traversed by the soft-
ware engineering tools from the root to the leaves and vice
versa. The object attributes contain data which describes
the classes, methods, etc. Examples are the name or the
type of an element, or layout information belonging to one
diagram. Let us look how to store the class structure given
in figure 1. The object structure shown in figure 3 uses the
meta model from figure 2. Every component of the classes
is represented by an object of the appropriate type.

There are two requirements on software engineering
tools when using a version model for a fine-grained data
model. Firstly, the tools have to modify the syntax tree of
the documents, so that all modifications of the documents
are represented as operations upon the syntax tree. The sec-
ond requirement is that structural changes are done by shift-
ing the objects across the document and not by deleting and
recreating them. The latter would result in new objects with
new identities, which makes it nearly impossible to find the
new position inside the syntax tree because the whole tree
must be searched.

2.3 Versions and configurations of documents

The tools usetool transactions(TTAs) [5] offered by
the repository to operate on the data. The TTAs are long
running transactions, they should not be misunderstood as
transactions in conventional data bases. The TTAs have a
longer run time and slightly modified characteristics [6]. All
modifications which are made in context of a TTA lead to an
automatic versioning of the modified objects and relation-
ships with the restriction that each object and each relation-

ship is versioned only once in a TTA. Each object and each
relationship is versioned independently, thus it has its own
version tree. The automatic creation of versions increases
the probability that the version needed by a user at a later
access actually exists. But this depends on the number of
the executed TTAs and the number of operations executed
within the TTA.

Beside simple modifications the deletion of the objects
or relationships creates new versions but marked as deleted.
When shifting an object from one location to another two
versions of the relationship between the shifted object and
the two origin objects are created. At first a new relationship
between the shifted object and the new origin object is cre-
ated which is marked as ”created because of a shift”. Sec-
ondly a new version of the relationship between the old ori-
gin object and the shifted one is created which is marked as
”deleted because of a shift”. Beside this information refer-
ences to the old and the new origin object are stored. With-
out such information the shift could only be recognized by
comparing the old and the new origin object. This is pos-
sible because one can walk from the shifted object to the
origin object in both versions.

The automatic creation of versions leads to a large num-
ber of object versions. If these versions are recombined ar-
bitrarily by a user, inconsistencies could result. A user can-
not manually select a version of all objects or relationships
because there are too many. It would mean that the user has
to choose the desired version for every element of a UML
diagram, namely all classes, methods, attributes or param-
eters. So it becomes necessary to store consistent versions
together. This is achieved by configurations. A configura-
tion combines all versions of objects and relationships cre-
ated in context of a TTA. We call the configuration which
is currently modified by a TTA theworking configuration.



Panel : Class

add : Method

GUI : Document

has_method

has_class

(a) Before extension

has_classhas_class

GUI : Document

add : Method

Panel : ClassScrollPane : Class Container : Class

has_methodsub_class

(b) After extension

Figure 3. Example of an object structure

Sometimes it is necessary to mark a state of a document as
consistent or as a release version. This is achieved by cre-
ating a configuration manually which is the new working
configuration. The old one is frozen. All further created
versions will be stored in this new working configuration.

: Configuration : Configuration

id = 1.1

: Configuration

id = 2.1

: Configuration

id = 1.3 id = 1.2

succ.of

revisions

variants

succ.of succ.of

Figure 4. Structure of configurations

The basis for accessing versions desired by the user are
the configurations. Therefore abase configurationhas to be
chosen for a TTA which determines the accessible versions.
The working configuration of this TTA is then a direct suc-
cessor of the base configuration. If one chooses a base con-
figuration with one or more direct successors a variant will
be created (s. figure 4). Only the current versions of objects

and relationships are accessible within the TTA. The latest
version could be either currently modified in the working
configuration or it could be a frozen version from the base
configuration or from one of its predecessors. If there are
several versions of an object or a relationship in succeeding
configurations, only the most recent version is accessible.

The configuration without any predecessors is called the
initial configuration; it is created automatically at the be-
ginning of the project and does not contain any data. The
first started TTA uses this configuration as its base configu-
ration.

All configurations having a successor cannot be changed
any more. One can therefore understand the entire configu-
ration structure as a persistent coarse-grained undo-log.

All configurations are stored as persistent objects in the
repository, in order to allow the users simple access, espe-
cially for specifying a base configuration. Furthermore, the
configuration objects can be extended by information about
the executed changes, for example a modification comment.

In contrast to file-based SCM systems there are no ex-
plicit workspaces because all data i.e. the versions are man-
aged by the repository. The repository is the workspace
[3]. Because all tools operate in context of a TTA and all
changes are stored within a configuration, one can imagine
a configuration as a virtual workspace, which is altered by
a TTA. Thus the configurations form a tree of workspaces.
Modifications are only possible at the leaves of the config-
uration graph but not at internal workspaces.

We consider again the example from section 2.1. The
object structure before and after the extension is presented
in figure 5 with a slightly modified UML object diagram
notation. The bordered stereotypes indicate the configura-
tion in which the versions of objects and relationships are
available and thus accessible. Figure 5(a) shows the object
structure created in configuration 1.1 before the extension.
Each object exists only in one version. All relationships
are bi-directional, so that one can walk through the object
structure in any direction, and determine for example the
class in which a method resides by walking from the object
representing the method to the object representing the class.

Figure 5(b) shows the object structure in configuration
1.2 after creating the classesContainer andScroll-
Pane as well as shifting the methodadd into the class
Container . The two new classes are modeled by new
objects. The objects representing the methodadd and the
classPanel are not modified by shifting the methodadd .
Only the relation between these objects is modified. There-
fore a new version of this relation is created, it belongs to
the new configuration 1.2. The old version of this relation
belongs to configuration 1.1 and is not accessible any more
in a TTA based on configuration 1.2 because the relation
between the classContainer and the methodadd is a
direct predecessor of the relation between the classPanel



<<in−Conf:1.1 >>
has_class

<<in−Conf:1.1 >>

Panel : Class

GUI : Document

<<in−Conf:1.1 >>
has_class

add : Method

<<in−Conf:1.1 >>

<<in−Conf:1.1 >>

(a) Before change

Container : Class

add : Method

has_class

GUI : Document

<<in−Conf:1.1 >>

<<in−Conf:1.1 >>

Panel : Class ScrollPane : Class

<<in−Conf:1.2 >>

has_class

sub_classsub_class <<in−Conf:1.2 >>

<<in−Conf:1.2 >>

<<in−Conf: 1.1 >>

<<in−Conf:1.1 >>

<<in−Conf:1.1, del:1.2 >>

<<in−Conf:1.2 >>

has_method
has_method

(b) After change

Figure 5. Object structure in repository

and the methodadd .

3 Logical changes of documents

3.1 Limitations of File-Based Version Manage-
ment

Conventional file-based version management systems
only deal with versions of documents. All versions of a doc-
ument are stored in one big version tree. Single branches
of such a tree represent alternative realizations or they re-
sult from concurrent work. Versions of different documents
which belong together can be labeled with a symbolic name.
It can be used for labeling consistent versions, release ver-
sions or versions created within a task or phase of a project.

One disadvantage is that no additional information can be
stored in the symbolic name, e.g. the task specification. A
possible solution could be to store additional information as
comments on every created version. But this is a bad so-
lution because of several reasons. Firstly, the comment is
stored at every created version and therefore several times.
Secondly, the versions which belong together are not eas-
ily identifiable. And thirdly, it is impossible to specify the
task or phase of a project in advance in which the modifi-
cation has to be done. This has to be done afterwards tak-
ing the risk not to include all versions into the result of a
project phase. The problem increases with the duration of
the changes to complete a task or phase of a project because
a lot of versions of one document are likely to be created.
One symbolic name cannot label all created versions of this
document. Thus different names have to be used, but this is
too complex and error-prone. Another possible solution is
to create a branch and store all versions created in context
of a task in this new branch. But the branches are only num-
bered and the relation between branch number and task had
to be managed externally.

3.2 Design Transactions

One can understand all modifications done to complete a
task or phase of a project as the result of a long transaction.
We call this type of long transactionsdesign transactions
(DTAs). The main difference between DTAs and tool trans-
actions (TTAs) is that a DTA is a logical frame within which
the TTAs are executed. The DTA does not change the docu-
ments directly; all changes are done inside the TTAs which
are executed inside an operating system process. Termi-
nating an operating system process results in terminating a
TTA. In contrast to that a DTA is not bound to an operating
system process and has a longer run time. Because a DTA
is a logical frame for the TTAs all configurations are created
inside it.

Tasks must often be divided into sub-tasks. Therefore
DTAs can have a hierarchical structure. The root DTA
can be mapped to the entire project, which is divided into
sub-projects or sub-tasks. Every sub-project or sub-task is
mapped to a corresponding sub DTA of the root DTA. We
store DTAs as persistent objects in the repository. An exam-
ple of a DTA structure is presented in figure 6. Each DTA
references one or more configuration branches. Only the
latest configuration of a branch is directly referenced. Ev-
ery DTA has a base configuration which determines the ver-
sions of objects and relationships that can be modified. This
configuration must be declared at the time the new DTA is
created. The base configuration references an existing con-
figuration of another DTA. If the new DTA is the root DTA
an empty configuration will be created.

Data about a task such as its specification, involved de-



:DTA :DTA

:DTA
: Configuration

: Configuration : Configuration: Configuration

: Configuration

id = 2

cts = "OOA"

id = 3

cts = "OOD"

sub−dtasub−dta

has−config

id = 3.1

id = 2.2
succ.

has−config

id = 2.1

id = 1

cts = "Project"
id = 1.1

id = 2.3
has−config

succ.

succ.

succ.

Figure 6. Structure of design transactions with configurations

signers etc. must be managed. Every software engineer-
ing process may have additional data. Therefore users can
adapt the DTAs to their needs by declaring subtypes which
add further attributes to the DTA objects.

In summary the DTAs can be used to partition the struc-
ture of configurations and to relate successive configura-
tions to tasks or phases of projects. Furthermore the DTA
concept is not rigidly bound to a software development pro-
cess. In fact the tool developer has the freedom to use the
proposed versioning concept in a wide variety of software
development processes. One option is the use of a process
machine which controls the creation and use of DTAs. An-
other option is to let the developers create DTAs manually.
Besides this it is possible to use one DTA for the entire de-
velopment or for every small task of a project. This flexibil-
ity allows the proposed versioning concept to be adapted to
different process models, e.g. the waterfall model, the spiral
model, or the Unified Process.

4 Related work

Almost all version management systems are file-based,
only a small number of such systems deal with the version-
ing of structured documents. One example is IPSEN [12]:
all versioned documents are modeled as abstract syntax
graphs. A modification within a document results in a new
version of the whole document; this leads to a very large
number of object versions. One improvement on this is the
Unified Model [1] which is based onchange propagation.
The method creates new versions of all objects located at
the path from the modified object up to the root-object of
the document, whenever an object is changed. This leads to
a large number of unused object versions [7] and does not
work with fine-grained data model [8]. Besides the large
number of unnecessarily created versions both systems have
some common limitations. The first concerns the identifica-

tion of structural modifications in documents. The problem
is the absence of a version tree for each object or node in
the syntax tree. Without such a version tree it is not eas-
ily possible to identify structural changes because the entire
document has to be searched for the shifted objects. The
second problem is that all created versions resides in one
big version tree; therefore one cannot relate tasks to ver-
sions of objects created due to finishing this task.

Ensemble [9] [10] uses another approach of fine-grained
versioning of structured documents. Every object has its
own version tree called the local version tree. The consis-
tency between versions of different objects is ensured by a
global version tree which references the object versions for
each document. If there are references between two doc-
uments, the global version trees of these documents con-
tain references to one another. The main focus of Ensemble
is the improvement of incremental algorithms. This model
does not deal with the determination of differences, merging
of versions, or relating modifications to tasks.

The systems presented so far deal with arbitrarily struc-
tured documents. The version model DIVERS presented by
Rho and Wu [8] is oriented towards the versioning of soft-
ware diagrams. Fine-grained modeling is assumed, thus a
node of a diagram is represented by an object. Instead of
change propagation the authors suggest using a log of the
performed editing operations. However they do not offer a
method to create configurations of object versions belong-
ing together and there is no method of relating changes and
phases of a project. Furthermore the access to old diagram
versions is not efficient because old versions have to be cal-
culated using the log of editing operations. If the version
tree of a class or a method shall be shown, the entire log
must be searched.

Most SCM systems mentioned so far are state-based, i.e.
the objects or files are versioned as a whole. In contrast to
this change-based versioning is based on the idea of com-



bining a group of modifications in different files into one
logical change. This model has some advantages [11] over
state-based versioning. It corresponds better to the way
how developers think. Another advantage is that it groups
modifications in several components. This avoids errors
when resetting modifications because all concerned com-
ponents are known. However, the authors are not aware of
a change-based version management system which is ori-
ented towards fine-grained documents.

5 Conclusion and future work

The model presented here has the advantage that the
modifications made for the solution of a given task or in
context of a project phase can be related to configurations.
The structure of configurations can be partitioned by design
transactions (DTA). These can be used to connect the SCM
system to a change management system. Because one can
create the DTAs hierarchically, it is flexible and not bound
to a specific software development process. The documents
are fully under version control for the entire development
cycle of a product.

Because new configurations are automatically created,
even in case of minor modifications of objects or relation-
ships, the entire history of documents’ modifications is doc-
umented. One example is the shifting of a method between
two classes.

Further work addresses the copying of objects. A copy of
an object is a new part of a document with its own version
tree which is unrelated to the version tree of the original
object. Therefore a relationship must be created between
these two version trees to express the copy-of relation.

The fundamental functionality to create versions is im-
plemented and working. It has been integrated into the tool
environment PISET [5]. Because a kind of tool transac-
tions is already used inside PISET, the versioning function-
ality could be integrated without considerable efforts. The
tools had to be extended by functions which create and se-
lect configurations. The next step is to realize a mechanism
to compute differences between versions and to merge dif-
ferent versions to a new one.

Acknowledgments

We would like to thank our colleagues with whom we
discussed the ideas that led to the present paper and, in par-
ticular, M. Monecke and M. Welle.

References

[1] U. Asklund, L. Bendix, H. B. Christensen, and B. Magnus-
son. The unified extensional versioning model. In J. Es-

tublier, editor,Proceedings of the 9th International Sym-
posium on Software Configuration Management (SCM-9),
Toulouse, France, September 5-7, 1999, volume 1675 of
Lecture Notes in Computer Science (LNCS), pages 100–122,
Berlin - Heidelberg - New York, 1999. Springer–Verlag.

[2] R. Conradi and B. Westfechtel. Version models for soft-
ware configuration management.ACM Computing Surveys,
30(2):232–282, June 1998.

[3] J. Estublier and R. Casallas. The Adele configuration man-
ager. In W. Tichy, editor,Configuration Management, pages
99–133. John Wiley and Sons, Ltd., Baffins Lane, Chich-
ester, West Sussex PO19 1UD, England, 1994.

[4] U. Kelter. H-PCTE – a high-performance object manage-
ment system for system development environments. InPro-
ceedings COMPSAC Illinois, September 23-25, pages 45–
50. IEEE Press, 1992.

[5] U. Kelter, M. Monecke, and D. Platz. Constructing dis-
tributed SDEs using an active repository. InProc. 1st Intl.
Symposium on Constructing Software Engineering Tools
(COSET ’99); 17.-18.05.1999, Los Angeles, CA, pages 149–
158, 1999.

[6] D. Platz. Ein Werkzeugtransaktionskonzept für Objekt-
Managementsysteme als Basis von Software-Entwicklungs-
umgebungen. Shaker Verlag, Juni 1999. Dissertationsschrift,
Praktische Informatik, Universität-Gesamthochschule
Siegen.

[7] R. Ramakrishnan and D. J. Ram. Modeling design versions.
In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L.
Sarda, editors,VLDB’96, Proceedings of 22th International
Conference on Very Large Data Bases, September 3-6, 1996,
Mumbai (Bombay), India, pages 556–566. Morgan Kauf-
mann, 1996.

[8] J. Rho and C. Wu. An efficient version model of software
diagrams. InProc. 5th Asia-Pacific Software Engineering
Conf., 2-4 December 1998 in Taipei, Taiwan, ROC. IEEE
Computer Society, Dec. 1998.

[9] T. A. Wagner and S. L. Graham. Integrating incremental
analysis with version management. InProceedings of ESEC
‘95 - 5th European Software Engineering Conference. Sit-
ges, Spain. 25-28 Sept. 1995, pages 205–18, Berlin - Hei-
delberg - New York, 1995. Springer–Verlag.

[10] T. A. Wagner and S. L. Graham. Efficient self-versioning
documents. InProceedings IEEE COMPCON 97. Digest of
Papers. San Jose, CA, USA. IEEE Comput. Soc. 23-26 Feb.
1997., pages 62–67. EEE Comput. Soc. Press, Los Alamitos,
CA, USA, 1997.

[11] D. W. Weber. Change sets versus change packages: Compar-
ing implementations of change-based SCM. In R. Conradi,
editor,Proceedings of the 7th Workshop on System Configu-
ration Management (SCM-7), at ICSE’97 Boston, MA, USA,
May 18-19, 1997, volume 1235 ofLecture Notes in Com-
puter Science (LNCS), pages 25–35, Berlin - Heidelberg -
New York, 1997. Springer–Verlag.

[12] B. Westfechtel.Revisions- und Konsistenzkontrolle in einer
integrierten Softwareentwicklungsumgebung, volume 280 of
Informatik-Fachberichte. Springer–Verlag, Berlin - Heidel-
berg - New York, 1991.


