GPU-based Interactive Visualization

Nicolas Cuntz

Martin Lambers
Christof Rezk-Salama
Andreas Kolb

Abstract This chapter introduces basic visualization techniques conforming
to the parallel architecture of graphics processing units (GPUs). The efficient
use of modern graphics hardware is the key to interactivity, which is one of
the main requirements of visualization applications. Due to the peculiarities
of GPU programming, one must carefully design algorithms in order to ex-
ploit the GPU’s potential. The visualization method also strongly depends
on the visualized data set. Accordingly, the choice of suitable data structures
is an important aspect. In our overview, we concentrate on space-discrete
structures, namely 2D /3D grids and particle systems.

The presented techniques are demonstrated by means of two examples. The
first one addresses the visualization of SAR, (Synthetic Aperture Radar) im-
ages and thus makes use of 2D grid techniques, the second one covers flow
visualization using particle- and grid-based time surfaces. The latter exam-
ple also shows the benefit of the combination of both (grid and particle)
structures.

Key words: ACM Categories: 1.3.1 Hardware Architecture (Graphics pro-
cessors), 1.3.6 Methodology and Techniques (Graphics data structures and
data types)

1 Introduction

The mission of any type of visualization process is finding answers to very
specific questions about the underlying data. The vast amount of information
contained in a typical data set, however, cannot be displayed in a static image.
In order to find an answer to his question, the domain scientist must analyze

Institute for Vision and Graphics, University of Siegen, Germany http://www.ivg.
informatik.uni-siegen.de

N. Cuntz, M. Lambers, C. Rezk-Salama, A. Kolb

the data set by interactively exploring it. He wants to have full control over
the visualization system in real-time. The application should allow him to
navigate through the data and to modify any visual parameter at runtime,
while being provided with an immediate visual feedback of his operations.

Ever since the field of visualization emerged as a scientific discipline, the
community has made efforts to exploit the high computational power of
graphics workstations in order to visually display scientific data. Driven by
the mass market for 3D computer games, consumer graphics hardware has
become comparable to dedicated workstations in terms of performance in
the late 90ies. The high level of programmability soon lead to off-the-shelf
graphics boards which would easily outperform most of the expensive graph-
ics workstations of that time.

The speed at which new and more powerful computer hardware emerges
is breathtaking. If we cannot solve a problem today, due to a lack of com-
putational power, bandwidth or storage capacity, we may be enticed to say
we only have to wait a few months until the required capabilities exist. This,
however, is naive thinking, neglecting the fact, that the size of the problem
will scale as fast or even faster than the resources available for solving it.
Not in spite of, but due to the fast evolution of graphics hardware we must
continue developing efficient algorithms to exploit the available resources.

Probably the first rendering method for visualizing 3D scalar data, which
can be considered a GPU-based technique was proposed in a technical report
by Wilson et al. [28]. The authors utilize hardware-accelerated 3D textures
for fast spatial interpolation. At SIGGRAPH 1999, Westermann and FErtl
showed how to efficiently exploit graphics workstations for volume visual-
ization [26]. The first volume rendering approach tailored to consumer-level
graphics hardware was presented by Rezk-Salama et al. in 2000 [18]. At that
time, flow visualization was difficult to perform on graphics hardware due
to the lack of floating point operations. Texture hardware was utilized for
texture advection [25] and image-based flow visualization [23]. Today, the
GPU has evolved into a flexible general purpose stream processor which has
successfully overcome almost all of the restrictions on programmability from
the past.

Today’s GPUs consist of multiple parallel processing pipelines and are
programmable with high level languages. Research results of the recent years
have shown that they are ideal for implementing real-time visualization sys-
tems. The programming model of a parallel GPU, however, is fundamentally
different from the common CPU programming model. Data structures and
algorithms have to be carefully designed.

Parallel computing is not a new concept. It was there long before the first
graphics processor. Before programmable graphics processors became pop-
ular, however, parallel programming always was a difficult task, mastered
only by a few people who had access to parallel computers. Although mod-
ern GPUs are often applied to non-graphics computing today, we believe
the programming of the graphics pipeline with its vertices and pixels still

GPU-based Interactive Visualization

is the easiest access and the key to understanding parallel processing. This
chapter explains fundamental techniques to leverage the power of GPUs for
interactive visualization, focussing on general data structures and processing
paradigms, and examples.

2 GPU Programming

The GPU has been designed to allow fast image synthesis for complex scenes
including large polygonal geometries and complex illumination models. The
pipeline architecture of the GPU with its dedicated memory of high band-
width makes it ideal for computations on regular grids or discrete sets such
as particle systems. However, attaining maximum performance requires un-
derstanding of the underlying architecture. For microprocessors the cost of
communication usually is considerably higher than the cost for computation.
When programming GPUs, it is thus mandatory to be aware of the streaming
model, the functional units and the memory cache hierarchy. In this section,
we will focus on the main GPU aspects related to interactive visualization of
large or computationally expensive data sets.

2.1 The Graphics Pipeline

The GPU pipeline is outlined in Figure 1. The two most important stages of
the classic pipeline are vertex processing and fragment processing. In order
to visualize a given data set, it must be converted into a scene description,
which comprises vertex data and texture images.

The first stage in the pipeline after the GPU receives input data is the
vertex stage. The vertex processor traditionally calculates linear transforma-

———— local
memory

data set

D

:E v P4
T~ vertex geometry rasterizer fragment

vertex data
processor — processor __- processor

frame buffer

Fig. 1 The GPU pipeline

N. Cuntz, M. Lambers, C. Rezk-Salama, A. Kolb

tions of the individual vertices, such as the well-known mapping from model
coordinates to camera coordinates, and finally the projective transformation
of the viewing frustum into the canonical view volume. The programmable
vertex processor allows us to replace this fixed-function computation by a
customized vertex shader which may include memory access to additional
data through texture lookups. At the end of vertex processing, the vertices
are assembled into geometric primitives, such as triangles, lines, or points
and handed to the rasterizer.

Afterwards, the rasterizer decomposes the geometric primitives into frag-
ments with the size of a pixel. The fragment program is executed once for
each individual fragment and may access additional information from tex-
ture memory. Modern vertex and fragment processors support dynamic flow
control, which means that the respective programs may contain loops and
conditional branches. After the fragment stage, the shaded fragments are
sent to the frame buffer, where raster operations ensure that only visible
fragments are drawn and transparent fragments are blended with existing
frame buffer pixels.

In order to attain maximum performance, all stages of the pipeline must
be kept busy. This leads us to one of the main drawbacks of the classical GPU
pipeline: Effective load-balancing must be ensured by the programmer. For
scenes with a large overdraw due to a high depth complexity, the fragment
stage will limit the overall performance. For geometry with a huge number
of small triangles, the vertex processor will most likely be the bottleneck. To
tackle the problem of load-balancing, the new generation of graphics hard-
ware abandons the classic GPU pipeline and replaces it by a unified shader
model. Fragment and vertex processors are now functionally identical and a
scheduler takes care of distributing the computational load among the avail-
able processing units.

Another significant improvement of the new generation of GPUs is an ad-
ditional pipeline stage, which is called the geometry shader. This processing
unit is inserted between the vertex processor and the rasterizer. It receives
one geometric primitive at a time, but may output several primitives simul-
taneously. This geometry shader removes the inability of the classical GPU
pipeline to generate a variable set of geometric primitives on the fly. In com-
bination with the unified shader model the stream output of the geometry
shader may be written back to local memory without passing through the ras-
terization stage. With the geometry shader adaptive tessellation techniques
and subdivision surfaces can be implemented efficiently and completely on
the GPU.

GPU-based Interactive Visualization

2.2 Data Streaming and Multipass Rendering

For practical implementations, the computational power of the GPU may
be utilized for many tasks that are not related to image synthesis, such as
numerical integration of particle velocities, collision and intersection calcu-
lation. The result of such computation will not be directly displayed on the
screen and will thus be rendered into off-screen targets. Such GPU-based
non-graphics related methods are classified as general-purpose GPU program-
ming, and are pushed by a large number of works and a constantly growing
community known as GPGPU [17].

An important aspect of GPGPU is the use of textures as equivalent to
arrays in CPU programming languages. Current GPUs support 1D, 2D and
3D textures. The task of updating a 2D texture is usually done by rasterizing
a primitive that covers the texture dimensions. A fragment program defines
the actions that are necessary to compute an output pixel and writes the
result to an off-screen render target. This way, complex operations can be
realized on arbitrary data stored in textures [21].

It is not unusual to perform multiple off-screen passes through the graphics
pipeline before the final image is generated. Each render pass has a designated
portion of local memory to write to, which are called render targets. Off-screen
render targets can be created as so-called frame buffer objects. They can con-
tain multiple color layers to which the fragment processor writes simulta-
neously. The render targets written to in previous passes may be accessed
as texture images from within the current fragment or vertex program. The
flexible setup of off-screen render targets allows us, for example, to directly
render into the faces of an environment cube or into slices of a 3D texture.
Sophisticated applications may re-interpret the content of the render target
and use it as vertex data in a subsequent pass.

The parallel (streaming) architecture of the GPU yields some important
restrictions for the programmer: input and output data are strictly separated,
i.e. reading a data element that is written during a render pass leads to
undefined behavior. This input-output disjunction is a typical requirement
for streaming algorithms. The computation which is performed on all distinct
output elements is called a kernel. The number of texture fetches within one
kernel is limited by bandwidth and speed.

2.3 Scatter/Gather

GPU programmers distinguish between two types of indirect memory access
operations, gather and scatter [17]. According to this scheme, a gather oper-
ation reads multiple values at variable locations in order to create a single
output element. In contrast, a scatter operation writes multiple values at
variable locations.

N. Cuntz, M. Lambers, C. Rezk-Salama, A. Kolb

In principle, GPUs offer convenient support for the gather scheme: A
gather operation can be implemented by performing dependent texture
fetches, i.e. by reading the texture information at arbitrary texture coor-
dinates which can be the result of prior computations. For the counterpart,
scattering, one would like to use a dependent texture write operation. Un-
fortunately, an output element (the current fragment) has a fix location pre-
determined by earlier stages in the graphics pipeline, i.e. the vertex and the
geometry program. There is no way on today’s GPUs to change the output
location within a fragment program. Instead, programmers must circumvent
this limitation in order to achieve data scattering:

e Rearrange programs in order to solve the problem in terms of gather

e Use multiple render targets (MRT) in order to scatter the output into a
restricted number of output arrays (8 at the time of writing this book)

e Use the vertex processor in order to move the output location — following
this approach, simple marker geometries (e.g. point sprites) which enclose
a certain set of fragments are rendered.

Each of these methods yields its own advantages and drawbacks, thus a pro-
grammer must carefully decide which technique is appropriate for a given
problem. Rearrangement usually results in splitting into several rendering
passes, which can be a difficult task regarding code clarity and performance.
Multiple render targets require a very strict memory model consisting of a
stack of equally-sized 2D textures. The output is written into all textures
simultaneously, but at one common location. This restriction can result in
inefficient data management. Using marker geometries splits the control flow
into independent program instances for all fragments, thus making data in-
terchange difficult.

The restrictions regarding scatter operations make general tasks such as
sorting or the use of advanced data structures difficult, thus visualization
systems must cope with these difficulties as well. A detailed description of
aspects related to GPU memory access can be found in [22].

3 Data Management

In general, visualization applications require means for fast data traversal and
large data sets, e.g. for load balancing if the data does not fit into graphics
memory or even main memory (out-of-core). The data storage is strongly ap-
plication dependent. In the following, the most important discrete structures,
uniform 2D/3D grids and particle sets, are presented.

GPU-based Interactive Visualization

3.1 Resolution Hierarchies

When visualizing a large 2D data set, it is not necessary (and often impos-
sible) to hold the complete data set in graphics memory. For example, if the
user visualizes a small part of a large 2D data set, it is often sufficient to store
and process only the essential part of the data on the graphics hardware. In
other cases where a large region of the data has to be visualized, the process-
ing of a downscaled version might suffice because of the fixed resolution of
the display.

Tiling pyramids provide a resolution
hierarchy that allows to keep only the
currently necessary subset of the data in
graphics memory and load other parts
quickly on demand. In order to build
a tiling pyramid, the data is divided
into tiles of a fixed size (see Fig. 2). At Fig. 2 A tiling pyramid for a 2D data
the lowest pyramid level, the data set set.
is stored in its original resolution. Each
higher pyramid level halves the resolution in both directions, and therefore
contains one quarter the number of tiles of the lower level. Using tiling pyra-
mids, the application can decide which subset of tiles matches the current
visualization requirements best, depending on the zoom level and the region
of interest. This way, only the corresponding subset is stored and processed
on the graphics hardware.

A tiling pyramid needs to be built only once and can be stored on hard
disk for later reuse. Tiles can be cached in main memory. Both the loading
of tiles from hard disk to main memory and from main memory to graphics
memory can be done asynchronously, i.e. without the need to halt the in-
teractive visualization interface. This allows proactive tile loading based on
assumptions about the users next actions, so that data is readily available
when needed.

Tiles can be extended with additional information from neighboring tiles
to allow data processing techniques on local neighborhoods (see Sec. 4.1).
In addition to visualization of 2D data sets, applications of tiling pyramids
include various level of detail (LOD) techniques, e.g. for terrain visualiza-
tion [30].

Similar approaches can be applied to 3D data sets.

3.2 Spatial Hierarchies

Hierarchical data structures are frequently used to implement fast data
traversal and multiresolution techniques, e.g. for volume rendering [3]. Oc-
trees can be used to accelerate iso-surface reconstruction by skipping regions

N. Cuntz, M. Lambers, C. Rezk-Salama, A. Kolb

which are not intersected by the iso-surface [27]. Advanced techniques for
texture-based volume rendering can also use octrees for level of detail tech-
niques [12,24].

Octrees are ideal for implementing effective empty-space leaping and adap-
tive sampling techniques on the GPU with both raycasting and slicing ap-
proaches. GPU-based raycasting of iso-surfaces inside large volume data sets
can clearly benefit from octrees [5]. The usage of octrees for texture slicing
can cause a significant bandwidth load, due to the large amount of vertex
data which must be updated and transferred for each frame. This load can
significantly be reduced by implementing the intersection calculation as a
vertex program [19].

For interactive rendering of large data sets, compressed 3D data or time
series can be decoded by the GPU at run time. Besides the hardware na-
tive texture compression schemes such as S3TC, a number of different tech-
niques have been proposed including wavelet compression [7], packing tech-
niques [15], and vector quantization [20].

3.3 Particle Sets

Particle sets have many applications in computer graphics. Especially in flow
visualization, particle trajectories give an intuitive impression of the motion
within the visualized medium. Furthermore, particles are frequently used to
model physical behavior like fluid dynamics.

The GPU is a very well-suited tool for particle processing. This has been
shown by numerous works in the past. For example, Kriiger et al. have
demonstrated a completely GPU-based flow visualization system [11]. The
basic technique for GPU-based particle tracing has been presented in 2004 [8,
10].

/N
i eintegraﬁion —> position
array
E—
output
E I
[=%
£
velocity
array .
simulation visualization

Fig. 3 Parallel processing of a particle set

The main idea of GPU-based particle systems is to represent the particle
system by a 2D texture with every texel corresponding to one particle location
in 3D space. Particles are moved by processing all texels during one single
render pass. This is done as described in Sec. 2.2. The rasterization initiates a

GPU-based Interactive Visualization

fragment program which performs a time integration (e.g. using a high order
Runge-Kutta scheme) and other application specific tasks. See Fig. 3 for an
overview of GPU particle tracing.

In contrast to grid structures, there is no spatial coherence between one
texel and its neighborhood. Techniques for particle coupling have been intro-
duced for fluid dynamics [6,9], but it is still a difficult task which typically
involves a hierarchical structure or particle sorting.

4 2D and 3D Data Processing

This section presents general processing techniques that can be used in the
context of GPU-based interactive visualization. This includes techniques for
data preprocessing with interactive parameter adjustment, e.g. denoising or
smoothing, as well as techniques that manipulate objects that are to be visu-
alized, e.g. particle or surface manipulation techniques. The presented tech-
niques make heavy use of the data structures described in Sec. 3.

4.1 Tile-based 2D Data Processing

In the 2D case, data is usually divided into tiles, stored as textures in graphics
memory (see Sec. 2). Resolution hierarchies as presented in Sec. 3.1 can be
used to manage the set of tiles.

Data preprocessing tasks such as denoising or smoothing can be imple-
mented on the GPU. This allows to integrate the adjustment of preprocess-
ing parameters into the interactive interface, thereby making the visualization
system more flexible and powerful.

Processing the image data can be performed by a fragment program as
described in Sec. 2.2. With tile-based data processing, all operations must be
local, i.e. the fragment program can only access the subset of data that is
stored in the current tile. This has two consequences.

First, in order to allow fragment programs to work on local neighborhoods
even at border pixels, each tile needs to be extended with a sufficiently wide
border that contains information from neighboring tiles. This border is only
used to provide neighborhood information and not for visualization. For ex-
ample, to be able to compute the 3x3 Gauss filter accurately without using
special border handling, the tiles need to be extended with a 1 pixel wide
border.

Second, special arrangements are necessary to allow the fragment programs
to use global information about the data set, e.g. its minimum or maximum
value. Generally, there are three possibilities, the choice of which depends on
the individual application:

N. Cuntz, M. Lambers, C. Rezk-Salama, A. Kolb

1. Compute the global information in a preprocessing step before the inter-
active visualization, e.g. while building a tiling pyramid.

2. Guess the global information based on a local neighborhood.

3. Introduce an additional user-controlled parameter that replaces the global
information.

4.2 Sliced 3D Grids o
|
. . /| O_&Zg ‘
Processing 3D textures requires render-

. . @ 7]
to-texture functionality. Current GPUs O_I_ . ‘ " 2 passes
support rendering to a fixed set of slices, ‘ L
however, there is no way to update the 7]
whole texture in one single pass. A fre- A

1O
—0

Q

N

quent solution for this problem is the
mapping of the 3D grid to a stack of ‘ O—
tiled 2D textures. Using this structure,
any part of the texture can be written
by rendering an appropriate primitive. Fig. 4 Usage of MRT for a 3D kernel

It is possible to use MRT (see
Sec. 2.3) in order to write multiple fragments simultaneously at a specific
location. This MRT scheme can be used for optimizing the number of tex-
ture fetches within a kernel in cases where multiple fragments share common
input data (see [9]). Fig. 4 demonstrates the advantage of this approach on a
simple 3D grid kernel evaluated at two adjacent positions (marked in green).
On the top, two (adjacent) kernel instances are processed in two indepen-
dent passes (14 texture fetches); on the bottom, both instances are combined
within a single pass with two render targets (12 texture fetches). Using the
MRT kernel, less texture fetches are necessary. This benefit becomes more
relevant the more render targets are used.

When surfaces are represented in a uniform 3D grid, narrow band ap-
proaches [14], e.g. similar to traditional virtual memory schemes, can signif-
icantly reduce the memory consumption and the run time.

.=

(5 1 MRT pass

4

4.3 Hybrid Eulerian-Lagrangian Techniques

A quite new and challenging approach is the coupling of grid (Eulerian) and
particle (Lagrangian) approaches. The main challenge is the data transfer
between both representations, which requires specific algorithmic approaches.

One important example for this scheme is the particle level set (PLS)
approach [4] for surface representation, which is frequently used for fluid
dynamics. This method is also well-suited for an arbitrary flow visualization

GPU-based Interactive Visualization

Fig. 5 Zalesak’s sphere, 360° rotation. From left to right: Initial, rotated without and
with PLS correction. Grid resolution: 1283, 524288 particles, > 10 FPS (source: [2])

by means of time surfaces. It has been shown that the PLS technique can
be ported to the GPU in a very efficient way [2]. In the following, the main
ideas are outlined.

The key idea of the level set method in general is the representation of an
object’s boundary, the interface I, by the iso-contour I(¢) := {x € D|¢(x) =
0} of a level set function ¢ : D — R defined in a higher dimensional domain
D. Usually, the level set is initialized to be a signed distance function. The
motion of the interface is performed by evolving ¢ within a velocity field.

Enright et al. [4] use a fast first order accurate semi-Lagrangian method
in their PLS method in order to evolve ¢. Without correction, this leads to
high inaccuracies already after few time steps, because the committed errors
quickly accumulate, generally resulting in a significant volume loss. The PLS
method aims to prevent the numerical diffusion caused by the advection by
adding a particle tracing approach. Particle tracing is much more accurate
than the grid-based advection of the level set, especially if a high order Runge-
Kutta integration is used. Thus, it is reasonable to rely on the particles to
correct the interface representation. For this purpose, (signed) particles are
placed near to the interface. The correction step selects a set of particles and
propagates a local level set surrounding each particle into a new (corrected)
level set. The result is known to be comparable or even superior to high order
grid advection schemes when using a large set of particles. Fig. 5 shows an
example geometry (Zalesak’s sphere) frequently used for the demonstration
of PLS.

The GPU-based PLS system presented by Cuntz et al. [2] uses a distance
transform in order to perform an efficient and easy reseeding of particle lo-
cations around the interface. This step can be seen as a grid-to-particle in-
terchange. On the other hand, the correction step involves scattering marker
geometries into the level set by making use of min-max blending, thus consti-
tuting particle-to-grid interchange. This GPU interpretation of PLS turned
out to run about 10x faster than the CPU-based PLS1ib by Mokberi and
Faloutsos [16] while achieving a slightly higher precision.

Another example for hybrid particle-grid systems is neighborhood search-
ing in particle sets as it is presented in [9] and [6], where data interchange
between particles and the grid resembles the mentioned GPU-based PLS
technique by Cuntz et. al.

N. Cuntz, M. Lambers, C. Rezk-Salama, A. Kolb

e
) o ot =01 oy
ot | sty | Pase | | (ierpote Harpitide] | iensty | [Prase | | [intrpolate

Global DRR.

[og - —
i ampiuce hshikhminiedan B

T

P
Vacampitute (125000 |2] Testod o0

—
Prscde [im0n]3]

LocalDRR

Pseudo Color

Sant To Ground

SR

[Pas.- jame. [Phase: FRes [Pos. 1859, 10028 |Amp. 0000126416 _|Phase: 0 RCS: 2008225 07

Fig. 6 Interactive visualization of SAR data with interactive parameter adjustment (raw
data courtesy of FGAN, processed at ZESS/IPP).

5 Example: SAR Data Visualization

Synthetic Aperture Radar (SAR) is a technique to acquire ground images
independent of weather and daylight conditions, using airborne or spaceborne
radar platforms. Challenges of interactive SAR data visualization include
efficient memory management, reduction of multiplicative speckle noise, and
mapping of high dynamic range SAR data to the lower dynamic range gray
levels of typical display devices. In this section, we show how tiling pyramids
and 2D data processing techniques can be combined to solve these problems.

5.1 Data Management

A SAR image pixel consists of a 32bit floating point value that stores the
amplitude of the complex reflectivity information (the phase is not used for
2D visualization). Typical images contain 16384 x4096 pixels, which results
in a raw data size of at least 256 MB, but much larger images are common.
Tiling pyramids (see Sec. 3.1) are well suited to manage this amount of
data, because they allow to store only the currently required data subset in
graphics memory, process this data on the GPU, and load other data parts
quickly on demand. The tiling pyramid is built in a non-interactive prepro-
cessing step and stored on hard disk. Various global values are computed from
the data during this step, for example the minimum and maximum ampli-
tude value. These values are needed later by a variety of processing methods,
including statistic approaches such as the Xiao despeckling filter [29].

GPU-based Interactive Visualization

The currently required subset of tiles is deduced from the current region
of interest (ROI), which is the area of the data that the user wants to display
(see Sec. 3.1). This subset of tiles is loaded into graphics memory, processed
according to the currently selected methods and their parameters, and finally
displayed on the screen. This process is continuously repeated to acknowledge
user interactions.

5.2 Data Processing

The selected subset of tiles is processed using a tile-based 2D data processing
chain as described in Sec. 4.1. The processing chain is determined by the
currently selected processing methods. Its most important components are
despeckling and dynamic range reduction.

Most despeckling filters for SAR images manipulate a pixel based on sta-
tistical properties of a local neighborhood. Such filters usually need two pro-
cessing steps to compute the local mean and variance in a separable manner
and to manipulate the current pixel based on this information. Other filter
types may require more steps.

Dynamic range reduction methods often use a fixed function to transform
amplitude values to gray levels. Such global methods are implementable using
a single processing step. More complex local methods adapt themselves to
the properties of local neighborhoods to achieve higher local contrast and
better preservation of details. This usually requires more processing steps.

The fragment programs that implement the individual processing steps are
provided with user-adjusted processing parameters. In addition, they need
to know the pyramid level from which the tiles were taken, so that they
can adapt the size of local neighborhoods to the different resolution levels if
necessary. Furthermore, global information that was computed while building
the tiling pyramid can be used.

Each processed tile is finally displayed at the appropriate position.

5.3 Results

The SAR visualization application shown in Fig. 6 allows both interactive
navigation through the data and interactive adjustment of processing param-
eters [13]. Interactive frame rates can be achieved even for complex processing
methods and large display resolutions.

N. Cuntz, M. Lambers, C. Rezk-Salama, A. Kolb

Fig. 7 Left: Purely particle-based time surface. The particles are rainbow-colored accord-
ing to their velocity. The red color denotes a high magnitude. Right: Purely grid-based
time surface. Both: A spherical shape is moved in an unsteady flow (raw data: courtesy of
DKRZ Hamburg).

Fig. 8 First row: Purely particle-based time surface, level set time surface, PLS-based
time surface. Second row: Direct comparison of particles and level set (left), of particles
and PLS (right). (raw data: courtesy of DKRZ Hamburg)

6 Example: Particles, Flow Visualization

Flow visualization has various applications. For example, in the context of
climate research, geophysical flows (e.g. atmospheric or oceanic circulations)
are simulated and then visualized in order to analyze the result [1]. Interac-
tive flow exploration is an intuitive way to understand climate phenomena,
very different to statistical methods or precomputed and thus uncontrollable
animations.

The application discussed in this section demonstrates the particle- and
grid-based techniques discussed in Sec. 3.3 and Sec. 4.2. A flow volume, more
precisely, a time surface is moved within an unsteady flow. The visualization
starts with an initial shape (here, a sphere is used). Its surface is given as
a closed boundary. Then, the object is distorted during multiple animation
steps. Fig. 7 shows two differently generated time surfaces. The left side has

GPU-based Interactive Visualization

been obtained by an accurate second order Runge-Kutta time integration of
particles located on the initial surface. On the right side, one can see the
result of a grid-based level set advection after the same number of animation
steps.

The difference between both approaches is pointed out in Fig. 8. The first
image shows that particle integration tends to produce sparsely populated
regions. In the example shown, the particles are pushed away from the twirl’s
center, resulting in a hole without particles. The second image shows a prob-
lem inherent to level set advection. Surface features are blurry and a volume
loss occurs due to numerical diffusion. The effect is clear when comparing
the particle trail in the upper right part with the corresponding level set
part. This is shown in a rendering of both techniques in the second row (left
image).

The advantages/disadvantages of purely grid-based and purely particle-
based techniques for flow visualization are listed in the following overview:

Purely particle-based

+ The system is very fast due to parallel particle processing. A high num-
ber of particles can be traced at interactive frame rates (over 1000,000
at > 60 FPS)

— Moving the particles can result in inhomogeneous distribution. It is
necessary to reposition the particles during visualization in order to
focus interesting features of the flow. When visualizing a time surface,
the topology is not necessarily maintained due to unspecified regions.

Purely grid-based

4+ The implementation is very straight forward, and fast if combined with
a narrow band approach for surface representation.

— Advection suffers from numerical diffusion. This turns into an accumu-
lating volume loss in the level set representation.

— The visualization of the voxel grid is difficult and it generally requires
a volume rendering approach.

The PLS approach described in Sec. 4.3 combines both, the particles and
the grid, in order to reduce topological problems and numerical errors. One
can observe on the third image in Fig. 8, that the volume loss of the level
set volume is compensated. In direct comparison with the particle-based ap-
proach (second row), the PLS volume shows more surface details.

6.1 Results

Both particle and grid approaches can be efficiently ported to the GPU. This
opens the door to various interactive flow applications, including particle

N. Cuntz, M. Lambers, C. Rezk-Salama, A. Kolb

tracing techniques and volume-based visualization. Combining particles and a
grid according to the PLS technique unifies the advantages of both structures.

7 Summary

Interactive visualization applications require high computing power and a
large memory bandwidth to process large amounts of data. Today’s GPUs
can be used to meet this challenge. It is, however, mandatory to be aware of
the underlying architecture to make full use of the GPU’s potential.

We have examined the different functional units of the GPU which al-
low complex and flexible general purpose processing of the data. The data
stream model of the GPU imposes some restrictions on data structures and
algorithms. Most notably, input and output data are strictly separated, and
scatter operations are not easily implemented.

Data management techniques for fast traversal of large data sets must be
designed to fit the GPU’s concepts. We have explained techniques for the most
important discrete structures, uniform 2D /3D grids and particle sets, as well
as data processing methods that use and manipulate such structures. This
includes preprocessing tasks like denoising or smoothing as well as particle
and surface manipulation techniques.

We have presented two real world examples of visualization systems. These
examples combine the techniques presented in this chapter to visualize com-
plex and large data sets with a high degree of interactivity.

References

1. N. Cuntz, M. Leidl, A. Kolb, C. Rezk-Salama, and M. Boéttinger. GPU-based dy-
namic flow visualization for climate research applications. In Proc. Simulation and
Visualization, 2007.

2. N. Cuntz, R. Strzodka, and A. Kolb. Parallel particle level set method on the GPU.
Sym. on Interactive 3D Graphics & Games, Seattle, Poster-Session, 2007.

3. K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama, and D. Weiskopf. Real-Time Volume
Graphics. AK Peters, 2006.

4. D. Enright, R. Fedkiw, J. Ferziger, and 1. Mitchell. A hybrid particle level set method
for improved interface capturing. J. Comp. Phys., 183(1):83-116, 2002.

5. M. Hadwiger, C. Sigg, H. Scharsach, K. Biihler, and M. Gross. Real-time ray-casting
and advanced shading of discrete isosurfaces. In Proc. Eurographics, 2005.

6. T. Harada, S. Koshizuka, and Y. Kawaguchi. Smoothed particle hydrodynamics on
GPUs. Computer Graphics International, 2007.

7. 1. Ihm and S. Park. Wavelet-based 3D compression scheme for very large volume data.
In Proc. Graphics Interface, 1998.

8. P. Kipfer, M. Segal, and R. Westermann. Uberflow: A GPU-based particle engine. In
Proc. Graphics Hardware, pages 115-122, 2004.

9. A. Kolb and N. Cuntz. Dynamic particle coupling for GPU-based fluid simulation. In
Proc. 18th Symp. on Simulation Technique, pages 722—727, 2005.

GPU-based Interactive Visualization

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-based simulation and collision
detection for large particle systems. In Proc. Graphics Hardware, 2004.

J. Kriiger, P. Kipfer, P. Kondratieva, and R. Westermann. A particle system for
interactive visualization of 3D flows. IEEE Trans. on Vis. and Comp. Graph., 11(6),
2005.

E. LaMar, B. Hamann, and K. Joy. Multiresolution techniques for interactive texture-
based volume visualization. In Proceedings of IEEE Visualization, 1999.

M. Lambers, A. Kolb, H. Nies, and M. Kalkuhl. GPU-based framework for interactive
visualization of SAR data. In Proc. Int. Geoscience and Remote Sensing Symposium
(IGARSS), 2007.

A. Lefohn, J. Kniss, C. Hansen, and R. Whitaker. A streaming narrow-band algorithm:
Interactive computation and visualization of level-set surfaces. IEEE Transactions on
Visualization and Computer Graphics, 10(4):422-433, 2004.

W. Li and A. Kaufman. Texture partitioning and packing for accelerating texture-
based volume rendering. In Graphics Interface, pages 81-88, 2003.

E. Mokberi and P. Faloutsos. A particle level set library. Technical Report, 2006.
http://www.magix.ucla.edu/software/levelSetLibrary/.

J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kriiger, A. E. Lefohn, and T. J.
Purcell. A survey of general-purpose computation on graphics hardware. Computer
Graphics Forum, 26(1):80-113, 2007.

C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive volume
rendering on standard PC graphics hardware using multi-textures and multi-stage
rasterization. In Proc. Graphics Hardware, 2000.

C. Rezk-Salama and A. Kolb. A vertex program for efficient box-plane intersection.
In Proc. Vision, Modeling and Visualization, 2005.

J. Schneider and R. Westermann. Compression domain volume rendering. In Proc.
IFEEE Visualization, 2003.

R. Strzodka. Hardware Efficient PDE Solvers in Quantized Image Processing. PhD
thesis, University Duisburg-Essen, 2004.

R. Strzodka, M. Doggett, and A. Kolb. Scientific computation for simulations on
programmable graphics hardware. Simulation Practice & Theory, 13(8), 2005.

J. J. van Wijk. Image based flow visualization. In Proc. ACM SIGGRAPH, pages
745-754, 2002.

M. Weiler, R. Westermann, C. Hansen, K. Zimmerman, and T. Ertl. Level-Of-Detail
Volume Rendering via 3D Textures. In Proceedings of IEEE Symposium on Volume
Visualization, pages 7—13, 2000.

D. Weiskopf, T. Schafhitzel, and T. Ertl. Texture-based visualization of unsteady 3D
flow by real-time advection and volumetric illumination. IEEE Trans. on Vis. and
Comp. Graph., 2007.

R. Westermann and T. Ertl. Efficiently Using Graphics Hardware in Volume Rendering
Applications. In Proc. ACM SIGGRAPH, 1998.

J. Wilhelms and A. van Gelder. Octrees for faster isosurface generation. ACM Trans-
actions on Graphics, 11(3):201-227, July 1992.

O. Wilson, A. V. Gelder, and J. Wilhelms. Direct Volume Rendering via 3D-textures.
Technical Report UCSC-CRL-94-19, Univ. of Cal., Santa Cruz, 1994.

J. Xiao, J. Li, and A. Moody. A detail-preserving and flexible adaptive filter for speckle
suppression in SAR imagery. Int. J. Remote Sensing, 24(12), 2003.

P. Xuexian, Y. Xudong, L. Sikun, and S. Jungiang. High-performance navigation
and rendering of very-large scale landscape and seascape. In Proc. CAD-CG, pages
377-384, 2005.

