
How to Trace Model Elements?
Sven Wenzel

Software Engineering Group, University of Siegen
wenzel@informatik.uni-siegen.de

Motivation In model-driven engineering models enjoy
the same status as customary source code. During the
development process, many different versions or vari-
ants of models are created. Thereby, developers need to
trace model elements between different versions to an-
swer questions like Since when does element X exist in
this model? or When did element Y disappear?. Regard-
ing variants developers are often interested if certain ele-
ments or groups of elements (e.g. containing a bug) also
exist in other variants. Questions from the analytical point
of view, such as logical coupling, require traceability of
model elements, too.

Traceability of elements becomes a challenge, since
in daily practice, models are often stored as textual files,
e.g. XMI, in versioning systems such as CVS or SVN.
However, these systems are not aware of models, i.e. syn-
tax and semantics inside the textual files. Subsequently,
we present an approach for fine-grained element tracing
based on difference computation. We furthermore offer a
model-independent visualization of our trace information.

Differencing Models The main task of tracing is to
locate the correspondence of an element in another model.
The comparison of two succeeding documents and the lo-
cation of correspondences respectively is known as dif-
ference computation and a daily task in software configu-
ration management. Modern difference tools are able to
compare models on an appropriate level of abstraction,
which is basically a graph with tree-like structure; mod-
els are composed of elements which in turn have sub ele-
ments. They are not exactly trees due to cross references.

For our tracing approach, we use a generic similarity-
based algorithm, called SiDiff, which was part of our prior
research [1]. Instead of relying on persistent identifiers
it computes similarities between model elements in a
bottom-up/top-down algorithm, according to the tree-like
structure of the models. If two elements reveal a unique
similarity and they are not similar to other elements as
well, they are matched. A threshold ensures a minimum
similarity to avoid unsuitable matches. Elements of
cycles are compared repeatedly as long as new matches
can be found. Thereby, SiDiff can compare even less
tree-like structures, e.g. Petri nets, whose elements are
not qualified by their compositional structure but by their
neighborhood to other elements. In a pre-phase a hash
value is calculated for each element and elements with
identical hash values are matched. Thereby, runtime of
pairwise comparison is reduced and precision is improved
since identical elements provide trustworthy fix points for
comparison of neighbor elements.

Computation of Trace Information The compari-
son of two models provides information about correspon-
dences, i.e. the same element occuring in both models. In

order to compute trace information about an element in a
model version, this model version is compared with each
direct successor, either in the same branch or in parallel
branches. The successors are compared with all their suc-
cessors, and so on.

Starting from the basic model, for each element that
occurs also in the succeeding models a track is created,
e.g. for element A in Fig. 1. A track is a chain of model
elements representing the same element occuring in dif-
ferent model revisions. Due to model variants the track
may split into branches forming the shape of a tree.

The elements can either occur in the succeeding mod-
els without any changes or they have been changed. Un-
changed elements are located immediately by the hashing
functionality of the difference algorithm. Elements that
have been changed from one revision to another are lo-
cated by the similarity computation facilities. Thereby the
threshold defined for each element type prevents from cor-
respondences between elements with significant changes.

Figure 1. Examples of tracks

If an element cannot be located in any subsequent
revision of a model the track of that element ends; e.g.
track B ends in revision 1.3. Elements that do not have
correspondences in an adjacent revision are compared to
the elements of the next following revision. Thereby the
traceability of elements is enhanced without including
elements into a track, that do not reliably correspond. In
this case a track may contain gaps, e.g. track C. Gaps
may also cover branching points of a model, e.g. the one
marked with F concatenating the tracks of two branches.
Elements without any corresponding partner, e.g. element
D, do not become part of any track.

Tracing of Elements In order to trace elements at
daily work, the tracks computed above must be visual-
ized in a meaningful way for developers. Therefore, we
have implemented our approach as Eclipse plug-in using
the GEF framework. A screenshot is shown in Fig. 2.

Tracks are visualized in an abstract representation
independent of any model type. Rectangles represent
different revisions of the given model, inside a rectangle



Figure 2. Screenshot of the analysis tool

each model element is represented by a small colored
circle. The color provides information depending on the
current analysis task. An outline view shows a list of all
revisions and their elements inside. Both the graphical
representation and the outline view allow developers to
select model elements. Tool tips show further information
about the elements. Filters can reduce the set of displayed
elements. The panel on the lower side provides different
analysis tasks to choose from. The current implementa-
tion supports four different analysis tasks:
Global Track Analysis. The analysis of global tracks
is the simpliest task. It only uses the track information
computed as described above. If a user selects a single
model element in any revision of the model history,
the occurences in all other revisions are highlighted
despite the fact that the elements might have been slightly
modified. One can immediately see (a) since when a
given element exists in the history, (b) where an element
of a revision disappeared or (c) where it occurs in other
revisions or variants. Given the examplary screenshot
above, a class named UseCase3 is selected; it occurs and
is marked yellow respectively in each revision except
revision 1.2.
Tracing a Bug. A bug usually consists of more than just
one model element. We assume that a bug is only present
in another version (and should be fixed there) if the set of
elements involved in the bug occurs as a whole with only
small changes in the other version. Therefore, similarities
of the element set in different versions as a whole are also
computed and must be above an additional threshold for
the other fragment to be considered as a repetition of the
bug. In bug tracing analysis the selected bug elements
are colored blue, while the bug candidates in the other
revisions are colored regarding their probability to be a
bug. Unconcerned elements are greyed out.
Finding dependencies. Dependency analysis, formerly
known as logical coupling, provides information about
software elements bearing a relation to each other
although that relation is not obvious. These relations
are based on the changes applied to the elements, e.g.
whenever element A has been changed, element B was
changed, too. Due to our fine-grained tracing we are

able to provide this dependency information for each
element within the model history. Once an element has
been selected we are able to follow its track through the
whole history. For each revision where the traced element
has been changed, we check other elements that are also
affected by modifications. Those elements are colored
according to their degree of dependency.
Identifying Day Flies. Day flies are elements that
occur only in one revision of the model history. They are
usually a sign for models that are changed without taking
a long view. Technically they can be identified very easily
as they are not part of any track. In our visualization
those elements are shown by brown circles. This provides
a quick overview about model revisions containing day
flies. The outline view depicts the elements themselves, if
the user want to examine them in detail.

Evaluation We evaluated our approach and its visual-
ization methodologies in an empirical case study involv-
ing 30 developers. The probands had to perform different
analysis problems on given model histories; first manu-
ally with a modeling tool of their choice and afterwards
with help of our approach. Both times they had to fill in a
questionaire asking for time exposure, experiences, etc.

First analysis covered a history of models with 25 to
30 classes unknown to the probands, which is typical for
reverse engineer’s work. Although the models are rather
small for daily practice, the tool-assisted analysis pro-
vided significant enhancements. Summarized over the
four analysis scenarios, time exposure was reduced by
more than 75% in 75% of the cases. Beside time reduc-
tion, our approach computed all results correctly, while
the probands produced erroneous results during manual
analysis; we estimate an error rate of 30%. Furthermore,
day flies were nearly impossible to be detected manually.

Half of the probands also analyzed models designed
by themselves during a software development course. De-
spite the fairly good knowledge of their history 86% of
the probands preferred the tool-assisted analysis; already
models of 20 classes are too large to keep an overview.
The latter group of probands allowed verification of the
traces computed by our approach; all information has been
judged to be correct as expected, since the correspondence
analysis used for the trace computation has been tested in-
tensively in the past.

Summarized over all scenarios the probands preferred
essentially the tool solution; mainly explained by per-
formance, trustworthy of results and simplicity. The
visualization itself got good ratings for illustration and
graphical controls; only the handling was not clearly rated
to be intuitive. In general the benefit was considered very
high; especially for bug tracing and dependency analysis
which are hard to solve manually. The identification of
day flies, however, was rated to be of limited usefullness.

References

1. U. Kelter, J. Wehren, and J. Niere. A generic difference
algorithm for UML models. In Proc. of SE 2005, Essen,
Germany, March 2005.


