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Abstract

In model-driven engineering developers work mainly or
only with models, which exist in many versions. This pa-
per presents an approach to trace single model elements or
groups of elements within a version history of a model. It
also offers analysis capabilities such as detection of logi-
cal coupling between model elements. The approach uses
a differencing algorithm known as SiDiff to identify similar
elements in different versions of a model. SiDiff is highly
configurable and thus our tracing approach can be adapted
to all diagram types of the UML and to a large set of domain
specific languages. The approach has been implemented as
an Eclipse plug-in that visualizes all relevant information
about the traces and it allows developers to interactively
explore details. It has been evaluated by several groups of
test persons; they considered most of the functions of the
tool to be very useful.

1 Introduction

Model-driven engineering (MDE) is proclaimed as new
philosophy of software engineering in the 21°% century.
Sooner or later software developers will not touch any line
of code any more, but they will rather work mainly or only
with models. The term model is not restricted to the dia-
gram types of the widely accepted Unified Modeling Lan-
guage (UML), but it also includes domain specific lan-
guages such as Matlab/Simulink diagrams or web service
description languages. Assisted by powerful transforma-
tion tools, initial abstract models are stepwise refined and
eventually transformed into ready-to-use software. The de-
livered software product is either source code directly gen-
erated from the models or a set of "executable’ models.

Regarding the development process models exist in
many versions or variants. Thus, models should be stored
in version management systems in the same way as source
code. Version management systems offer services such as
archiving older revisions of software, and they support con-

current work and collaborative engineering. In general we
can distinguish (a) file-based version management systems,
such as CVS or Subversion, and (b) dedicated repository
systems for specific model types, such as IBM’s ClearCase
in conjunction with Rational Software Architect. As the
example indicates, the latter kind of versioning systems is
closely connected with certain modeling tools. They are
mostly based on object-oriented databases directly accessed
by the tools. Concurrent work is supported in a way that all
developers work on a single model that is stored in a fine-
grained way and allows locking of individual fragments.
Changes in the models can be traced easily.

However, it is common practice that models are man-
aged with files-based versioning systems, e.g. CVS. Usu-
ally the models are stored in textual files, e.g. in the XMI
format for UML, and checked-in into the versioning sys-
tem. The systems, which are designed to keep track of ver-
sions of files, cannot provide fine-grained information about
elements within the files. The integrated tools for comput-
ing differences between textual documents work fine with
sources files, but fail with textual representations of mod-
els, in particular because they do not duly consider the se-
mantics of models. Hence the elements inside the models
cannot be traced between different revisions.

Regarding these circumstances and the prevalence of
file-based version management systems, daily tasks become
a challenge for developers, maintainers, and project man-
agers. Tracing an element from one model revision to an-
other is crucial to answer frequent questions, such as:

e Since when does a certain element exist in the model?

e Where did the element X of the initial model revision
disappear?

e Does the given element also exist in other variants of
this model?

e What elements bear a relation to the given element?

e Given a constellation of elements, e.g. containing a
bug, does this constellation appear in other branches,
t0o?



Furthermore there are questions from the analytical point
of view that require trace information, e.g. a differentiation
between stable model elements and model elements which
are changed quite often.

In this paper we present an approach to provide answers
to the above mentioned questions. The approach has been
implemented as an Eclipse plug-in that assists developers
and maintainers with tracing information. Therefore, we
integrated a generic, highly configurable differencing al-
gorithm, called SiDiff, with the analysis of version histo-
ries. The difference computation allows building correspon-
dences between subsequent model revisions as described in
the subsequent section. Based thereon we can build tracks
of model elements and gain tracing information as we will
show in Section 3. The implementation of the approach as
an Eclipse plug-in and its applicability to the above men-
tioned questions is described in Section 4. The results of
a case-study examining the benefit of our approach against
manual tracing are summarized in Section 5. Section 6 sum-
marizes work related to our approach. Finally, in Section 7
we conclude our work and discuss current and future re-
search topics.

2 Computation of Correspondences

The main task of tracing a model element is to locate
that element in another model, i.e. the corresponding ele-
ment. Given a history of successive model revisions, the
tracing takes place between a model and its predecessor or
successor revision.

The tracing problem becomes trivial if we assume el-
ements to have persistent identifiers [1, 21]. However,
most modeling tools do not use persistent identifiers when
writing files to disk or they create them in an unfortunate
way from element names. Matlab/Simulink, for exam-
ple, creates identifiers by hierarchical concatenation of el-
ement names; thus, simple renaming of some blocks dooms
identifier-based tracing to useless results. Even if tools
would support persistent identifiers, concurrent work of dif-
ferent developers can lead to identical document elements
with different identifiers. Especially if variants of a model
were created, i.e. parallel branches in the versioning sys-
tem, the identifiers would differ and common elements of
parallel versions could not be traced.

The comparison of two succeeding documents and the
location of corresponding elements respectively are a daily
task in software configuration management and known as
difference computation. The GNU diff tool is probably the
most-known representative in that field; it compares text
documents and reveals their changes line-by-line.

However, the textual analysis of models to detect corre-
spondences between them is not sufficient. Working with
textual representations of models may lead to too many

false, conceptually irrelevant differences. As shown in [16],
correspondences must be computed on an appropriate level
of abstraction, i.e. the model level taking syntax and seman-
tics into account.

2.1 Difference Tools for Models

Difference tools for models are available, too. They
can roughly be divided into (a) algorithms which can han-
dle only one specific model type, to which they are fully
adapted, (e.g. as proposed in [13, 31]) and (b) generic algo-
rithms which require only some configuration data, if any at
all. Due to the fact that we do not want to restrict our trac-
ing approach to one specific model type, we address only
the second class of algorithms.

Therefore, one can assume models to be graphs with a
tree-like structure. They are composed of elements which
in turn have sub elements. They are not exactly trees due
to cross references, e.g. return types of operations referring
to other classes in UML class diagrams. This assumption
fits to all diagram types of the widely accepted UML [23],
as well as to most models defined by domain specific lan-
guages'.

However, the usage of general graph comparison algo-
rithms is inhibited by their NP completeness. Algorithms
for unordered trees are also not sufficiently efficient. The
only viable approach is to consider model documents as or-
dered trees, since in all relevant cases, model elements are
either ordered or they have attributes, from which an order
can be derived.

LaDiff [5] is applicable to ordered typed trees, notably
KTEX documents. It compares the leaves of the trees pair-
wise and forms corresponding pairs as soon as their sim-
ilarity exceeds a given threshold. The complexity of this
algorithm is O(n?), with n being the number of nodes of
the trees.

XDiff [29] is applicable to typed trees in which elements
have names, which are unique in the context of the parent
element. Based thereon unique path names of subtrees can
be formed. XDiff computes hash keys that depend on sub-
trees and their path names. Using these hash keys, which are
collected in a directory (e.g. a hash table), XDiff is very ef-
ficient in identifying identical subtrees in both documents in
O(nlogn). However, corresponding subtrees that contain
renamed elements are not identified and there is no notion
of similarity at all.

Our approach uses the tool suite SiDiff [16, 28] which
has proven to be powerful enough to adapt to virtually all
kinds of models with an underlying graph structure. It has
runtime complexity of O(nlogn) for models with normal
properties. It is presented in more detail in the following
section.

! Although MDE is proclaimed by the OMG, it is not limited to UML.
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Figure 1. The SiDiff difference computation
works on an attributed typed graph

2.2 Excursus: The SiDiff Approach

Similar to the difference algorithms presented above,
SiDiff detects corresponding elements. It does not rely on
persistent identifiers or unique element names, correspon-
dences are rather formed on the basis of similarities between
model elements. It uses an internal graph representation of
model documents. Hence, it is not only suitable for UML
documents, but also for domain specific languages such as
Matlab/Simulink diagrams or web service descriptions.

2.2.1 Internal Model Representation

When initially loading a model of a specific document type
(e.g. from an XML file), an internal representation of the
model as attributed typed graph is constructed. Figure 1
depicts its structure. A graph consists of nodes and edges
with a type assigned to each edge and each node. The spe-
cific type Nesting can be assigned to edges in order to indi-
cate that these edges are part of a tree representation of the
document. A nesting edge points from a parent node to its
child. In addition, nodes can have attributes. Each attribute
consists of a name-value pair.

Each model to be compared is mapped onto one inter-
nal graph. A node type is created for each element type,
e.g. class, operation, generalization in UML class diagrams.
The actual model elements become nodes that are assigned
with the corresponding node type. Attributes of the ele-
ments are attached to the nodes. The edges of the internal
graph represent relations between the elements; they are as-
signed with an edge type that relates to connections in the
metamodel. The nesting edges are used for part-of relation-
ships, e.g. between classes and operations.

Table 1. Criteria for comparing Classes

node type = Class threshold = 0.5 [ |

Criterion Weight
Similar value for attribute name 0.35
Equal value for attribute visibility 0.05
Equal value for attribute isAbstract 0.05
Similar set of sub-elements of type attribute 0.20
Similar set of sub-elements of type operations 0.20
Similar elements following incoming generalizations | 0.05
Similar elements following outgoing generalizations 0.05
Matched parent element 0.05

2.2.2 Similarity Heuristics

SiDiff uses a similarity heuristic to determine whether two
model elements correspond or not. The element properties
which are relevant for the similarity of two elements of the
same type are either local attributes (e.g. names) or other
elements in the neighborhood (e.g. elements that are refer-
enced). SiDiff uses a set of compare functions to analyze
two properties of the same type which belong to different
elements. They return a value between 0 and 1; a value of 0
stands for no similarity between the properties, a value of 1
expresses equality.

In addition each property is assigned with a weight in-
dicating the relevance of the property for the similarity of
two elements. The weights have to be chosen according to
the semantics of the model type and according to what users
consider a significant change. For each specific model type,
a configuration file describes the similarity-relevant prop-
erties of the types of model elements. Model elements are
compared pairwise using the configuration which is appli-
cable for their element type. The similarity between two el-
ements is defined as the weighted mean of the similarities of
the similarity-relevant properties. Additionally the configu-
ration specifies for each element type a threshold, i.e. a min-
imum similarity for two elements of this type to be eligible
as corresponding elements. Table 1 shows a small excerpt of
a SiDiff configuration, namely the similarity-relevant prop-
erties for class elements within UML class diagrams.

2.2.3 Comparison Procedure

Similarities are computed in a bottom-up/top-down order,
according to the tree-like structure of most models given by
the nesting edges in the internal graph structure. The al-
gorithm starts from the leaves of the models and compares
the elements of the same type in bottom-up direction. Two
elements are considered similar if their similarity exceeds
the given threshold. They are matched immediately if they
are not similar to any other elements. Elements which are
similar to several other elements are not matched immedi-



ately because the similarities might change when further el-
ements are compared. In a following iteration of the algo-
rithm elements are matched with their most similar other
element. Each match causes the algorithm to switch over to
a top-down phase that propagates the new correspondence
downwards to the children. The initial similarities stem-
ming from the bottom-up phase can be improved since par-
ent elements or referenced elements can have been matched
in the meanwhile. Consequently, other matchings can be
found, which are propagated top-down further on.

Most models do not have a real tree structure; they
contain cross references between elements, which lead to
cycles. The comparison handles such cycles by iterating
through a cycle as long as new matches can be found. The
similarities between elements are thus propagated through
the graphs. This approach is similar to the Similarity Flood-
ing algorithm [19]. It enables comparison of documents
such as Petri nets, which are not tree-structured and in
which the similarity of elements depends mainly on their
neighborhood, and not on their compositional structure.

A hashing pre-phase calculates hash values for each ele-
ment and elements with identical hash values are matched.
It gives significant impact on the efficiency of the algorithm
and provides trustworthy fix points that speed up the com-
parison of their neighbor elements.

SiDiff features a very efficient runtime and has a neg-
ligible error rate regarding the quality of the differences it
computes. For more technical details and the manually eval-
uated quality we refer to [16, 28].

3 Computing Trace Information

The comparison of two models provides information
about correspondences, i.e. the same element occurring in
both models. Figure 2 shows (a) an example version history
of a model and (b) depicts three revisions of that model;
differences between model elements in the revisions are
marked. In the example, class E has been renamed to R;
the remaining elements correspond by their positions.

In order to compute trace information about an element
in a document version, this document version is compared
with each direct successor, either in the same branch or in
parallel branches. The successors are compared with all
their successors, and so on. In the example of Figure 2 we
compare revision 1.1 with revision 1.2 which in turn is com-
pared to revision 1.3 and so on; version 1.2 is also compared
with version 1.2.2.1, and so on.

3.1 Data Model of Tracks

Following the graph representation of a model document
(cf. the internal graph structure of SiDiff in Figure 1), we re-
veal correspondences between nodes of graphs. These cor-
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Figure 3. Data model of tracing information

respondences are stored in a data structure called History.
As shown in Figure 3, a history describes the evolution of a
graph, i.e. a model document, and allows addressing partic-
ular revisions. While a graph consists of nodes, the history
itself consists of several tracks, which in turn allow address-
ing of individual nodes in a certain revision.

Hence, a track is a chain of model elements. Starting
from a basic document, i.e. the model where the observed
element occurs the first time, it contains all successor re-
visions of that element. Due to variants inside the version
history the track may split into branches forming the shape
of a tree.

Besides tracing single model elements we want to pro-
vide support for tracing sets of elements. Such a set is
called a fragment consisting of several nodes. In contrast
to the term model fragment used in MDE-related literature,
a fragment does not necessarily cover elements belonging
structurally together here. A fragment can rather be seen as
a slice of elements inside one model, e.g. several methods
fulfilling one requirement of the software.
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Figure 4. Abstract example of tracks

3.2 Construction of Tracks

A track is computed by pairwise comparison of model
documents. Starting from the basic document, we compare
a document with its successors. For each element of the first
model that occurs also in the succeeding models a track is
created, e.g. track A in Figure 4. The track represents the
same element occurring in different model revisions includ-
ing branches (e.g. for element F). The elements can either
occur in the succeeding models without any changes or they
have been changed. Unchanged elements are located imme-
diately regarding the hashing functionality of the difference
algorithm. Elements that have been changed from one re-
vision to another (e.g. renaming of E to R in Figure 2) are
located by the similarity heuristics. Thereby the threshold
value defined for each element type prevents from corre-
spondences between elements with significant changes.

If an element cannot be located in any subsequent revi-
sion of a model the track of that element ends; in Figure 4
track B ends in revision 1.3. Elements that do not have cor-
respondences in an adjacent revision are compared to the
elements of the next following revision. Thereby the trace-
ability of elements is enhanced without including elements
into a track that do not reliably correspond. In this case
tracks may contain gaps, e.g. track D in Figure 4. The max-
imal size of gaps is configurable.

The case that a gap covers branching points of a model
is not supported by default; however, it can be processed.
An example is given by the elements on the lower part in
Figure 4 which are part of a track in each branch. Although
both tracks do not have one predecessor, which would be
positioned in G, the tracks could be concatenated with G
being the gap.

Elements without any corresponding partner, e.g. ele-
ment C, are called day flies and do not become part of any
track.
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Figure 5. Screenshot of the analysis tool

4 Tool Integration for Tracing Elements

Tracks must be visualized in a meaningful way for de-
velopers. We have implemented our approach as a plug-in
for the Eclipse platform [8]. Consequently, the visualization
has been realized using the GEF framework [9]. A screen-
shot is shown in Figure 5. It shows an excerpt of the version
history of a UML class diagram describing the implemen-
tation of our tracing approach.

Tracks are visualized in an abstract representation that is
independent of any model type. Rectangles represent dif-
ferent revisions of the given model, inside a rectangle each
model element is represented by a small colored circle. The
color provides additional information depending on the cur-
rent analysis task. On the right hand side an outline view
shows a list of all revisions and their elements inside. Both
the graphical representation and the outline view allow de-
velopers to select model elements. Tool tips show further
information about the elements. Filters can reduce the set
of displayed elements. The panel on the lower part provides
different analysis tasks to choose from.

All analysis tasks consist of two steps. First, the re-
quested information is computed and visualized. After-
wards, the user is able to navigate within the visualization
to retrieve information one is interested in. The current im-
plementation supports three different tasks according to the
questions given in Section 1 and one additional task of find-
ing day flies, which is a by-product of the other analyses.

The tool is independent from any version management
system, since the model documents are currently imported
from plain XMI files similar to those stored in a file-based
versioning system. Direct access to CVS or Subversion is
aspired to enhance usability of the prototype.



4.1 Global Tracks Analysis

The analysis of global tracks is the simplest task. It only
uses the track information that is computed as described in
Section 3. If a user selects a single model element in any
revision of the model history, the occurrences in all other
revisions are highlighted despite the fact that the elements
might have been slightly modified. One can immediately
see (a) since when a given element exists in the history, (b)
where an element of a revision disappeared or (c) where it
occurs in other revisions or variants. Given the exemplary
screenshot above, a class named UseCase3 is selected; it
occurs and is marked yellow respectively in each revision
except revision 1.3.

4.2 Tracing a Bug

A bug usually affects more than just one model element.
Initially, the elements involved in the bug situation must be
selected. This set of elements is handled as a fragment (cf.
Figure 3). Basically, these elements are traced individually.

We assume that a bug is only present in another version
(and should be fixed there) if the set of elements involved
in the bug occurs as a whole with only very small changes
in the other version. Therefore, similarities of the frag-
ments in different versions as a whole are also computed
and must exceed an additional threshold for the other frag-
ment to be considered as a repetition of the bug. Although
small changes can already fix the bug, it is better to include
false candidates than inspecting only unchanged elements.
The exclusion of slightly changed elements (e.g. renam-
ings) would shield a proper bug tracing. However, in case
of extensive changes to the probably affected elements no
bug occurrence is reported; otherwise the result consists of
false candidates only. Obviously, tracing a set of elements
without this constraint can be processed by global tracks
analysis and is trivial.
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Figure 6. A bug occuring in other revisions

Figure 6 shows a bug tracing analysis. The elements de-
clared to be affected by a bug in revision 1.3 are colored

blue, while the bug candidates in the other revisions are col-
ored regarding their probability to be a bug. Unconcerned
elements are grayed out. In this example the two elements
have been changed in revision 1.1.2.2 so that the occurrence
of the bug in that revision cannot be presumed.

4.3 Finding Dependencies

Dependency analysis, formerly known as logical cou-
pling, has been subject of a lot of research in the past (cf.
Section 6). It provides information about software elements
such as files or methods that bear a relation to each other
although that relation is not obvious. These relations are
based on the changes applied to the elements, e.g. when-
ever element A has been changed, element B was changed,
too.

Due to our fine-grained tracing we are able to provide
this dependency information for each element within the
model history. Once an element has been selected we are
able to follow its history track through all revisions and
other variants. For each revision where the traced element
has been changed, we check other elements that are also
affected by modifications. Those elements are stored in a
dependency map. The degree of dependency is given by
support, frequency and confidence. Support represents the
number of changes of one element in the whole history. Fre-
quency is the rate of changes of an element concurrently
changed together with the traced element. Confidence is
the ratio of frequency and support.
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Within a revision in the history visualization the depen-
dency is displayed using different colors as depicted in Fig-
ure 7. The element whose dependencies are of interest is
marked white. The dependent elements are colored from
green over yellow to red according their degree of depen-
dency. Green states a dependency of at least 50 percent,
while an absolute dependency is colored red. Elements with
a confidence lower than 50% are declared to be indepen-
dent and stay grey. The threshold for dependencies can be
changed.

4.4 Identifying Day Flies
Day flies are elements that occur only in one revision of

the model history. They are usually a sign for models that
are changed without taking a long view. From the technical



point of view these elements can be identified very easily;
day flies are elements that are not part of any track.
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Figure 8. The identification of day flies

In our tool implementation of that analysis task (cf. Fig-
ure 8) those elements are visualized by brown circles. This
provides a quick overview of model revisions containing
day flies. The outline view depicts the elements, if the user
wants to examine them in detail.

5 Evaluation

We evaluated the analysis tool and its visualization
methodologies in particular in an empirical case study. The
main objective of the study was to assess the applicability of
the tracing approach to small histories of UML class model
documents. Furthermore we were interested in the users’
acceptance of the visualization.

The case study involved 30 developers with different
levels of experience, mainly students and university re-
searchers. It turned out that the evaluation results did not
differ significantly among the developer types; therefore we
do not differentiate between these groups here. Neverthe-
less, complete detailed results can be found in [15].

Before each test started, the attendees got a short intro-
duction into the analysis tool. During the test they had to
analyze model histories; first manually and afterwards with
help of the tool. In order to manually analyze the model his-
tories, test persons were provided with standardized XMI
files which could be opened in a modeling tool of the test
persons’ choice and with JPEG files showing the graphical
representation of the models. In both phases they had to
fill in a questionnaire that asked for time exposure, experi-
ences, preferences, and problems. The questionnaire also
contained a general section about scoring the tool.

5.1 Application to an Unknown History

All test persons had to analyze a history of an unknown
UML class model. This situation is typical in daily work of
reverse engineers. The class models were based on differ-
ent development stages of our tracing approach. The size
of the single model documents ranged between 25 and 30
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Figure 9. Performance enhancement

classes. Although that size is rather small for analysis tasks
in daily practice, the different results between manual and
tool-assisted analysis are significant.

For each feature of our tool implementation two specific
analysis problems were given to the test persons. First point
of interest has been the performance comparison of tool-
based analysis vs. manual work. Figure 9 depicts the en-
hancement of performance. As shown in the upper left the
time needed to trace single elements was already reduced
by at least 50% for 83% of the test persons. The tracing of
bugs, i.e. tracing of several elements at a time regarding the
degree of changes, was reduced by at least 75% or more in
almost 75% of the cases (see upper right). In dependency
analysis (lower left) the needed time was halved for 95%
of the test persons. Day flies were nearly impossible to be
determined by the test persons manually as the performance
enhancement states in the lower right.

Beside time reduction, the tool-based analysis produced
all results correctly, while the test persons produced erro-
neous results during their manual analysis. Although the
correctness was not considered interesting and has not been
recorded, we estimate an error rate of 30% for the manual
approach.

Summarized over the four scenarios the developers pre-
ferred significantly the tool solution with 108 votes. Only
one vote was given to the manual approach, while there
were 11 abstentions. These preferences have been ex-
plained by several reasons; e.g. performance was mentioned
59 times, 31 test persons commended simplicity. Only one
participant of the study believed more in his own experience
than in any tool.
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5.2 Application to a Well-Known History

Half of the test persons also analyzed a history of UML
class models that has been developed by them. The mod-
els contained around 20 classes and described the design of
an auction and trading system that has been developed in
groups of 4-6 persons during a one term software develop-
ment course. 3 student teams attended the case study.

Despite the joint development of the models and the
fairly good knowledge of their history 86% of the test per-
sons preferred the tool-assisted analysis of the model his-
tory. Already models with 20 classes are too large to keep
an overview of all elements. Figure 10 shows the perfor-
mance advantages of the tool solution against the manual
approach. While the manual approach benefits from knowl-
edge and experiences of developers, the technical solution
was superior with performance and correctness on the one
side and overview, visualization, and user assistance on the
other side.

Beside the normal experiments, the latter group of test
persons offered the opportunity to verify the information
provided by our analysis tool. The knowledge about the
real history of the models allowed a thorough examination
of the results computed by our tracing approach. Taken to-
gether 100% of the provided information has been judged to
be correct. That result was expected, since the correspon-
dence analysis used in the core of the trace computation has
been tested intensively in the past [16].

5.3 General Experiences with the Tool

Finally, we were interested in the general experience of
developers using our tool for tracing of elements and his-
tory analysis. Thereby, the examination was focused on the
visualization methodology on the one hand and benefits for
developers’ work on the other hand.

For the visualization methodology itself, we asked the
test persons to evaluate it in three categories. Illustration
and graphical controls were declared to be good. Only the
handling was not clearly rated to be intuitive. Figure 11
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Figure 11. Evaluation of the visualization

shows the distribution in detail.

In addition the developers were asked for the support of
their needs during the analysis tasks. In general the ben-
efit was considered very high; especially for bug tracing
and dependency analysis which are hard to solve manually.
The identification of day flies, however, was rated to be of
limited usefulness (cf. Figure 12). We consider this less
surprising since mainly developers participated at the case
study; analysts or project managers might have a different
point of view.
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Figure 12. Support of needs

6 Related Work

Software evolution in general has already been part of
research activities since many years, e.g. [25, 4, 20]. During
maintenance and reengineering the analysis of evolution has
become an unavoidable task. Besides learning general laws
on evolution, e.g. [18, 27], the knowledge about individual
projects becomes central point of interest. There exist many
approaches that use history information stored in version
management systems to derive statements about software
under observation.

Lanza’s evolution matrix [17] offers a static visualiza-
tion of software metrics over time to provide for instance
information about growth behavior of modules or day flies,
i.e. modules that exist only in one revision. Another visual-
ization approach on statistical history information has been
proposed in [11]. Both approaches yield information about
status and evolution behavior of a software system to locate
points for improvements. Other approaches of that kind are
[12, 26].



Another well-researched analysis aspect is relations be-
tween elements. These relations, also known as logical cou-
pling, provide information about elements that should be
changed together. [3] extracts change-patterns from CVS
repositories based on change log information. In [32] a
similar approach is proposed that derives association rules.
An Eclipse plug-in guides developers during their work in-
teractively. Interactive analysis is also provided by [6];
they allow navigation between coupled elements. These ap-
proaches work basically on coarse-grained level and do not
support coupling detection between fine-grained software
elements.

The approach of Dantas et al. [7] analyses model evo-
lution and concurrently changed elements in particular in a
more generic way. Based on a UML aware model reposi-
tory [22] information about logical coupled elements is col-
lected. Thereby, the approach supports association rules
within the same model abstraction level, i.e. intra-model-
traces and inter-model-traces across different levels of ab-
straction, e.g. analysis, design, code. However, the ap-
proach is somehow trivial since it relies on a proprietary
model repository, which can hardly be found in daily prac-
tice. Inter-model-traces are not subject of our approach.

The inter-model-aspect of Dantas’ approach, i.e. creat-
ing links between different models, leads to the percep-
tion of requirements engineering. In the last decades the
term traceability has mainly been manifested by the require-
ments engineering community. Gotel and Finkelstein [14]
analyzed the problem of requirements traceability very de-
tailed. Based thereon many approaches towards traceabil-
ity of requirements have been proposed, e.g. [24, 10]. The
latter one, for example, steers towards tracing based on a
scenario-driven analysis of runtime information. The ap-
proach looks for elements that bear a relation in a scenario.
Thereby, relations may interleave several models. However,
similar to other approaches it works on a snapshot of a soft-
ware system; the evolution is not analyzed here.

In [2], Antoniol et al. propose a first approach to tracing
individual software elements in object-oriented software. In
a first step similarities based on string edit distances and
metrics are calculated. In a second step a maximum match-
ing algorithm is used to compute the mapping between two
versions. Visualization allows analysis tasks on the traced
elements. However, the approach works mainly on class
level and is not applied to fine-grained element tracing.

More fine-grained analysis is provided by Xing and
Stroulia [30]. Based on the hypothesis that evolutionary in-
formation is hardly documented they recover information
from a version history to provide an understanding of how
and why software has changed. Therefore they compare
class models reverse engineered from Java sources with a
differencing algorithm. The changes between each ver-
sion are summarized to infer the development methodology.

Nevertheless, the comparison procedure and consequently
the analysis capabilities are restricted to class models.

7 Conclusion

This paper addresses the tracing of fine-grained model
elements. In model-driven engineering models are part of
software and therefore stored in version management sys-
tems. The identification of particular elements in different
revisions or variants of a model becomes a challenge.

Our approach integrates difference computation with the
analysis of version histories. Various differencing algo-
rithms can be used to compute correspondences between
elements of two model revisions. Applied to the entire ver-
sion history of a model we are able to trace single elements,
i.e. the location of corresponding elements in each revision.
For our purposes we used the highly generic differencing al-
gorithm SiDiff. Due to the fact that it works internally with
a graph structure, it is applicable to a wide range of mod-
els and we can provide intra-model tracing of elements in
UML and domain specific languages similarly. Assuming
short versioning cycles, the differencing algorithm supports
tracing of even heavily refactored elements.

By visualizing the tracing information we provide a pow-
erful analysis tool that allows model developers to locate
single elements or entire fragments in other revisions or
variants. In addition we can compute further information
based on traces, such as dependencies or day flies on a fine-
grained level.

The empirical evaluation of our visualization approach
has shown a high benefit for developers and maintainers;
not only by accelerating various tasks, but also by support-
ing them with trustworthy information.

While this work focused on the computation of element
traces and used visualization mainly for presenting results,
our future work addresses additional analysis features. In-
teractive model navigation can be used to support develop-
ers in model-driven software maintenance. An example is
the integration of trace information with polymetric views.
Currently, we integrate the above-mentioned approach with
clone detection methodologies to provide knowledge about
equal model fragments in different variants. The complex-
ity of comparing many models pairwise is currently reduced
by enhancing our difference algorithm with capabilities for
n-ary comparisons.
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