A Generic Difference Algorithm for UML Models

Udo Kelter, Jiirgen Wehren, Jorg Niere
Software Engineering Group
Department of Electrical Engineering and Computer Science
Siegen University
{kelter|wehren|niere } @informatik.uni-siegen.de

Abstract: It is state-of-the-art to use the Unified Modelling Language (UML) to de-
scribe software system models. In order to support cooperative team work a version
management system which supports UML models is absolutely necessary. The essen-
tial part of such systems is the ability to calculate differences and present them to the
developer. This paper presents an approach for computing differences between UML
models encoded as XMI files. In contrast to our previous work, we present a generic
approach, with which we are able to cover a broad range of UML diagram types. It
also does not require persistent identifiers of diagram elements. Our prototype imple-
mentation shows, that our difference algorithm used leads to good runtimes in the case
of small documents and acceptable runtimes in the case of large documents. Overall,
it has a very low error rate, i.e. the quality of the differences is almost optimal.

1 Introduction

The Object Management Group (OMG) proclaims Model Driven Architecture (MDA) as
the new philosophy of software development in the 21°¢ century. The central point of
MDA is the model of a software system, which becomes the central part of the whole
development. In MDA models can be transformed to other models. Especially the trans-
formation of a Platform Independent Model (PIM) to a Platform Dependent Model (PDM)
allows for generating source code and for getting an executable ‘model‘, which is better
called application or program.

It is state-of-the-art to use the Unified Modelling Language (UML) to describe models
for software systems. For example Figure 1 shows a part of an initial class diagram of a
generic graph editor. Following the MDA philosophy, all enhancements and modifications
of the software system should be performed on the model level, e.g. in the class diagram.
Current practice, however, is to change the code directly and to update the corresponding
models occasionally or to reverse engineer them from the code. Figure 2 shows the class
diagram extracted with reverse engineering techniques from the final application.

In general, software should be developed in teams. In order to support cooperative
team work a version management system which supports UML models is absolutely nec-
essary. The essential part of such systems is the ability to calculate differences, present
them to the developer and to provide merge operations to come to a consistent model. In
our approach we use unified diagrams with difference information to be presented to the
developer. For example Figure 3 shows the unified class diagram of Figure 1 and Figure 2.
The unified class diagram consists of all parts of both original diagrams; the parts detected
as similar are shown in black color, the green (light gray) parts exist only in the second
diagram and the red (dark gray) parts exist only in the first diagram. In Figure 3 the red
parts are the two compositions called hasNode and hasEdge. They only exist in the Figure

BasicGraph

¥§BasicGraph ()

‘#§addBasicNode (node :BasicNode) : Void
‘#¢getBasicNode (idx :Integer) : BasicNode

® isEmpty () : Boolean

'EbremoveBasicNode (node :BasicNode) : Boolean
1 @ size () : Integer - 1

¥ hasNode
¥ hasEdge

BasicNode

» hasOutgoingEdge

‘¥$§BasicNode (bGraph :BasicGraph)

@ countincomingEdges () : Integer ' » hasincomingEdge =
% countOutgoingEdges () : Integer 1 | "§BasicEdge (origin :BasicNode, destination :BasicNode) -

L] insertincomingEdge (edge :BasicEdge) : Void
@ insertOutgoingEdge (edge :BasicEdge) : Void -

Figure 1: Initial model of BasicGraph

SimpleGraph BasicGraph
® SimpleGraph () —— > BasicGraph ()
@ SimpleGraph (io:|OHandler) Y¢BasicGraph (io:IOHandler)
P@checkC ints (origin : Basi , dest :Basi)+ Void Poac dge (edge :BasicEdge) : Void
@ store (io:IOHandler) : Void = ‘¢addBasicNode (node :BasicNode) : Void
’w_,’.checkConstraims (origin :BasicNode , dest :BasicNode) : Void
Zf ‘“getBasicEdge (index :Integer) : BasicEdge
Y@getBasicNode (index :Integer) : BasicNode
NonCyclicGraph % hasEdges () : Boolean
@ isEmpty () : Boolean
@ NonCyclicGraph () # numberOfEdges () : Integer
NonCyclicGraph (io:IOHandler) removeBasicEdge (edge :BasicEdge) : Boolean
@checkConstraints (origin :BasicNode , dest :BasicNode) : Void PgremoveBasicNode (node :BasicNode) : Boolean
‘PgisReachable (origin :BasicNode, dest:BasicNode) : Boolean @ size () : Integer
@ store (io:IOHandler) : Void - @ store (io:lOHandler) : Void =
3
FhasElement
BasicNode @ store (io:IOHandler) : Void =

‘“@BasicNode (bGraph :BasicGraph) __/A

‘“gBasicNode (io:lOHandler , bGraph :BasicGraph)
@ countincomingEdges () : Integer

@ countOutgoingEdges () : Integer

% getBasicGraph () : BasicGraph
“@insertincomingEdge (edge :BasicEdge) : Void 1
‘“@insertOutgoingEdge (edge :BasicEdge) : Void

@ isConnectedTo (destination :BasicNode) : Boolean
‘“gremovelncomingEdge (edge :BasicEdge) : Void
‘“@removeOutgoingEdge (edge :BasicEdge) : Void

@ store (io:|OHandler) : Void

> hasIncomingEdge

» hasOutgoingEdge ‘P BasicEdge (io:IOHandler , bg :BasicGraph)

B ‘{%BasicEdge (origin :BasicNode, destination :BasicNode)
% removeEdge () : Void

@ store (io:IOHandler) : Void

Figure 2: Final model of BasicGraph

1 but not in Figure 2. In general, if the second diagram is ‘older‘ than the first one, the
color red expresses that these parts have been deleted and green expresses that these parts
have been added. Figure 3 also contains a small u-button, which indicates that the element
has been detected as similar, but some parts of it are different. For example name changes
are a usual representative, e.g. the parameter name of method getBasicNode in class Ba-
sicGraph has changed from idx to index. More details for the visualization aspects can be
found in [NieO4, OWKO3b].

Although the UML is supported by a large number of tools, their team work support
and notably their facilities for calculating and visualizing differences are inadequate [Ros].
Some tools include a proprietary version management system to support team work, which
does not allow for exchanging or comparing models produced by other tools [SZNO4].
But, usually tools store the developed models as textual XMI files and use standard textual

SimpleGraph BasicGraph

 SimpleGraph () b~ PeBasicGraph ()
@ SimpleGraph (io:IOHandler) ¥@BasicGraph (io:IOHandler)
¥checkConstraints (origin :BasicNode, dest :BasicNode) : Void P§addBasicEdge (edge :BasicEdge) : Void
@ store (io:IOHandler) : Void = ‘"§addBasicNode (node :BasicNode) : Void
P@checkConstraints (origin :BasicNode, dest :BasicNode) : Void
Zf P@getBasicEdge (index :Integer) : BasicEdge
T®getBasicNode (idx Mindex :Integer) : BasicNode
NonCyclicGraph ® hasEdges () : Boolean
@ isEmpty () : Boolean
NonCyclicGraph () ‘). numberOfEdges () : Integer
@ NonCyclicGraph (io:IOHandler) ‘|)0remuveBas\cEdge (edge :BasicEdge) : Boolean
P@checkConstraints (origin :BasicNode, dest :BasicNode) : Void v@removeBasicNode (node :BasicNode) : Boolean
P@isReachable (origin :BasicNode, dest :BasicNode) : Boolean @ size () : Integer
@ store (io:IOHandler) : Void - y @ store (io:IOHandler) : Void
< hasNode

1 1
¥ hasElement
o

BasicNode
GraphElement ¥ hasEdge

‘Y@BasicNode (bGraph :BasicGraph)
¥@BasicNode (io:|IOHandler , bGraph :BasicGraph)
@ countincomingEdges () : Integer %

@ store (io:|OHandler) : Void [

® countOutgoingEdges () : Integer 0."
@ getBasicGraph () : BasicGraph

@ insertincomingEdge (edge :BasicEdge) : Void
% insertOutgoingEdge (edge :BasicEdge) : Void » hasIncomingEdge
% isConnectedTo (destination :BasicNode) : Boolean o e N - " A .
PeremovelncomingEdge (edge :BasicEdge) : Void ‘“@BasicEdge (origin :BasicNode , destination :BasicNode)

. > hasOutgoingEd
P@removeOutgoingEdge (edge :BasicEdge) : Void asOutgoing=dge :revﬂoveEfige 0: Void
@ store (io:|OHandler) : Void |1 0. store (io:IOHandler) : Void

BasicEdge

‘P@BasicEdge (io:IOHandler , bg :BasicGraph)

Figure 3: Document with difference information. Parts detected as similar are shown in black color,
the green (light gray) parts exist only in the second diagram and the red (dark gray) parts exist only in
the first diagram. Red parts are only the two composition relations called hasNode and hasEdge.

version management software such as CVS to support team work. Storing models as XMI
files means that either the XMI files can contain tool-specific and other auxiliary data as
well as the order in which elements are stored in XMI files and other details in the for-
matting of the text are arbitrary and at the discretion of the tool. Both of the above effects
can lead to many textual differences, however, these differences are conceptually irrele-
vant. Obviously, textual representations of UML models are not at an appropriate level of
abstraction for computing differences. UML documents, which we call an UML model
encoded as XMI file, should rather be regarded as trees when computing differences.

Difference tools must interpret XMI files as graphs. The main structure of such a graph
is a tree which contains references (idrefs in XMI), i.e. additional graph edges beyond a
pure tree structure. Generic algorithms for computing graph differences are not appropri-
ate for these graphs, because they do not take the semantics and actual representation of
models into account [OWKO03b, RW98, ZWRO01].

In this paper we present an algorithm that calculates differences of two models given
as XMI files. The output is also an XMI file; it contains the unified model of the two
original models with additional difference information. In contrast to our previous work,
the difference algorithm does not rely on persistent unique identifiers. The calculation
itself is configurable to capture the semantics of an actual model or part of the model in
the algorithm. As example we use UML class diagrams, but our prototype can currently
calculate differences of statecharts as well.

2 Related Work

A large number of algorithms for comparing documents have been proposed. They can
roughly be divided into (a) algorithms which can handle only one specific document type
and which are fully adapted to this document type (as e.g. proposed in [Gir02]) and (b)

generic algorithms which, if at all, require only some configuration data. This paper ad-
dresses only the second class of algorithms.

Most of the generic algorithms are intended for documents represented as text, e.g.
the LCS (Longest Common Subsequence) algorithm [Mye86]. These algorithms are ap-
propriate for documents such as source programs, IXIEX sources etc., but not for typical
models stored in the XMI format; as already mentioned, XMI files are representations of
UML documents at a physical level; comparisons at this level lead to many false, concep-
tually irrelevant differences. Differences between UML documents must be computed on
the basis of a conceptual representation [KelO4].

Although UML documents have a primary structure like a tree - they are composed of
elements which in turn have sub elements - they are not exactly trees due to cross refer-
ences; e.g. the type of a parameter of an operation can be another class in a class diagram.
Considering UML documents just as graphs is not a viable solution since algorithms for
comparing arbitrary graphs are NP complete and fail to exploit the semantics of the mod-
els. Algorithms for unordered trees are too inefficient, too.

The only viable approach is to consider UML documents as ordered trees - this is
no problem since in all relevant cases, diagram elements are either ordered or they have
names, from which an order can be derived. Examples of algorithms for comparing or-
dered trees are LaDiff [CRGMW96] and XDiff [WDCO03].

LabDiff is applicable to ordered typed trees, notable IXTEX documents. It processes the
two trees which are to be compared in a bottom-up fashion, i.e. it compares the leaves
of the trees pairwise and forms corresponding pairs as soon as their similarity is above a
given threshold. The complexity of this algorithm is O(n?), with n being the number of
nodes of the trees, which is still too high for medium to large documents.

XDiff is applicable to typed trees in which elements have names, which are unique in
the context of the parent element. Using these names, one can form unique path names of
subtrees. XDiff initially processes all elements of the first document (in bottom up order)
and computes a hash key which depends on the whole subtree and the path name of the
subtree. The hash keys of all elements are collected in a directory (e.g. an AVL tree or a
hash table). Then, hash keys of all elements of the second element are computed (again
in bottom up order), and for each hash key it is checked whether the same key appears
in the directory of the first document. If so, XDiff matches and the two elements form
a corresponding pair. Due to the use of a directory, XDiff is very efficient in identifying
identical subtrees in both documents, the complexity is in the order of O(n * loga(n)).
Identical, but moved subtrees are not identified and there is no notion of similarity at all.

The main task of all algorithms mentioned so far is to identify corresponding pairs
of elements in the two diagrams. If the two diagrams are revisions of each other and if
the diagram editing tool supports persistent identifiers then one can use these identifiers
to form corresponding pairs of elements. Difference tools based on this approach are
presented in [AP03, OWKO3a]. This approach is more efficient, but only applicable under
the conditions mentioned above; moreover, it does not deliver optimal results in the case
of significant local modifications in diagrams.

3 Difference Algorithm

Our approach of detecting differences between two UML documents can be divided into
two phases, similar to most of the difference algorithms in section 2. In the first phase we
have to detect the elements in the first document that have a corresponding element in the
second one. Subsequently the differences between the two documents can be deduced and
the appropriate output can be created.

3.1 Data Model

Document

+name :String

Reference contains
+name :String references ’
Element + isOfType ElementType
N +name :String +name :String
hasReference | | 2chvalue :byte[] +threshold :float | o 4
+path :String
Attribute * +version :int
@ </
+name :String .
+value :String hasAttribute subelementTypes

hasSubelement

Figure 4: The data model of the difference algorithm

To be independent of an actual existing meta model, e.g. the complex UML meta model,
we decided to design a simpler data model for our algorithm. A side-effect is that the
algorithm should be able to handle also other models encoded in XMI which are not UML
models. The data model is depicted in Figure 4. Basically it is a tree with typed elements,
that can be decorated with attributes. In addition to the tree-like elements the data model
might also have graph-like cross-references. In detail:

e A Document contains several elements. In a UML class diagram a Document con-
tains all elements of the model.

e Elements have a specific ElementType and can refer to other Elements modeled
by the Reference class. Elements might also contain several Attributes. Examples
for Elements in a class diagram are: packages, classes, operations, attributes and
parameters.

e An Attribute features name and value pairs. For example a UML class has an At-
tribute *isAbstract’ with values ’true’ or ’false’.

e Composite Structure: Elements can be composed of sub elements, notably the tree-
structure of the document. Within class diagrams for examples packages contain
classes and sub packages, classes contain attributes and operations and operations
contain parameters.

e Class Reference models cross-references between elements , e.g. an association fea-
tures two association ends that both have a Reference referring to a class element.

By reducing the complexity of the model it is possible to use this generic data model
for every diagram type within the UML specification, since all elements of an XMI file
can be mapped to our data model. Thereby, our data model is comparable to the meta-
model internally used by DOM parsers for XML. The mapping between XMI elements
and elements in the data model is defined by a configuration file. Our difference algorithm

works on an instance of this data model. For example in Figure 5, Class, Parameter, etc.
are instances representing classes and parameters and so on of an actual class diagram.

3.2 The difference algorithm for class diagrams

A
(1) compare types
bottom—up

(2) propagate matching :Element
top-down name="Package"
:
&7 (1) Similarity 4
‘ 0 . ‘ ‘ 0 ‘ (2) Match

@\ Object represents actual

instance of data model, e.g.

&7 (1) Similarity 4

(| s | pamm] “5 Spuun| [onave] ‘s

‘ ‘ ¥ (1) Similarity 4 ‘

v

(o] [amter] [int] S5 | [

Figure 5: The bottom-up and top-down phase of the algorithm

As we have decided not to rely on persistent identifiers for the model elements, our al-
gorithm detects the matchings by considering the similarity between elements. Most el-
ements of a class diagram are composed of other sub elements, e.g. a class consists of
attributes and operations, which itself consist of parameters and so on. So we calculate the
similarity between two elements by looking at the sub elements at first. Consequently our
algorithm first tries to detect matches in a bottom-up phase.

1. Bottom-Up: Similar to the LaDiff algorithm [CRGMW96] within calculating dif-

ferences of two documents at first all leaf elements are compared. So in Figure 5
first of all the Classifier elements are compared. A Classifier element in a class di-
agram refers to either a simple datatype or a class element. In the bottom-up phase
only elements will be matched, that have a unique similarity to exactly one other
element in the second document. If there are similarities between more than two
elements no match is detected, as the similarities can change when more and more
elements have been compared. A similarity is only noticed when the similarity value
is greater than a threshold that is specified for each element type. If a unique similar
element is detected the two elements are matched, i.e. they are considered to refer to
corresponding elements. In the example given in Figure 5 no match could be found
on the Classifier, Parameter and Operation level but on the Class level. In such a
case the algorithm switches into top-down phase.

2. Top-Down: During the top-down phase the last match in the bottom-up phase is

propagated to all child elements of the matched elements referring to the composite
structure of our data model. As a result of the additional information due to the fact
that now parent-elements and eventually referenced elements have been matched the
order of the similar elements can differ from the order in the bottom-up phase. As a
consequence the most similar elements are matched and this is propagated top-down
further on.

The algorithm stops when all elements have been compared in bottom-up phase. The result
of the difference algorithm is a correspondence table consisting of matching element pairs.
Therefore the belonging differences can easily be deduced as we will see in section 3.4.

A problem remains when there are more graph-like structures in the document and
less composite relations, for example in state-charts. If we want to compare two state-
charts, i.e. finding corresponding states and transitions, the transitions between states are
very important for detecting the correct correspondence. But if we compare one state, the
referenced state has probably not been compared yet. So in this case dependencies can
be noticed for the comparing process that contradict the tree-like structure of the diagram.
Also cycles can be possible. Cycles and dependencies can be solved by comparing the
elements repeatedly. For example classifier, parameter, attribute and operation elements
within a class diagram are compared again after the class elements have been compared,
since the classifiers refer to class elements. Experiments show that this suffices to detect
all correspondences. This procedure lets the similarity flood over the references in a way
such as the ’Similarity Flooding’-Algorithm described in [MGMRO02].

3.3 The Similarity Function

| ElementType | threshold | Criterion weight
Class 0,4 Similarity of the class names 0,4
Ratio of similar or matched Operations 0,2
Ratio of similar or matched Attributes 0,2
Generalization targets match 0,1
Packages match 0,1

Table 1: Criteria for comparing class elements

Up to now we have only discussed the similarities between elements without defining them
precisely. The elements are compared in a type wise manner, so we have to define a func-
tion that compares two elements of the same type and returns a value between 0 and 1,
where 0 means no similarity and 1 means mostly similar. Due to our generic approach the
similarity function can be easily defined by setting up some criteria for each element type
in a configuration file. The criteria consider certain parts of the elements depending on
the actual types and structure of the compared models. The values of the different criteria
are weighted and the total similarity value is calculated by addition as we can see in the
following formula:

SiMey e = Z w, - compareg(eq, ea) (1)
ceC

Thereby e; and ey are the elements to be compared, C' is the set of criteria, w. gives
the weight of criteria ¢ and compare, is the compare function for criteria c. Besides the
similarity function the threshold defines the minimum similarity value to consider two
elements as similar. Actual criteria, weights and the threshold for comparing elements
of classes are shown in table 1. The complete table with the criteria for comparing class
diagrams can be found in [Weh04]. The similarity of string attributes is calculated by
using the text comparing algorithm LCS. The ratio of similar or matched operations and
attributes can be easily calculated by counting the sub elements that already match or
summing up their similarity values. For the generalization or package criteria the matching
of the referenced elements has to be considered.

3.4 Output of the Algorithm

The result of the algorithm, as described in section 3.2, is a correspondence table consist-
ing of all all matched element pairs. To represent the belonging differences we create a
unified document, that contains all elements of the two original documents, whereas the
elements in the correspondence table are only contained once in the unified document. The
differences of the two documents can be easily deduced:

e structural difference (SD): Elements, that have no entry in the correspondence
table are considered to be structurally different.

o attribute difference (AD): Corresponding elements that differ in their attribute’s
values get an attribute difference containing both, the old and the new value.

o reference difference (RD): Corresponding elements, whose references are different
in the two original documents have a reference difference with references to both
targets.

e move difference (MD): Elements that appear to change their parent element be-
tween the two original documents get a move difference with a reference to the
other parent element.

The differences between matching elements is annotated at the belonging elements itself.
This annotation includes additional information to specify the difference precisely, e.g. an
attribute difference reveals both values of the changed attribute. The annotations can be
easily stored by using the XMI extension mechanism that allows for adding user specified
elements in the unified document.

3.5 Optimization

The difference algorithm as described in section 3.2 has complexity O(n?), with n being
the number of elements in both documents. Note that the number of elements of a certain
type increases dramatically level by level regarding to the composite structure of the data
model, cf. Figure 4. Consequently in the bottom-up phase, where the difference algorithm
tries to find unique correspondences on the lower levels, it fails. For example in class
diagrams, the algorithm will not find unique correspondences of datatypes on the lowest
level, because datatypes are part of attributes, methods and parameters in class diagrams
and therefore massively used. To match datatypes of two models, the algorithm has to
investigate the nodes lying on higher levels, e.g. parameters and classes, see Figure 5, and
match the actual datatypes in the subsequent top-down phase. Unfortunately, this failure
of finding a unique correspondence needs most of the calculation time.

The idea to optimize the algorithm and to reduce the runtime is to use a hashing pre-
phase similar to the XDiff algorithm [WDCO03]. In this pre-phase we calculate the path
of each element regarding to the composite structure of the data-model. The certain parts
of the path are usually the names of the elements. For example consider Figure 5, a path
of a parameter consists of the package name, the class name, the method name and the
parameter name itself. We also calculate a hash value for the element itself and another
one for all sub elements. If an element has references to another element, we include the
path of the referenced element into the original element’s hash value. We concatenate
the three values for each element and use it as identification value. Afterwards we match
elements with identical identification values. Overall, the hashing pre-phase reduces the
number of elements of a certain type that have to be match by the difference algorithm.

The determination of the paths has complexity O(n) with n being the number of all el-
ements and takes place during parsing the XMI files into our data-model. Finding elements
with identical paths has worst-case complexity of O(n*log2(n)), with n being the number
of all elements, because of unordered sub element lists. Overall this means an overhead of
O(n xloga(n), which is compared to the quadratic complexity of the difference algorithm
acceptable and practically reduces the runtime significantly.

The disadvantage of our optimization is that element moves can only be detected by
the difference algorithm, because the element paths are different. To detect also moved
elements in the pre-phase one solution is to iterate the pre-phase, where in each iteration
we decrease the path length by 1 and find matches for all elements that have not been
matched in the previous iterations. However, our experiments show that the iterated pre-
phase approach results in longer runtime than performing only one pre-phase and detect
the moved elements by the difference algorithm.

4 Evaluation

The main assessment criteria of our evaluation are the quality of the calculated solutions
and the required runtime. We used several projects to “benchmark” the algorithm. To
retrieve different UML documents as input for the evaluation of our algorithm we partly
used version management systems to check out different versions of source code. Usually
the source code subsequently has been reverse engineered into UML documents. The
documents differ in several attributes, notably in size of the models, the elapsed calendar
time between the versions, and the number of developers involved in the project. The
series of our benchmark projects can be characterized as follows:

e HTMLPackage: Three feasibility class diagram examples that model HTML doc-
uments, to test and verify our algorithm.

o UMLDIff Package: Four diagrams that have been reverse engineered from the
source code of our prototype. The versions were taken at the beginning and the
end of the implementation of the tool.

e Fujaba Packages: Four large class diagrams which were derived from the sources
of the UML tool Fujaba. About six months of calendar time was elapsed between
the versions.

o Ritterspiel: Three versions of a class diagram from a project group at the university
of Kassel which designed a board game during six months. These versions stem
from the Fujaba internal version management system and have not been reverse
engineered from source code.

e Fujaba BasicPackage Series: This series consists of 50 consecutive reverse engi-
neered versions of the de.uni_paderborn.fujaba.basic package of Fujaba. On aver-
age, a new version has been created every three days. The analysis of the whole
series showed that many versions had no or almost no changes in comparison with
their predecessor; some had up to 1 % of the elements changed, and in one case, 28
% of the elements were changed. Due to lack of space we will show only the results
of 4 comparisons of this series.

The results of the evaluation are shown in table 2. The first column of the table shows the
sum of number of XMI elements (Elem.) of both documents. The second column shows
the for number of classes (Cl.), respectively. The largest documents contain class diagrams
with up to 284 classes and 13.973 elements.

Quantity Det. Differences Errors
Testdata Elem. | CL SD % P | oD | SD | HM% | « | B | RT(s)
HTMLPackage
VO vs. V1 171 17 | 55,56% 97 2 95 71% | 0| O 0,5
VO vs. V2 204 | 20 | 65,69% 136 2 134 66% | 0| O 0,5
V1vs. V2 185 23 | 21,08% 39 0 39 84% | 0| O 0,5
UMLJiff Packages 26.04.04-15.07.04
diagModel 804 | 32 | 30,85% 270 | 22 | 248 79% | 0| O 0,9
compltems 595 35 | 46,55% 291 14| 277 2% | 0| O 0,7
calculator 1545 66 | 69,45% | 1088 15 | 1073 78% | 0| O 1.5
altogether 2929 | 99 | 57.87% | 1740 | 45 | 1695 78% | 0| O 37
Fujaba Packages 01.01.04-21.07.04
asg 1755 | 102 | 7,69% 148 13 135 9% | 0| O 1,1
fsa 7020 | 199 | 2,76% 208 14 194 9% | 0| O 29
basic 8629 | 237 | 28,98% | 2551 50 | 2501 87% | 0| 0| 12,69
uml 13973 | 284 | 6,13% 971 | 114 | 857 9% | - - | 14,95
Ritterspiel V0=21.01.04, V1=29.03.04, V2=27.07.04
VO vs. V1 621 36 | 43,32% 282 13 269 59% | 1 1 0,9
VO vs. V2 1057 | 44 | 66,70% 723 18 | 705 56% | 1 1 1.3
V1 vs. V2 1276 | 48 | 34,17% | 449 13 | 436 87% | 0| 1 1.5
Fujaba BasicPackage Series
01.01.-04.01. | 11054 | 230 | 0,00% 4 4 0| 100% | 0| O 3,95
22.01.-25.01. 8648 | 237 | 28,05% | 2435 9 | 2426 98% | 0| O 5,15
09.02.-12.02. 6224 | 240 | 0,16% 18 8 10 9% | 0| O 32
19.03.-22.03. 7666 | 267 | 0,03% 13 11 2 9B% | 0| O 3,70

Table 2: Test results

The next column (SD%) shows the percentage of elements that have been added or deleted
between the two original documents. This value reveals that the extent of change can differ
widely among the packages. For example in the Fujaba project the fsa package had only a
few changes, whereas the basic package appears to be heavily restructured.

The next columns show the detected types of differences where SD counts the number
of structural differences and OD counts all other differences, i.e. reference, attribute and
move differences. Obviously, the vast majority of differences are structural differences
due to the addition or the removal of elements. The others are much less frequent.

The fraction of matches found in the pre-phase is shown in the column labeled HM%.
The figures show that the pre-phase performs very well in general; in most cases more than
three quarter of the matches can be found in this phase. In the case of the BasicPackage
series, where new versions were created after a short calender time, the fraction of matches
found in the pre-phase is even around 98%.

The next columns show the quality of the detected differences. Since we use similarity
heuristics for finding correspondences errors are unavoidable. Two typical error types can
occur in the computation of a difference: If an element is not matched with another element
although it should have been matched we call this an « error. The other way around, if an
element is matched with another element, but both do not really correspond to each other,
we call this a (3 error.

We checked for errors by reviewing the unified documents in our visualization tool,
manually. By the way the Fujaba UML package was too huge for a review so we cannot
give real evidence about the errors here. The figures show that errors appear very rarely.
An example for an error shows up at the Ritterspiel series: Here an attribute called damage

in class Laser was replaced by two attributes fieldLaserDamage and robotLaserDamage.
Since fieldLaserDamage contains a lower case 'd’ and robotLaserDamage does not, the
name distance calculated by LCS is smaller for fieldLaserDamage. Consequently our
algorithm matches attribute damage with fieldLaserDamage. Although this seems not to
be a hard error because the attributes correspond somehow, but one would expect that all
attributes are structurally different, i.e., added and removed elements.

The last column presents the runtime in seconds. The runtime primarily depends on
the quantity of the elements. Runtime is significantly better if more correspondences are
found in the pre-phase, i.e. HM% has a high value. For example, the runtime for the Fujaba
BasicPackage series reported in the third section (with HM = 87%) is much higher than
all runtime shown in the last section (with HM > 97%).

The tests were performed on a standard PC with an AMD 1600+ and 1 GB of mem-
ory. The runtime shown in the table are the average of 10 test runs. For the majority
of the diagrams the computation of a difference takes less than 5 seconds. And even the
largest diagrams in our test cases are compared within 15 seconds. The memory consump-
tion showed up to be moderate with less than 55 MB memory consumed for the largest
documents.

5 Conclusion

This paper has presented an approach for computing differences between UML models
encoded as XMI files. The main features of the approach are: (a) it is generic and covers a
broad range of UML diagram types; (b) the algorithm used in our approach leads to good
runtimes in the case of small documents and acceptable runtimes in the case of large doc-
uments; (c) it has a very low error rate, i.e. leads to few false or missed correspondences,
the quality of the differences is almost optimal; (d) it does not require persistent identifiers
of diagram elements.

We have implemented the difference algorithm as well as a visualization for class
diagrams as Fujaba plugins. Fujaba is available under www.fujaba.de. The corresponding
plugins can be downloaded within Fujaba. The XMI Support Plugin provides import and
export functions for pure class diagrams in XMI format. The Difference Calculator Plugin
takes two XMI files as input and produces an XMI file, which contains the unified model
with difference information, which may be the input for the Difference Viewer Plugin.

The approach has been intensively tested with class diagrams and to some extent with
state charts. A significant problem at this time, and a subject of further work, is to get
hold of realistic examples, if not benchmarks, of versions histories or groups of variants of
documents of other document types. Only with such empirical material, one can fine-tune
the configuration parameters for these document types.

Although our algorithm produces errors rarely, they can occur. So a user is probably
interested in correcting these errors in view of later having one merged document. To
provide correction facilities in a user-friendly way we need to implement an iterative al-
gorithm that is capable of calculating a new partial difference, in the case of a manually
changed correspondence.

Another practical problem is the lack of accuracy in the XMI specification. Currently,
different tools use different methods of mapping diagram elements onto XML elements.
For example, a generalization can be represented in several structurally different ways in
XMI files. For each mapping method, an individual import filter must be implemented.
This is a general problem for the exchange of documents between different UML tools,
and not specific for difference tools.

References

[APO3]

[CRGMW96]

[Gir02]

[Kel04]

[MGMRO2]

[Mye86]

[NieO4]

[OWKO03a]

[OWKO3b]

[Ros]

[RW98]

[SZNO4]

[WDCO03]

[Weh04]

[ZWRO1]

Marcus Alanen and Ivan Porres. Difference and Union of Models. Technical Report
527, TUCS - Turku Centre for Computer Science, April 2003.

Sudarshan S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer
Widom. Change detection in hierarchically structured information. pages 493-504,
1996.

Martin Girschick. UMLDiIff: Erkennung und Analyse von Unterschieden in
Klassendiagrammen und Sequenzdiagrammen. Master’s thesis, Technical Univer-
sity of Darmstadt, 2002.

Udo Kelter. Dokumentdifferenzen. In Softwaretechnik. Online at:
http://pi.informatik.uni-siegen.de/kelter/lehre/03w/lm/Im_dif _info.html, 2004.
Lehrmodul zur Vorlesung.

Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity Flooding: A
Versatile Graph Matching Algorithm and its Application to Schema Matching. In
18th Intl. Conf on Data Engineering (ICDE), San Jose CA, 2002.

Eugene W. Myers. An O(ND) Difference Algorithm and Its Variations. In Algorith-
mica, volume 1(2):251-266, 1986.

J. Niere. Visualizing Differences of UML Diagrams with Fujaba. In Proc. of the 2nd
Fujaba Days, Darmstadt, Germany, October 2004.

Dirk Ohst, Michael Welle, and Udo Kelter. Difference Tools for Analysis and De-
sign Documents. In Proceedings of the IEEE International Conference on Software
Maintenance 2003 (ICSM2003), Amsterdam, pages 13-22, September 2003.

Dirk Ohst, Michael Welle, and Udo Kelter. Differences between Versions of UML
Diagrams. In ESEC/FSE’03, September 1-5, 2003, Helsinki, Finland, 2003.

IBM. Rose, the Rational Rose case tool. Online at http://www.rational.com (last
visited June 2004).

Jungkyu Rho and Chisu Wu. An Efficient Version Model of Software Diagrams. In
Proc. 5th Asia-Pacific Software Engineering Conf., 2-4 December 1998 in Taipei,
Taiwan, ROC. IEEE Computer Society, December 1998.

C. Schneider, A. Ziindorf, and J. Niere. CoObRA - a small step for development tools
to collaborative environments. In Proc. of the Workshop on Directions in Software
Engineering Environments (WoDiISEE), Edinburgh, Scotland, UK, May 2004.

Yuan Wang, David J. DeWitt, and Jin-Yi Cai. X-Diff: An Effective Change De-
tection Algorithm for XML Documents. In /9th International Conference on Data
Engineering, March 5 - March 8, 2003 - Bangalore, India, 2003.

Jirgen Wehren. Ein XMlI-basiertes Differenzwerkzeug fiir UML-Diagramme. Mas-
ter’s thesis, Universitit Siegen, 2004.

Albert Ziindorf, Jorg Wadsack, and Ingo Rockel. Merging Graph-Like Object Struc-
tures. In Andre van der Hoek, editor, Tenth International Workshop on Software Con-
figuration Management (SCM-10) New Practices, New Challenges, and New Bound-
aries May 14-15, Toronto, Canada (ICSE workshop). http://www.ics.uci.edu/ an-
dre/scm10/, 2001.

