
Difference Computation of Large Models

Christoph Treude, Stefan Berlik, Sven Wenzel, Udo Kelter
Software Engineering Group

Dept. of Electrical Engineering and Computer Science
University of Siegen, Germany

{treude|berlik|wenzel|kelter}@informatik.uni-siegen.de

ABSTRACT
Modern software engineering practices lead to large models
which exist in many versions. Version management systems
should offer a service to compare, and possibly merge, these
models. The computation of a difference between large mod-
els is a big challenge; current algorithms are too inefficient
here. We present a new technique for computing differences
between models. In practical tests, this technique has been
an order of magnitude faster than currently known algo-
rithms. The main idea is to use a high-dimensional search
tree for efficiently finding similar model elements. Individ-
ual elements are mapped onto a vector of numerical values
using a collection of metrics for models and a numerical rep-
resentation of the names which occur in a model.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; I.7.1 [Document and text process-
ing]: Document and Text Editing—Version control ; E.1
[Data Structures]: Trees; F.2.2 [Analysis of algorithms
and problem complexity]: Nonnumerical Algorithms
and Problems—Sorting and searching

General Terms
Algorithms, Experimentation, Performance

1. INTRODUCTION
Model-driven engineering (MDE) is expected to become a

leading paradigm of software engineering in the 21st century.
Assisted by powerful model transformation tools, software
developers work mainly or only with models, notably class
structure diagrams or activity diagrams. Initial abstract
models are stepwise refined and eventually transformed into
ready-to-use software. The delivered software product is
either source code directly generated from the models or a
set of ’executable’ models.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’07, September 3–7, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009 ...$5.00.

Another trend is the reduction of time to market. Making
release cycles shorter requires more developers to work con-
currently. This leads to many different versions of a model.
Support of concurrent work by version management systems
becomes crucial here. An essential service of these systems
is to compute the changes between two documents (i.e. one
possible difference) and to merge concurrent changes.

In the context of model-driven engineering, a very com-
mon use case for difference tools is to compare two UML
class diagrams. Figure 1 shows an example of two small
class diagrams which are revisions of each other. This ex-
ample will be used throughout the remainder of this paper.

Current versioning systems fail to handle models correctly.
Storing the models in textual files, e.g. XMI files, and com-
paring such files is inadequate because the textual repre-
sentation does not have an appropriate level of abstraction.
Textual representations of the same models can have many
textual deviations, such as changed identifiers or differently
ordered elements.

Difference tools should interpret models as attributed
typed graphs. The primary structure of such a graph is
a tree that contains additional cross references, e.g. the re-
turn types of operations can refer to other classes. Virtually
all diagram types of the UML and technical models such as
Matlab Simulink models have this basic structure.

Only very few algorithms and tools for computing differ-
ences between models have been proposed so far (s. Section
1.1). These algorithms initially determine a set of correspon-
dences. A correspondence is a pair of equal or at least similar
elements in the two models. A model element not involved
in a correspondence is regarded as a local change. Examples
of local changes include inserted, deleted or moved elements,
or attribute modifications. Tools which display differences
often use different colors to highlight local changes (see Fig-
ure 1).

The correspondences are basically determined by comput-
ing the similarity of pairs of elements and by selecting mu-
tually most similar elements as corresponding pairs. All
similarity-based algorithms known so far compute the sim-
ilarity of each pair of model elements. Effectively, for each
element in the first model, a linear search for the most simi-
lar element in the second model is performed. This basic ap-
proach has inherently O(n2) complexity, n being the number
of elements in a model. Medium or large documents, which
are quite likely in MDE, lead to runtimes in the range of 5
minutes to an hour, which are clearly unacceptable for most
purposes.

(a) Initial class diagram

(b) Revised class diagram

Figure 1: Example scenario

The main contribution of this paper is a new algorithm
which compares models with normal properties in O(n log n)
runtime and which extends the size of models which can
be compared in practice by an order of magnitude. The
basic idea behind this algorithm is to use a high-dimensional
balanced search tree for efficiently finding all elements which
are sufficiently similar to a given one. This leads to two
technical challenges: (a) to develop a suitable search tree,
(b) to represent model elements in such a way in the search
tree that a range query retrieves all model elements which
have a minimum similarity to a given element.

Our solution to challenge (a) is the S3V tree, a high-
dimensional balanced in-memory search tree, which borrows
basic ideas from high-dimensional, disc-oriented search trees
for information retrieval systems (notably [7]). The S3V tree
will be presented in detail in Section 3. The solution to chal-
lenge (b) is to map model elements onto numerical vectors
using a number of well-known and easily computable met-
rics. Details of this mapping are presented in Section 4.

We have implemented the search tree within a generic
difference tool known as SiDiff ([9, 14]). The tool is easily
configurable for virtually all models with a graph structure.
Configurations are currently available for 7 UML diagram
types and Matlab Simulink models. We have extensively
benchmarked the S3V tree using large class diagrams; we
have measured performance gains up to a factor of 50 with
large diagrams, which is consistent with our theoretical anal-
ysis. Details of the evaluation can be found in Section 5.

Our approach of efficiently finding similar model elements
is not only usable in difference tools, but also for other pur-

poses such as the analysis of version histories or clone de-
tection in models.

1.1 State-of-the-art
A large number of algorithms for comparing documents

have been proposed [8]. They can roughly be divided into
(a) algorithms which can handle only one specific document
type and which are fully adapted to this document type (e.g.
as proposed in [6, 17]) and (b) generic algorithms which
require only some configuration data, if any at all. This
paper addresses only the second class of algorithms.

Many algorithms are intended for textual documents, e.g.
the LCS (Longest Common Subsequence) algorithm [12].
These algorithms are appropriate for documents such as pro-
gram source code, but not for typical models stored in, say,
the XMI format. XMI files are representations of graph-
structured models at a physical level; comparisons at this
level lead to many false, conceptually irrelevant deviations.
Thus, correspondences between models must be computed
on the basis of a conceptual representation.

Many difference tools are based on persistent identifiers of
model elements (e.g. [1, 13]). Two model elements are de-
termined as corresponding if they have the same identifier;
their similarity does not matter. This approach is very effi-
cient, but it fails if tools do not support persistent identifiers
or if models have been re-engineered or independently de-
veloped. Moreover, it can deliver differences whose quality
is questionable.

Similarity-based algorithms are applicable without such
restrictions and deliver better quality. Algorithms such as
LaDiff [3, 4] and XDiff [16] are only applicable to ordered or
unordered trees, respectively; they are not appropriate for
models because models have a cyclic structure and a mixture
of node types with ordered or unordered children.

In [9] a generic differencing algorithm for models, called
SiDiff, was presented. This algorithm can be configured
for a wide range of model types. It is similarity-based and
does not depend on persistent identifiers or unique element
names. It follows the basic schema mentioned above, i.e. it
initially compares all pairs of elements of the two models.
SiDiff is discussed in greater detail in the next section.

2. SIDIFF –
SIMILARITY-BASED DIFFERENCE

The architecture of the SiDiff system is shown in Fig-
ure 2. Documents which are to be compared are initially
transformed into an internal representation, e.g. from an
XML-based file format using XSLT transformations. Alter-
natively, the models can be created through an API or by
implementing pre-defined interfaces, if SiDiff is tightly inte-
grated into another software. The difference calculation of
the new, enhanced version of SiDiff consists of three phases:

1. In an initial hashing phase a hash value is calculated for
each element. Elements with identical hash values are
immediately matched1 and are not considered further
during the subsequent phases2.

1Many documents can contain cloned elements, which have
equal hash values. The handling of clones is not relevant for
this paper.
2A similar hashing phase is part of the XDiff algorithm [16].

Transformation
(e.g. XSLT) SiDiff

doc1.*

doc2.*

model_doc1.xml

model_doc2.xml

unified.xml

config.xml

Visualization

Other
applications

Figure 2: SiDiff Architecture

Attribute

name : String

value : String

Node

id : String

Edge

Graph

Type

name : String

NodeType

EdgeType

has

type

type

nodes
1

*

1*

1*

srctgt

11

**

1 *

nesting : Boolean

Figure 3: Data model of the SiDiff algorithm

2. In an indexing phase, one or several S3V trees are cre-
ated. An S3V tree efficiently finds, for a given model
element, the most similar elements in the other model.
Typically, the number of returned elements can be kept
very small and is independent of the size of the model.

3. The matching phase iterates through the elements of
one model. For each element, it retrieves the most
similar elements of the other model, determines exact
similarities, and computes matches.

Subsequently the difference between the two documents is
output in an appropriate format (see Section 2.4).

2.1 Internal data model
When initially loading a document of a specific document

type (e.g. from an XML file), an internal representation of
the model as a directed, typed graph is constructed. This
graph is a low-level implementation of the document’s graph
structure. The nodes and edges of the internal graph use a
fixed set of runtime object types in order to make the kernel
of the system independent from specific document types.
This fixed set of types used in the internal representation is
shown in Figure 3.

A document, represented as graph, consists of several ob-
jects of type node. An object of type node (a node for short)
represents one individual element of the model (e.g. the class
HTMLDoc, the operation dump()). Nodes have attributes
(e.g. name, visibility, cardinality). Each node is connected
to an object of type node type which represents an element
type (e.g. classes, operations, generalizations). Objects of
type edge represent associations and similar directed con-
nections between model elements. Edge objects contain a
reference to an object of type edge type which represents the
type of the model-level connection. The attribute nesting

indicates whether connections have part-of semantics (e.g.
connections from classes to operations).

2.2 Similarity computation
The properties which are relevant for the similarity of two

nodes of the same type are either given by their local at-
tributes (e.g. the names) or by other nodes in the neighbor-
hood of these nodes (e.g. nodes that are referenced). SiDiff
uses a set of compare functions to determine the similarity
between two nodes, e.g. to compare two attribute values or
to compare sets of neighboring nodes. These functions com-
pare two properties of the same type which belong to dif-
ferent nodes. They return a value between 0 and 1; a value
of 0 stands for no similarity between the nodes, a value of 1
expresses equality.

Obviously, some properties are more relevant for the sim-
ilarity of nodes than others; therefore, weights must be as-
signed to each property. The weights have to be chosen
according to the semantics of the model type and according
to what users consider a significant change. For each spe-
cific model type, a configuration file describes the similarity-
relevant properties of the types of model elements. Model el-
ements are compared pairwise using the configuration which
is applicable for their element type. The similarity between
two elements is defined as the weighted mean of the sim-
ilarities of the similarity-relevant properties. Additionally
the configuration specifies for each element type a minimum
similarity for two elements of this type to be eligible as corre-
sponding elements. Table 1 shows a small excerpt of a SiDiff
configuration, namely the similarity-relevant properties for
class elements within UML class diagrams.

node type = Class threshold = 0.5

Criterion Weight

Similar value for attribute name 0.35
Equal value for attribute visibility 0.05
Equal value for attribute isAbstract 0.05
Similar set of sub elements of type attribute 0.20
Similar set of sub elements of type operations 0.20
Similar elements following incoming generalizations 0.05
Similar elements following outgoing generalizations 0.05
Matched parent element 0.05

Table 1: Criteria for comparing classes

2.3 Comparison procedure
Similarities are computed in a bottom-up/top-down order,

according to the tree-like structure of most models. The al-
gorithm starts from the leaves of the models and compares
the elements of the same type in bottom-up direction. Two
elements are considered similar if their similarity exceeds
the given threshold. They are matched immediately if they
are not similar to any other elements. Elements which are
similar to several other elements are not matched imme-
diately because the similarities might change when further
elements are compared. In the following phase of the algo-
rithm elements are matched with their most similar other
element. Each match causes the algorithm to switch over to
a top-down phase that propagates the new correspondence
downwards to the children. The initial similarities stemming
from the bottom-up phase can be improved since parent ele-
ments or referenced elements can have been matched mean-

while. Consequently, other matchings can be found, which
are propagated top-down further on.

Most UML models do not have a real tree structure; they
contain cross references between elements, which lead to cy-
cles. The comparison has to handle cycles correctly. Such
cycles are dealt with by iterating through a cycle as long
as new matches can be found. The similarities between el-
ements are thus propagated through the graphs. This ap-
proach is similar to the Similarity Flooding algorithm [11].
It allows us to compare documents such as Petri nets, which
are not tree-structured and in which the similarity of ele-
ments depends mainly on their neighborhood, and not on
their compositional structure.

The hashing phase has a significant impact on the effi-
ciency of the algorithm. It has runtime complexity O(n log n)
and is the fastest method of computing correspondences. It
also provides trustworthy fix points that speed up the com-
parison of their neighbor elements.

The quality of the differences produced by our algorithm
has been manually evaluated; the evaluation revealed a neg-
ligible error rate [9].

2.4 Output of the Algorithm
The result of the algorithm consists of a list of matched

element pairs (e.g. the class HTMLList in Figure 1) and
detailed information about changes. Changes are classified
as follows:

Attribute change. An attribute change indicates that two
corresponding elements differ in their attributes’ val-
ues.

Reference change. A reference change indicates that the
references between two corresponding elements have
changed.

Move. Elements that appear to change their parent ele-
ment between the two original documents get a move
annotation with a reference to the other parent ele-
ment.

Structural change. Elements that have no entry in the
correspondence table are considered to be structurally
different, i.e. due to insertion or deletion operations.

After a difference between two models has been computed,
the information can be used for several purposes. One op-
tion is just to present the difference to a developer, another
option is to start an interactive merge process. A difference
can be shown in various ways, e.g. in the form of a uni-
fied document, which contains common elements only once,
or in form of two parallel windows which show one version
with the specific parts highlighted. Further details depend
on the document type. The output of the algorithm must be
adapted to the needs of the final processing of the difference
tool.

3. S3V TREES
Our approach to reduce the number of direct comparisons

of element pairs is a search tree which arranges similar ele-
ments next to each other and which allows us to efficiently
identify the most similar elements for a given element.

Within the search tree, all elements are represented by
numerical vectors. Each vector index represents a certain

characteristic of the model elements. Thus, each element is
represented by a point in a multidimensional vector space.
The similarity of two elements is defined as their Euclidean
distance and the task of finding all similar elements to a
given one is handled by range queries. The latter are queries
for finding all elements in a specified subspace of the data
area. In order to find similar elements, range queries can be
called with a circular search space surrounding the particular
element where the radius of the search space indicates the
maximal Euclidean distance for considering two elements
similar.

3.1 High-dimensional search trees
High-dimensional search trees, e.g. according to [7, 2],

are access structures optimized for elements with more than
three dimensions. To store the elements buckets of fixed size
are used. Buckets represent subspaces of the entire data
space which are pairwise disjoint. The partitioning of the
data is governed by a so-called directory. The directory is
a binary tree wherein each node has a split position and a
split dimension. Elements are divided into two partitions
according to their value at the particular split dimension. If
this value is less than or equal to the split position, they are
part of the left subtree, otherwise they belong to the right
subtree.

In the kd-tree [2] all nodes within one level of the tree have
the same split dimension. For example, the split dimension
of the root node is the first dimension, the split dimension
of root’s children is the second dimension, and so on. If
n is number of dimensions then the upper n levels of the
tree, the next n levels, etc. use the same sequence of split
dimensions. kd-trees do not handle high-dimensional data
spaces and sparse vectors adequately.

The LSD (local split decision) tree [7] has a more flexi-
ble approach of handling splits: in each split, split dimen-
sion and split position are chosen independently. The choice
can take into account current data and can be optimized.
Obviously, it depends on the use case which characteristics
describe a good distribution of the data. The original LSD
tree is optimized mainly with a view to spatial accesses. The
LSD tree model assumes dynamic insertions, i.e. at insertion
time of an element it is not known which further elements
will be inserted later.

3.1.1 Range Queries
Range queries are the fundamental operation of multidi-

mensional access structures. The aim is to prevent linear
search through the elements and to detect all elements in
a neighborhood of a given one. The neighborhood of an
element can be defined in several ways, most obviously by
the maximal Euclidean distance to the element. To pro-
cess range queries, for every node in the directory and every
bucket the range containing all subtree elements is needed.
For the root the minimal and maximal value of every dimen-
sion is given, thereby defining the data range. The range of
a child node or bucket is given by the one of its parent node,
being reduced in the split dimension according to the split
position.

Figure 4 shows an example where 4-dimensional elements
are stored in an LSD tree with bucket capacity of 1. In
the directory nodes the split dimension and the split posi-
tion is recorded. Further the data range maintained by the
directory node is annotated.

Dim 2

Pos 5

Dim 3

Pos 6

Dim 1

Pos 3

Dim 4

Pos 4

Dim 2

Pos 3

Dim 1

Pos 1

Dim 4

Pos 5

0

0

0

0

4

4

5

5

3

2

9

5

0

4

7

7

0

8

3

4

2

6

9

4

9

6

1

2

10

10

10

10

0-10

0-10

0-10

0-10

0-10

5-10

0-10

0-10

0-10

0-5

0-10

0-10

0-10

0-5

0-6

0-10

0-10

0-5

6-10

0-10

0-3

5-10

0-10

0-10
3-10

5-10

0-10

0-10

0-10

0-5

0-6

4-10

0-10

0-5

0-6

0-4

0-10

3-5

6-10

0-10

0-10

0-3

6-10

0-10

1-3

5-10

0-10

0-10

0-1

5-10

0-10

0-10

3-10

5-10

0-10

5-10

3-10

5-10

0-10

0-5

I II III IV V VI VII VIII

A

B C

D E F G

Figure 4: Exemplary range query for the LSD tree

Every range query starts at the root. Subtrees in the
directory are followed up only if the search area and the
data range of the subtree intersect. If the data range of a
node is disjoint with the search area, the same holds per
definition also for all sub elements of this node which thus
need not to be examined.

3.2 Modifications of S3V trees
The S3V tree uses the same basic ideas as high-dimen-

sional search trees, but has been completely redesigned in
order to adapt to, and take advantage of, the conditions in
the computation of a document difference.

Within the difference computation of two documents A
and B, a separate S3V tree is set up for every relevant el-
ement type. First, all elements of A have to be inserted
into the trees. Later in the comparison phase, for given el-
ements of B the set of similar elements of A can be found
in the corresponding tree. The degree of similarity is de-
fined by the Euclidean distance such that a range query can
be applied to determine the set of similar elements. How
document elements are mapped to tree elements and hence
multidimensional vectors is discussed in Section 4.

The term S3V is the short form of the abbreviation SSSV
which stands for similarity search sparse vector and de-
scribes the two main features of the structure. First, it
points out that this data structure is optimized for range
queries and thus similarity search. Second, a characteristic
of the underlying data is sketched. Elements are indexed
multidimensional although many of the values are equal to
zero. In the following, differences between high-dimensional
search trees and the S3V tree are explained and justified.

3.2.1 Memory Orientation
In contrast to most search trees the S3V tree is supposed

to be completely kept in memory since the set of contained
objects is comparably small. Hence, limitations concerning
external balancing or the bucket size can be dropped. A

good choice is a bucket size of one here. The tree is then
widely ramified and structured best in such a way that the
advantages of the S3V tree can take effect. Moreover, the
linear search in buckets within range queries is no longer
required.

3.2.2 Tree Construction
In our application context the search tree does not have

to support insertions or deletions. All elements to be stored
are known right from the beginning – they are the elements
of one of the two documents. Thus, the tree should not be
re-balanced stepwise with every inserted element but should
rather be created systematically on the basis of all elements.
Therefore in a first step all elements to be stored are sepa-
rated into two disjoint sets according to some split strategy.
The resulting sets are further divided in the following steps
such that the S3V tree evolves. Split strategies have to sat-
isfy the following requirements: Every split should divide
the initial set in two almost equally sized result sets to en-
sure balanced S3V trees. Further, splits should be carried
out in such a way that already during the construction of the
tree optimizations with respect to range queries are applied.

Algorithm 1 Construction of the S3V tree

1: function constructRecursively(Elements es) : Node
2: Node node
3: if es.size <= bucketSize then
4: node = new Bucket()
5: node.addElements (es)
6: else
7: (sPos, sDim) = computeSplitLine(es, splitter)
8: left = new Node ()
9: right = new Node()

10: node = new DictionaryNode(sDim, sPos, left, right)
11: Elements esLeft = es.getSmaller(sDim, sPos)
12: Elements esRight = es.getGreater(sDim, sPos)
13: Elements esEqual = es.getEqual(sDim, sPos)
14: for all element in esEqual do
15: if esLeft.size < esRight.size then
16: esLeft.addElement(element)
17: else
18: esRight.addElement(element)
19: end if
20: end for
21: left = constructRecursively(esLeft)
22: right = constructRecursively(esRight)
23: end if
24: return node
25: end function

The construction of the S3V tree is clarified with the aid
of Algorithm 1. At the beginning the function construct-
Recursively is called with all elements to be inserted as
parameter. The actual construction is realized recursively
by this function which returns either a bucket or a new di-
rectory node. The latter happens if the number of elements
to be inserted exceeds the bucket capacity. Then also a split
line has to be calculated for the directory node, i.e. a split
dimension and split position. The function is generic in the
sense that different split strategies can be realized controlled
by the splitter parameter. As specified in the split line the
directory node divides the element set into the two subsets.
If an element’s value matches exactly the split position it
could in principal be allocated to both subtrees. However,
for the sake of balance it is assigned to the smaller one. Cal-

Dim 2

Pos 4, 6

Dim 3

Pos 5, 7

Dim 1

Pos 2, 9

Dim 4

Pos 0, 5

Dim 2

Pos 2, 4

Dim 1

Pos 0, 2

Dim 4

Pos 2, 10

0

0

0

0

4

4

5

5

3

2

9

5

0

4

7

7

0

8

3

4

2

6

9

4

9

6

1

2

10

10

10

10

0-10

0-10

0-10

0-10

0-10

6-10

0-10

0-10

0-10

0-4

0-10

0-10

0-10

0-4

0-5

0-10

0-10

0-4

7-10

0-10

0-2

6-10

0-10

0-10
9-10

6-10

0-10

0-10

0-10

0-4

0-5

5-10

0-10

0-4

0-5

0-0

0-10

4-4

7-10

0-10

0-10

0-2

7-10

0-10

2-2

6-10

0-10

0-10

0-1

6-10

0-10

0-10

9-10

6-10

0-10

10-10

9-10

6-10

0-10

0-2

I II III IV V VI VII VIII

A

B C

D E F G

Figure 5: Exemplary range query for the S3V tree

culation of the subtrees is achieved by calling construct-
Recursively for each subtree.

3.2.3 Split Strategy and Range Query Optimization
After the insertion phase the S3V tree is used exclusively

for range queries. Optimization should therefore concen-
trate on this function. It has already been mentioned be-
fore that during range queries for every directory node and
bucket the range containing all elements of its subtrees has
to be calculated. Subtrees will be examined if and only if the
search area and the corresponding subspace of the tree inter-
sect. Therefore small subspaces are advantageous. However,
as Figure 4 illustrates the calculated subspaces are notably
larger than they need to be to store all their elements. This
effect can be exploited for optimization in providing a second
split position.

The S3V tree has the special feature that a directory node
contains the split dimension and both the maximal value of
its left subtree and the minimal value of its right subtree.
This feature saves runtime since fewer subtrees need to be
examined.

Figure 5 shows the S3V tree variant of the LSD tree exam-
ple given in Figure 4 with thus two split positions instead
of one. For example in the root now the split positions 4
and 6 are recorded, since these are the effective maximum
and minimum of its subtrees. Compared with the entry 5 in
the corresponding LSD tree additional information is gained
and the subspaces of the directory nodes B and C and all
of their subtrees can be reduced accordingly.

This structural expansion should also be reflected in the
split strategy. An optimal split during the construction
would divide the element set in two equally sized subsets
(balancing) and at the same time show a preferably large
distance between the both split positions (reduction of the
search area). The two objectives may be conflicting in the
individual case and it has to be decided how to proceed case-
by-case. One possibility is to sort the element set succes-

sively in each dimension and to choose the dimension with
maximal difference between the elements n

2
and n

2
+ 1 as

split dimension, when n denotes the number of elements.
This way subspaces would be minimal coevally ensuring a
balanced tree. In general, this can be achieved better for
high dimensional problems which implicitly offer more po-
tential split dimensions. For example, with a central element
(4.5, 4.5, 4.5, 4.5)T and a radial Euclidean search radius of 1
within the trees shown above, the number of nodes to be
visited reduces from 9 to 4 and the number of nodes whose
subspace has to be calculated declines from 11 to 7.

3.2.4 Runtime Analysis
To conclude this section the runtime of the construction

operation and range queries for the S3V tree is discussed.
The critical operation during the construction process is

splitting the element set according to some split strategy. It
is called once for each directory node. Provided that a split
strategy is chosen that guarantees balanced trees there will
be n

b
− 1 directory nodes in the S3V tree if n and b denote

the number of elements and the bucket capacity respectively.
For a bucket capacity of 1 the number of necessary splits is
thus n − 1, i.e. it is linearly dependent of the number of
elements.

Only the first split for the root directory node has to con-
sider all elements. Splits for deeper nodes have to consider
accordingly smaller sets. Notice that for a complete tree
with a bucket capacity of 1 more than half of the splits have
simply to divide two elements.

The worst case runtime for range queries is O(n). This
is the case if all elements stored in the tree lie inside the
search area. Then all buckets and directory nodes have to be
evaluated. Provided a bucket capacity of 1 an S3V tree with
n elements consists of as many buckets and n − 1 directory
nodes, hence 2n − 1 subspaces have to be calculated. The
worst case behavior cannot further be improved. However,
this case is rather untypical and the runtime complexity in
the average case is clearly better. Using the presented split
strategy with two split positions per directory node further
reduces the probability that a node of the S3V has to be
considered during a range query. Because the construction
guarantees balanced trees they cannot degenerate and their
maximal height is bounded by O(log n).

4. ELEMENT MAPPING
In order to be stored in S3V trees each model element is

mapped onto a numerical vector. The vectors consist of a
metrical and a lexical part.

4.1 Metrical Indices
We define metrical indices as vector positions that rep-

resent numerical values which are obtained by computing
metrics for model elements.

Many metrics have been proposed for UML models, see
e.g. [10] for an overview. Metrics do not only represent qual-
ity features, they can also be used to measure the similarity
of model elements.

Metrics are always specific for a document type, at least
semantically. However, if one represents models as a typed
graph according to the structure given in Figure 3, it turns
out that virtually all metrics consist in simply counting cer-
tain sets of nodes in the neighborhood of the node which
represents the model element to be measured. For instance,

Table 2: Exemplary vector of metrical indices

Index Meaning Value Norm

LON length of name 8 0.4
NAM # abstract methods 0
NAPAC # package-visible attributes 0
NAPRI # private attributes 3 1
NAPRO # protected attributes 0
NAPUB # public attributes 0
NCV # class variables 0
NIV # instance variables 3 1
NMPAC # package-visible methods 0
NMPRI # private methods 0
NMPRO # protected methods 0
NMPUB # public methods 2 0.67
NOA # attributes 3 1
NOC # children in class hierarchy 0
NOCM # constructors 0
NOM # methods 2 0.67
SUP # superclasses 0

these sets of neighbor nodes are nodes of a given type (s.
e.g. NOM in Table 2) or nodes of a given type with a special
value of an attribute (e.g. NCV).

Such node sets are easily specified using path expressions
(similar to XPath). These expressions can be provided in
resource files in order to keep the kernel of the difference
tool free of code which is specific for single document types.

Only very few metrics cannot be handled this way, e.g.
metrics where inheritance is involved. Our empirical results
indicate that it is not necessary to use such metrics in addi-
tion to the easily computable ones, because the latter alone
yield good hit ratios.

Table 2 shows the metrical part of the vector that results
from the UML class HTMLList of the diagram given in Fig-
ure 1(a).

The choice of metrics to be calculated for a certain element
type is somewhat arbitrary. However, given the underlying
meta-model and document-type specific semantics, one can
deduce a set of significant metrics for each element type eas-
ily. A first evaluation usually reveals whether the chosen
metrics are sufficient to represent element-specific charac-
teristics. While selecting appropriate metrics is a creative
process, our experience has shown that it hardly takes more
than a couple of minutes to define a suitable set of metrics.

4.2 Lexical Indices
Similar names are particularly relevant for the similarity of

document elements. Metrical indices do not cover such sim-
ilarities. Thus a method which maps similarities of names
onto numerical values is needed.

The easiest way to achieve this is to use a separate index
for each name that occurs in the document. The set of all
names occurring in a document can be easily determined.
Each name is mapped onto a vector position. If a document
element has name N the vector for this element contains a 1
at the position for name N . All positions belonging to other
names are set to 0. Vector positions that represent names
are called lexical indices.

Using this approach only exactly matching names can be
found. In order to also handle name similarities with the
vector approach substrings of names have to be used as lex-
ical indices, too. For UML class diagrams one can exploit
the common convention that new substrings of a name begin

Table 3: Exemplary vector of lexical indices

Index Type of index Value Norm

HTMLDoc class name 0
HTMLCombo class name 0
HTMLList class name 1
HTMLForm class name 0
Export class name 0
HTMLDocElem class name 0
HTMLExport class name 0
LatexExport class name 0
HTML substring of class name 1
Doc substring of class name 0
Combo substring of class name 0
List substring of class name 1
Form substring of class name 0
Elem substring of class name 0
Latex substring of class name 0
Export substring of class name 0
dump method name 0
add method name 1 0.5
toString method name 1
closeFile method name 0
openFile method name 0
dumpCont method name 0
to substring of method name 1
String substring of method name 1
close substring of method name 0
File substring of method name 0
open substring of method name 0
dump substring of method name 0
Cont substring of method name 0

with capitals (e.g. getAttributeValue()). In general similar
parts of the element names can be found with the LCS al-
gorithm [12], albeit it is of quadratic complexity when used
pairwise.

In addition to mapping element names lexical indices can
be utilized to map names of sub elements. For example the
vector of an UML class can besides its name also contain
the names of its methods.

Lexical indices can generally be used for all document el-
ements that have characteristics represented by character
strings.

Table 3 shows the lexical part of the vector that results
from the UML class HTMLList given in Figure 1(a). Un-
like with metrical indices the calculation of lexical values is
not limited to the element whose vector is set up. On the
contrary the set of all element names in all documents to be
compared has to be determined to define the vector indices.
For that reason Table 3 also contains the names and parts of
names of the other elements given in the example scenario.

4.3 Normalization and Scaling
To prepare a useful basis for the similarity assignment the

vectors have to be normalized and scaled. Normalization
causes a homogeneous starting situation such that the vec-
tors can be configured with scaling.

4.3.1 Normalization
As can be seen from Table 2 the ranges of the indices

vary. Hence changes impact differently on the similarity of
vectors, based on the certain index where they appear.

Since these differences result randomly from the definition
of the indices and are meaningless with respect to the im-
portance of the changed similarity, the ranges of the indices

have to be normalized. An obvious choice is the range be-
tween 0 and 1. Then for every element vi in a vector ~v ∈ V
the new value vi norm is given by

vi norm =
vi − min ({xi|~x ∈ V })

max ({xi|~x ∈ V }) − min ({xi|~x ∈ V }) . (1)

Equation (1) cannot be evaluated if the minimum and max-
imum of the range coincide, but in this case normalization
is not needed anyway since this index is irrelevant regarding
similarity predications.

A problem with the lexical indices is that it cannot a priori
be stated how many of them will emerge. Obviously their
number is proportional to the total number of elements in
both documents. Typically the lexical sub vector contains
many zero valued entries (cf. Table 3) such that the result-
ing distance is small. In the simplest case with only one
lexical index type mapping the element names, the maxi-
mal distance is independent of the vector length given by√

2. Therefore, no additional normalization of the lexical
sub vectors with regard to their length is needed.

The normalized values are indicated in Tables 2 and 3 in
the column Norm if they differ from the original values.

4.3.2 Scaling
Normalization provides a homogeneous starting point for

an index-based scaling of vector values. The scaling of values
at certain indices is a powerful tool to influence Euclidean
distances in order to define how much impact these values
should have on the similarity of elements. A scaled value
then reads vi scale = vi · fi where vi and fi denote values at
a certain index and a scaling factor, respectively. The higher
the scaling factor, the more influence the corresponding vec-
tor index has on the Euclidean distance between vectors.

4.4 Generalization
The concept of metrical and lexical indices can be gener-

alized to almost all types of documents with an attributed
typed graph model. Metrical indices can be set up starting
at some node for all its neighboring nodes grouped by types
or other characteristics derived from attributes. Lexical in-
dices can be defined on every attribute of a node and its
neighboring nodes.

Thus an extensive set of possible indices is given that has
to be reduced to the meaningful with respect to similarity.

5. EVALUATION
To evaluate our approach for optimizing the difference

computation for large model documents, we integrated the
concept of S3V trees into the generic difference tool SiDiff.

With the integration of S3V trees, the comparison algo-
rithm can be modified as follows. Instead of comparing each
element in the first document to each element in the second
document, we start a range query for each element in the
first document and only compare it to elements from the re-
sult set of the query. All other similarity values are set to 0.
Since only elements of the same type are to be compared, a
separate S3V tree has to be generated for each element type.

The crucial part of this approach is defining the radii of
search areas, i.e. the threshold for range queries. It has to
be high enough to return all elements that are candidates
for correspondences and it has to be low enough to reduce
the amount of elements to be compared significantly. Using

two different thresholds has proven to meet these require-
ments. The first range query is initiated with the lower
threshold. Only if this query does not return any elements,
a second query with the higher threshold is started. Due to
the efficient implementation of range queries in S3V trees,
the higher amount of range queries does not have any con-
siderable impact on the overall runtime.

We selected several test scenarios, mainly different ver-
sions of UML class diagrams used before in [9], to test our
algorithm. Some of those diagrams have been reverse en-
gineered from source code that was retrieved from version
management systems. The diagrams differ in size and in the
amount of changes that have been made between different
versions. The following test scenarios were used:

HTML Package. The two small class diagrams shown in
Figure 1, to test and verify our algorithm. (Test Sce-
nario A)

Ritterspiel. Two versions of a class diagram from a project
group at the University of Kassel where a board game
was designed over six months. The versions were re-
trieved from an internal version management system
and have not been reverse engineered from source code.
(Test Scenario B)

Version histories. Two versions of a class diagram repre-
senting a SiDiff plug-in for tracing model elements in
version histories. (Test Scenario D)

Fujaba packages. Four large class diagrams with two ver-
sions each, derived from the source code of the UML
tool Fujaba [5]. The package ASG (Abstract Syntax
Graph) was used for Scenario C, while Test Scenario
E involves the package FSA (Fujaba Swing Adapter)
and Test Scenario F contains the Fujaba Basic pack-
age. Scenario G is the largest one. It comprises the
Fujaba UML package with all its sub packages.

The evaluation results are shown in Table 4. The first
column (Scen.) identifies the particular scenario; the next
two columns show the size of the class diagrams in terms of
the total amount of elements (Elem.) and classes (Cl.) in
the larger of the compared versions. Column Hash. indicates
whether a hashing phase was used. Each scenario was tested
with and without hashing. The thresholds for range queries
in the S3V trees are shown in columns t1 and t2. While the
values are set to 1.5 and 2.3 respectively for most scenarios,
they are varied in Scenarios C and D.

Column CS (Compute Similarities) indicates the total
number of direct comparisons between elements of the two
documents. This number is crucial because direct compar-
isons consume the largest part of the total runtime. Column
CS% sets the values in relation to the number of similar-
ity computations that occurred in the version without S3V
trees. For example, in Scenario G without hashing, the num-
ber of direct comparisons was reduced by 97.9% to a value
of 118,974. Column RQ shows the number of range queries
in S3V trees performed during the calculation. The num-
ber of distance calculations between two vectors is shown in
column VD.

Since heuristics are used for finding correspondences, er-
rors are unavoidable. Compared to the difference results
obtained without S3V trees, there are potentially two kinds
of errors:

Table 4: Test results
Scen. Elem. Cl. Hash. t1 t2 CS RQ VD Match% CS% RTp(s) RT(s)

A 54 13 true 1.5 2.3 143 112 586 100 32.8 0.2 0.1
false 1.5 2.3 175 134 779 110.5 25.4 0.3 0.2

B 318 28 true 1.5 2.3 92 32 1099 100 22.1 0.1 0.4
false 1.5 2.3 558 246 14352 100 5.1 2.2 0.8

C 346 53 true 1.5 2.3 340 120 5939 100 26.6 0.4 0.5
false 2.3 – 13648 530 31931 100 67.9 2.2 1.7
false 0.0 2.3 1573 509 5369 100 7.8 2.2 0.8
false 0.5 2.3 1221 487 10619 100.7 6.1 2.2 0.7
false 1.0 2.3 1125 493 17010 100 5.6 2.2 1.1
false 1.5 2.3 1396 512 29673 100 6.9 2.2 0.9
false 1.8 2.3 5888 536 31990 100 29.3 2.2 1.9

D 425 40 true 2.3 – 2082 205 13966 100 70.6 1.5 1.1
true 0.0 2.3 1260 314 10793 100 42.7 1.5 1.1
true 0.5 2.3 1001 296 10858 100 34.0 1.5 0.5
true 1.0 2.3 735 254 9720 100 24.9 1.5 0.7
true 1.5 2.3 707 248 14996 100 24.0 1.5 0.9
true 1.8 2.3 989 242 15663 100 33.5 1.5 0.7
false 1.5 2.3 1967 685 52368 100 6.0 1.8 1.1

E 1174 102 true 1.5 2.3 19376 425 166679 100 23.9 1.9 1.7
false 1.5 2.3 25339 2261 827644 99.7 5.7 14.0 4.7

F 1130 122 true 1.5 2.3 61568 4867 1285763 99.7 31.3 3.3 5.9
false 1.5 2.3 213247 7875 2119694 99.6 26.7 18.2 11.8

G 4777 391 true 1.5 2.3 14204 1382 1152551 99.9 11.7 45.8 7.8
false 1.5 2.3 118974 8023 9701013 99.8 2.1 1409.4 48.7

• Fewer matches are detected because too many ele-
ments are filtered out by the range queries.

• More, or other, matches are detected. Since the origi-
nal difference algorithm matches two elements immedi-
ately if there are no other similar elements, it is possi-
ble to find other matches because elements are filtered
out by the range queries.

The column Match% in Table 4 shows how many of the
matches detected by the version without S3V trees were
also detected by the S3V tree version. The situation that
matches were missed and others were added in the same
scenario did not occur in our test runs. The slight discrep-
ancies in the results can be attributed to the fact that S3V
trees provide a hashing-like way of pre-assigning elements to
each other. In the cases where more matches were detected,
the difference results were exactly the same as in the respec-
tive test-runs with hashing. Other discrepancies are due to
a certain subjectivity of detected deviations.

The last two columns present the runtime advantage a-
chieved by our approach. RTp gives the runtime with pair-
wise similarity computation in seconds (i.e. SiDiff without
S3V trees); RT shows the runtime after integrating S3V
trees. The time used to set up the trees is not consid-
ered as it increases linearly with the amount of elements
and not quadratically like the runtime of the comparison
phase. Thus, it is not critical for the difference computation
of large model documents. For the largest test documents
in Scenario G, an improvement from 45.8 seconds to 7.8 sec-
onds could be reached with hashing, while the improvement
without hashing was from more than 23 minutes to less than
50 seconds.

The figures show that errors appear very rarely and that
the runtime advantage is significant for large documents and
still measurable for smaller documents. In addition, the

Table 5: Dual split positions

Scen. Splits Avg. dist=0 dist=0 in %

A 50 0.67 7 14.0
B 307 0.56 79 25.7
C 335 0.54 56 16.7
D 424 0.60 61 14.4
E 1163 0.47 317 27.3
F 1119 0.51 216 19.3
G 4897 0.54 848 17.3

number of direct similarity computations is reduced substan-
tially. On the other hand, the increasing number of range
queries and vector distance calculations for large documents
has almost no impact on the overall runtime. The results
also indicate that using two thresholds for range queries in
S3V trees is a feasible way to reduce runtime. However,
if there is a second threshold, the exact value of the first
threshold only plays a minor role – the results with different
combinations for Scenarios C and D do not differ much.

The comparably long runtime RT in Scenario F is pro-
duced by the large number of direct comparisons which is
caused by the specific characteristics of the model elements
in this scenario. In particular, a lot of elements are very
similar to each other. This prevents some of the advantages
of S3V trees from taking effect. The amount of elements
that can be sorted out by S3V trees is considerably smaller
than in the other scenarios.

Similar tests have been performed with Matlab Simulink
diagrams. The results can be found in [15].

One of the assumptions for constructing the S3V tree was
the ability to find split dimensions such that the distance
between the two split positions is considerably higher than
0. Table 5 shows the average distances between the split

positions for all S3V trees in our test scenarios. With a
possible maximum distance of 1 due to scaling, the average
distance is usually greater than 0.5. This implies a major
improvement for range queries. At each inner node, the
data spaces of the subtrees are reduced by more than 0.25
on average. Especially with two thresholds where the first
one is relatively small, many subtrees can be ruled out due
to dual split positions.

Table 5 also shows that the worst case with no distance
between the split positions (i.e. dist=0) does not occur often.
An improvement compared to the LSD tree can be reached
for about 80% of all splits.

6. CONCLUSION
This paper addresses the problem that currently known

algorithms for computing a difference between models are
too slow in the case of large models, notably class diagrams.
Starting point of our solution is the pairwise comparison of
elements which consumes most of the runtime.

We proposed a data structure called S3V tree which ar-
ranges similar model elements next to each other and which
allows us to find elements similar to a given one without ac-
cessing all candidates. S3V trees manage numerical vectors
and are basically high-dimensional in-memory search trees
optimized for range queries.

Our method of mapping model elements onto vectors con-
sists of metrical and lexical indices. Metrical indices gener-
alize the concepts of software metrics in order to describe
the characteristics of model elements by numerical values.
Lexical indices are used to map name similarities to vectors.
Therefore, names of elements along with several substrings
are used as indices. We also showed pragmatics of how to
use the search tree in the process of computing a difference.

The practical validation shows that the difference calcula-
tion becomes an order of magnitude faster for large models.

Our method of comparing large sets of model elements is
not only applicable to the computation of differences, but
in principle and in an adapted form to other problems such
as the detection of clones or patterns within large models;
these applications are the subject of current work.

7. REFERENCES
[1] Marcus Alanen and Ivan Porres. Difference and union

of models. In Perdita Stevens, Jon Whittle, and Grady
Booch, editors, UML 2003 - The Unified Modeling
Language, volume 2863 of Lecture Notes in Computer
Science, pages 2–17. Springer-Verlag, Oct. 2003.

[2] Jon Louis Bentley. Multidimensional binary search
trees used for associative searching. Commun. ACM,
18(9):509–517, 1975.

[3] Sudarshan S. Chawathe and Hector Garcia-Molina.
Meaningful change detection in structured data. In
SIGMOD, pages 26–37, 1997.

[4] Sudarshan S. Chawathe, Anand Rajaraman, Hector
Garcia-Molina, and Jennifer Widom. Change
detection in hierarchically structured information.
SIGMOD, 25(2):493–504, 1996.

[5] FUJABA Tool Suite Developer Team. FUJABA Tool
Suite. http://www.fujaba.de/.

[6] Martin Girschick. Difference detection and
visualization in UML class diagrams. Technical report,
TU Darmstadt, 2006.

[7] Andreas Henrich, Hans-Werner Six, and Peter
Widmayer. The LSD tree: spatial access to
multidimensional point and non-point objects. In
Proc. of the 15th Intl. Conf. on Very large data bases,
pages 45–53, Amsterdam, The Netherlands, Aug.
22-25, 1989. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

[8] Udo Kelter. Dokumentdifferenzen. In Softwaretechnik
III. Online at: http://pi.informatik.uni-siegen.
de/kelter/lehre/lm/dif, 2007.

[9] Udo Kelter, Jürgen Wehren, and Jörg Niere. A generic
difference algorithm for UML models. In Proceedings
of the SE 2005, Essen, Germany, March 2005.

[10] Michele Lanza. Combining metrics and graphs for
object oriented reverse engineering. Master’s thesis,
University of Bern, Switzerland, 1999.

[11] Sergey Melnik, Hector Garcia-Molina, and Erhard
Rahm. Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. In
18th Intl. Conf. on Data Engineering (ICDE), San
Jose CA, 2002.

[12] Eugene W. Myers. An O(ND) difference algorithm
and its variations. In Algorithmica, volume
1(2):251-266, 1986.

[13] Dirk Ohst, Michael Welle, and Udo Kelter. Differences
between Versions of UML Diagrams. In Proc. of the
ESEC/FSE’03, Helsinki, Sept. 2003.

[14] University of Siegen Software Engineering Group.
Homepage of the SiDiff Project.
http://www.sidiff.org/, 2006.

[15] Christoph Treude. Einsatz multidimensionaler
Suchstrukturen zur Optimierung der Bestimmung von
Dokumentdifferenzen. Master’s thesis, University of
Siegen, 2007.

[16] Yuan Wang, David J. DeWitt, and Jin-Yi Cai. X-Diff:
An effective change detection algorithm for XML
documents. In 19th Intl. Conf. on Data Engineering,
March 5-8, 2003 - Bangalore, India, 2003.

[17] Zhenchang Xing and Eleni Stroulia. UMLDiff: An
algorithm for object-oriented design differencing. In
Proc. of the Intl. Conf. on Automated Software
Engineering (ASE’05), pages 54–65, Long Beach, CA,
USA, Nov. 2005.

