A Fine-grained Version and Configuration Model in Analysis and Design

Dirk Ohst, Udo Kelter
Praktische Informatik, Fachbereich Elektrotechnik und Informatik,
Universi@t Siegen, D-57076 Siegen,
{ohstkelter} @informatik.uni-siegen.de

Abstract of them (incl. systems such as RCS, CVS and SCCS) work
only on files, to be specific, files containing lines of text in
In this paper we present a model of version and config- pretty-printed format. These systems are not aware of the
uration management in the early phases of software devel-logical structure of the document contained in a file. Their
opment and an implementation of this model. We assumeusefulness heavily depends on the assumption that a modifi-
that software documents are modeled in a fine-grained way,cation of the document, e.g. the insertion of a statementin a
that they are stored as syntax trees in XML files or a repos- program, typically has the net effect that one or a few adja-
itory system, and that tools directly operate on these syntaxcent lines of the text are inserted, deleted or modified. They
trees. In contrast to file-based systems, structural changedfail to work reasonably under three conditions which occur
in the document, e.g. the shifting of a method between twooften in document management in the early development
classes, can be identified in our model. Configurations al- phases and/or with object-oriented development methods:

low us to manage groups of single modifications; such a

group will mostly correspond to a specific design task ora 1.

similar activity. Configurations are thus a means to estab-
lish a connection to a change management system.

Index Terms — fine-grained data model, versions, config-
uration, design transaction, software engineering environ-
ments

1 Introduction

Software configuration management (SCM) is an indis-
pensable part of high-quality software development pro-
cesses. SCMis well established and common practice in the
late phases of software development, notably during pro-

gramming and integration. It is less commonly practiced in o

the early phases, i.e. analysis and design, for a number of
reasons.

One of the reasons is that there are usually not many ver-
sions (and hardly any configurations) of analysis and de-
signh documents. Thus, occasionally making backup copies
is often sufficient. However, object-oriented development
methods (e.g. the Unified Process) lead to a significant in-
crease in the complexity and the number of versions of the

documents in early phases. 3.

A second reason is that usual SCM systems are not well
adapted to the needs and circumstances of document man-
agement in the early phases. A large number of SCM sys-
tems and concepts is available [2]. However, virtually all

Documents are not text, but diagrams (e.g. the dif-
ferent types of UML diagrams). Diagrams are often
stored in files, either in proprietary (printable) formats
or in XML formats. In the case of a class diagram,
each class might be represented by a few lines of text
in the file. The order of these sections of text is irrele-
vant! The position where a class symbol appears in the
diagram is explicitly stored in layout data. Therefore,
diagram drawing tools can store the sections represent-
ing classes or other diagram elements in arbitrary or-
der. As a consequence of this, even small changes in
the diagram can lead to a complete reshuffling of the
file contents and a large number of significant textual
differences.

In object-oriented development methods, analysis, de-
sign and implementation are considered as parallel ac-
tivities (rather than sequential ones as in the waterfall
model). As a result, even simple modifications can af-
fect several files, or parts of files, belonging to differ-
ent development phases. Conventional SCM systems
have substantial problems to correctly represent such
complex changes.

Some tools which support the development of informa-
tion systems use a database (e.g. a relational one or a
specific repository system) to store entity relationship
diagrams, database schemata and similar documents.
The documents are stored as a set of tuples or objects

and references connecting them; basically, a syntaxa container for graphical elements. Our system is later ex-
tree is represented by these data. This approach ottended by a clasScrollPane , which offers a comparable
modeling and storing documents is commonly called functionality, however extended by scrollbars.

fine-grained data modelingConventional SCM sys-

tems cannot handle this situation at all.

Panel

In some cases changes of documents are very complex
due to several reasons, e.g. extending the functionality or add ()
restructuring of components. This leads to the creation of a
large number of versions. Some of them are only of tempo-
rary interest because a developer wants to store some con-
sistent and intermediate versions of a document while work-

(a) Before extension

ing on a task or phase of a project. Conventional version Container
management systems do not support temporary versions or

relations between versions and tasks or phases of projects. add()

When using these systems the developer can only create

successive or parallel versions which can also be accessed T T

by other developers even if this is not desired. ’ Panel ‘ ’ ScrollPane‘

This paper presents concepts and an SCM system which
are applicable under the above conditions. One basic as-
sumption is that tools use an internal storage system which
follows the approach of fine-grained data modeling. The
concepts presented here are applicable independently of Figure 1. Example of a class structure
whether XML files, a proprietary file format, a relational
or object-oriented database is used. The SCM system pre- Both classes contain operations with the same function-
sented here is integrated in a repository system known asgjity, e.g. the methoddd, which adds a new graphical el-
H-PCTE [4], which is a structurally object-oriented DBMS. ement to the container. Therefore the developers extend the

The rest of this paper is organized as follows. Section 2 model with a common super cla€®ntainer which re-

presents our versioning concept, starting with a discussionglizes this and similar methods (s. figure 1(b)); the common
of the limitations of file-based versioning of structured doc- methods are shifted from the claBanel into the class

uments (section 2.1). An introduction to the used data container

model is given in section 2.2. The versioning model itselfis The shifting of methods from one class into another cor-
presented in section 2.3. Section 3 describes the limitationsesponds to the shifting of a block of text between two files
of file-based versioning in structuring the version tree (sec- or within one file. In either case, conventional SCM sys-
tion 3.1) and presents a solution (section 3.2) which is inte- tems based on state comparison cannot identify this shift
grated into the version model. In section 4 we present ver-correctly. These systems interpret this as the deletion of
sioning concepts which are related to our approach. Con-gne block of text at the first location and the insertion of a

(b) After extension

cluding remarks are given in section 5. new block of text at the second location.
Fine-grained data modeling in combination with version
2 Version and Document Model management make it possible to detect the shift of a method

(and similar modifications in the structure of documents)

2.1 Limitations of File-Based Version Manage- because a method is represented by a unique object and be-
ment cause objects have an identity.

During its development a software product passes2.2 Document model
through several development cycles. During the analy-
sis one creates a model which consists of the conceptual In a fine-grained data model all elements of a UML dia-
classes. They are changed later in the design phase and exfram are modeled as separate objects, for example the doc-
tended with further classes. Due to later extensions with ument itself, all classes, methods, attributes and parameters
new functions or due to the correction of errors, the soft- of methods. An example of a meta-model of a fine-grained
ware architecture, i.e. the class structure, is usually mod-model for UML class diagrams is shown in figure 2. Be-
ified again and again. As a simple example, we considertween the object types there are component relationships,
the clasPanel shown in figure 1(a). This class represents e.g. a document contains classes, a class contains methods

Parameter
Methode
Document Class ® is_abstract e type
author name name
a] i aats osition
: ! specification return_type p
i ‘ implementation
specifiaction ! name . : !
documentation 1s_static
Layout is_abstract constraints
X p.osmon
size
y .
L‘ o Attribute
.. type
Association name
Inheritance fiefault._value
1S_static

Figure 2. Meta model of a fine-grained data model

and attributes and so on. Further kinds of relationships be-ship is versioned only once in a TTA. Each object and each
tween object types which represent classes can express inrelationship is versioned independently, thus it has its own
heritance, aggregation or association relationships betweerersion tree. The automatic creation of versions increases
classes. All relationships are assumed to be bi-directional,the probability that the version needed by a user at a later
so that the object structure can be traversed by the soft-access actually exists. But this depends on the number of
ware engineering tools from the root to the leaves and vicethe executed TTAs and the number of operations executed
versa. The object attributes contain data which describeswithin the TTA.

the classes, methods, etc. Examples are the name or the
type of an element, or layout information belonging to one
diagram. Let us look how to store the class structure given
in figure 1. The object structure shown in figure 3 uses the

meta model from f|gure_2. Every compongnt of the Classesthe two origin objects are created. At first a new relationship

is represented by an ObJ.eCt of the appropriate type. ._between the shifted object and the new origin object is cre-
There are FWO require ments on softvyare ENYINEENNG 4164 which is marked as "created because of a shift”. Sec-

tools when using a version model for a fine-grained data ondly a new version of the relationship between the old ori-

tthddeI' FWSIIS{’ the ttoholts hliave tc?.f.mot(.j ify th? t? n?X tree OI gin object and the shifted one is created which is marked as
€ documents, S0 that all modilications of the doCUMENIS. g ataq pecause of a shift”. Beside this information refer-

are represented as operations upon the syntax tree. The S€&hces to the old and the new origin object are stored. With-
ond requirement is that structural changes are done by shift-

) : . ut such information the shift could only be recognized by
ing the objects across the document and not by deleting anchmparing the old and the new origin object. This is pos-
recreating them. The latter would result in new objects with sible because one can walk from the shifted object to the
new identities, which makes it nearly impossible to find the

o origin object in both versions.
new position inside the syntax tree because the whole tree

Beside simple modifications the deletion of the objects
or relationships creates new versions but marked as deleted.
When shifting an object from one location to another two
versions of the relationship between the shifted object and

must be searched. The automatic creation of versions leads to a large num-
ber of object versions. If these versions are recombined ar-
2.3 \Versions and configurations of documents bitrarily by a user, inconsistencies could result. A user can-

not manually select a version of all objects or relationships

The tools usdool transactions(TTAs) [5] offered by because there are too many. It would mean that the user has
the repository to operate on the data. The TTAs are longto choose the desired version for every element of a UML
running transactions, they should not be misunderstood agliagram, namely all classes, methods, attributes or param-
transactions in conventional data bases. The TTAs have aters. So it becomes necessary to store consistent versions
longer run time and slightly modified characteristics [6]. All together. This is achieved by configurations. A configura-
modifications which are made in context of a TTA lead to an tion combines all versions of objects and relationships cre-
automatic versioning of the modified objects and relation- ated in context of a TTA. We call the configuration which
ships with the restriction that each object and each relation-is currently modified by a TTA thavorking configuration

and relationships are accessible within the TTA. The latest

GUI : Document version could be either currently modified in the working
configuration or it could be a frozen version from the base
has_class configuration or from one of its predecessors. If there are

several versions of an object or a relationship in succeeding

Panel : Class configurations, only the most recent version is accessible.

has method The configuration without any predecessors is called the
- initial configuration it is created automatically at the be-
add : Method ginning of the project and does not contain any data. The
first started TTA uses this configuration as its base configu-
ration.

a) Before extension . . .
@) All configurations having a successor cannot be changed

any more. One can therefore understand the entire configu-
GUI : Document ration structure as a persistent coarse-grained undo-log.
has. class has_ class All .configurations are stored as persistent objects in the
’—‘ \—‘ repository, in order to allow the users simple access, espe-
cially for specifying a base configuration. Furthermore, the
configuration objects can be extended by information about
<ub class ‘ the executed changes, for example a modification comment.
- has_method In contrast to file-based SCM systems there are no ex-
plicit workspaces because all data i.e. the versions are man-
aged by the repository. The repository is the workspace
[3]. Because all tools operate in context of a TTA and all
(b) After extension changes are stored within a configuration, one can imagine
a configuration as a virtual workspace, which is altered by
a TTA. Thus the configurations form a tree of workspaces.
Modifications are only possible at the leaves of the config-
uration graph but not at internal workspaces.

Sometimes it is necessary to mark a state of a document as We consider again the example from section 2.1. The
consistent or as a release version. This is achieved by creobject structure before and after the extension is presented
ating a configuration manually which is the new working in figure 5 with a slightly modified UML object diagram
configuration. The old one is frozen. All further created notation. The bordered stereotypes indicate the configura-
versions will be stored in this new working configuration. ~ tion in which the versions of objects and relationships are
available and thus accessible. Figure 5(a) shows the object
revisions structure created in configuration 1.1 before the extension.
Each object exists only in one version. All relationships

ScrollPane : Class Panel : Class Container : Class

add : Method

Figure 3. Example of an object structure

. Confieuration - Configuration - Configuration are bi-directional, so that one can walk through the object
: |suce.of — suce.f— structure in any direction, and determine for example the
Y d=13 id=12 id=11 class in which a method resides by walking from the object
variants representing the method to the object representing the class.
: Configuration Figure 5(b) shows the object structure in configuration
ey succ.of 1.2 after creating the class@ontainer and Scroll-
Pane as well as shifting the methoddd into the class

Container . The two new classes are modeled by new
Figure 4. Structure of configurations objects. The objects representing the metadd and the
classPanel are not modified by shifting the methadid .

The basis for accessing versions desired by the user ar®©nly the relation between these objects is modified. There-
the configurations. Thereforebase configuratiohasto be fore a new version of this relation is created, it belongs to
chosen for a TTA which determines the accessible versionsthe new configuration 1.2. The old version of this relation
The working configuration of this TTA is then a direct suc- belongs to configuration 1.1 and is not accessible any more
cessor of the base configuration. If one chooses a base corin a TTA based on configuration 1.2 because the relation
figuration with one or more direct successors a variant will between the clas€ontainer and the metho&dd is a
be created (s. figure 4). Only the current versions of objectsdirect predecessor of the relation between the dbasel

GUI : Document

<<in—Conf:1.1 >>
has_class

Panel : Class

<<in—Conf:1.1 >>
has_class

add : Method

(a) Before change

<<in—-Conf:1.1 >> <<in-Conf:1.2 >>
has_class has_class

sub_class sub_class

Panel : Class

Container : Class ScrollPane : Class

‘ <<in-Conf:1.2 >>
has_method

<<in—Conf:1.1, del:1.2 >>
has_method

add : Method

(b) After change
Figure 5. Object structure in repository

and the methoddd .

3 Logical changes of documents

3.1 Limitations of File-Based Version Manage-
ment

One disadvantage is that no additional information can be
stored in the symbolic name, e.g. the task specification. A
possible solution could be to store additional information as
comments on every created version. But this is a bad so-
lution because of several reasons. Firstly, the comment is
stored at every created version and therefore several times.
Secondly, the versions which belong together are not eas-
ily identifiable. And thirdly, it is impossible to specify the
task or phase of a project in advance in which the modifi-
cation has to be done. This has to be done afterwards tak-
ing the risk not to include all versions into the result of a
project phase. The problem increases with the duration of
the changes to complete a task or phase of a project because
a lot of versions of one document are likely to be created.
One symbolic name cannot label all created versions of this
document. Thus different names have to be used, but this is
too complex and error-prone. Another possible solution is
to create a branch and store all versions created in context
of a task in this new branch. But the branches are only num-
bered and the relation between branch number and task had
to be managed externally.

3.2 Design Transactions

One can understand all modifications done to complete a
task or phase of a project as the result of a long transaction.
We call this type of long transactiorgesign transactions
(DTASs). The main difference between DTAs and tool trans-
actions (TTAs) is that a DTA is a logical frame within which
the TTAs are executed. The DTA does not change the docu-
ments directly; all changes are done inside the TTAs which
are executed inside an operating system process. Termi-
nating an operating system process results in terminating a
TTA. In contrast to that a DTA is not bound to an operating
system process and has a longer run time. Because a DTA
is a logical frame for the TTAs all configurations are created
inside it.

Tasks must often be divided into sub-tasks. Therefore
DTAs can have a hierarchical structure. The root DTA
can be mapped to the entire project, which is divided into
sub-projects or sub-tasks. Every sub-project or sub-task is
mapped to a corresponding sub DTA of the root DTA. We
store DTAs as persistent objects in the repository. An exam-
ple of a DTA structure is presented in figure 6. Each DTA
references one or more configuration branches. Only the

Conventional file-based version management systemdatest configuration of a branch is directly referenced. Ev-
only deal with versions of documents. All versions of a doc- ery DTA has a base configuration which determines the ver-
ument are stored in one big version tree. Single branchessions of objects and relationships that can be modified. This
of such a tree represent alternative realizations or they re-configuration must be declared at the time the new DTA is
sult from concurrent work. Versions of different documents created. The base configuration references an existing con-
which belong together can be labeled with a symbolic name.figuration of another DTA. If the new DTA is the root DTA
It can be used for labeling consistent versions, release veran empty configuration will be created.
sions or versions created within a task or phase of a project. Data about a task such as its specification, involved de-

:DTA
] has—config _: Configuration succ.
id=1
. id=1.1
cts = "Project”
sub—dta sub—dta
: Configuration : Configuration : Configuration
b i succ. succ.
‘DTA 2DTA as—contig | 123 id=22 id=2.1
id=2 id=3
cts = "OOA" cts = "O0OD" has—config | . Configuration
succ.
id=3.1

Figure 6. Structure of design transactions with configurations

signers etc. must be managed. Every software engineertion of structural modifications in documents. The problem
ing process may have additional data. Therefore users cars the absence of a version tree for each object or node in
adapt the DTAs to their needs by declaring subtypes whichthe syntax tree. Without such a version tree it is not eas-
add further attributes to the DTA objects. ily possible to identify structural changes because the entire
In summary the DTAs can be used to partition the struc- document has to be searched for the shifted objects. The
ture of configurations and to relate successive configura-second problem is that all created versions resides in one
tions to tasks or phases of projects. Furthermore the DTAbig version tree; therefore one cannot relate tasks to ver-
conceptis not rigidly bound to a software development pro- sions of objects created due to finishing this task.
cess. In fact the tool developer has the freedom to use the Ensemble [9] [10] uses another approach of fine-grained
proposed versioning concept in a wide variety of software versioning of structured documents. Every object has its
development processes. One option is the use of a processwn version tree called the local version tree. The consis-
machine which controls the creation and use of DTAs. An- tency between versions of different objects is ensured by a
other option is to let the developers create DTAs manually. global version tree which references the object versions for
Besides this it is possible to use one DTA for the entire de- each document. If there are references between two doc-
velopment or for every small task of a project. This flexibil- uments, the global version trees of these documents con-
ity allows the proposed versioning concept to be adapted totain references to one another. The main focus of Ensemble
different process models, e.g. the waterfall model, the spiralis the improvement of incremental algorithms. This model

model, or the Unified Process. does not deal with the determination of differences, merging
of versions, or relating modifications to tasks.
4 Related work The systems presented so far deal with arbitrarily struc-

tured documents. The version model DIVERS presented by
Almost all version management systems are file-based,Rho and Wu [8] is oriented towards the versioning of soft-
only a small number of such systems deal with the version-ware diagrams. Fine-grained modeling is assumed, thus a
ing of structured documents. One example is IPSEN [12]: hode of a diagram is represented by an object. Instead of
all versioned documents are modeled as abstract syntaxhange propagation the authors suggest using a log of the
graphs. A modification within a document results in a new performed editing operations. However they do not offer a
version of the whole document; this leads to a very large method to create configurations of object versions belong-
number of object versions. One improvement on this is the ing together and there is no method of relating changes and
Unified Model [1] which is based oohange propagation phases of a project. Furthermore the access to old diagram
The method creates new versions of all objects located atversions is not efficient because old versions have to be cal-
the path from the modified object up to the root-object of culated using the log of editing operations. If the version
the document, whenever an object is changed. This leads tdree of a class or a method shall be shown, the entire log
a large number of unused object versions [7] and does notmust be searched.
work with fine-grained data model [8]. Besides the large = Most SCM systems mentioned so far are state-based, i.e.
number of unnecessarily created versions both systems havéhe objects or files are versioned as a whole. In contrast to
some common limitations. The first concerns the identifica- this change-based versioning is based on the idea of com-

bining a group of modifications in different files into one

logical change. This model has some advantages [11] over
state-based versioning. It corresponds better to the way
how developers think. Another advantage is that it groups
modifications in several components. This avoids errors
when resetting modifications because all concerned com-
ponents are known. However, the authors are not aware of

tublier, editor, Proceedings of the 9th International Sym-
posium on Software Configuration Management (SCM-9),
Toulouse, France, September 5-7, 1998lume 1675 of
Lecture Notes in Computer Science (LNG)ges 100-122,
Berlin - Heidelberg - New York, 1999. Springer—\Verlag.

R. Conradi and B. Westfechtel. Version models for soft-
ware configuration manageme®CM Computing Surveys
30(2):232-282, June 1998.

a change-based version management system which is ori- [3; j Estublier and R. Casallas. The Adele configuration man-

ented towards fine-grained documents.

5 Conclusion and future work

The model presented here has the advantage that the
modifications made for the solution of a given task or in
context of a project phase can be related to configurations. [5]
The structure of configurations can be partitioned by design
transactions (DTA). These can be used to connect the SCM
system to a change management system. Because one can
create the DTAs hierarchically, it is flexible and not bound
to a specific software development process. The documents
are fully under version control for the entire development

cycle of a product.

Because new configurations are automatically created,
even in case of minor modifications of objects or relation-
ships, the entire history of documents’ modifications is doc-
umented. One example is the shifting of a method between

two classes.

Further work addresses the copying of objects. A copy of
an object is a new part of a document with its own version
tree which is unrelated to the version tree of the original
object. Therefore a relationship must be created between

these two version trees to express the copy-of relation.

The fundamental functionality to create versions is im-
plemented and working. It has been integrated into the tool
environment PISET [5]. Because a kind of tool transac-
tions is already used inside PISET, the versioning function-
ality could be integrated without considerable efforts. The
tools had to be extended by functions which create and se-110]
lect configurations. The next step is to realize a mechanism
to compute differences between versions and to merge dif-

ferent versions to a new one.

Acknowledgments

We would like to thank our colleagues with whom we
discussed the ideas that led to the present paper and, in par-

ticular, M. Monecke and M. Welle.

References

[1] U. Asklund, L. Bendix, H. B. Christensen, and B. Magnus-
son. The unified extensional versioning model. In J. Es-

ager. In W. Tichy, editorConfiguration Managemenpages
99-133. John Wiley and Sons, Ltd., Baffins Lane, Chich-
ester, West Sussex PO19 1UD, England, 1994.

U. Kelter. H-PCTE - a high-performance object manage-
ment system for system development environment®rdn
ceedings COMPSAC lllinois, September 23-gages 45—
50. IEEE Press, 1992.

U. Kelter, M. Monecke, and D. Platz. Constructing dis-
tributed SDEs using an active repository. Rroc. 1st Intl.
Symposium on Constructing Software Engineering Tools
(COSET '99); 17.-18.05.1999, Los Angeles, Bages 149—
158, 1999.

D. Platz. Ein Werkzeugtransaktionskonzejir fObjekt-
Managementsysteme als Basis von Software-Entwicklungs-
umgebungerShaker Verlag, Juni 1999. Dissertationsschrift,
Praktische Informatik, Universit-Gesamthochschule
Siegen.

R. Ramakrishnan and D. J. Ram. Modeling design versions.
In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L.
Sarda, editorsyLDB'96, Proceedings of 22th International
Conference on Very Large Data Bases, September 3-6, 1996,
Mumbai (Bombay), Indiapages 556-566. Morgan Kauf-
mann, 1996.

[8] J. Rho and C. Wu. An efficient version model of software

diagrams. InProc. 5th Asia-Pacific Software Engineering
Conf., 2-4 December 1998 in Taipei, Taiwan, ROEEE
Computer Society, Dec. 1998.

[9] T. A. Wagner and S. L. Graham. Integrating incremental

analysis with version management.Rroceedings of ESEC

‘95 - 5th European Software Engineering Conference. Sit-
ges, Spain. 25-28 Sept. 1995ages 205-18, Berlin - Hei-
delberg - New York, 1995. Springer—Verlag.

T. A. Wagner and S. L. Graham. Efficient self-versioning
documents. IProceedings IEEE COMPCON 97. Digest of
Papers. San Jose, CA, USA. IEEE Comput. Soc. 23-26 Feb.
1997, pages 62—67. EEE Comput. Soc. Press, Los Alamitos,
CA, USA, 1997.

D. W. Weber. Change sets versus change packages: Compar-
ing implementations of change-based SCM. In R. Conradi,
editor,Proceedings of the 7th Workshop on System Configu-
ration Management (SCM-7), at ICSE’'97 Boston, MA, USA,
May 18-19, 1997 volume 1235 ofLecture Notes in Com-
puter Science (LNCSpages 25-35, Berlin - Heidelberg -
New York, 1997. Springer—Verlag.

B. Westfechtel.Revisions- und Konsistenzkontrolle in einer
integrierten Softwareentwicklungsumgebivgjume 280 of
Informatik-Fachberichte Springer—\Verlag, Berlin - Heidel-
berg - New York, 1991.

