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Abstract

In most volume rendering scenarios implicit
classification is performed manually by speci-
fication of a transfer function, that maps ab-
stract data values to visual attributes. An ap-
propriate classification requires both special-
ized knowledge of the interesting structures
within the data set as well as the technical
knowhow of the computer scientist. Recent
automatic data-driven techniques are very-
well capable of separating different regions in
the data set. However, their applicability in
practice is limited, since they do not contain
any information about the critical structures
which are of interest. In this scenario we pro-
pose an efficient and reproducible way to auto-
matically assign transfer function templates,
which include individual knowledge as well
as personal taste. The presented approach is
based on dynamic programming and was suc-
cessfully applied in medical environment.

1 Introduction

Interactive techniques have become invalu-
able for the three-dimensional (3D) visualiza-
tion of abstract data fields. Its application
in science, medicine and engineering has lead
to an improved spatial understanding and to
comprehensive insights into three-dimensional
structures. The process of image generation
from abstract data fields in general can be de-
scribed as a three-tier approach (Fig. 1). The
raw data field is usually represented by a fi-

nite number of discrete sample points located
on a specified grid structure. The preprocess-
ing step comprises filtering, interpolation and
resampling of the data. In the subsequent
mapping or classification step, the abstract
data values are transformed into geometric
and graphical primitives. According to the
material properties or physical measurements
that are represented by the abstract data val-
ues, at this stage visual attributes like color
or transparency are assigned. For most ap-
plication scenarios, an appropriate data map-
ping is a non-trivial task, which requires de-
tailed knowledge of the structures inherent in
the data. Additionally, the assignment of vi-
sual attributes is often ambiguous and usually
influenced by the personal taste of the user.
Finally, in the rendering step these graphical
primitives are used to generate meaningful im-
ages.

2 Volume Rendering

There is a variety of different visualization ap-
proaches for scalar volumes in multiple appli-
cation scenarios. Recent approaches are cate-
gorized into indirect methods, such as isosur-
face extraction [8], and direct methods, that
immediately display the voxel data. We will
focus on interactive direct methods.

For visualization of 3D scalar data on a uni-
form grid, texture-based volume rendering has
proved superior, being able to produce high
quality images at interactive frame rates. Due
to the large number of trilinear interpolations
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Figure 1: The visualization process can be described as a three-tier approach

that must be processed in order to produce
images of high quality, the availability of di-
rect volume rendering has yet been restricted
to high-end workstations and special purpose
graphics hardware. With computer graphics
hardware becoming more flexible and pow-
erful, high quality visualization is becoming
available also on low cost hardware platforms
[11]. This expands the application of direct
visualization approaches to a wider field of sci-
entific research and practice.

2.1 Texture-Based Approaches

The most important texture-based approach
was introduced by Cabral [1], who used the
3D texture mapping capabilities of high-end
graphics workstations. The volume data set
is represented by a stack of adjacent poly-
gon slices. If 3D textures (OpenGL 1.2) are
supported by hardware, it is possible to ren-
der slices parallel to the viewport with re-
spect to the current viewing direction (see
Fig. 2.1 left). Changing the camera position
requires a re-computation of these viewport-
aligned slices. Finally, in the compositing
step the slice polygons, textured with the 3D
image information, are blended back-to-front
onto the image plane, which results in a semi-
transparent view of the volume. Interactive
frame rate are achieved, since trilinear inter-
polation of texture samples is supported by
rasterization hardware.

Contrary to this, if only 2D texture-
mapping is available, the slicing planes must
be set up parallel to the coordinate axes of
the rectilinear data grid (object-aligned slices,
Fig. 4 (right)). This allows an efficient sub-
stitution of trilinear by bilinear interpolation.

However, the orientation of the slicing direc-
tion must be adapted, if the viewing direction
changes by more that 90 degrees. For interac-
tive visualization this means, that three copies
of the data set must be kept in main memory,
one set of slices for each slicing direction re-
spectively. Each slice is then rendered as a
planar polygon textured with the image in-
formation obtained from a 2D texture map
and blended onto the image plane. This ba-
sic idea of using object-aligned slices to sub-
stitute trilinear by bilinear interpolation was
first presented by Lacroute and Levoy [7], al-
though the original implementation did not
exploit texturing hardware.

The 3D texture-based method has been
significantly expanded by Westermann and
Ertl [13]. They additionally store gradient in-
formation in the 3D textures, which leads to
a fast direct multi-pass algorithm for shaded
isosurface display. Based on this implemen-
tation, Meifiner et al. [10] have provided a
method to allow for diffuse illumination in
semi-transparent volume rendering. In [11]
both approaches were successfully adapted to
standard PC hardware.

Figure 2: Viewport-aligned slices (left) in
comparison to object aligned slices (right) for
a spinning volume object.



3 Transfer Functions

Although the value of direct volume rendering
in medicine, science and engineering is indis-
putable, the applicability suffers from some
severe limitations. In many critical applica-
tion scenarios adequate techniques to com-
pare examination results are required. Physi-
cians and engineers are in demand of a reli-
able method to reproduce the visualization in
order to discuss and re-evaluate their conclu-
sions. According to this, another problem is
that manual classification is extremely time-
consuming. From experience this often leads
to visualization results which are hardly re-
producible and thus not valuable for docu-
mentation in practice.

As mentioned above, for 3D visualization
and analysis, classification of the volume data
must be performed by specifying visual at-
tributes for each data value. Especially for to-
mography data this is a non-trivial task. The
assignment is usually performed by means
of a transfer function, that maps data val-
ues to values for color and opacity. Besides
manual specification, there are several image-
and data-driven approaches for automatic and
semi-automatic generation as will be outlined
below.

3.1 Hardware Support

An important aspect, that must be taken into
account is the placement of the transfer func-
tion within the rendering pipeline. In order
to remove visual artifacts, the scalar values
at fixed grid positions usually must be inter-
polated and re-sampled. In this context it is
important whether the transfer function is ap-
plied prior to or after the interpolation (see
Figure 3). Although the pre-interpolative ap-
plication of a transfer significantly removes
artifacts, more precise visual results are ob-
tained by a post-interpolative transfer func-
tion, since continuity is usually assumed in the
data domain, but not in color space. However
post-interpolative transfer functions are only
supported by high-end graphics workstations.

This is of special importance for the repro-
ducibility of visualization results on different
hardware platforms.

3.2 Templates

In almost every scientific application transfer
functions for color and opacity are manually
generated using some kind of visual editor. A
simple example of such a transfer function as-
signment is the specification of a linear grey-
value window, as it is usually done by a clin-
ician viewing tomographic data. More com-
plex transfer function try to assign different
colors to different regions in the data, enabling
to obtain an implicit segmentation of signifi-
cant structures based solely on the data val-
ues. This approach however depends on the
interactivity provided by the underlying ren-
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Figure 3: Applying the transfer function in
advance (A) or after the interpolation (B)
leads to different results.



dering algorithm, as the direct visual feedback
within the 3D viewer is indispensable for pur-
posive work.

Since manual transfer functions are usu-
ally generated in an iterative process and are
based on heuristics, specialized knowledge and
personal taste, the whole assignment proce-
dure is rather time-consuming and hardly re-
producible. In order to speed up manual as-
signment, application-specific templates are
used, which were adjusted manually to the pa-
tient’s individual data. Transfer function are
usually stored and applied as lookup tables,
one-dimensional arrays of color values. Tem-
plates can also be stored as piecewise linear
mappings or functions of higher order. Until
now manual heuristic methods are the only
approaches that include detailed knowledge
about the structures inside the volume data
and thus are the only approaches that are ap-
plicable in practice.

3.3 Related Work

Various approaches for automatic or semi-
automatic assignment have been proposed re-
cently. These approaches can be categorized
into image-driven and data-driven techniques.
Marks et al. [9] have proposed the concept
of design galleries for setting visual param-
eters in general. This example of a semi-
automatic image-driven method generates a
huge amount of images with different param-
eter settings, allowing the user to select the
image with the optimal visual result. He et
al. [5] have developed a technique for semi-
automatic transfer function generation using
a stochastic search algorithm. This method
generates images using an initial population
of transfer functions. Subsequently the user
selects the best set of images. With this selec-
tion a stochastic search is started, that gener-
ates a new population of transfer functions.
The applicability of these image-based ap-
proaches is limited, since they are neither fast
nor purposive, and thus not efficient enough
for clinical routine. According to data-driven
approaches Fang et al. [3] have proposed a

technique based on intensity mappings. The
transfer function is modeled as a sequence of
3D image processing operations which allows
the user to specify qualitative parameters. A
related technique was presented by Sato et al.
[12]. Their approach applies 3D image filters
in order to accentuate local intensity struc-
tures using a multi-dimensional feature space.

Kindlmann and Durkin [6] have recently
proposed an interesting data-driven method
that takes into account the first and second
directional derivatives along the gradient di-
rection of the scalar field. Although the orig-
inal approach is less applicable for realistic
image data, since no information about in-
teresting structures is included, our method
to automatically adjust transfer functions is
based on this approach, the main aspects of
this method are described in detail.
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Figure 4: Function f(z) and first and second
order derivatives f’'(z) and f”(z) in direction
of the voxel gradient.

Regarding the data value f in direction of
the (non-zero) gradient will result in a mono-
tonically increasing function f(x) as displayed
in Figure 4. In image processing, the first and
second order derivatives f’(x) and f”(z) are
frequently used criteria for boundary detec-
tion. Since f(z) is monotonically increasing
(and thus invertible), it is possible to express
the directional derivatives f'(x) and f”(z) as
a function of the data value v = f(z) instead
of the position z. Therefore, in practice, for
each voxel of the original data set the first
and second order derivatives in gradient di-



rection are computed. Subsequently these val-
ues are averaged for all voxels with a specific
data value v. This results in two functions
g(v) for the first and h(v) for the second or-
der derivative. Then, the fraction of these two
functions is calculated which results in the po-
sition function

plo) = )

g9(v)

It describes the average distance of a data
point with value v from a boundary in the
data set assumed by the underlying bound-
ary model. According to Kindlmann, func-
tion p(v) is used to compute a transfer func-
tion by applying a boundary emphasis func-
tion [6]. However, this calculation is not re-
quired for our approach. Although the orig-
inal algorithm accurately determines bound-
aries within data sets, its application to real-
istic data is limited, since the specific visual-
ization problem is not taken into account.

(1)

4 Automated Adjustment

In order to bridge the gap between automatic
and manual assignment, we present a new
method that unifies the advantages of both
manual and data-driven strategies. The ba-
sic idea of our approach is to use an opti-
mal transfer function as a reference template.
This template, which has been manually as-
signed once for a specific data set, is then
automatically adjusted by non-linear distor-
tion to individual data of the same type. In
order to search for the optimal distortion of
the template function an appropriate similar-
ity metric is required. Based on non-linear
time warping, a concept known from speech
recognition, the optimal non-linear distortion
of the data value axis is computed for opti-
mal alignment of the normalized histograms
for both data sets.

Dynamic programming (see Sec. 4.1) is
used to optimize a one-dimensional non-linear
transformation t(v) which is defined on the
range of data values v. Let’s assume we have
manually found an optimal transfer function
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Figure 5: Non-linear time warping: a non-
linear transformation t(v) of the data value
range is optimized for minimal histogram dis-
persion using dynamic programming

Ty (v) for a specific data set D; with a data
value histogram Hi(v). In order to adapt
this optimal transfer function to a different
data set D, of the same modality, we use dy-
namic programming to compute a transfor-
mation ¢(v) that optimizes alignment of both
histograms

Ha(v) =™ Hy(t(v)), (2)

according to a specified similarity metric M.
For normalized histograms we apply a simi-
larity metric D, that simply measures the dis-
tance

Dy(Hy, Hy) =) |Hi(v) — Ha(t(v))].  (3)

Note that this metric is monotonically increas-
ing and thus can be used as cost function for
dynamic programming. If the optimal trans-
formation t(v) is found, we apply the same
non-linear distortion to adapt the manually
assigned transfer function 73(v) to the new
data set Dy, denoted

Ty(v) = Ta(t(v)) - (4)

4.1 Dynamic Programming

Dynamic programming [2] is an efficient tech-
nique to find an optimal path within a given



parameter space according to a specified cost
function (see Fig. 5). The optimization pro-
cess is performed as a complete search in pa-
rameter space, which is based on the assump-
tion that every sub-path of an optimal path
is again an optimal path. This assumption
is true if the specified cost function is mono-
tonically increasing. Starting at the origin
(v =0) of the diagram in Fig. 5, the parame-
ter domain is divided into discrete grid points.
The algorithm computes the cost function for
the first column, i.e. for every grid point at
v = 0. Proceeding to the right, for every grid
point in the current column, the optimal path
is computed. This is achieved by calculating
the complete cost of the path to this point by
adding the cost of the grid point to the cost of
the path to the “cheapest” predecessor. Since
the cost function is monotonically increasing,
only the path and the cost for every grid point
of the actual column need to be stored.

4.2 Enhancements

The described optimization procedure is an
efficient method to reuse transfer functions
which were heuristically established for a spe-
cific data set and to adjust them to different
data sets of the same type. However, using the
histogram exclusively turned out to be not ac-
curate enough. In order to improve the results
the position function p(v) of equation 1 proved
to be superior to the histogram. The following
example from medicine illustrates the accu-
racy benefit, that comes with the use of Kindl-
mann’s position function.

Figure 6 displays the histogram H(v) and
the position function p(v) for different com-
puted tomography angiography (CTA) data
sets of the human head. CTA is a com-
mon imaging technique in medical routine,
which involves injection of contrast dye in or-
der to analyze intracranial vessels. The sig-
nificant feature of the histogram is the high
peak which is caused by the large amount of
soft tissue. However, this characteristic peak
has a very limited extent which leads to re-
duced accuracy. In comparison to this, the

position function p(v) shows a higher num-
ber of significant features. The transition be-
tween the data values of soft tissue and con-
trast agent is marked by a high peak in p(v)
close to the peak in the histogram. To the
left of this peak, there is a significant local
maximum with (usually) negative value which
describes the boundary between soft tissue
and fluid. Additionally, the boundary to bone
structures is clearly indicated by another lo-
cal maximum on the right side relative to the
peak in the histogram. Since both, the man-
ually assigned transfer function and the po-
sition function p(v) strongly depend on spe-
cific boundaries in a data set, p(v) represents
a more robust basis for the optimization pro-
cedure.

5 Results

The presented functionality was evalu-
ated using computed tomography angiog-
raphy (CTA) of patients with intracranial
aneurysms. In order to treat such vessel mal-
formations, detailed knowledge of the complex
vessel topology and the surrounding vulnera-
ble structures such as the cochlea of the in-
ner ear is necessary. Therefore standard DSA
(Digital Subtraction Angiography) projection
images are supplemented by 3D CTA. In this
scenario interactive direct volume rendering
has lead to a fast and efficient 3D visualiza-
tion of intracranial vessels [4].

For the automatic classification of CTA
data, a transfer function template as displayed
in Figure 7 (right) has proved its worth in clin-
ical practice. This assignment is used to gen-
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Figure 7: Transfer function template and the
resulting image for a CTA data set
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Figure 6: Comparison of histogram H (v) and position function p(v) for six different CTA data

sets of the head

erate images, that show the complete vessel
information as displayed in Figure 7(left). In
this case a completely opaque representation
of the vascular structures is desired. Addition-
ally, for anatomical orientation bone struc-
tures must be clearly visible. Thus, opacity
is set to its maximum for data values that are
equal or larger than the value of contrast dye.
The color function is then adjusted in order
to differentiate between vessel and bony struc-
tures. Since local illumination was not avail-
able, the blue color component of the trans-
fer functions has been slightly shifted in order
to accentuate vessel boundaries and thus en-
hance the perception of depth.

The automatic adjustment was computed
using both the histogram based approach

1 M“E -
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adjustment of
histogram

adjustment of
position function

Figure 8: Transfer functions without adjust-
ment, with histogram adjustment and with
adjustment based on directional derivatives
(position function)

and the method based on directional deriva-
tives. As displayed in Figure 8 the ap-
proach based on the derivatives lead to sig-
nificantly better visual results than the his-
togram based approach. In very few cases, the
results of both approaches are almost equiva-
lent. Volume visualization was performed us-

adjustment of position function

Figure 9: Comparison of adjustment based on
histogram and on position function



ing the 3D texture-based approach on an SGI
Onyx2 with Base Reality hardware, which
supports post-interpolative texture lookup ta-
bles. Alternatively an advanced 2D texture-
based implementation based on PC graph-
ics boards was used. The automated adjust-
ment of transfer functions also lead to good
results with color lookup prior to the interpo-
lation. However the clear delineation of tiny
structures is difficult using pre-interpolative
color tables. This is due to the nature of
pre-interpolative transfer functions and not
caused by the adjustment procedure.

6 Conclusion

In order to increase the applicability of di-
rect volume rendering for 3D visualization in
scientific environments, we have proposed a
reliable method for data-driven classification.
Detailed knowledge of the data structure is
included into the procedure of transfer func-
tion assignment by using predefined templates
which are automatically adjusted to individ-
ual data.
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