
Volume 0 (1981), Number 0 pp. 1–14

GPU-Based Spherical Light Field Rendering with
Per-Fragment Depth Correction

S. Todt1, C. Rezk-Salama1, A. Kolb1, and K.-D. Kuhnert2

1Computer Graphics Group, University of Siegen, Germany
2Real-Time Learning Systems, University of Siegen, Germany

Abstract
Image-based rendering techniques are a powerful alternative to traditional polygon-based computer graphics.
This paper presents a novel light field rendering technique which performs per-pixel depth correction of rays for
high-quality reconstruction. Our technique stores combined RGB and depth values in a parabolic 2D texture for
every light field sample acquired at discrete positions on a uniform spherical setup. Image synthesis is implemented
on the GPU as a fragment program which extracts the correct image information from adjacent cameras for each
fragment by applying per-pixel depth correction of rays.
We show that the presented image-based rendering technique provides a significant improvement compared to pre-
vious approaches. We explain two different rendering implementations which make use of a uniform parametriza-
tion to minimize disparity problems and ensure full six degrees of freedom for virtual view synthesis. While one
rendering algorithm implements an iterative refinement approach for rendering light fields with per pixel depth
correction, the other approach employs a raycaster which provides superior rendering quality at moderate frame
rates.
GPU based per-fragment depth correction of rays, used in both implementations, helps reducing ghosting artifacts
to a non noticeable amount and provides a rendering technique that performs without exhaustive pre-processing
for 3D object reconstruction and without real-time ray-object intersection calculations at rendering time.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Image-Based Rendering

1. Introduction

Research in the field of image-based rendering (IBR) has
contributed a variety of algorithms for real-time generation
of photorealistic images of complex scenes. Generally, these
algorithms synthesize virtual views based on a collection of
pre-acquired input images. Unlike the polygonal rendering
pipeline, IBR techniques are almost independent of scene
complexity, thus providing an effective solution for photore-
alistic image synthesis at a predictable computational cost.

Light field rendering (LFR) techniques focus on the the
reconstruction of complex material properties and lighting
environments for an arbitrary 3D scene. The effectiveness
of an LFR approach can be evaluated by well-known crite-
ria appointed with the introduction of Light Field Rendering
by Levoy and Hanrahan [LH96]. Light field techniques are
categorized by the parameterisations applied for light field

representation, the method of light field generation and the
robustness and accuracy of the rendering technique.

We present a light field approach that employs a spheri-
cal light field parameterisation and takes advantage of com-
bined per-pixel color and depth information to generate
high-quality virtual views in real-time (see Figure 1). The
approach described in this paper provides a set of new fea-
tures that help making LFR more flexible for usage in a wide
area of applications. These features are:

• Uniform spherical parameterisation yielding six degrees
of freedom (DOF) for virtual viewpoint selection

• High quality light field synthesis without noticeable
ghosting artifacts, providing reconstruction of visual fea-
tures from meso structures and concavities

• Correct per-pixel depth evaluation for reconstructed light
field views

c© The Eurographics Association and Blackwell Publishing 2008. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

S. Todt & C. Rezk-Salama & A. Kolb & K.-D Kuhnert / GPU-Based Spherical Light Field Rendering with Per-Fragment Depth Correction

(a) (b) (c) (d)

Figure 1: a: Light field of the Lucy model reconstructed from 42 samples sampled at 512× 512 rendered at 77.83 fps. b: Light
field of Tie-Fighter model reconstructed from 42 samples sampled at 512× 512 rendered at 78.3 fps. c: Composed light fields
of Tie-Fighter and Tie-Bomber. d: Light field rendered at different LOD, with superimposed spherical approximations.

• Flexible light field compositing capabilities with dynamic
scene geometry

• Level of detail to account for varying object distance and
visibility

• Synchronous rendering of multiple light fields to generate
complex scenes

• Efficient generation of light fields from complex 3D
scenes and free-hand acquisition of physical objects

The remainder of the paper is structured as follows. In
Section 2 we give an overview of relevant related work, in-
cluding a survey on existing light field approaches. In Sec-
tion 3 we introduce our light field representation and show
the benefits with respect to combined RGB and depth data.
Section 4 describes our novel techniques for GPU-based
LFR with per-pixel depth refinement. In Section 5 we ex-
plain how light fields can be efficiently generated from 3D
geometry. Section 6 evaluates the technique with respect to
image quality and rendering performance. In Section 7 we
draw conclusions and comment on future work.

2. Related Work

The use of environment maps to capture the incoming light
in a texture map [BN76,Gre86] has inspired several succes-
sive IBR techniques. As environment maps record the in-
cident light arriving from all different directions at a sin-
gle point in space, each individual environment map of a
scene describes a concrete sample of the plenoptic func-
tion [MB95] as desribed by Adelson and Bergen [AB91].
Given a set of discrete samples of the plenoptic function,
the goal of LFR techniques is to generate a continuous rep-
resentation of that function. Based on this assumption the
plenoptic function can then be expressed as function on the
space of oriented lines. The 4D function of position and di-
rection is described as light field [LH96]. Different discreti-
sation methods of the 4D function lead to a variety of differ-
ent parameterisations.

Accounting for the vast number of publications, we re-

strict our survey to those implementations which are most
relevant to our approach, i.e. approaches that provide 6 DOF
and employ depth correction of rays to eliminate incoher-
ent light field information during light field synthesis. For
a detailed survey of LFR techniques the reader is referred
to [SCK07].

2.1. Two-Plane parameterisations

Light field rendering as proposed in the original paper by
Levoy and Hanrahan [LH96] restricts objects to lie within
a convex cuboid bounded by two planes, the camera plane
and the image plane. Rays describing the observation space
are parameterized by their intersection points with these two
planes leading to the 4D plenoptic function. A set of such
two planes is called a light slab.

Reconstruction of the light field for a ray described by
the intersection points with the two planes P(u,v, t, s) is per-
formed by quadri-linear interpolation of the images taken by
the cameras positioned around the intersection point on the
camera plane(u,v). Virtual views, however, are limited to a
small viewing cone around the dominant direction of rays,
parameterized by the two planes. Viewing rays not intersect-
ing one of the planes cannot be reconstructed. With the Lu-
migraph, Gortler et.al. [GGSC96] extend the two plane ap-
proach by employing six light slabs for light field parameter-
isation, providing 6 DOF for viewpoint selection. For virtual
views reconstructed from light field samples at the edges of
the six sided light slab setup, however, discontinuity artifacts
appear, due to the non uniform sampling of rays in those re-
gions [CLF98].

It has been shown that LFR as described above will pro-
vide satisfactory rendering results, if the observed object is
positioned exactly on the image plane. In the general case,
noticeable ghosting artifacts will appear due to incoherent
light field information for adjacent rays. Such incoherency is
due to rays hitting the object at a surface point far from the

c© The Eurographics Association and Blackwell Publishing 2008.

S. Todt & C. Rezk-Salama & A. Kolb & K.-D Kuhnert / GPU-Based Spherical Light Field Rendering with Per-Fragment Depth Correction

Ci Ci+1Ci-1 Ci Ci+1Ci-1

Image Plane Image Plane

Camera PlaneCamera Plane

Pcami
Pcami+1

Pobj

Pobj

Figure 2: Depth correction of rays. Without depth correc-
tion, the intersection points observed from adjacent cameras
do not necessarily correspond to an identical surface point.
With depth correction, camera rays passing through a com-
mon surface point are used for interpolation.

image plane, thus resulting in deviating intersection points
on the image plane (see Figure 2).

The Lumigraph [GGSC96] uses a proximity polygonal
representation to overcome incoherency by applying a depth
correction of the rays. Discrete depth values are estimated
by a raycasting approach for ray-object intersection at ren-
dering time. The discrete depth values are evaluated during
image synthesis for depth correction of rays, leading to a
significant improvement in image quality.

2.2. Spherical Parameterisations

Spherical LFR techniques overcome the problem of discon-
tinuities by parameterizing rays using a spherical represen-
tation. Several flavours of spherical parameterisations have
been published in the past.

Spherical light fields [IPL97] use intersection with a po-
sitional sphere and a directional sphere placed at the posi-
tional intersection point. Using Sphere-Sphere parameterisa-
tion [CLF98] rays are determined by intersecting the same
sphere twice. Sphere-Plane parameters are evaluated as the
intersection with a plane perpendicular to the ray positioned
at the center and its normal direction yielding a position on
the surrounding sphere [CLF98].

Spherical light fields avoid discontinuities by uniform pa-
rameterisation. The virtual viewpoint can be chosen freely
with 6 DOF. For light field reconstruction the sphere is ren-
dered as a smoothly shaded polygonal mesh applying cam-
era images for bilinear interpolation. If an optimal constant
depth is stored with each image for the Sphere-Plane pa-
rameterisation, per sample depth information can be used
for depth correction of rays during light field synthesis
yielding results comparable to the Lumigraph rendering ap-
proach [CLF98].

2.3. Unstructured Light Fields

Unstructured LFR techniques address the problem of fixed
camera-space parameterisation. During light field acquisi-
tion, actual camera parameters are stored with every light
field sample to define the final parameterisation space. Im-
age synthesis then is steered by camera parameters to query
image data and to establish camera blending weights for in-
terpolation.

Unstructured Lumigraph Rendering [BBM∗01] is based
on a variation of the light slab setup as used in two-plane
light field rendering. Each light field sample is represented
as a single light slab. The complete light field data set con-
sists of a collection of individual light slabs. Per fragment
blending weights of different sample cameras are calculated
based upon a polygonal proxy representation of the scene for
depth correction at light field synthesis. Freedom of choice
for the virtual viewpoint selection and the quality of the fi-
nal rendering is steered by the uniformity of sample camera
distribution and the quality of the polygonal geometric ap-
proximation.

Free Form Light Field Rendering [SVSG01] can be
viewed as a generalization of the two-plane rendering ap-
proach. Here a connected camera mesh is used for light field
representation instead of a set of individual light slabs. For
acquisition, camera positions can be chosen to lie anywhere
outside the convex hull of the observed object. A camera
mesh connecting the camera positions used for acquisition
is built from the camera sample positions. For image synthe-
sis, the smooth shaded camera mesh is rendered by project-
ing each of its faces onto the image planes of the n nearest
cameras that contribute to that patch.

Schirmacher et al. [SVSG01] apply a depth correction for
Free Form Light Fields by successively subdividing the cam-
era mesh at rendering time. Subdivision is steered by evalu-
ating per-vertex depth information. The camera mesh is sub-
divided until a homogenous depth value for all of the trian-
gle’s vertices is established or the triangle’s area reaches the
size of a fragment. Rendering performance is dependent on
the method used for per-vertex depth estimation and the ob-
ject’s depth complexity which is the actuating variable for
the subdivision algorithm’s runtime. Using depth maps have
been identified to be an efficient solution to depth correc-
tion of rays by means of rendering-performance [SVSG01].
Rendering quality is closely related to the uniformity of the
camera mesh and the complete covering of suitable viewing
directions needed for reconstruction purposes.

3. Spherical Light Fields with Per-Pixel Depth

The LFR approaches presented above provide a powerful
selection of image-based rendering tools. Each of them de-
scribes an individual technique to either improve representa-
tion, quality or rendering performance of light fields. How-

c© The Eurographics Association and Blackwell Publishing 2008.

S. Todt & C. Rezk-Salama & A. Kolb & K.-D Kuhnert / GPU-Based Spherical Light Field Rendering with Per-Fragment Depth Correction

Camera
Sphere

Image
Hemisphere
of current camera

Object
Bounding
Sphere

current
camera

Figure 3: Sphere-Hemisphere parameterisation of the light
field. The object is enclosed in the blue bounding sphere.
Virtual cameras are positioned at the vertices of the cam-
era sphere (green). Each camera is recording the opposing
hemisphere.

ever, each of these techniques also show some aspects that
adversely affect another light field issue.

Our LFR approach applies a uniform spherical parame-
terisation to overcome discontinuity artifacts as observed for
the cubic arrangement of light slabs and which potentially
occur for unstructured light fields for a non uniform sampled
scene. The spherical parameterisation provides full 6 DOF
for virtual view point selection and applies a parabolic image
space parameterisation to reduce distortions that effect ren-
dering quality in the sphere-plane approach. Our rendering
method with per-pixel depth correction of rays is inspired by
ideas of Schirmacher et al. to use depth maps for ray cor-
rection [SVSG01] instead of a constant depth per-view as
presented for sphere-plane parameterisation to achieve op-
timized depth correction. The approach directly works on
combined RGB and depth (RGBz) image data to realize an
efficient light field representation and a high-quality LFR
technique. The rendering technique performs without the
need for polygonal proxy geometry generation or complex
mesh processing as applied by free form light fields.

The parameterisation is outlined in Figure 3. Sample cam-
eras are located at each vertex of a regular, uniform triangu-
lation of the sphere. For each camera an RGBz raster im-
age of the opposing hemisphere is stored using a parabolic
parameterisation. The RGBz images for the individual cam-
eras are stored on graphics hardware by writing the depth
value in the alpha channel with every pixel. A standard color
depth of 8 bit per RGBA channel is sufficient. This data rep-
resentation is open for commodity texture compression al-
gorithms. Light field reconstruction is performed by render-
ing the smooth shaded spherical proxy using a customized
fragment program which performs effective per-pixel depth
correction.

Figure 4: Three image samples taken for a spherical light
field with 42 cameras. Each image represents a parabolic
mapping of the hemisphere for color (top row) and depth
(bottom row).

3.1. Spherical Camera Space parameterisation

Uniform camera space parameterisation is achieved by ar-
ranging equally spaced sample camera positions on a spheri-
cal approximation. Thus a good spherical polygonal approx-
imation has to be generated to map the sample positions to
discrete 3D positions for efficient storage and rendering. Pla-
tonic solids are known to be well suited for approximation
of a sphere [Gas83]. The most complex platonic solid is the
icosahedron, a 20-sided polyhedron with identical faces and
vertex valences, providing an absolutely uniform distribu-
tion of vertices on the unit sphere. The icosahedron is thus
a good choice as a generator for uniform spherical approxi-
mations [CLF98].

For further refinement we apply a recursive interpolatory
subdivision scheme on the solid mesh. With every iteration
each triangle is divided into four (nearly) equilateral spher-
ical triangles. We adjust the positions of the vertices result-
ing from subdivision by projecting the vertices on the unit
sphere to maintain a solid spherical approximation. Apply-
ing the subdivision process m times, we obtain a spheri-
cal approximation with 20 · 4m faces. In practice, we chose
m = 1 or m = 2, yielding 80 or 320 faces and 42 or 162
vertices, respectively.

The spherical approximation is stored explicitly as an in-
dexed face set. With each vertex, a 4× 4 viewing matrix is
stored which represents the transformation of world to cam-
era coordinates. This matrix is interpreted as extrinsic cam-
era parameters for light field acquisition as well as for recon-
struction purposes.

3.2. Parabolic Image Space Parameterisation

For each sample camera defined by the spherical camera
space parameterisation we store a 2D RGBz texture of the

c© The Eurographics Association and Blackwell Publishing 2008.

S. Todt & C. Rezk-Salama & A. Kolb & K.-D Kuhnert / GPU-Based Spherical Light Field Rendering with Per-Fragment Depth Correction

Images Resolution Uncompressed S3TC DXT3 S3TC DXT3 & zipped

12 256× 256 3.1 MB 0.7 MB 0.2 MB
12 512× 512 12.3 MB 3.0 MB 0.5 MB
42 256× 256 10.8 MB 2.7 MB 0.6 MB
42 512× 512 43.0 MB 10.8 MB 1.5 MB

162 256× 256 41.5 MB 10.4 MB 1.9 MB
162 512× 512 165.9 MB 41.5 MB 5.9 MB
642 256× 256 164.4 MB 41.1 MB 7.5 MB
642 512× 512 657.5 MB 164.4 MB 23.5 MB

Table 1: Sizes of typical light fields with and without compression

opposite hemisphere. As displayed in Figure 3, the camera
sphere must be larger than the bounding sphere of the ob-
ject’s bounding sphere by a factor of

√
2 to ensure that all

rays from the current camera through the object boundary
sphere will intersect the opposite hemisphere.

Parabolic environment maps [HS99] provide the ideal
solution for recording the hemisphere. They consume es-
sentially less storage compared to cube maps [Gre86] and
cause less distortion than both cube maps and spherical
maps [MH84]. In practice, we chose a resolution of 256×
256 or 512×512 pixels for each RGBz texture. Examples of
source images for the light field are displayed in Figure 4.

The depth value stored in the alpha channel of individual
parabolic texture maps is calculated as the distance z′ from
the intersection point with the object’s bounding sphere to
the object divided by the length of the bounding sphere’s ray
secant zmax, according to Figure 5. This results in a depth
value between 0 and 1, which can efficiently be stored as
8 bit alpha value in the alpha channel [POJ05]. Storing the
depth value as the fractional part of the secant length also
allows for an efficient calculation of the object intersection
point in the fragment program (See Section 4). In Section 5,
we will see that such a representation allows us to easily
generate synthetic light fields from a highly tessellated ge-
ometry.

zmax
z'

Figure 5: The depth value is obtained by dividing the
bounding-object distance z′ by the bounding sphere’s secant
length zmax.

3.3. Texture Compression

To reduce the amount of graphics memory consumed by
the parabolic maps, commodity hardware-accelerated tex-
ture compression schemes can be employed. S3TC texture
compression [INH99] offers an effective and easy way to
compress the light field images. The DXT5 algorithm works
on RGBA textures and achieves a compression ratio of 4:1.
In our storage scheme, however, the alpha portion contains
the depth values, which turn out to be sensitive to compres-
sion artifacts especially at object boundaries. To obtain best
results for light field reconstruction we used the DXT3 al-
gorithm. DXT3 works on RGBA data as well, but does not
compress the alpha portion. DXT3 still offers a total com-
pression ratio of 4:1.

A light field acquired using our spherical parameterisa-
tion with 162 images and a resolution of 512 × 512 pixels
consumes 165.9 MB without compression. In comparison, a
DXT3 compressed light field of the same dimensions con-
sumes only 41.5 MB of memory. For storing and transmis-
sion, the total size of a light field data set can be further re-
duced significantly by applying standard ZIP compression
techniques. With both ZIP and DXT3 texture compression
the same light field is reduced to a average size of about
6 MB (See Table 1).

4. Light Field Rendering

The light field is rendered using a customized fragment
program which requires a graphics processor that supports
loop and conditional branch instructions according to shader
model 3.0. We have implemented two different rendering
techniques, both with per-pixel depth correction. The first
one is an iterative refinement technique, which is more effi-
cient in terms of runtime performance. The second one is a
ray casting technique which is less efficient but more accu-
rate.

In both techniques the light field is rendered by rasterizing
the front faces of the camera sphere with respect to the vir-
tual viewpoint. The viewpoint is restricted to be located out-
side the camera sphere to avoid the vertices of the front faces
being culled by frustum culling. The polygonal approxima-

c© The Eurographics Association and Blackwell Publishing 2008.

S. Todt & C. Rezk-Salama & A. Kolb & K.-D Kuhnert / GPU-Based Spherical Light Field Rendering with Per-Fragment Depth Correction

Pcam,0
(1)

Pcam,1
(1)

Pobj
(1)

second iteration

Peye

Pobj
(0)

Pcam,0
(0)

Pcam,1
(0)

first iteration

A

B

C0

C1

C0

C1

Pcam,0
(1)^

Pcam,1
(1)^

(0)
=Pcam,k

^

Figure 6: Left and Middle: First and second step of the iterative depth refinement. Right: Iterative refinement fails at silhouette
edges and locations where the correct object point is not visible from all adjacent cameras.

tion of the camera sphere is rasterzed with each vertex corre-
sponding to a pre-defined camera sample position. For each
triangle, the parabolic RGBz texture images and the viewing
matrices M of the three cameras are bound as uniform pa-
rameters to the fragment program. In practice, the RGB and
depth information of the parabolic map are bound as separate
texture objects. While the RGB texture can be linearly inter-
polated, noticeable render artifacts at the silhouettes appear
when interpolating the depth information. Using the nearest
neighbour texture lookup scheme ensures appropriate depth
information per pixel.

4.1. Iterative Refinement

LFR techniques presented in the past which apply a depth
correction of rays [SVSG01,VG01,VG00] are based on per-
vertex depth evaluation for light field synthesis. For each ver-
tex the depth is evaluated based on the depth map stored with
individual light field samples. For each fragment to be ren-
dered, color and depth information is linearly interpolated
along the edge of a view triangle. This approach, however,
is only valid, if the depth values vary linearly between the
vertices [VG00]. Vogelgsang and Greiner [VG01] propose a
subdivision scheme to adjust the mesh topology according to
the vertex depth variance within a triangle. The main prob-
lem when sampling the scene by subdividing the view trian-
gle is the possibility of missing geometric features. Thus this
recursive subdivision is pursued until a triangle collapses to
fragment size or a minimum depth variance is reached. Spe-
cial care must be taken to avoid the mesh from degenerating.

Our iterative refinement technique evaluates depth per-
fragment for ray correction to overcome the computational
effort of mesh refinement, which may potentially result in
degenerated meshes. The smooth shaded polygonal approx-
imation of the sphere is rendered directly for light field syn-
thesis without the need for additional mesh refinement and
exhaustive vertex processing. The iterative refinement tech-
nique is outlined in Figure 6. When a triangle is rasterized,
each fragment corresponds to a unique position Peye on the
camera sphere. In the first step, the fragment program calcu-
lates the intersection point of the viewing ray with the cam-

era sphere to obtain a first estimate of the object intersection
point P(0)

obj. The superscript in this notation refers to the itera-
tion count.

The calculated intersection point is transformed into the
viewing space of camera k according to

S(i)
k = Mk P(i)

obj with k ∈ {0,1,2}. (1)

This is done for each of the three adjacent cameras that cor-
respond to the original triangle’s vertices. The sphere inter-
section points Sk can now be converted to parabolic texture
coordinates (u,v), according to

(
u
v

)
k
=

1
2

⎛
⎝ sx

1+ sz
+1

sy
1+ sz

+1

⎞
⎠

k

with Sk =

⎛
⎝ sx

sy

sz

⎞
⎠

k

. (2)

RGBz samples are obtained from the parabolic texture maps
corresponding to the three cameras. The depth value z is
extracted form the alpha portion and is used to calculate

the camera’s local estimate P(i)
cam,k for the object intersection

point:

P(i)
cam,k = z ·Ck + (1− z) P̂(i)

cam,k (3)

with P̂(i)
cam,k being the object intersection point P(i)

obj projected
onto the sphere using Ck as center of projection. Note that
Equation 3 is a simple linear interpolation, because z stores
the depth value as fractional part of the secant length (see
Figure 5).

An improved estimate for the object intersection point Pobj

can now be found by projecting the three local camera dis-
tances onto the viewing ray and calculating the average, ac-
cording to:

P(i+1)
obj = Peye +

1
3

2

∑
k=0

((P(i)
cam,k −Ck) · r) r (4)

with r being the normalized direction of the original viewing
ray (red line).

As illustrated in Figure 6 (middle), the iteration can be
pursued several times by projecting the updated object point

c© The Eurographics Association and Blackwell Publishing 2008.

S. Todt & C. Rezk-Salama & A. Kolb & K.-D Kuhnert / GPU-Based Spherical Light Field Rendering with Per-Fragment Depth Correction

(a) (b) (c) (d)

Figure 7: Iterative refinement rendering results. a: Original polygonal Phlegmatic Dragon model (360k polygons) rendered at
275 fps. b: LFR from a light field data set containing 162 input samples at 512× 512 resolution, rendered at 95.6 fps. c: Light
field reconstructed at 72.5 fps from a data set containing 642 samples. d: Light field of the Lucy model, synthesized from 642
samples at 75.3 fps

P(i+1)
obj onto the sphere using the camera vertices Ck as cen-

ter of projection. The resulting intersection points are suc-
cessively transformed into camera coordinates to establish
depth values, to determine improved local estimates accord-
ing to Equation 3 and to eventually calculate an improved
intersection point according to Equation 4. The procedure
terminates if the desired accuracy is achieved or a maximum
number of iterations is reached. In practice a maximum num-
ber of iterations of 5 turns out to be sufficient.

The final color of the fragment is calculated as a weighted
sum of the RGB values of the different cameras from the
final iteration. The weights for each camera correspond to
the barycentric coordinates of the fragment with respect to
the original triangle.

Although this scheme allows the actual geometry inter-
section point to be approached quite quickly, unfortunately,
the iterative refinement fails in certain situations. Such cases
are illustrated in Figure 6 (right).

• Case A shows a situation where the geometry is hit in-
side a concavity of the object, resulting in an intersection
point that is not visible from at least one of the adjacent
cameras.

• Case B illustrates a situation where the viewing ray does
not hit the object at all, while at least one adjacent camera
reports an intersection.

These cases cannot be handled exactly and will inevitably
result in visible ghosting artifacts at sharp edges, e.g. sil-
houettes and concavities. In order to attenuate such artifacts,
we can examine the camera estimates P(i)

cam,k after a few it-
erations. If the three estimates are still highly divergent, we
discard the point with the closest distance to the camera and
proceed with the residual two cameras. If no similar local
estimates can be achieved within the next few iterations, the
averaging in Equation 4 is replaced by a maximum opera-
tion. This procedure, however, cannot completely eliminate
the visual artifacts. If the ghosting is still too strong the only

effective countermeasure is increasing the number of cam-
eras, or the image resolution.

Figure 7 shows rendering results from traditional polygo-
nal based rendering in comparison to light field rendering
results. The Phlegmatic Dragon shown in Figure 7a was
chosen as original polygonal model from which the light
fields were generated from. The model contains detailed mi-
cro and meso structures and the chosen material results in
clear specular highlights when lit by directional light. Thus,
this model is perfectly suited to evaluate the quality of the
light field rendering approach, as structures and highlights
have been identified to be critical for evaluating the quality
of light field rendering approaches [LH96, GGSC96]. Good
results are achieved for spherical light fields sampled from
162 or 642 input images at image resolutions of 256× 256
or 512× 512. The inner region of the object is synthesized
at high quality. For this central region of the light field meso
(see Figure 7 b,c) and micro structures (see Figure 7 d) are
precisely reconstructed. Minor ghosting artifacts, however,
resulting from unresolved depth correspondences as shown
in Figure 6 (right) are visible at the silhouette. Using direct
per-fragment depth evaluation within the customized frag-
ment program allows to synthesize light fields at real-time
frame rates of up to 110 fps (see Table 2).

4.2. Raycasting Approach

The raycasting approach represents a less efficient, yet a sim-
pler and more accurate solution to depth refinement which
allows silhouettes, sharp edges and concavities to be recon-
structed precisely without ghosting artifacts. When a triangle
is rasterized, the fragment program calculates the viewing
ray, which corresponds to the fragment. We then calculate
the intersection point of the viewing ray with the bounding
sphere of the object.

From this position, we sample the viewing ray iteratively
at a fixed step size, as shown in Figure 8. At each step, we

c© The Eurographics Association and Blackwell Publishing 2008.

S. Todt & C. Rezk-Salama & A. Kolb & K.-D Kuhnert / GPU-Based Spherical Light Field Rendering with Per-Fragment Depth Correction

C0

C1

C0

C1

C0

C1

Figure 8: The raycasting approach samples the viewing ray
stepwise at adjacent positions starting at the intersection
point with the object’s bounding sphere.

validate the assumption that the current ray position is the
actual object intersection point Pobj. We project this point
onto the camera sphere using the adjacent camera positions
Ck as center of projection. The resulting three intersection
points with the sphere are transformed into the viewing co-
ordinate system of the corresponding camera and converted
to parabolic coordinates. Depth values are obtained from the
corresponding parabolic texture maps and local estimates
Pcam,k are calculated for each camera according to Equa-
tion 3. We then compare these points to the position of the
current ray sample. If one of the local estimates is equal to
the ray position within a given tolerance, we immediately
stop the ray sampling. This means that we have found at
least one camera that reliably observes an object intersection
at exactly the ray position.

We now compare the intersection points obtained by the
other two cameras. If they are also equal to the ray position
within the given tolerance, we can assume that all cameras
observe the same point and we use the barycentric weights
of the fragment to calculate the final color for that pixel as
outlined above. However, if the intersection point for one
camera is far away from the ray position, we can assume that
we are in one of the situations outlined in Figure 6 (right). In
this case we discard the color information for the respective
camera by setting the corresponding barycentric weight to
zero. Afterwards, we normalize the weights again and cal-
culate the final color as a weighted sum.

In contrast to raycasting implementations presented for
rendering of displacement maps [WWT∗03, WTS∗05] and
relief textures [OBM00,POJ05,ACB∗07], our raycasting ap-
proach benefits from multiple input depth maps to handle
such ambiguous situations. The raycasting approach pre-

original geometry

Figure 9: Top left: Original Stanford Bunny model (70k
polygons) rendered at 375 fps. Top right: Light Field ren-
dered from 42 input samples rendered at 79.1 fps. Bottom:
RGB difference image showing the pixel difference.

sented by Wang et.al. [WWT∗03, WTS∗05] works on a sin-
gle depth map and fails for self-occlusion situations and thus
cannot handle large variations in depth [BD06]. As Relief
texture mapping is designed to achieve visually appealing re-
sults for small-to-medium scale relief [BD06] it cannot han-
dle concavities and holes [OBM00]. Our approach precisely
reconstructs the visual appearance from small structures and
large variations in depth from a small amount of input im-
ages. Concavities and holes can be reconstructed as depth
information can be retrieved from three adjacent depth maps
to determine the object intersection. Silhouettes and sharp
edges are precisely reconstructed (See Figure 1, 9, and 11).
The ray-object intersection point, established by raycasting,
can be used to take advantage of OpenGL’s z-Buffer func-
tionality. Light field renditions can be composed with arbi-
trary complex (polygonal) scenes by applying the precise sil-
houette reconstruction in combination with the per-fragment
depth values. The compositing capabilities also allow mul-
tiple occluding light fields to be accurately displayed. Inter-
object occlusions for polygonal objects and light fields are
properly handled for dynamic and static scenes (see Figure1
c, Figure 12).

Figure 9 clearly shows the benefit of raycasting in terms
of image quality compared to iterative refinement shown in
Figure 7. The micro and meso structures of the polygonal
Stanford Bunny model are reconstructed precisely from only

c© The Eurographics Association and Blackwell Publishing 2008.

S. Todt & C. Rezk-Salama & A. Kolb & K.-D Kuhnert / GPU-Based Spherical Light Field Rendering with Per-Fragment Depth Correction

42 input samples as depicted in the difference image in Fig-
ure 9, bottom. Minor pixel errors occur at the silhouette of
the object. Specular highlights are reconstructed quite well
from the sparse set of input images. Increasing the number
of input samples of course will further improve the recon-
struction of specular highlights. Light fields sampled from
162 sample positions can be synthesized at best rendering
quality at a frame rate of up to 60.4 fps. Light fields with 42
input images are synthesized at up to 79.1 fps (see Table 2).

4.3. Level of Detail for Light Field Rendering

The number of light field samples, necessary for light field
reconstruction is highly related to the distance of the vir-
tual view point [CCST00]. The polygonal spherical approx-
imation rendered for light field synthesis results from a re-
cursive subdivision of an icosahedron as a generator. Thus,
the spherical setup provides an hierarchical representation,
which can be used to implement an LOD rendering strategy
at no extra costs.

The presented LOD strategy directly follows LOD strate-
gies implemented for polygonal 3D models in interactive
real-time applications. LOD is adjusted by coarsening the
polygonal approximation being rendered for light field re-
construction. Light fields rendered with a coarser LOD are
reconstructed from fewer light field samples reducing the
amount of texture switches in the rendering process thus re-
ducing the GPU workload. The current LOD is determined
in classical sense as a tradeoff of resolution vs. geometric
quality. A maximum of 4 LODs is available assuming a high-
est resolution of 642 sample positions for the most detailed
representation. Minor popping artifacts can be observed dur-
ing rendering on LOD switches resulting from image in-
formation that is only recoverable from a higher amount of
sample positions. However, such artifacts are less noticeable
compared to the well-known popping artifacts observable
with most discrete LOD strategies for polygonal models. A
light field rendered at different LOD is displayed in Figure
1 d.

5. Light Field Generation

Spherical light fields according to our sphere-hemisphere pa-
rameterisation can be generated from synthetic polygonal
3D models using an adapted renderer. Using state-of-the-art
3D sensor technology spherical light fields can be acquired
from physical objects.

5.1. Generating Light Fields from Synthetic Objects

For synthetic light field acquisition based on 3D geometry,
a given mesh is rendered once for each camera. The view-
ing matrix is obtained from the spherical parameterisation.
It transforms the scene such that the camera is placed at the
position C = (0,0,1)T , looking along the negative z-axis. In

this setup, the camera sphere is assumed to have unit radius.
Hence, the entire scene has to be scaled and translated to fit
into the bounding sphere with radius of 1√

2
centered around

the origin.

For generation of synthetic light fields we replace the
fixed-function vertex processing step by a customized ver-
tex program, which projects all vertices onto the unit sphere
and converts the result to parabolic coordinates. This allows
us to efficiently generate synthetic light fields using com-
modity graphics hardware. Due to the non-linear geometric
distortions resulting from the parabolic mapping applied by
our vertex program, however, it is mandatory to tessellate
coarse geometry into small triangles before light field syn-
thesis. On modern graphics hardware this can efficiently be
achieved by a geometry shader program.

The steps performed by our customized vertex program
comprise the following.

1. Projection to the hemisphere.
Each geometry vertex V is transformed with the mod-
elview matrix and then projected from the camera point
onto the opposite unit hemisphere. This is computed by
casting a ray from the camera at position C = (0,0,1)T

through the vertex and intersecting this ray with the unit
sphere. This amounts to solving a simple quadratic equa-
tion and results in a projected vertex S.

2. Parabolic mapping of the projected vertices
As a result of the previous step, the projected vertex S is
lying on the hemisphere with z < 0. The vertex S is con-
verted to parabolic coordinates, according to Equation 2

3. Depth Adjustment
The depth value is calculated according to Figure 5.

4. Normal Transformation
We assume that lighting is calculated in world coordi-
nates. Hence, the normal vectors of the geometry must
be transformed with the transposed inverse of the model-
ing matrix, but not with the viewing matrix.

Arbitrary complex fragment programs can be used in
combination with this customized vertex program. The only
modification necessary is that the fragment program must
write the interpolated depth value generated by the vertex
shader into the alpha portion of the final color.

Each parabolic map is stored as an interleaved array of
RGBz values. Individual parabolic maps are associated with
a transformation matrix defined by the spherical parameteri-
sation.

For usability reasons the light field generation algorithm
was integrated into commercially available 3D modeling
packages like Autodesk Maya which are commonly used in
the computer graphics community. Using the plug-in light
fields can be generated efficiently from arbitrary complex 3D
objects containing sophisticated material and (global) illu-
mination effects. For light field generation any render engine
available with the 3D modeling package can be applied. Us-

c© The Eurographics Association and Blackwell Publishing 2008.

S. Todt & C. Rezk-Salama & A. Kolb & K.-D Kuhnert / GPU-Based Spherical Light Field Rendering with Per-Fragment Depth Correction

(a)

(b) (c)

(d) (e)

Figure 10: LFR from physical object. a: Original input im-
age taken from stuffed animal using the 2D3D camera setup.
b: Reconstructed polygonal mesh, showing false geometry
on silhouettes and background. c: Gradient filtered mesh,
background and bottom culled using clipping planes. d:
Light field rendering of the stuffed animal. e: Difference im-
age of light field rendering compared to original view show-
ing per-pixel RGB error.

ing Mental Ray for Maya, one of Maya’s raytracing render-
ing engines, high-quality light fields of a Tie-Fighter model
have been created for quality evaluation (see Figure 1, Fig-
ure 11). Individual light field samples were rendered at a res-
olution of 512× 512 in 39 seconds.

5.2. Acquisition of Light Fields from Physical Objects

We have implemented a processing pipeline for light field
acquisition taking advantage of recent progress in sensor
technology [PHW∗06, YIM06, OBL∗05, GYB04] which al-

low real-time measurement of per-pixel depth information.
In combination with RGB sensors these devices can be used
for hand-held light field acquisition [PHW∗06, TRSK05].
For light field acquisition we use a PMD 3D time-of-flight
sensor providing depth images at a resolution of 160× 120
at 20 fps in combination with a mounted commodity high
resolution RGB camera.

PMD image data is processed by applying standard im-
age distortion techniques based on the intrinsic camera pa-
rameters for lateral image correction. Per-pixel depth data
is filtered using a GPU based processing pipeline for noise
reduction, outlier removal and correction of systematic er-
rors according to Lindner et al. [LK06, LLK08]. Depth and
RGB data of both cameras is combined by applying extrin-
sic camera calibration parameters of the fixed 2D3D cam-
era setup for per-pixel projection from PMD image space to
RGB image space [LK07]. The combined RGBz data from
this 2D3D camera setup serves as input data for the spheri-
cal light field parameterisation. Figure 10 a shows a sample
input image of the 2D3D camera setup.

A dense polygonal mesh representation is reconstructed
from each individual input sample (see Figure 10 b). Based
on the mesh representation, background information is
culled easily by implementing clipping planes to isolate
the object of interest (see Figure 10 c). Uncertain per-pixel
depth information at the silhouette edges as well as for oc-
cluded regions however lead to discontinuity artifacts which
are reconstructed as false geometry in the mesh representa-
tion 10 b). These artifacts are significantly reduced by gradi-
ent filtering based on the input depth values 10 c).

For flexible acquisition of light fields we implemented a
rebinning technique to successively insert recorded RGBz
images from hand-held acquisition into our light field repre-
sentation. Taking the optical DTrack [Adv] tracking system
as a precise solution for real-time camera pose estimation,
the camera setup’s extrinsic parameters are evaluated in real-
time. Based on the extrinsic parameters and the intrinsic pa-
rameters, known from calibration, the captured RGBz depth
map can be projected to known sample camera coordinates.

For rebinning the camera best approximating the viewing
direction of the RGBz camera setup is determined. To iden-
tify the most appropriate sample camera within the spherical
parameterisation we determine the disparity in major view
direction and distance according to [BBM∗01] for each of
the sample cameras. For the best camera providing the least
disparity we perform the steps as described in Section 5.1
to insert the light field sample into our representation. Com-
bined RGBz data is stored in a parabolic map with the per-
pixel depth being reparameterized according to the secant
length as shown in Figure 5. The light field samples are used
directly for light field synthesis without any post processing.

Since combined depth and RGB are evaluated directly by
our rendering technique, immediate visual feedback is avail-
able at acquisition time even for incomplete light field data.

c© The Eurographics Association and Blackwell Publishing 2008.

S. Todt & C. Rezk-Salama & A. Kolb & K.-D Kuhnert / GPU-Based Spherical Light Field Rendering with Per-Fragment Depth Correction

This allows for interactive quality evaluation and resampling
of incorrect light field samples during the acquisition pro-
cess. Figure 10 d) shows LFR results from a stuffed animal,
acquired using the 2D3D setup described above.

The synthesized images clearly resample the object’s ap-
pearance. The difference image depicted in Figure 10 e
shows the per-pixel RGB error based on an original image,
of the isolated object, according to 10 a, and the synthesized
view generated according to corresponding viewing param-
eters. Minor ghosting artifacts appear at the inner object,
while disparities are more visible at the object’s boundary
edges.

6. Results and Discussion

We have presented a LFR approach providing two different
rendering techniques working on a uniform spherical camera
space parameterisation and a parabolic image space param-
eterisation storing combined RGBz values with each light
field sample. The techniques described in this paper have
been implemented using OpenGL and Cg under Windows
XP. All renderings and performance measurements have
been created using an NVidia Geforce 8800 GTX graph-
ics board with 768 MB of local video memory build into
an AMD Athlon 64 X2 dual core processor with 2.21 GHz
and 3.5 GB main memory.

The iterative refinement technique implements efficient
LFR at real-time frame rates of up to 110 fps (see Table 2).
Best results are achieved for light fields samples from ≥ 642
sample positions, while ghosting artifacts are obeserved for
lower sample counts (see Figure 7). The visual appearance
of concavities and small-to-large depth variations are satis-
factory reconstructed.

For arbitrary complex 3D objects, the raycasting approach
provides best rendering quality at moderate frame rates of
up to 79 fps (see Table 2). Light fields can be reconstructed
with high quality from 42 input samples (see Figure 1 and
11). For comparable image quality the raycasting approach
requires less input images compared to the iterative refine-
ment technique (see Table 1). Concavities, small-to-large

Samples Resolution Raycasting Iterative Refine.

42 256× 256 79.1 fps 110.4 fps
42 512× 512 78.3 fps 107.2 fps

162 256× 256 60.4 fps 96.9 fps
162 512× 512 57.8 fps 95.6 fps
642 256× 256 52.1 fps 78.7 fps
642 512× 512 52.5 fps 75.3 fps

Table 2: Rendering performance for our raycasting render-
ing algorithm and the iterative refinement approach applied
to light fields of varying resolution rendered for a screen size
of 512× 512.

original geometry

Figure 11: The top left image shows the original geometry
containing 16.5k polygons rendered at 512× 512 in 39 sec.
using Mental Ray for Maya. Renderings (top right, bottom
left) are generated from 162 input samples at 57.8 fps. The
raycasting approach clearly synthesizes the visual appear-
ance of small structures and precisely reconstructs silhou-
ettes, holes and concavities.

depth variations and complex material attributes like high-
lights or anisotropic reflections are precisely synthesized
(see Figure 9). Rendering can be performed more efficiently
for scenes containing such complex geometry or material at-
tributes compared to traditional rendering approaches based
on polygonal computer graphics. In combination with the
presented LOD approach for light fields the raycasting tech-
nique provides a powerful tool for a wide area of applica-
tions.

The light field techniques presented in this paper are ap-
plicable to a variety of objects and input sources. Light fields
can be acquired from physical objects using state-of-the-art
3D imaging sensors (see Section 5.2), or can be easily gen-
erated from synthetic objects using our customized vertex
program and the plugin being provided for 3D modeling
packages (see Section 5). For elongated objects a set of light
fields can be acquired. Due to the flexible compositing capa-
bilities and the high rendering performance, provided by the
raycasting approach, multiple light fields can be displayed
simultaneously (See Figure 12).

While sparse polygonal objects containing only simple
material attributes, as presented for clarity reasons in Fig-
ure 7 and Figure 9, do not necessarily profit from the pro-

c© The Eurographics Association and Blackwell Publishing 2008.

S. Todt & C. Rezk-Salama & A. Kolb & K.-D Kuhnert / GPU-Based Spherical Light Field Rendering with Per-Fragment Depth Correction

original geometry

Figure 12: Light field compositing results. The top left im-
age shows the simplified version (500k polygons) of the orig-
inal geometry of David obtained from The Digital Michelan-
gelo Project [LPC∗00] rendered at 47 sec. using Mental Ray
for Maya. The top right image displays three separate light
fields containing 162 samples at a resolution of 512× 512.
The light fields are rendered simultaneously at a frame rate
of 26.5 fps as shown in the bottom row.

posed light field rendering approaches, arbitrary complex
scenes do profit from the light field approach as virtual views
are reconstructed at high quality at real-time frame rates.
Figure 11 and Figure 12 clearly demonstrate the benefit of
our light field rendering approaches. Virtual views are syn-
thesized at a quality comparable to the quality achieved by
offline raytracing render engines at a fraction of rendering
time. Thus the presented techniques are especially suited to
synthesize virtual views of complex scenes containing arbi-
trary complex materials and lighting conditions. The render-
ing approaches presented in this work overcome critical is-
sues of related image based rendering approaches presented
in the past and provide efficient techniques for high-quality
view synthesis at real-time frame rates based on a sparse set
of input images.

Free form light fields [VG00] apply a mesh refinement
based on a triangle mesh defined by the input sample camera
positions (see Section 2.3). Mesh refinement is performed
at rendering time thus affecting the rendering performance.
For complex scenes a more detailed mesh refinement is ap-
plied to achieve good rendering results. Since mesh refine-
ment is steered by the render target’s resolution as it defines
the minimum triangle size, performance is also limited by
the render target resolution. As a consequence performance
is limited by both the scene complexity and the render target
resolution. As the depth is evaluated per vertex to steer the
mesh refinement process, small scale structures as well as
local high frequency depth variations are not accounted for
in this subdivision process. As a consequence these struc-
tures will result in visible ghosting artifacts due to incoher-
ent ray interpolation. Ghosting artifacts are observed at the
silhouettes, edges (see Figure 10 b in [VG00]) and concav-
ities (see Figure 9, 2nd image in [SVSG01]). Even for fine
meshes uniformity of sampling positions cannot be guaran-
teed, thus artifacts resulting from discontinuities as observed
with the Lumigraph rendering using six light slabs are likely
to appear.

The light field representation presented in this paper guar-
antees a uniform sampling of rays for the complete obser-
vation space, eliminating artifacts resulting from disconti-
nuities. Virtual views can be synthesized at constant quality
with 6 DOF. With the depth correction of rays being eval-
uated per-pixel from three adjacent cameras, small to large
scale structures as well as concavities and holes are precisely
reconstructed. Thus, ghosting artifacts are not observed at
high frequency changes and concavities. For objects with ab-
sence of micro and meso structures providing mainly planar
regions at large scale structures only, the free form light field
rendering approach will most likely profit from the selec-
tive subdivision scheme, whilst per-pixel depth evaluation
will provide comparable quality at decreased frame rates.
To overcome the limitations for micro and meso structures,
however, the number of sample positions has to be increased
for free form light field to achieve rendering quality compa-
rable to our raycasting approach.

Unstructured Lumigraph Rendering [BBM∗01] uses a
polygonal approximation for depth correction for rays. Qual-
ity and performance is also limited by the scene complexity.
More complex scenes are in need of a more detailed polyg-
onal approximation to reduce ghosting artifacts. Detailed
proxies, however, will have negative impact on the perfor-
mance of the ray-object intersections applied for each frag-
ment. As a consequence, only sparse polygonal proxies are
applied in practice, resulting in noticeable ghosting artifacts
(see Figure 11 d,e,f in [BBM∗01]). Additional discontinuity
artifacts appear, if no uniform sampling of the scene is given.
The combined RGBz images used in our approaches allow
per-pixel correction of rays to be performed independent of
the scene complexity. No additional polygonal approxima-
tion has to be stored with the light field samples. Very simple

c© The Eurographics Association and Blackwell Publishing 2008.

S. Todt & C. Rezk-Salama & A. Kolb & K.-D Kuhnert / GPU-Based Spherical Light Field Rendering with Per-Fragment Depth Correction

scenes, however, may be represented more efficiently using
a sparse geometric representation. In this case, the polygonal
proxy will result in less memory consumption compared to
our approaches. In the general case, our approaches achieve
better performance for arbitrary complex scenes at constant
memory costs.

Image based modeling techniques, such as displacement
maps [WWT∗03, WTS∗05] and relief textures [OBM00,
POJ05,ACB∗07] aim at the reconstruction of geometric de-
tail instead of the full visual appearance. They are used to re-
construct an object’s geometry (surface points and normals)
from a set of input images, while the illumination and shad-
ing is performed afterwards. These approaches are not ca-
pable of reconstructing complex view-dependent reflectance
and geometric details resulting from self-occlusion, con-
cavities and micro structures [BD06, OBM00]. In compar-
ison, our approach takes three adjacent depth maps into ac-
count to evaluate ray-object intersections. It precisely recon-
structs both geometry from small structures and large vari-
ations in depth as well as complex view-dependent surface
reflectance. It is not affected by self-occlusion or concavities
(See Figure 1, 9, and 11). Relief- and displacement maps do
not target the problem of synthesizing the visual appearance
of complex material properties and lighting environments at
all.

7. Conclusion

We have presented a novel GPU-based LFR technique based
on combined RGB and depth information. We have demon-
strated that this technique is capable of reconstructing light
fields with high accuracy at interactive frame rates.

Both the iterative refinement and the raycasting approach
presented in this article implement LFR techniques that pro-
vide full 6 DOF for virtual view point selection. Light field
reconstruction is based directly on the RGBz sample im-
ages stored with each sample camera. There is no need for
complex mesh processing at runtime nor for generation and
acquisition of additional polygonal object representations.
Thus the light field approach presented in this paper turns
out to be more efficient with respect to storage and render-
ing performance.

For future development our aim is to improve the ac-
quisition process for physical objects. 3D imaging devices
applying a different technique for per-pixel depth estima-
tion [YIM06] will be tested in future light field acquisition
set-ups. These devices provide per-pixel depth at higher res-
olutions. From experiments with a simulated 2D3D sensor
setup we know that these new sensors will lead to an im-
proved light field acquisition of physical objects.

Acknowledgements

We thank the members of the SFB-603 at the University of
Erlangen-Nuremberg for their support. This research project

is partially funded by grant KO-2960-6/1 from the German
Research Foundation (DFG).

References

[AB91] ADELSON E. H., BERGEN J. R.: The plenoptic function
and the elements of early vision. In Computational Models of
Visual Processing. MIT Press, 1991, pp. 3–20.

[ACB∗07] ANDUJAR, C., BOO, J., BRUNET, P., FAIREN, M.,
NAVAZO, I., VAZQUEZ, P., VINACUA, A.: Omni-directional
relief impostors. Computer Graphics Forum 26, 3 (2007), 553–
560.

[Adv] ADVANCED REALTIME TRACKING GMBH: Dtrack track-
ing system. http://www.ar-tracking.de, last visited 16.06.2008.

[BBM∗01] BUEHLER C., BOSSE M., MCMILLAN L.,
GORTLER S., COHEN M.: Unstructured lumigraph rendering.
In Proc. ACM SIGGRAPH (2001), pp. 425–432.

[BD06] BABOUD L., DÉCORET X.: Rendering geometry with
relief textures. In GI ’06: Proc. Graphics Interface 2006 (2006),
Canadian Information Processing Society, pp. 195–201.

[BN76] BLINN J., NEWELL M.: Texture and reflection in com-
puter generated images. ACM SIGGRAPH Comput. Graph. 10, 2
(1976), 266–266.

[CCST00] CHAI J.-X., CHAN S.-C., SHUM H.-Y., TONG X.:
Plenoptic sampling. In SIGGRAPH ’00: Proc. Conf. on
Computer graphics and interactive techniques (2000), ACM
Press/Addison-Wesley Publishing Co., pp. 307–318.

[CLF98] CAMAHORT E., LERIOS A., FUSSELL D.: Uniformly
Sampled Light Fields. Tech. rep., University of Texas at Austin,
1998.

[Gas83] GASSON P.: Geometry of Spatial Forms: Analysis, Syn-
thesis, Concept Formulation and Space Vision for CAD. Ellis
Horwood Series in Mathematics and its Applications. Ellis Hor-
wood, 1983.

[GGSC96] GORTLER S., GRZESZCZUK R., SZELISKI R., CO-
HEN M.: The lumigraph. In Proc. ACM SIGGRAPH (1996),
pp. 43–54.

[Gre86] GREENE N.: Environment mapping and other applica-
tions of world projections. IEEE Comput. Graph. Appl. 6, 11
(1986), 21–29.

[GYB04] GOKTURK S., YALCIN H., BAMJI C.: A time-of-flight
depth sensor - system description, issues and solutions. In Proc.
IEEE Comp. Vis. and Pat. Rec. Workshop (CVPRW’04) (2004),
p. 35.

[HS99] HEIDRICH W., SEIDEL H.-P.: Realistic, hardware-
accelerated shading and lighting. In Proc. ACM SIGGRAPH
(1999), pp. 171–178.

[INH99] IOURCHA K., NAYAK K., HONG Z.: System and
method for fixed-rate block-based image compression with in-
ferred pixel values. United States Patent 5,956,431, 1999. S3
Incorporated (Santa Clara, USA).

[IPL97] IHM I., PARK S., LEE R.: Rendering of spherical light
fields. In Proc. Pacific Graphics (1997), IEEE Computer Society,
p. 59.

[LH96] LEVOY M., HANRAHAN P.: Light field rendering. In
Proc. ACM SIGGRAPH (1996), pp. 31–42.

c© The Eurographics Association and Blackwell Publishing 2008.

S. Todt & C. Rezk-Salama & A. Kolb & K.-D Kuhnert / GPU-Based Spherical Light Field Rendering with Per-Fragment Depth Correction

[LK06] LINDNER M., KOLB A.: Lateral and Depth Calibration
of PMD-Distance Sensors. In Advances in Visual Computing
(2006), vol. 2, Springer, pp. 524–533.

[LK07] LINDNER M., KOLB A.: Data-Fusion of PMD-Based
Distance-Information and High-Resolution RGB-Images. In
Proc. of the Int. IEEE Symp. on Signals, Circuits & Systems
(ISSCS) (2007), vol. 1, pp. 121 – 124.

[LLK08] LINDNER M., LAMBERS M., KOLB A.: Data Fusion
and Edge-Enhanced Distance Refinement for 2D RGB and 3D
Range Images. Int. J. on Intell. Systems and Techn. and App.
(IJISTA), Issue on Dynamic 3D Imaging (2008).

[LPC∗00] LEVOY M., PULLI K., CURLESS B., RUSINKIEWICZ

S., KOLLER D., PEREIRA L., GINZTON M., ANDERSON S.,
DAVIS J., GINSBERG J., SHADE J., FULK D.: The digital
michelangelo project: 3d scanning of large statues. In SIG-
GRAPH ’00: Proc. Conf. on Computer graphics and interactive
techniques (2000), ACM Press/Addison-Wesley Publishing Co.,
pp. 131–144.

[MB95] MCMILLAN L., BISHOP G.: Head-tracked stereoscopic
display using image warping. In Proc. ACM SIGGRAPH (1995),
pp. 39–46.

[MH84] MILLER G., HOFFMAN C.: Illumination and reflection
maps: Simulated objects in simulated and real environments. In
ACM SIGGRAPH Course Notes for Advanced Computer Graph-
ics Animation (1984).

[OBL∗05] OGGIER T., BÜTTGEN B., LUSTENBERGER F.,
BECKER G., RÜEGG B., HODAC A.: SwissrangerT M SR3000
and first experiences based on miniaturized 3D-TOF cameras. In
Proc. Range Imaging Research Day (2005), pp. 97–108.

[OBM00] OLIVEIRA M. M., BISHOP G., MCALLISTER D.:
Relief texture mapping. In SIGGRAPH ’00: Proc. Conf. on
Computer graphics and interactive techniques (2000), ACM
Press/Addison-Wesley Publishing Co., pp. 359–368.

[PHW∗06] PRASAD T., HARTMANN K., WOLFGANG W.,
GHOBADI S., SLUITER A.: First steps in enhancing 3D vi-
sion technique using 2D/3D sensors. In Computer Vision Win-
ter Workshop 2006 (2006), Czech Society for Cybernetics and
Informatics, pp. 82–86.

[POJ05] POLICARPO F., OLIVEIRA M. M., JO A. L. D. C.:
Real-time relief mapping on arbitrary polygonal surfaces. In
I3D ’05: Proc. Symposium on Interactive 3D graphics and games
(2005), ACM, pp. 155–162.

[SCK07] SHUM H.-Y., CHAN S.-C., KANG S. B.: Image-Based
Rendering. Springer, 2007.

[SVSG01] SCHIRMACHER H., VOGELGSANG C., SEIDEL H.-
P., GREINER G.: Efficient free form light field rendering. In
VMV ’01: Proc. Vision Modeling and Visualization (2001), Aka
GmbH, pp. 249–256.

[TRSK05] TODT S. S., REZK-SALAMA C., KOLB A.: Real time
fusion of range and light field images. In ACM SIGGRAPH 2005
Posters (2005), p. 65.

[VG00] VOGELGSANG C., GREINER G.: Adaptive lumigraph
rendering with depth maps. Technical Report 3, IMMD 9, Uni-
versitaet Erlangen-Nuernberg (2000).

[VG01] VOGELGSANG C., GREINER G.: Ray-tracing in depth-
maps for image-based rendering. Technical Report, IMMD 9,
Universitaet Erlangen-Nuernberg (2001).

[WTS∗05] WANG J., TONG X., SNYDER J., CHEN Y., GUO B.,
SHUM H.-Y.: Capturing and rendering geometry details for btf-
mapped surfaces. The Visual Computer 21, 8-10 (2005), 559–
568.

[WWT∗03] WANG L., WANG X., TONG X., LIN S., HU S.,
GUO B., SHUM H.-Y.: View-dependent displacement mapping.
ACM Trans. Graph. 22, 3 (2003), 334–339.

[YIM06] YAHAV G., IDDAN G. J., MANDELBOUM D.: 3D
imaging camera for gaming application. Technical Report, 3DV
Systems Ltd. (2006).

c© The Eurographics Association and Blackwell Publishing 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

