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1. Introduction

Content-based 3D model retrieval (CB3ADMR) aims at augmenting the text-based search
with the ability to search 3D data collections by using examples, sketches, as well as
geometric and structural features. In recent years there is an increasing demand on such
tools as 3D graphics technology is becoming widely accessible and a large amount of 3D
contents is being created and shared.
Usually an algorithm for 3D model classification and retrieval requires: (1) an efficient
representation of the 3D data that is suited for search, and (2) a good similarity function in
order to measure distances between entities in the feature space. The first step involves
feature extraction, feature selection strategy to keep only the most relevant features, and a
method for encoding the features as real-valued vectors called shape descriptors. Shape
descriptors provide a numerical representation of the salient features of the data. They
should be an abstraction of the semantics of the shape and shape category. Many descriptors
have been proposed for content-based 3D model classification and retrieval but none of
them has achieved high-level performance on all shape classes. For instance:

¢  Global geometric features, which are easy to compute and compare, are poor in terms of
discrimination power since they are unable to capture the intra-class shape variability.
Alternatively, local features, such as spin images (Johnson, 1997) and shape contexts
(M.Kortgen et al,, 2003) are more effective for intraclass retrieval. However, their
extraction and comparison are expensive in terms of computation and storage
requirements. A key observation is that many of these features are redundant and only
a small subset of them, called representative feature set, is really discriminative. Thus,
there is a need for selecting automatically the optimal set of features. The selected set
should be specific to each class of shapes, and adapted to different types of user queries
and data classifications.

e  Geometry-based features, such as Light Fields (LFD) (Chen et al., 2003) and spherical
harmonic (Funkhouser et al., 2003) descriptors, represent shapes with their global
geometric characteristics. On the other hand, graph-based descriptors, such as Reeb-
graphs and skeleton representations (Hilaga et al., 2001; T.Tung & F.Schmitt, 2005),
encode the structural characteristics of the shape, and therefore are more suitable for
indexing articulated shapes. Consequently, there is a need for combining heterogeneous
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features in order to achieve best performance. By heterogeneous we mean features of
different types and scales.
From the machine learning point-of-view, efficient selection and combination of
heterogeneous features for classification and retrieval poses many challenges. The first issue
is how to choose among a large set of features, a subset that allows to achieve high-level
performance. The second issue is the feature normalization problem. Heterogenous features
are often of different scales. Therefore, incorporating them directly into the similarity
function will result in low retrieval performance as higher scale features will influence more
the similarity. This issue is related to the feature weighting strategy.
The goal of this chapter is to develop an effective 3D shape classification and retrieval
method that uses discriminative shape features automatically selected from a large set of
heterogeneous features. The construction of the representative set can be regarded as a
machine learning task. Particularly, supervised learning allows to capture the high-level
semantic concepts of the data using low-level geometric features. Our key idea is to use a
large set of local and global features, eventually not orthogonal, then use a supervised
learning algorithm to select only the most efficient ones. We experimented with AdaBoost
which provides a mean for feature selection and classifier combination. Boosting, like many
machine-learning methods, is entirely data-driven in the sense that the classifier it generates
is derived exclusively from the evidence present in the training data itself (Schapire, 2003).
Moreover, allowing redundancy and overlapping in the feature set has been proven to be
very efficient in recognition and classifications tasks than orthogonal features (Tieu & Viola,
2004). Specifically, we make the following contributions:
¢ An algorithm for learning the discriminative features of a class of shapes from a
training set. The algorithm allows also to quantify the discrimination ability of a shape
feature with respect to the underlying classification. Features of high discrimination
ability of each class of shapes will be used for processing unseen objects (classification
of the query, and retrieving the most similar shapes to the query).
¢ A method for matching shapes using only the most relevant features to each class of
shapes. This approach can be used with either a flat or a hierarchical classification of the
data resulting in a multi-scale organization of the feature space.
o The ability to use heterogeneous features for classification is a major deviation from
previous work.
The remainder of this paper is organized as follows: the next section reviews the related
work. Section 2.3 gives and overview of the proposed framework and outlines the main
contributions. In Section 3 we describe the type of 3D shape descriptors we will use in this
chapter. Section 4 details the developed algorithm for feature selection and combination in
the case of a binary classification (Section 4.1), and its generalization to a multi-class
problem (Section 4.2). In Section 5 we detail the query processing method for classification
and retrieval. Experimental results and evaluations are given in Section 6. Section 7
concludes the paper and outlines the major issues for future work.

2. Related work

3D shape analysis, classification and retrieval received significant attention in recent years.
In the following we review the most relevant techniques to our work. For more details, we
refer the reader to the recent surveys of the topic (Lew et al., 2006; Tangelder & Veltkamp,
2004; Iyer et al., 2005).
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2.1 Descriptors for 3D model retrieval

For efficient comparison and similarity estimation, 3D models can be represented with a set
of meaningful descriptors that encode the salient geometric and topological characteristics
of their shapes. The database objects are then ranked according to their distance to the
descriptors of the query model. These descriptors are either global, local, or structural.
Structural descriptors such as Reeb graphes (Hilaga et al., 2001; T.Tung & F.Schmitt, 2005)
aim at encoding the topological structure of the shape. They can be used for global matching
as well as partial matching (Biasotti et al., 2006).

Global descriptors describe an entire 3D shape with one single feature vector. In this family,
the Light Fields (LFD) (Chen et al., 2003) are reported to be the most effective (Shilane et al.,
2004). (Funkhouser et al., 2003) map a 3D shape to unit spheres and use spherical harmonics
(SH) to analyze the shape function. Spherical harmonics can achieve rotation invariance by
taking only the power spectrum of the harmonic representation, and therefore, discarding
the rotation dependent information (Kazhdan et al., 2003). (Novotni & Klein, 2003) use 3D
Zernike moments (ZD) as a natural extension of SH. (Laga et al., 2006) introduced flat
octahedron parameterization and spherical wavelet descriptors to eliminate the singularities
that appear in the two poles when using latitude-longitude parameterization, and therefore,
achieve a fully rotation invariant description of the 3D shapes. Recently, (Reuter et al., 2006)
introduced the notion of shape DNA as fingerprints for shape matching. The fingerprints
are computed from the spectra of the Laplace-Beltrami operators. They are invariant under
similarity transformations and are very efficient in matching 2D and 3D manifold shapes.
However, it is not clear how they can be extended to polygon soup models.

Global descriptors are very compact, easy to compute, and efficient for broad classification
of 3D shapes. However, they cannot capture the variability of the shapes and their subtle
details necessary for intra-class retrieval. Local feature-based methods can overcome these
limitations by computing a large set of features at different scales and locations on the 3D
model. Spin images (Johnson, 1997) and shape contexts (M.Kortgen et al., 2003) have been
used for shape retrieval as well as for matching and registering 3D scans. Local features are
very efficient to discriminate objects within the same class. However, similarity estimation
requires combinatorial comparison, making them not suitable for realtime applications such
as retrieval.

2.2 Feature selection and relevance feedback

3D model retrieval by matching low level features does not fully reflect the semantics of the
data. For instance, most of the previous techniques cannot distinguish between a flying bird
and a commercial airplane. This is commonly known as the semantic gap. Recent progress in
pattern recognition suggested the use of supervised learning to narrow the semantic gap.
This allows the automatic selection of salient features of a single 3D model within a class of
shapes, and also the use of the results of classification to improve the performance of
retrieval algorithms.

The basic learning approach is the Nearest Neighbor classifier. It has been used for the
classification of 3D protein databases (Ankerst et al., 1999), and also 3D engineering parts (Ip
et al., 2003).

Hou et al. (2005) introduced a semi-supervised semantic clustering method based on
Support Vector Machines (SVM) to organize 3D models semantically. The query model is
first labeled with some semantic concepts such that it can be assigned to a single cluster.
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Then the search is conducted only in the corresponding cluster. Supervised learning and
ground-truth data are used to learn the patterns of each semantic cluster off-line. Later,
(Hou & Ramani, 2006) combine both semantic concepts and visual content in a unified
framework using a probability-based classifier. They use a linear combination of several
classifiers, one per descriptor. The individual classifiers are trained in a supervised manner,
and output an estimate of the probability of data being classified to a specific class. The
output of the training stage is used to estimate the optimal weights of the combination
model. The retrieval is performed in two stages; first they begin by estimating the
conditional probability of each class of shapes given the query. Then they perform shape
search inside each candidate class. The new similarity measure is a unified distance that
integrates the probability estimation from the classifiers, a combination of classifiers learned
off-line, and a shape similarity distance. This is the closest work to ours. In this approach
features and type of classifiers are set manually. In our case, we aim at selecting
automatically the most salient features.

(Shilane & Funkhouser, 2006) investigated on how to select local descriptors from a query
shape that are most distinctive and therefore most relevant for retrieval. Their approach
uses supervised learning to predict the retrieval performance of each feature, and select only
a small set of the most effective ones to be used during the retrieval. (Funkhouser & Shilane,
2006) introduced priority-driven search for partial matching of 3D shapes. The algorithm
produces a ranked list of c-best target objects sorted by how well any subset of k features on
the query matches features on the target object. As reported by the authors, the timing
results is dominated by the number of features for each target object and the number of
scales for each feature. The algorithm we propose can deal with large set of features while
maintaining the processing time at interactive rates.

The approach most similar to our own is that of (Tieu and Viola, 2004) where they applied
the AdaBoost algorithm (Schapire, 2003) to online learning of the similarity of a given query
to the target objects in image retrieval. It has been recently extended to learn the intrinsic
features for boosting 3D face recognition (Xu et al., 2006). AdaBoost enables the use of a very
large set of features while keeping the processing time at the run-time very attractive. We
improve over this approach in two important ways. First we investigate the application of
AdaBoost to the general problem of 3D model retrieval. Second, we learn, off-line, the
optimal salient and discriminative set of features for each class of shapes with respect to
objects in the entire database. These improvements allow our 3D model retrieval algorithm
to achieve high-level performance in terms of retrieval efficiency and computation time.

2.3 Overview

Figure 1 gives an overview of our approach. At the training stage a strong classifier is
learned using AdaBoost. The classifier returns the likelihood that a given 3D model O
belongs to a class of shapes C. First a large set of features are extracted from every model in
the database. Then a set of binary classifiers are trained using AdaBoost. Each binary
classifier learns one class of shapes and its optimal set of salient features. Finally, the binary
classifiers are combined into one multi-class classifier. In our implementation we
experimented with the Light Field Descriptors (LFD) (Chen et al., 2003) (100 descriptors per-
shape), the Gaussian Euclidean Distance transform (GEDT) (Shilane et al, 2004) (32
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descriptors per-shape, each descriptor is computed on a concentric sphere of radius , 0 < r <
1), and a combination of the two descriptors which will be referred by LFD-GEDT.

At the run-time, given a query model Q, a ranked list of k-best matches is produced in a
two-stage process that involves classification and search. First, a large set of features are
computed from the query model Q, in the same manner as for the database models. Then in
the classification stage, a set of highly relevant classes to Q is found. Each binary classifier C;

decides wether the class C; is relevant to the query Q or not. In the retrieval stage, the
similarity between Q and the models in every relevant class C;is estimated and a ranked list
of the best matches is returned.

Training phase (Offline)
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Fig. 1. Overview of AdaBoost-based 3D model classification and retrieval. At the training
stage a strong classifier is learned using AdaBoost. The strong classifier is based on a
combination of the most discriminative features of the shape. At the run-time, a query is
first classified into a set of candidate classes, then the search for the best matches is
performed inside the candidate classes.

The key step in this process is the way we predict the saliency of each feature with respect to
a class of shapes in the training set. More formally, the saliency of a feature o with respect
to a class of shapes C is the ability of this feature to discriminate the shapes of class C from
the shapes of other classes in the database. Mathematically, given the binary classifier C
trained with the feature @, the saliency of o is directly related to the overall classification
error of C-; on the data set. However, none of the existing classifiers that are based on a
single feature can achieve zero classification error. Therefore none of the features is
sufficiently salient. AdaBoost provides a way for combining weak classifiers and shape
features, eventually of different types and saliency degrees, into a single strong classifier
with high classification performance. There are several advantages of this approach:
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Although a large set of features is extracted both at the training and online stages, only a
small subset of the features (between 10 to 50) is used during the similarity estimation. This
allows retrieval at interactive rates.

e  The algorithm selects automatically the representative set of features for each class of
shapes, and provides a mean for automatic combination of the selected features. This
has potential applications in shape classification and recognition.

o  The algorithm provides an automatic way to truncate the list of the k—best matches, i.e,
it provides a mean for saying wether the database contains models which are similar to
a given query or not.

e This approach allows to perform both inter-class and intra-class retrieval.
AdaBoostbased classifier allows to find the relevant classes to the query. Then, in a
second step, the search can be performed inside each relevant class using, eventually,
different types of descriptors.

For feature extraction, we use the Light Field descriptors (LFD) (Chen et al., 2003) and

Gaussian Euclidean Distance Transform (GEDT) (Shilane et al., 2004). However, a further

investigation is required to test the efficiency of other descriptors when boosted, which is

beyond the scope of this paper.

3. 3D shape descriptors

The process starts by computing a large set of features for each model in the training set,
which is the content of the database to search. There are many requirements that the
features should fulfill: (1) compactness, (2) computation speed, and (3) the ability to
discriminate between dissimilar shapes. However, in real applications it is hard to fulfill
these requirements when the goal is to achieve high retrieval accuracy. In fact, compact
features, which are easy to compute, are not discriminative enough to be used for high
accuracy retrieval. We propose to extract a large set of features following the same idea as in

(Tieu & Viola, 2004).

There are many shape descriptors that can be computed from a 3D model. A large set of

Spherical harmonics (Funkhouser & Shilane, 2006) and spherical waveletbased descriptors

(Laga et al., 2006) can be computed by moving the center of the sphere across different

locations on the shape’s surface or on a 3D grid. However, in the literature, it has been

proven that view-based descriptors outperform significantly the spherical descriptors. In
our implementation we considered two shape descriptors evaluated in the Princeton Shape

Benchmark: the Light Fields Descriptor (LFD), and the Gaussian Euclidean Distance

Transform Descriptor (GEDT). For the completeness purpose we give a brief overview of these

descriptors but the reader can find further details in the original paper (Shilane et al., 2004):

e Light Field Descriptor (LFD) (Chen et al., 2003): a view-based descriptor computed
from 100 images rendered from cameras positioned on the vertices of a regular
dodecahedron. Each image is encoded with 35 Zernike moments, and 10 Fourier
coefficients. In this paper we use our own implementation.

e Gaussian Euclidean Distance Transform (GEDT) (Shilane et al., 2004): a 3D function
whose values at each point is given by composition of a Gaussian with the Euclidean
Distance Transform of the surface. It is computed on 64x64x64 axial grid, translated
such as the origin is at the point (32, 32, 32), scaled by a factor of 32, and then
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represented by 32 spherical descriptors representing the intersection of the voxel grid
with concentric spherical shells. Values within each shell were scaled by the square-root
of the corresponding area and represented by their spherical harmonic coefficients up
to order 16.
To evaluate the performance of the feature selection algorithm we will consider also a
combination of the two descriptors, herein after referred by LFD-GEDT. Notice that these
two descriptors are encoding different properties of the shape and may have different
scales. Also, the set of features contains many redundancies: in the case of LFD for example,
two symmetric view points will have the same 2D projection, and close points in the
Euclidean sense will have their associated LFDs very similar. On one hand, this will increase
significantly the storage and computation time required for matching and retrieval.
However, on the other hand, it will guarantee that the feature set can capture the shape
variability. Therefore, we rely on the learning stage to select the salient ones that achieve
best classification and retrieval performance.

4. Supervised classification

The first task in our approach is to build a classifier C that decides wether a given 3D model
O belongs to a class of shapes C or not. The challenge is to define a feature space such that
3D shapes belonging to the same class are mapped into points close to each other in the new
feature space. Clusters in the new space correspond to classes of 3D models. There are many
feature spaces that have been proposed in the literature, but it has been proven that none of
them achieved best performance on all classes of shapes. We propose to follow a machine
learning approach where each classifier is obtained by the mean of training data.

4.1 Boosting the binary classification

A brute force approach for comparing a large set of features is computationally very
expensive, and in the best case, it requires M xdxN comparisons, where M is the number of
feature vectors used to describe each 3D model, d is the dimension of the feature space, and
N is the number of models in the database.

Previous works consider this problem from the dimensionality reduction point of view.
(Ohbuchi et al., 2007) provide an overview and performance evaluation of six linear and
non-linear dimensionality reduction techniques in the context of 3D model retrieval. They
demonstrated that non-linear techniques improve significantly the retrieval performance.
There have been also a lot of research in classifiers that have a good generalization
performance by maximizing the margin. Speed is the main advantage of boosting over other
classification algorithms such as Support Vector Machines (SVM) (Hou et al., 2005), and
non-linear dimensionality reduction techniques (Ohbuchi et al., 2007; Ohbuchi & Kobayashi,
2006). It can be also used as a feature selection algorithm, and provides a good theoretical
quantification of the upper bound of the error rate, therefore a good generalization
performance.

We use AdaBoost version of boosting. Every weak classifier is based on a single feature of a
3D shape (recall that we have computed a large set of features for each 3D model). The final
strong classifier, a weighted sum of weak classifiers, is based on the most discriminating
features weighted by their discriminant power. The algorithm is summarized in Algorithm 1.
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Algorithm 1: AdaBoost algorithm for binary classification

Input: Training set Sc = {(Vi,%:),i =1... N}, where V; = {¥'y,..., vk} isa
large set of K features computed from the 3D object O;, and
yi € {+1,—1} is the targeted classification of O;.
Output: The decision function fe, such that, fo(0O) > 0is O € C, and
fe(O)<0ifO ¢ C.

L. Initialize the sample weights: wy = {w!,i=1,..., N}

~—. otherwise.

0 { ,\%. if O; is a positive example
u.li = 4
N

where N and N~ are, respectively, the number of positive and negative
examples.

2. for t=1, ..., T do

(a) Train one weak classifier by, k = 1... K for each
feature vector vy, using the training set S¢
sampled according to the probability distribution
wy ={whi=1,...,N}

(b) Choose the hypothesis h; with the lowest classification error ¢;.
+ 1 Yo
{(‘.) Update the sample weights: m:. - Z-u:;'e_“’!”fo‘) Wi
where hi(O;) € {+1, —1} wether O; is correctly or incorrectly
classified by the weak hypothesis h,,
oy = 0.51og (%‘L) and Z; is a normalizing constant

so that w;y, is a distribution.
end

3. Final classifier: fo(0) = Y/, a:h:(0)

The sample weights w:_', i=1...,N,t=1,..., Tare very important; at step f, the weights of
the samples with high classification error at step t — 1 is increased, while the weights of
samples with smaller classification error is decreased (Algorithm 1). This will let the
classifier at step f focus on difficult samples which have not been correctly classified in the
previous step. The output of the strong classifier can be interpreted as the posterior
probability of a class C given the shape O and it is given by:

efc(0)

P(CI0) = oy oo

@)

The AdaBoost algorithm requires two parameters to tune: the type of weak classifier, and the
maximum number of iterations. The weak classifier is required to achieve better classification
than random. We experimented with the decision stumps and Least Mean Squares (LMS)
classifier for their simplicity. The parameter T can be set such that E[fc], the upper bound of the
classification error on the training data of the strong classifier fc, is less than a threshold 6. In
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our experiments we found that a value of T between 20 and 50 is sufficient to achieve an upper
bound of the classification error on the training set less than 1.0%.

Building the training set

We use as positive and negative examples for our training set the relevant and nonrelevant
models provided in the Princeton Shape Benchmark (PSB) classification. For example, to
build a strong classifier that learns the decision boundary between the biped human objects
and non-biped human objects, the positive examples are set to all models that belong to the
class biped human, while the negative examples are the remaining models in the database.
The PSB is provided with a train and test classifications. We use the train classification to
train our classification and the test classification to assess the performance of the
classification and retrieval.

4.2 Generalization to multiple classes

Two straightforward extension schemes are the one-vs-all classifier and the pairwise
classifier (Hao & Luo, 2006). The pairwise classifier uses L(L — 1)/2 binary classifiers where L
is the number of classes in the training set, to separate every two classes. A voting scheme at
the end is used to determine the correct classification. With the one-vs-all classifier, L binary
classifiers are trained, each of which is able to distinguish one class from all the others. The
pairwise classifier has a smaller area of confusion in the feature space compared to the one-
vs-all. However, the number of the required binary classifiers increases quadratically with
the number of classes in the database, while the one-vs-all increases linearly.

In our implementation we used a one-vs-all classifier for its simplicity. The output of the
training stage is a set of L binary classifiers, where L is the number of classes in the database.
Given a query model Q each binary classifier will return a vote for a certain class. We use
the positive votes to construct the set of candidate classes to which the query Q may belong.
Notice that when a new 3D model or a new class of models are added to the database, only
the classifier that corresponds to the model’s class that needs training.

It is important to outline that the algorithm is data-driven that is different classifiers are
obtained when given a different classification of the data. This allows to capture the
semantics of the data. Furthermore, existing 3D model collections are often provided with
multiple classifications. We plan in the future to extend the framework to handle
hierarchical classifications of the data.

Algorithm 2: One-vs-all extension of binary AdaBoost for multi-class problem.

Input: Training set S¢, = {(V},¢l),i=1...N},1=1,..., L, is the class

index and V! = {@'},..., 7%} is a large set of K features computed
from the 3D object O;, and y! € {+1,—1} is the targeted classification

of 0;.
Output: L binary decision functions f¢,, such that, fe, (O) > 0is C) is a
candidate class for the 3D model O, and fe,(O) < 0 otherwise.
for =1, ..., L do

Train one strong binary classifier C;, using Algorithm 1.
fe, (0) > 0if O € €}, and fe, (0) < 0 otherwise

end
Collect the binary classifiers C = {C;,[ =1,..., L}.
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4.3 Interpretation of the selected features

Boosting algorithm can be used as a feature selection and combination technique. Each
iteration learns a new weak classifier that is based on the most discriminative feature
according to the probability distribution of the training data. In the case of LFD, the selected
feature is the descriptor of a 2D projection of the 3D model. Therefore, by adopting a
Boosting approach we provide a tool for best view selection and view ordering based on
their ability to discriminate the shapes of a certain class from the other classes in the
database. Here we assume that the quality of a view is quantified as its discrimination
ability, i.e, the ability of the 2D view to discriminate the shape from other shapes that belong
to different classes.

The interpretation of the weak classifier may differ according to the type of descriptor used
for training. In the case of the GEDT, which computes the restriction of the shape to
concentric sphere, the selected feature can be seen as the radius of the concentric sphere on
which the most important features of the class lie. Furthermore, the weight of each weak
classifier can be considered as a measure of the saliency of the selected feature. Recall also
that AdaBoost is a stochastic approach. Therefore, different runs of the algorithm on the
same data will generate different sets of selected features. This is the case when the problem
has many solutions (local optima). At each run it finds a different solution but with similar
performance.

Figure 2 shows the top-best views selected with our algorithm. We can see that the
important features of each class of shapes are visible from the selected views. This shows
first that the selected views are consistent across all models of a same class, and the selected
views are visually plausible. Hence, boosting captures some high semantic features of the
data set. Best view selection has many applications in Computer Graphics and also online
browsing of digital media contents. The framework we proposed provides an easy method
to achieve this. We plan in the future to evaluate the quality of the selected views compared
to other algorithms (Lee et al., 2005; Yamauchi et al., 2006).

) 4 A

(a) First best view.

e A &

() Second best view,

Fig. 2. Boosted LFD descriptor allows for automatic best-view selection. The first and second
rows show respectively the first and second best views of objects belonging to different
classes of shapes. Automatic best view selection can be used for visual browsing of large
collections of 3D models.
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4.4 Combining heterogeneous features

One important property of the developed classification algorithm is its ability to combine
heterogeneous features in a straightforward manner; at each step of the training process, a
set of weak classifiers are trained on the features, one-per basic feature, and the one with
minimum training error is picked. Therefore, the features are considered independently.
Although this may ignore possible correlations between basic features, it allows however to
handle features of different types. We use this property to combine heterogeneous features
for efficient classification.

5. Query processing

At the run time, the user specifies a query Q and seeks either to classify it into one of the
shape classes (classification), or retrieve models in the database that are most similar to the
query (retrieval).

To classify the query Q, we compute a set of M feature vectors (LFD and GEDT descriptors
in our case) in the same manner as in the training stage (Section ??). Then we let each binary
classifier C;vote for a the class C, I =1, . . ., L. The candidate classes are determined by the

classifiers that have positive response to the query Q. We build the candidate classes set by
collecting the indices of classes whose classifiers gave positive response, and we order them
in descending order of the class posterior probabilities given in Equation 1.

We perform the retrieval in two steps combining classification and search: first we find the
candidate classes C; to which the query Q may belong. Then, we run a search operation
inside each candidate class by computing the similarity between the query Q and every
model in the candidate class C;. The 3D models of the candidate classes are sorted according
to their similarity to the query model. We return one ranked list per class. The ranked lists
are merged to form the k-best matches to the query. Here we use only the salient features of
the class C;, and the matching is performed only on a subset of the entire database. This
reduces significantly the computation time.

Search inside classes requires the use of a distance function which measures the distance
between the descriptor of the query and the descriptors of the class’s shapes. In our
implementation we used the Euclidean distance when working with a single descriptor
type, i.e.,, LFD or GEDT. When using heterogeneous features however(ex. LFD-GEDT), the
descriptor with larger scale will have higher impact on the Euclidean distance. To overcome
this limitation we modify slightly the distance measure as follows; first we compute the
Euclidean distance between the query model and the candidate models using each
descriptor independently. The final distance is then taken as the minimum over the
computed distances.

Examples of retrieval results are shown in Figures 4 and 5 with queries that are not part of
the database. In these examples the query models (first column) do not belong to the
database and have not been used during the training phase.

6. Results

To evaluate the performance of the proposed framework for 3D model classification and
retrieval, we we use the Princeton Shape Benchmark (PSB) Shilane et al. (2004) as a ground
truth, and the Shape Retrieval Evaluation Contest (SHREC2006) (Veltkamp et al., 2006)
query set and performance evaluation tools. The Princeton Shape Benchmark contains 1814
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polygon soup models, divided into the training set (907 models) and the test set (907
models). Every set contains four classification levels; the base train classification contains
129 classes while the coarsest classification (coarse3) contains two classes: man-made vs.
natural objects.

6.1 Classification performance

Figure 3 summarizes the classification performance of the developed AdaBoost classifier. In
this figure, the average classification performance is the ratio between the number of
correctly classified models of a class C to the total number of models in the class. We see
that, for the coarse3 classification (Figure 3-(d)), which contains only two classes with very
high shape variability within each class, the classification performance is at 65.3% for
natural shape and 73% for man-made models. This clearly proves that the training
procedure captures efficiently the semantic concepts of the shape classes and generalizes
relatively well to unseen samples.
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Fig. 3. Average classification performance of the Boosted-LFD for each class of shapes in the

test set of the Princeton Shape Benchmark. Class labeled by (-1) contains models that cannot
be classified to any of the other classes.

The performance on the other classification levels: base, coarsel and coarse2 are shown in
Figure 3-(a),(b) and (c). In this experiments we show only the classification results on the
classes of the test set that exist in the training set. On the base classification (Figure 3-(a)), we
can see that the classifiers achieve 100% classification performance on space ship entreprise
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like, dining chair and sea vessel. The worst performance is on the plant tree models. This is
probably because of the high shape variability within the class , which cannot be captured
by the LFD descriptors.

6.2 Retrieval performance

To evaluate the retrieval performance we train our classifier with the entire base
classification (train and test sets) of the PSB. This classification contains 160 shape categories
with varying number of samples in each class. For testing, we use the 30 queries of the
SHREC2006. Each query contains a set of highly relevant and relevant models in the
database. Recall that these queries do not belong the database, and therefore, have not been
used during the training of the AdaBoost classifiers. We measure the retrieval performance
using the SHREC2006 tools and compare to the other descriptors used in contest.

Tables 1, 2, and 3 summarize the performance of our descriptors on the mean average
precision, mean first tier, mean second tier, dynamic average recall, mean normalized
cumulative gain (MNCG), and the mean normalized discounted cumulative gain (MNDCG)
measures. We tested the GEDT and LFD descriptors without boosting, the Boosted-GEDT
and Boosted-LFD (i.e., the GEDT and LFD descriptors after boosting), and combination of
LFD and GEDT denoted by Boosted-LFD-GEDT.

We can see first that the boosted versions of the LFD and GEDT algorithms perform much
better than before boosting. This confirms that learning the salient features of the data by the
mean of supervised learning improves the performance of the descriptors as it captures the
semantic structure of the database to query. Although we tested only the LFD and GEDT,
our approach is more general and it can be applied to other types of descriptors.

The second observation is that the Boosted-LFD-GEDT descriptor outperforms the Boosted-
LFD and Boosted-GEDT in most of the measures. This shows that combining different types
of features precision as well as the the mean dynamic average recall of the retrieval
algorithm. In our implementation we used a simple similarity measure for intra-class search
for the combined descriptor. We believe that there is a window for improvement by
investigating more elaborated similarity measures.

Finally, Figures 4 and 5 some retrieval results of the Boosted-LFD and Boosted-GEDT
descriptors. We use the SHREC2006 queries (first column) and we show the top-10 best
matches. Notice that for some queries (the dolphine for the Boosted-LFD and the horse for
the Boosted-GEDT), the algorithm returned less then 10 results. This is an important
property of our algorithm: it is able to say whether a model is relevant to the query or not
and therefore discard irrelevant models from the retrieval list.

7. Conclusion

We proposed in this chapter a new framework for 3D model retrieval based on an off-line
learning of the most salient features of the shapes. By using a boosting approach we are able
to use a large set of features, which can be heterogeneous, in order to capture the high-level
semantic concepts of different shape classes. The retrieval process is a combination of
classification and intra-class search. The experimental results showed that (1) the boosted
descriptors outperform their non-boosted counter part, and (2) an efficient combination of
descriptors of different types improves significantly the retrieval performance.



318 Machine Learning

Methods Value Participant Value
1  Boosted-LFD-GEDT  0.64 1 Boosted-LFD-GEDT 0.74
2 Boosted-GEDT 0.59 2 Boosted-LFD 0.67
3 Boosted-LFD 0.55 3  Boosted-GEDT 0.60
4 Shilane et al. (R3) 0.53 4 Shilane et al. (R3) 0.52
5  Zaharia et al. (R1) 0.50 5 Zaharia et al. (R1) 0.51
6 Makadia et al. (R2) 0.48 6  Shilane et al. (R2) 0.49
7  Shilane et al. (R2) 0.48 7 Makadia et al. (R2)  0.43
8 Makadia et al. (R1) 047 8 Makadia et al. (R1)  0.42
9 GEDT 0.35 9 GEDT 0.28
10 LFD 0.28 10 LFD 0.22

(a) Mean Average Precision(highly relevant).  (b) Mean Average Precision (Relevant)

Methods Value Participant Value
1 Boosted-LFD-GEDT  61.9% 1 Boosted-LFD 64.89%
2 Boosted-GEDT 56.2% 2 Boosted-LFD-GEDT  64.46%
3  Boosted-LFD 51.95% 3  Boosted-GEDT 56.02%
4  Makadia et al. (R2)  44.77% 4 Makadia et al. (R2)  40.55%
5 Makadia et al. (R1) 43.77% 5 Makadia et al. (R1)  38.78%
6 Daras et al. (R1) 42.74% 6  Shilane et al. (R3) 37.40%
7  Papadakis et al.(R1) 41.85% 7 Papadakis et al.(R1) 37.40%
8  Shilane et al. (R3) 40.86% 8  Shilane et al. (R2) 37.30%
9 GEDT 34.06% 9 GEDT 27.68%
10 LFD 24.51% 10 LFD 21.63%
(¢) Mean First Tier (Highly relevant). (d) Mean First Tier (Relevant)
Participant Value Participant Value

1 Boosted-LFD-GEDT  57.84% 1 Boosted-LFD 64.50%
2 Boosted-GEDT 54.75% 2  Boosted-LFD-GEDT  61.58%
3 Boosted-LFD 52.39% 3 Boosted-GEDT 55.70%
4 Makadia et al. (R2)  27.86% 4  Shilane et al. (R2) 26.58%
5 Makadia et al. (R1)  26.62% 5  Shilane et al. (R3) 26.26%
6 Daras et al. (R1) 25.66% 6 Makadia et al. (R2)  25.22%
7  Shilane et al. (R3) 25.63% 7  Zaharia et al. (R1) 24.63%
8 Papadakis et al.(R1) 25.61% 8 Papadakis et al.(R1) 24.24%
9 GEDT 20.57% 9 GEDT 18.21%
10 LFD 15.80% 10 LFD 14.32%
(e) Mean Second Tier (Highly Relevant) (f) Mean Second Tier (Relevant)

Table 1. Mean Average precision, Mean First Tier and Second Tier performance.

As future work, there are many avenues for improvements. First, most of existing 3D model
repositories are often provided with a hierarchical classification. We plan to extend our
framework to handle such structure of the data as well as fuzzy classification, since in
nature a same model may belong to several categories simultaneously. Also we plan to



3D Shape Classification and Retrieval Using Heterogenous Features and Supervised Learning 319

investigate on the meaning of the selected feature space for each shape class and extend the
framework to the problem of building creative prototypes of 3D models. The prototype
should capture the high-level semantic features of the class.
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Methods Value Methods Value
1 Boosted-LFD-GEDT  0.66 1 Daras et al. (R1) 0.68
2 Boosted-GEDT 0.58 2 Boosted-LFD-GEDT 0.68
3  Boosted-LFD 0.57 3 Makadia et al. (R1)  0.68
4 Makadia et al. (R2)  0.55 4 Shilane et al. (R3) 0.68
5 Makadia et al. (R1)  0.54 5 Makadia et al. (R2)  0.66
6 Daras et al. (R1) 0.52 6 Chaouch et al. (R1)  0.65
7  Chaouch et al. (R1)  0.50 7  Boosted-LFD 0.62
8 Papadakis et al.(R1)  0.49 8 Boosted-GEDT 0.62
9 GEDT 0.41 9 GEDT 0.60
10 LFD 0.32 10 LFD 0.48
(a) Mean Dynamic Average Recall (b) MNCG @5
Methods Value Method Value
1  Boosted-LFD-GEDT  0.67 1  Boosted-LFD-GEDT  0.59
2 Makadia et al. (R2) 0.61 2 Makadia et al. (R2)  0.55
3 Makadia et al. (R1)  0.60 3 Makadia et al. (R1) 0.52
4 Daras et al. (R1) 0.60 4 Daras et al. (R1) 0.52
5 Pepadakis et al.(R1) 0.59 5  Shilane et al. (R3) 0.52
6 Chaouch et al. (R1)  0.58 6 Papadakis et al.(R1)  0.50
7  Boosted-LFD 0.57 7  Boosted-LFD 0.45
8  Boosted-GEDT 0.56 8 GEDT 0.39
9 GEDT 0.50 9 Boosted-GEDT 0.38
10 LFD 0.40 10 LFD 0.32
(c) MNCG @10 (d) MNCG @25
Method Value Method Value
1 Makadia et al. (R2) 0.55 1 Makadia et al. (R2)  0.59
2 Shilane et al. (R3)  0.53 2 Papadakis et al.(R1)  0.58
3  Makadia et al. (R1)  0.53 3  Makadia et al. (R1) 0.56
4 Daras et al. (R1) 0.52 4 Daras et al. (R1) 0.56
5 Papadakis et al. (R1) 0.51 5  Shilane et al. (R2) 0.55
6 GEDT 0.40 6 GEDT 0.43
8 Boosted-LFD-GEDT  0.39 7  Boosted-GEDT 0.41
7  Boosted-GEDT 0.34 8 Boosted-LFD-GEDT  0.34
9 LFD 0.31 9 LFD 0.33
10 Boosted-LFD 0.22 10  Boosted-LFD 0.24
(¢) MNCG@50 (f) MNCG@100

Table 2. Dynamic Average Recall and, Mean Normalized Cumulated Gain (MNCG)
performance.
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Methods Value Methods Value
1 Daras et al. (R1) 0.70 1  Boosted-LFD-GEDT  0.68
2 Makadia et al. (R1)  0.69 2 Daras et al. (R1) 0.64
3 Shilane et al. (R3) 0.69 3 Makadia et al. (R1) 0.64
4  Boosted-LFD-GEDT  0.68 4  Makadia et al. (R2)  0.64
5 Chaouch et al. (R1)  0.68 5 Chaouch et al. (R1) 0.62
6  Makadia et al. (R2)  0.68 6 Pepadakis et al.(R1) 0.62
7  Boosted-LFD 0.63 7  Boosted-LFD 0.59
8 Boosted-GEDT 0.63 8 Boosted-GEDT 0.58
9 GEDT 0.61 9 GEDT 0.54
10 LFD 0.52 10 LFD 0.45
(a) MNDCG@5 (b) MNDCG@10
Method Value Method Value
1  Boosted-LFD-GEDT  0.60 1  Makadia et al. (R2) 0.58
2  Makadia et al. (R2)  0.59 2 Makadia et al. (R1) 0.57
3 Daras et al. (R1) 0.58 3 Daras et al. (R1) 0.56
4 Makadia et al. (R1)  0.57 4 Shilane et al. (R3) 0.56
5  Shilane et al. (R3) 0.56 5 Papadakis et al. (R1) 0.54
6 Papadakis et al.(R1) 0.55 6 GEDT 0.45
7  Boosted-LFD 0.46 7 Boosted-LFD-GEDT  0.41
8 GEDT 0.45 8 LFD 0.37
9  Boosted-GEDT 0.41 9 Boosted-GEDT 0.33
10 LFD 0.38 10 Boosted-LFD 0.21
(¢) MNDCG@25 (d) MNDCG@50
Method Value

1 Makadia et al. (R2)  0.59

2 Makadia et al. (R1)  0.57

3 Daras et al. (R1) 0.57

4  Papadakis et al.(R1)  0.56

5  Shilane et al. (R3) 0.55

6 GEDT 0.45

7 LFD 0.37

8 Boosted-GEDT 0.36

9 Boosted-LFD-GEDT  0.36

10 Boosted-LFD 0.22

(e) MNDCG@100

Table 3. Mean Normalized Discounted Cumulated Gain (MNDCG) performance.
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Fig. 4. Some retrieval results using the Boosted-LFD Descriptors. The models in the first

column are used as query models2.2The 10-best matches are displayed.
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Fig. 5. Retrieval results using the Boosted-GEDT Descriptors. The models in the first column

are used as query models. T2h3e 10-best matches are displayed.
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