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Figure 1: The first two best views selected using our algorithm.

Abstract

We introduce a new framework for the automatic selection of the best views of 3D models based on the assumption that models belonging to the same class of
shapes share the same salient features. The main issue is learning these features. We propose an algorithm for computing these features and their corresponding saliency
value. At the learning stage, a large set of features are computed from every model and a boosting algorithm is applied to learn the classification function in the feature
space. AdaBoost learns a classifier that relies on a small subset of the features with the mean of weak classifiers, and provides an efficient way for feature selection
and combination. Moreover it assigns weights to the selected features which we interpret as a measure of the feature saliency within the class. Our experiments using
the LightField (LFD) descriptors and the Princeton Shape Benchmark show the suitability of the approach to 3D shape classification and best-view selection for online
visual browsing of 3D data collections.
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1 Introduction

In recent years, with the significant advances in 3D acquisition
and modeling, 3D model collections have gained significant impor-
tance. They provide a mean for knowledge representation in a wide
range of applications including Computer-Aided Design (CAD),
molecular biology, medicine, digital archiving, and entertainment.
However, extraction and reuse of this knowledge depends on the
availability of efficient tools for browsing the large collections of
3D data available on the web. In this context, search engines are
getting popular. For 3D models, the user specifies a query and the
system returns a list of 3D models that match the query. However,
in many situations, the user would want to get a broad overview of
what is in the database or a broad overview of the search results
in order to refine the search query. In this case, the stored models
should be presented to the user in the form of few representative
views, called also best or salient 2D views. Each one should carry
the information that allows to understand the structure of the shape
and to distinguish it from other shape classes.

The saliency of a 2D view of a 3D object can be defined as a func-
tion of some view-dependent shape properties. The salient view is
then the view that maximizes this function [Polonsky et al. 2005].
View entropy, for example, assumes that the best view of an object
is the view that carries the largest amount of information about that
object independently of the other objects in the database. In this
paper, we define the best views of a 3D object as the views that al-
low to distinguish the object from the other objects in the database.
This definition is particularly suited for visual exploration and au-
tomatic summarization of the contents of a database. Our solution
is based on the assumption that 3D models belonging to the same
class of shapes share the same salient features. Therefore, finding
the best views of a 3D model, that we callrepresentative feature set,
can be regarded as a feature selection task. Particularly, supervised
learning of shape features allows to capture the high-level semantic
concepts of the data using low-level geometric features.

This paper extends over the approach proposed in [Laga and Naka-
jima 2007] which is based on boosting. Our key idea is to use a
large set of local and global features that describe the shape when
viewed from different viewing angles, then use AdaBoost [Schapire
2003] to select only the most efficient ones. Boosting as a mean for
classifier combination provides an efficient way for feature selec-
tion and combination. It has been efficiently used for online learn-
ing of the query features for relevance feedback in image retrieval
[Tieu and Viola 2004; Amores et al. 2004]. Boosting, like many
machine-learning methods, is entirely data-driven in the sense that
the classifier it generates is derived exclusively from the evidence
present in the training data itself [Schapire 2003]. Moreover, allow-
ing redundancy and overlapping in the feature set has been proven
to be more efficient in recognition and classification tasks than or-
thogonal features [Tieu and Viola 2004].

The problem of defining representative 2D views of 3D models has
received increasing attention in recent years. Early works study the
similarity and stability relationship between different 2D views of a
3D model [Denton et al. 2004; Yamauchi et al. 2006]. The common
approach is to:

1. extract a set of features from the 3D model,

2. quantify the importance of each feature,

3. define the importance of a view as a function of the impor-
tance of the features that are visible from a given viewpoint,

4. then select the set of views that maximizes this quantity.

The mesh saliency [Lee et al. 2005] and the salient multi-view rep-
resentation [Yamauchi et al. 2006] are based on this idea. These
solutions consider isolated 3D models out of context. However, in
order to capture the high-level semantic concepts of the 3D shapes,
which are very important for visualization and exploration, we con-
sider the problem in the context of 3D shape repositories where the
data are clustered into semantic classes. The models within each
class share common semantic concepts. Best-view selection and
view saliency quantification can then be formulated as a problem
of learning these features by the mean of feature selection and fea-
ture importance measurement. This is a well studied problem in the
pattern recognition and machine learning community.

The basic learning approach is the Nearest Neighbor classifica-
tion. It has been used for the classification of 3D protein databases
[Ankerst et al. 1999], and 3D engineering parts [Ip et al. 2003].
Hou et al. [Hou et al. 2005] introduced a semi-supervised seman-
tic clustering method based on Support Vector Machines (SVM) to
organize 3D models semantically. SVMs have been widely used
in statistical learning. The given query model is first labeled with
some semantic concepts and automatically assigned to a single clus-
ter. Then the search is performed only inside the corresponding
cluster. Supervised learning and ground-truth data are used to learn
the patterns of each semantic cluster off-line. Later, they extend the
idea [Hou and Ramani 2006] to combine both semantic concepts
and visual content in a unified framework using probability-based
classifier. They use a linear combination of several classifiers, one
classifier per shape descriptor. The individual classifiers, which are
trained in a supervised manner, output an estimate of the probabil-
ity of data being classified to a specific class. The output of the
training stage is also used to estimate the optimal weights of the
combination model. In this approach features to use and type of
classifiers are defined manually. The method we propose provides
a framework for automatic feature selection and weight assignment.

The closest work to ours is of Shilane and Funkhouser [Shilane and
Funkhouser e 07]. Their approach uses also supervised learning to
predict the retrieval performance of each feature, and select only a
set of the most effective descriptors to be used during the retrieval.
Given that the descriptors are computed locally, the approach al-
lows to select the most important regions of the surface of a 3D
shape. The algorithm we propose relies on a large set of features
and the computation time at the run-time is not affected by the num-
ber of features. Specifically, we make the following contributions:

1. an algorithm for learning the discriminative 2D views of a
class of shapes from a training set,

2. a measure for the discrimination ability of 2D views with re-
spect to the semantic classes defined by the database classifi-
cation,

3. a method for selecting automatically the best views of 3D
models,

4. the selected views are consistent for all objects of the same
class, and are suitable for multi-scale organization of the
shape space based on the hierarchical classification of the
training set.

Best view selection has many applications in Computer Graphics
and online browsing of digital media contents. We are particularly
motivated by the automatic generation of thumbnails of 3D models,
automatic summarization of the database contents, and 2D-based
3D model search.

This paper is organized as follows; Section 2 gives and overview of
the proposed framework. Section 3 details the feature selection and
combination algorithm for binary classification problems. The gen-
eralization to a multi-class problem, and to unseen 3D models are
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presented in Section 4.1 and 4.2. Experimental results are provided
in Section 5. Section 6 concludes the paper.

2 Overview

Our approach performs as follows; During the training stage a
strong classifier is learned using AdaBoost. The classifier returns
the likelihood that a given 3D modelO belongs to a class of shapes
C. First a large set of features are extracted. In our implementa-
tion we used 100 Light Field Descriptors (LFD) [Chen et al. 2003].
Each descriptor encodes the properties of a 2D projection of a 3D
shape. Then a set of binary classifiers are trained using AdaBoost.
Each binary classifier learns one class of shapes and its optimal set
of salient views. Finally, the binary classifiers are combined into
one multi-class classifier.

At the run-time, given the user-specified 3D modelQ, a ranked list
of k−best views is produced in a two-stage process. First, a large
set of features are computed from the query modelQ, in the same
manner as for the database models. Then in the first stage, a set
of highly relevant classes toQ is found. Each binary classifierCi
decides wether the classCi is relevant to the queryQ or not. The
class with highest posterior probabilityCQ = argmaxCP(C|Q) is
selected. In the final stage, the best views of the query modelQ are
the selected views of the class of shapesCQ.

The key step is the way we predict the saliency of each feature with
respect to a class of shapes in the training set. More formally, the
saliency of a feature−→v with respect to a class of shapesC is the
ability of this feature to discriminate the shapes of classC from the
shapes of other classes in the database. Mathematically, given the
binary classifierC−→v trained with the feature−→v , the saliency of−→v
is directly related to the overall classification error ofC−→v on the
data set. However, none of the existing classifiers that are based
on a single feature can achieve zero classification error. Therefore
none of the features is sufficiently salient. AdaBoost provides a way
for combining weak classifiers and shape features with different
saliency degrees, into a single strong classifier with high classifica-
tion performance. There are several advantages of this approach;
Although a large set of features is extracted both at the training and
online stages, only a small subset of the features (between 10 to
50) is used during the similarity estimation. This allows retrieval at
interactive rates.

Finally, the algorithm selects automatically the representative set of
features for each class of shapes, and provides a mean for automatic
combination of the selected features. In our implementation, we use
the Light Field descriptors (LFD) which has been proven to be the
most effective on the Princeton Shape Benchmark (PSB) [Shilane
et al. 2004]. However, a further investigation is required to test the
efficiency of other 2D view descriptors when boosted.

3 Supervised classification - the binary case

The first task in our approach is to build a classifierC that decides
wether a given 3D modelO belongs to a class of shapesC or not.
The challenge is to define a feature space such that 3D shapes be-
longing to the same class are mapped into points close to each other
in the new feature space. Clusters in this feature space will corre-
spond to classes of 3D models. There are many feature spaces that
have been proposed in the literature, but it has been proven that
none of them achieved best performance on all classes. We propose

to follow a machine learning approach where each classifier is ob-
tained by the mean of training data. In the following we explain in
detail each step in the case of a binary classification problem.

3.1 Feature extraction

The process starts by computing a large set of features for each
model in the training set, the contents of the database to search.
There are many requirements that the features should fulfill: (1)
compactness, (2) computation speed, and (3) the ability to discrim-
inate between dissimilar shapes. However, in real applications it is
hard to fulfill these requirements when the goal is to achieve high
retrieval accuracy. In fact, compact features, which are easy to com-
pute, are not discriminative enough to be used for high accuracy
retrieval. We propose to extract a large set of features following the
same idea as in [Tieu and Viola 2004].

There are many shape descriptors that can be computed from a 3D
model. A large set of spherical harmonics [Funkhouser and Shilane
2006] and spherical wavelet-based descriptors [Laga et al. 2006]
can be computed by moving the center of the sphere across differ-
ent locations on the shape’s surface or on a 3D grid. However, in
the literature, it has been proven that view-based descriptors out-
perform significantly the spherical descriptors. We propose to use
the Light field descriptors (LFD).

First, all the models in the database are translated to their center of
mass, scaled to fit inside a unit sphere, and normalized for rotation
using continuous PCA [Vranic 2003]. Then we compute for each
3D model a set of 100 Light Field descriptors in the same manner
as in [Chen et al. 2003]. Recall that the length of one light field de-
scriptor is 45. Therefore, every 3D model is represented with a set
of 100 vectors of dimension 45. Each LFD provides a description
of the shape when viewed from the corresponding projection point.

3.2 Boosting the binary classification

A brute force approach for comparing a large set of features is com-
putationally very expensive. In the best case, it requiresM×d×N
comparisons, whereM is the number of feature vectors used to de-
scribe a 3D model,d is the dimension of the feature space, andN
is the number of models in the database.

Previous work consider this problem from the dimensionality re-
duction point of view. Ohbuchi et al. [Ohbuchi et al. 2007] provides
an overview and performance evaluation of six linear and non-linear
dimensionality reduction techniques in the context of 3D model re-
trieval and demonstrated that non-linear techniques improve signif-
icantly the retrieval performance. There have been also a lot of
research in classifiers that have a good generalization performance
by maximizing the margin. The major advantage of boosting over
other classification algorithms such as Support Vector Machines
(SVM) [Hou et al. 2005], and non-linear dimensionality reduction
techniques [Ohbuchi et al. 2007; Ohbuchi and Kobayashi 2006] is
its speediness. Moreover, it provides a good theoretical and practi-
cal quantification of the upper bound of the error rate, therefore a
good generalization performance. Furthermore, it can be used as a
feature selection algorithm.

We use AdaBoost version of boosting. Every weak classifier is
based on a single feature of a 3D shape (recall that we have com-
puted a large set of features for each 3D model). The final strong
classifier, a weighted sum of weak classifiers, is based on the most
discriminant features weighted by their discriminant power. The
algorithm is summarized in Algorithm 1. The output of the strong
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classifier can be interpreted as the posterior probability of a classC
given the shapeO:

P(C|O) =
efC(O)

efC(O) +e− fC(O)
(1)

where fC(O) is the weighted average of the base classifiers pro-
duced by AdaBoost for the 3D objectO.

Algorithm 1: AdaBoost algorithm for binary classification

Input:
• Training setSC = {(Vi ,yi), i = 1. . .N}, where

Vi = {−→v 1, . . . ,
−→v K} a large set ofK features computed

from the 3D objectOi ,
yi ∈ {+1,−1} the desired classification ofOi .

Output:
• The decision functionfC, such that,fC(O) > 0 is O∈C,

and fC(O) < 0 if O /∈C.
1. Initialize the sample weights:w0,i , i = 1, . . . ,N:

wi =

{ 1
N+ , if Oi is a positive example
1

N− ,otherwise.

whereN+ andN− are, respectively,the number of positive
and negative examples.

2. for t=1, . . . , T do
(a) Train one weak classifierhk,k = 1. . .K for each

feature vectorvk,
(b) Choose the hypothesisht with the lowest

classification errorεt .
(c) Update the sample weights:

wt+1,i =
1
Zt

wt,ie
−αt ht (Oi)·yi whereht(Oi) = +1,−1

wetherOi is correctly or incorrectly classified by the

weak hypothesisht , αt = 0.5log
(

1−εt
εt

)

, andZt is a

normalizing constant so thatwt+1 is a distribution.
end

3. Final classifier:fC(O) =
T

∑
t=1

αtht(O).

AdaBoost requires only two parameters to tune; the type of weak
classifier, and the maximum number of iterations, i.e., the num-
ber of weak classifiers. The classification performance of the weak
classifier is only required to be slightly better than random. We used
the LMS classifier bacause of its simplicity. The parameterT can
be set such thatE[ fC], the upper bound of the classification error on
the training data of the strong classifierfC, is less than a threshold
θ. In our experiments we found that a value ofT between 20 and
50 is sufficient to achieve an upper bound of the classification error
on the training set less than 1.0%.

For training the classifiers we use as positive and negative exam-
ples the relevant and non-relevant models provided in the Prince-
ton Shape Benchmark (PSB) classification. For example, to build a
strong classifier that learns the decision boundary between thebiped
humanobjects andnon-biped humanobjects, the positive examples
are set to all models that belong to the classbiped human, while the
negative examples are the remaining models in the database. The
PSB is provided with a train and test classifications. We use the
train classification to train our classification and the test classifica-
tion to assess the performance of the classification and retrieval.

3.3 Interpretation of the weak classifiers

Boosting algorithm can be used as a feature selection and combi-
nation technique. Each iteration learns a new weak classifier that
is based on the most discriminative feature according to the prob-
ability distribution of the training data. In the case of LFD, the
selected feature is the descriptor of a 2D projection of a 3D model.
Therefore, by adopting a Boosting approach we provide a tool for
best view selection and view ordering based on their ability to dis-
criminate the shapes of a certain class from the other classes in the
database. Recall that here we assume that the quality of a view is
quantified as its discrimination ability. Furthermore, the weight of
each weak classifier can be considered as a measure of the saliency
of the selected feature.

4 Generalization

4.1 Generalization to multiple classes

Two straightforward extensions schemes are the one-vs-all classi-
fier and the pairwise classifier [Hao and Luo 2006]. The pairwise
classifier usesL(L−1)/2 binary classifiers, whereL is the number
of classes in the training set, to separate each class from the other
classes. A voting scheme at the end is used to determine the correct
classification [Hao and Luo 2006]. With the one-vs-all classifier,L
AdaBoost-based binary classifiers are trained, each of which is able
to distinguish one class from all the others. The pairwise classifier
has a smaller area of confusion in the feature space compared to
the one-vs-all. In our implementation we used a one-vs-all classi-
fier for its simplicity. The details of the algorithm are sketched in
Algorithm 2.

The output of the training stage is a set ofL binary classifiers, where
L is the number of classes in the database. Given a query model
Q each binary classifier will return a vote for a certain class. We
use the positive votes to construct the set of candidate classes to
which the queryQ may belong. It is important to notice that when
a new 3D model or a new class of models are added to the database,
only the classifier that corresponds to the model’s class that needs
training.

Algorithm 2: One-vs-all extension of binary AdaBoost for
multi-class problem.

Input:
• Training setSCl = {(V l

i ,yl
i ), i = 1. . .N}, l = 1, . . . ,L, where

V l
i = {−→v l

1, . . . ,
−→v l

K} a large set ofK features computed
from the 3D objectOi ,
yl

i ∈ {+1,−1} the desired classification ofOi .
Output:

• L binary decision functionsfCl , such that,fCl (O) > 0 isCl is
a candidate class for the 3D modelO,
and fCl (O) < 0 otherwise.

for l=1, . . . , L do
1. Train one strong binary classifierCl , using Algorithm 1.

fCl (O) > 0 if O∈Cl , and negative otherwise.

end
Final classifier:C = {Cl , l = 1, . . . ,L}.
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4.2 Generalization to unseen 3D models

At the run time, the user specifies a 3D model, that we call a query
Q, and seeks to find its salient 2D views. This is performed in two
steps; first we seek to find the candidate classes to which the query
may belong. Then, the best views of the query model are those
selected for its best candidate class.

To classify the queryQ, we compute a set ofM feature vectors
(LFD in our case) in the same manner as in the training stage (Sec-
tion 3.1). Then we let each binary classifierCl vote for a the class
Cl , l = 1, . . . ,L. The candidate classes are determined by the classi-
fiers that have positive response to the queryQ. We order them in
descending order of the class posterior probabilities given in Equa-
tion 1. Next, we select the class with the highest response and as-
sign to the 3D model the best views that have been learned for this
class, i.e, the salient features of the classCi . Notice that the clas-
sification is performed only on a subset of the large set of features.
This has significant impact on the computation time.

5 Experimental results

To evaluate the performance of the proposed approach, we use the
Princeton Shape Benchmark (PSB) [Shilane and Funkhouser 2006]
training and test sets, and the Shape Retrieval Evaluation Contest
(SHREC2006) [Veltkamp et al. 2006] query set and performance
evaluation tools. The Princeton Shape Benchmark contains 1814
polygon soup models, divided into the training set (907 models)
and the test set (907 models). Every set contains four classification
levels; the base train classification contains 129 classes while the
coarsest classification (coarse3) contains two classes: man-made
and natural objects. We use the base train classification to train our
classifiers and the test set to assess the classification performance.

Figure 1 shows the first two best views of five different models.
This figure shows clearly that the important features of the models
are visible from the selected views. Figure 2 shows other results.
In this experiment, for each model we show the first five best views
automatically selected by our algorithm. The views are ordered
by their saliency value. There are two important properties of our
algorithm:

• First, the selected views are consistent across all models of a
same class of shapes. This is shown by the first and second
rows of Figure 2 for the horse class, row 3 and 4 for the hand
class, row 5 and 6 for the dinosaur class, and rows 7, 8, 9 for
the rabbit class. Notice that the two hand models have differ-
ent shape and posture. Even with the presence of high shape
variability within the classes, the algorithm we developed is
able to compute consistent best views.

• The LFD we used to characterize each 2D projection is rota-
tion invariant in the 2D plane, and reflectance invariant in 3D.
Consequently, the selected best views are 2D rotation and re-
flectance sensitive. We can see this for the hand class (rows
3 and 4), and also for the rabbit class (rows 7, 8, and 9). We
will experiment in the future with descriptors that take into
account the symmetries of the 3D model.

To evaluate quantitatively the efficiency of the best view selection
algorithm, we propose to use the selected views as features for in-
dexing 3D model collections. We assume that the selected views are
good if they achieve better classification and retrieval performance
than when using the entire set of 2D views. This is equivalent to our
initial assumption which states that a 2D view is salient if it allows
to discriminate the object from the other objects in the database.

Figure 3 summarizes the classification performance of the devel-
oped AdaBoost classifier. In this figure, the average classification
performance is the ratio between the number of correctly classified
models of a classC to the total number of models in the class. We
see that, for the coarse3 classification (Figure 3-(d)), which con-
tains only two classes with very high shape variability within each
class, the classification performance is at 65.3% for natural shape
and 73% for man-made models. This clearly proves that the training
procedure captures efficiently the semantic concepts of the shape
classes and generalizes relatively well to unseen samples.

The performance on the other classification levels: base, coarse1
and coarse2 are shown in Figure 3-(a),(b) and (c). In this experi-
ment we show only the classification results on the classes of the
test set that exist in the training set. On the base classification (Fig-
ure 3-(a)), we can see that the classifiers achieve 100% classifica-
tion performance onspaceship entrepriselike, dining chair and
seavessel. The lowest performance is on theplant tree models.
This is because probably the class has high variability and many
small detailed features that cannot be captured by the Light Field
descriptors.

To evaluate the retrieval performance we use the query set of the
SHREC2006. Recall that none of the query models is present in
the database. Therefore, they can be used to assess the ability of
the classifier to generalize to unseen models. We compare with the
algorithms that have been benchmarked in the contest [Veltkamp
et al. 2006]. We show only the top six results but the reader can
refer to [Veltkamp et al. 2006] for a complete comparison. Each
query has a set ofhighly relevantclasses,relevant classes, andnot
relevant classes.

Table 1 summarizes the performance on the Mean Average Pre-
cision, Mean First Tier and Second Tier, for both highly relevant
and relevant classes. Our method ranks top on all measures for
relevant classes. Moreover, it outperforms significantly the other
methods on the Mean Second Tier for both highly relevant and rel-
evant classes. This shows that the combination of classification and
search improves the ability to retrieve the relevant results in the top
of the retrieved list. Our method however, achieved relatively low
performance on Cumulative Gain-related performance measures.
We believe that this is because of lack of data at the training stage
and therefore, it is hard to capture the salient features of the class.
We plan in the future to experiment with larger databases.

Finally, we compare the retrieval performance of the selected views
with the retrieval performance of the LFD. In this experiment we
use our own implementation of the LFD. Table 1 shows that the
proposed method outperforms significantly the original LFD which
uses 100 views sampled uniformly around the object. This partic-
ularly demonstrates that the selected views with our algorithm are
salient as they allow to discriminate the object from the other ob-
jects in the database. However, in some situations such as the rabbit
model in Figure 2, the selected views may not be visually plausi-
ble. We plan in the future to extend our algorithm by incorporating
more constraints, physical constraints for example, to handle such
situations.

6 Conclusion

We have proposed in this paper a new framework for best view se-
lection of 3D models. By using a boosting approach we are able to
use a large set of features in order to capture the high level semantic
concepts of different shape classes. Moreover, we provide a way to
quantify the saliency of a 2D view with respect to the classification.
The developed algorithm allows to use simultaneously a cascade of
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Figure 2: The first five views selected by the Boosting algorithm and ordered by the decreasing saliency value.
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Figure 3: Average classification performance for each class of shapes in the test set of the Princeton Shape Benchmark.

shaped descriptors. Although we have experimented only with one
type of descriptors, we may want to use a different set of descriptors
for classification.

This work opens many avenues to explore. First, the framework
we proposed allows the use of heterogeneous features, all what we
need is to plug new types of descriptors to the training process.
Particularly we are interested in descriptors that take into account
the 2D and 3D symmetries in order to solve the ambiguity problem
illustrated in Figure 2. Also we plan to investigate on the meaning
of the selected feature space for each shape class and extend the
framework to the problem of building creative prototypes of 3D
object classes, where the prototype should capture the high level
semantic features of the class.
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