GPU-Based Shape from Silhouettes

Hamid Laga
TITECH, Japan

Sofiane Yous *
NAIST, Japan

Abstract

In this paper, we present a new method for surface-based shape re-
construction from a set of silhouette images. We propose to project
the viewing cones from all viewpoints to the 3D space and compute
the intersections that represent the vertices of the Visual Hull (VH).
We propose a method for fast traversal of the layers of the pro-
jected cones and retrieve the viewing edges that lie to the surface
of the VH. Taking advantage of the power of Graphics Processing
Units (GPU), the proposed method achieves a real-time full recon-
struction of VH rather than rendering a novel view of the VH. The
experiments on several data sets, including real data, demonstrate
the efficiency of the method for real-time visual hull reconstruc-
tion.

CR Categories: 1.2.10 [Artificial Intelligence]: Vision and
Scene Understanding—Shape; 1.3.1 [Computer Graphics]: Hard-
ware Architecture—Graphics Processors; 1.4.8 [Image Processing
and Computer Vision]: Scene Analysis—Shape;

Keywords: shape from silhouettes, constructive solid geometry,
graphics processing unit

1 Introduction

The 3D shape of a real object is a requirement in a variety of mod-
eling and 3D multimedia applications. This shape can be obtained
from the silhouette images of the object taken from different view-
points. This concept was first introduced by Baumgart [Baumgart
1974] and later given the name of Visual Hull (VH) by larentini
[Laurentini 1994]. The VH is defined as the maximal approxima-
tion of the object that reproduces the silhouettes of all viewpoints.

The use of silhouette images to estimate the 3D shape of an object
was motivated by the ease of obtaining silhouette images and by the
ease of implementation. Several methods have been proposed for
VH reconstruction and/or rendering. For visualization applications,
the exact reconstruction of the VH is not required. Image-based
VH (IBVH) technique [Matusik et al. 2000] suffices to generate a
novel view of the VH from a desired viewpoint. Hardware-based
acceleration of IBVH was proposed through Direct Constructive
Solid Geometry (CSG) rendering [Guha et al. 2003; Stewart et al.
1998; Wiegand 1994].

*e-mail: yous-s@is.naist.jp
te-mail:hamid @img.cs.titech.ac.jp
te-mail:kidode @is.naist.jp
8e-mail:chihara@is.naist.jp

Masatsugu Kidode *

Kunihiro Chihara$

NAIST, Japan NAIST, Japan

Applications such as object modeling and 3D digital archiving re-
quire a full reconstruction of the object’s shape. To this end, voxel-
based VH reconstruction recover a volumetric representation of the
object. Volume carving methods split up the 3D space into a 3D
grid of voxels that are labeled as volume voxels if they belong
to all silhouette cones. This class of methods, however, suffers
from the extensive computation load and the memory overhead.
To overcome these limitations, octree representation was proposed
by Chien and Aggarwal [Chien and Aggarwal 1986] to substitute
the voxel representation. For the same purpose, Marching Intersec-
tions (MI) was proposed by Rocchini [Rocchini et al. 2001] as a
re-sampling method for surface management and adapted later by
Tarini et al. [Tarini et al. 2002] for volumetric shape reconstruction.

Surface-based methods also target an exact reconstruction of the
VH, but as a 3D polyhedral surface [Matusik et al. 2000]. The sur-
face vertices and faces are estimated by intersecting the generalized
cones generated from the occluding contours of the silhouette im-
ages [Baumgart 1974; Koenderink 1984; Boyer and Berger 1997].
This class of methods produces artifact-free VH and requires much
less computations and memory as compared to the previous one.
However, intersection in the 3D space is very sensitive to numeri-
cal instabilities, especially between complex objects.

In this paper, we propose a new surface-based VH reconstruction
from a set of silhouette images. Unlike the previous methods, we
propose to draw the viewing cones from all viewpoints to the 3D
space and compute the intersections that represent the vertices of
the VH. We use the power of GPUs to explore the drawn scene and
retrieve the viewing edges in real time.

2 Overview and contribution

Figure 1 illustrates the method we propose to reconstruct the shape
of an object given a set of silhouettes taken from different view-
points. For each viewpoint, we project the viewing edges from the
other viewpoints. The vertices of the viewing edges related to this
viewpoint are computed by traversing the layers of the drawn scene
and recovering all points that 1) project to the occluding points
(points of the occluding contour)on the image plane and 2) belong
to the intersection of all drawn cones. Subsequently, the viewing
edges computed from all viewpoints are merged together to recon-
struct the VH surface.

Implementing this method on CPU would require a long process-
ing time. We propose a GPU-based implementation of this method
where the vertices of the viewing edges are computed using a CSG-
like method. We propose a selective depth-layers traversal method
instead of the direct CSG used in image-based rendering. Our
method requires less passes to traverse the depth layers.

We also propose a new storage method that runs on GPU. the goal
is to avoid reading back from the GPU after each pass to recover
the computed vertices knowing that the readback is the main GPU
bottleneck.

The rest of this paper is organized as follows: in the next section,
we will introduce the traversal of the drawn scene and the storage
of the viewing edges. In section 4, we explain the VH surface re-
construction using the stored viewing edges. The overall scheme is
evaluated in section 5 before concluding this paper in section 6.

Silhouette images L

Viewing cones pro-
jection and viewing
edges computation

Visual hull construction

Figure 1: The Visual Hull reconstruction scheme (2D)

3 Viewing Edges Computation

When we go through the drawn cones with respect to a given view-
point, we can meet two types of layers: front and back layers. for
each occluding point (a point on the contours of the silhouette) cor-
responds, at least, one viewing edge in the drawn cones. This view-
ing edges is a line segment which is part of the ray generated from
the viewpoint and passing through the occluding point and defined
by two points. This line segment is limited by two points. The
closer point to the viewpoint is the intersection of the ray with a
front layer, while the other point is the intersection of the same ray
with the back layer immediately facing the first front layer. Both
layers must lie to the viewing cones of all viewpoints. However,
checking this condition for one layer is enough.

Direct-CSG [Guha et al. 2003; Li et al. 2004] is an image-based
rendering that uses the depth layer traversal principle to render a
view of the VH from a novel viewpoint. The goal is to recover the
intersection of the rays issued by all image points of the target view-
point with the first front layer that belong to all projected viewing
cones. This method can be adapted to the reconstruction of the VH
instead of rendering a novel view of it. To achieve this, we need to
consider that:

1. The traversal is processed with respect to all reference view-
points, instead of one virtual viewpoint.

2. For a given reference view, the traversal is processed with re-
spect to the silhouette occluding only.

3. For a given occluding point of a given viewpoint, we must
compute intersections of the corresponding ray with all lay-
ers (front and back) that belong to the viewing cones of all
viewpoints.

The Direct-CSG method checks all front layers if they belong to the
viewing cones of all viewpoints. However, a front layer that belong
to the surface of the VH is always facing a back layer. We made use
of this property to propose a selective depth layer traversal method.

3.1 Selective Depth layers Traversal

The CSG-based rendering was proposed by Goldfeather [Gold-
feather et al. 1986] and used later by Guha [Guha et al. 2003] and Li
et al.[Li et al. 2004] for GPU-based view-dependent VH rendering.
CSG is based on the representation of a complex 3D object as a nor-
malized tree of operations (N, U, \) on primitive shapes. Suppose
the following tree:

(01U (02N 03))\ Os (1)

This tree is normalized as follows:

01N0,U02N01 N0y)
—_——
Py P

Py and P» are two products of the tree that can be processed in a
parallel way and merged later on. If we refer by f(d, p) and b(d, p)
to the number of, respectively, front and back faces with smaller
depth than a point p with respect to a desired viewpoint d, then p
belongs to the product if:

where | P| is the number of products in the tree.

A VH reconstructed from a set of viewpoints can be regarded as
a normalized tree expressed by the intersections of all unions of
cones, each of which is generated by the outer contours of one sil-
houette, and the complements of unions of cones, each of which is
issued from the inner contours (holes) of one silhouette. The direct
CSG-based rendering [Guha et al. 2003; Li et al. 2004] traverse all
front depth layers and keep the intersection of the rays from the
image points that intersect the layers that satisfy Equation 3.

We can see in Figure 2 that a front face that belongs to the VH is
always immediately facing a back face. This means that, given a
succession of front faces, only the last face can verify this condi-
tion, all remaining faces can be discarded. We can access directly
to this face by rendering a back layer followed by rendering the
farthest front layer with shorter depth than the rendered back layer.
Similarly, only the first of a list of back faces is traversed, all the
others can be discarded by rendering the first front face farther than
the rendered back layer and then rendering the first back layer with
longer depth than the rendered front layer. Based on this, we pro-
pose the following algorithm for layers traversal:

1. Render the first depth layer of back faces.
2. repeat

(a) Compute the difference between the front and back
faces separating the traversed depth layer and the de-
sired view position and keep the depth of the last depth
with respect to the camera.

(b) Save the depths of the points that satisfies Equation 3.

(c) Render the first front layer having a depth greater than
the current back layer (skip all back layers separating
the two layers).

(d) Render the next depth layer of back faces having depth
longer than the rendered front layer (skip all front
faces).

Front layer 2

.
Target view . .
8 Reference view 3

Reference view 2

(a) Direct CSG.

Front layer 2

.
Target view . . .
8 Reference view 3

Reference view 2
(b) Selective depth traversal.

Figure 2: Direct CSG vs. Selective depth layers traversal in 2D: The traversed depth layers are drawn in dashed lines. The points that are
positively tested to their belonging to all viewing cones are shown in blue, while those which failed in red.

b +

n
contours o oym-l

Image plane

Figure 3: The silhouette generalized cone.

(e) Until no layer is returned.

The advantage of this new algorithm is to reduce the number of
needed renderings and reduce the probability of missing some lay-
ers if the number of rendering passes is set to a fixed value. This
can be noticed in Fig. 2. In the direct-CSG rendering method, 3
layers were traversed against 1 in our method.

The other advantage is the fact that if we add more cameras, it is
not necessary to increase the number of passes iterations, unless the
complexity of the scene increases.

3.2 Application to Viewing Edges Computing

In the proposed method, unlike most of the surface-based VH re-
construction proposed so far, no approximation of the occluding
contours is required. We perform the 3D reconstruction from N
silhouette images taken by N calibrated cameras C,, , n = 1...IN.
We denote by ¢, the center of the camera C),. An occluding contour
O,, with M points is drawn as a generalized cone of M faces. Each
face f5* (m = 1..M) is bound by the rays r;," and p{mADRM
see Figure 3. We consider the pinhole camera model and we refer
by A, to the matrix on the camera C,, by ¢, to its center, and by
fn toits focal length. If o' is a point of O,, with the coordinates
(zi,y:) in the image plane, then its 3D coordinates in the camera
coordinates system are (z;, yi, fn).

Each point v} of the ray r;,' associated to the contour point o;," has
the following coordinates in the world coordinate system:

o =cp + anA o™ “)

where o, is a real constant.

3D map of vertex] Ray id map of vertex1 3D map of vertex2 Ray id map of vertex2

|
]

|

Y20 (11) o | e | o | e e

A1) [(1.2) [(1.2) ~—

2 o | e | o (1,2)](1,2) (2.2) | (2.2)| (2.2) o | e | o | e e

3 22)|32)|3.2)] 3262 o | e | o | e e

4 13)| (13|13 |(1,3) oo o e

Occluding contours Lookup table Starage buffer

Figure 4: Viewing edge storage scheme.

We set ., to an appropriate value that determines the depth of each
cone face to be drawn. We take into account the distance D,, be-
tween the camera and the farthest point of the 3D covered area as
follows:

D,

A

Qn

(&)

After setting o, in Equation 5, finding the farthest point from the
camera center ¢,, for each ray ;" becomes straightforward. A cone
face F" associated to a ray 7, is defined by the ordered vertices

(Cn,vn's vﬁlmH)%M). In order to be able to identify the viewing
edges sharing the same vertices, we label each ray with a unique
id (cone face), as shown in Figure 3. This id is passed to the cone
face during the drawing step as color information. We employ the
algorithm described so far in this section with the possibility of

saving all valid edges instead of the only first intersection.

3.3 Viewing Edge Storage

As explained in section 2, we are interested in the occluding contour
points only. These points are few as compared to the image points.
The idea we propose is to save the edges passing the test to a storage
buffer allocated as an RGBA texture in the GPU memory. This
buffer is read-back once all edges extracted. We need for that to
add one more rendering pass. This pass consists of drawing a full
screen quad in a projective geometry. Five textures are attached as
input: two textures for each vertex containing the 3D position and

Algorithm 1 Lookup table initialization

for i =0toit —1do
for j =0to M — 1do
for k =0to3do
lut](i % j + k) mod width, (i x j + k) div width]
— coordinates(C[j]);
end for
end for
end for

Algorithm 2 Storage Algorithm
if M xit x4 <=y width +x < M x (it + 1) * 4 then
(a,b) — Luplz, y);
if (y * width + x) mod 4 = 0 then
storage[x,y]=3DMapl][a,b];
end if
if (y * width 4+ x) mod 4 = 1 then
storage[x,y]=IdMap1[a,b];
end if
if (y * width + x) mod 4 = 2 then
storage[x,y]=3DMap2[a,b];
end if
if (y * width + x) mod 4 = 3 then
storage[x,y]=IdMap2[a,b];
end if
end if

the id of the corresponding intersecting ray, and one texture loaded
once at the beginning and serving as a lookup table for each point
to get the coordinates of the texture point to store. Let us refer by
3DMap1 and IdMap1 the 3D and color maps of the first vertex, and
by 3DMap?2 and IdMap? to those of the second vertex of the edge.
The color map contains the id of the intersecting edges. Also we
refer by lut to the lookup table texture, by width and height to the
texture and image size, by M to the number of occluding contour
points, and by if to the number of iterations. lut is initialized once
and loaded to the GPU memory. It contains a list of subsequent
occurrences of the list of the occluding points, each of which is
duplicated four times, as described in Algorithm 1 and Figure 4.

The fragment shader (kernel) invoked at point level, to store the
edge vertices, reads the coordinates from /ut and uses them to lo-
cate the information to store from one of the four vertex textures.
This is done only if the invoking point is located within the region
concerned by the current iteration. If the coordinates of this point
in the storage buffer are (x,y), then the storage is as in Algorithm
2. The maximum number of iteration that can be processed within
the storage capacity of one buffer is given by:

width X high

MazIt =
ar Ix M

(6)

3.4 Implementation

We implemented the described edge extraction scheme as a multi-
pass rendering on GPU. We made use of OPENGL as an API and
C-like shading language (CG) of NVIDIA to write the shaders. We
made use of a Frame Buffer Object (FBO) as an off-screen ren-
dering target instead of the screen. To this FBO, we bind a depth
buffer and a stencil buffer. We replace the shadow buffer in the two-
sided buffer test [Guha et al. 2003], using a second test at fragment
level. The stencil buffer is for counting the layers to check the be-
longing of a layer to the VH following Equation 3. We bind also a
storage buffer and a lookup texture to the FBO. At each rendering

Contour images Extracted edges Closeup views

Figure 5: Viewing edge extraction steps.

step, appropriate textures are attached as input(s) and output(s). In
addition, one fragment and/or one vertex shaders are loaded to the
programmable vertex and fragment processors in order to achieve
one step of the extraction algorithm. Figure 5 shows the extracted
edges using four silhouette images of a bunny taken from 4 view-
points.

4 VH Surface Construction

After being extracted from all views, the viewing edges are merged
together to construct the VH surface as shown in Figure 6(a). A
vertex, being the intersection of two or more edges issued for dif-
ferent cameras, can be computed with slightly different 3D position
in each camera (Figure 6(b)). This fact makes the extracted edges
disconnected from each other. Thus, we need to recover a unique
3D position for each vertex. We compute a unique 3D position
as the mean of its coordinates estimated by all views(Figure 6(c)).
Even after connecting the edges, still some edges remains discon-
nected. This fact is due to the resolution difference between the
cameras. We join these edges to the closest neighboring vertices
(issued from a neighboring point of the same contour), as in Figure
6(d). The VH face generation can be processed for each camera
separately in a step prior to the rectification of the 3D positions of
the vertices. The faces are generated by connecting the appropriate
edges generated by adjacent contour points. We need to consider
the predefined order of the contours in generating the faces. We
may have several cases in generating these faces, as shown in Fig-
ure 7. The reconstruction results will be presented in the next sec-
tion, in addition of the evaluation of the overall VH reconstruction.

(a) The merged edges and their (b) Closeup view: Initial state. (c) Closeup view: After unifica- (d) Closeup view: After con-

depth view.

tion of vertex positions.

necting missed edges.

Figure 6: Surface construction: (a) A view of the viewing edge merged together from 8 viewpoints. (b) The viewing edges are disconnected
from each other after extraction. (c) The edges are connected to each other using the associated id. (d) The disconnected edges due to

resolution difference between views are connected.

Adjacent

viewing edges

Generated faces

Bunny Shark Maiko

Camera Point | Time | Point | Time | Point | Time

count (ms) count (ms) count (ms)
Cameral 887 110 720 109 1109 156
Camera2 | 1062 140 680 109 1306 172
Camera3 960 125 1256 140 1209 172
Camerad 971 125 887 125 1075 156
Camera5 | 1052 140 703 109 1316 172
Camera6 | 1066 140 1069 125 1565 156
Camera7 | 1024 141 1159 140 1185 156
Camera8 | 1060 140 966 125 1413 172

casel case2 case2

Figure 7: The different cases of face generation.

5 Experimental Results

The proposed scheme was implemented on a Pentium4 3GHz
PC with 1GB memory and equipped with a NVIDIA GeForce 7900
GTX graphics card. We tested the reconstruction scheme on two
synthetic datasets. We used two shapes provided by Princeton
Shape Benchmark [Pri] to generate the silhouettes from eight view-
points. We also tested the reconstruction scheme on real data pro-
vided by Matsuyama Laboratory of Kyoto University in the form of
eight silhouette images of a Kimono Lady (Maiko) and the related
camera parameters. The results of reconstruction are shown in Fig-
ures 8(a), 8(b), and 8(c) where the upper row shows the silhouettes
and the last row, four virtual views of the reconstructed VH.

Table 1, summarizes the processing time for each camera and for
each dataset. When the scheme is distributively implemented on
multiple PCs, the processing time is the largest time among all cam-
eras, added to the time needed for vertex unification, which is 31ms.
The processing time varies from one camera to another due to the

Table 1: Processing time evaluation: The processing time is cal-
culated for each camera and for each dataset. The shown time
concerns the viewing edge extraction and face generation. ’Point
count’ columns refer to the number of occluding contour points.

complexity of the scene that varies with respect to each viewpoint,
yielding different number of depth layers. Also it is due to the area
occupied by each silhouette. In fact, we used scissoring technique
to speedup the rendering time. Thus, the rendering is allowed only
in the region defined by the bounding rectangle of the silhouette.

From Table 1 and if we consider an implementation on one PC,
the processing time varies between 1012ms for the ’shark’ and
1343ms for "Maiko’. Note that no approximation was applied to
the silhouettes. If the application does not require all the details,
the approximation of the silhouettes is recommended since it re-
sults in a faster processing. This approximation can be achieved
by scaling down the silhouette images before extracting the occlud-
ing contours. Figure 9 shows the reconstructed VH using eight (8)
640 x 480 images and using the same images but scaled down to
320 x 240. Table 2 summarizes the processing time where we can
see that this processing time is 1250ms in the initial scale, while it
is 312ms in the lower scale. That is to say that we could speedup
the process four (4) times by down scaling the image to the half
size in each direction. In [Matusik et al. 2003], the VH reconstruc-
tion using 8 viewpoints with 641 contour points in each view was
achieved in 2sec on a 1GHz Pentium3 PC with 1GB of RAM.

4
]
I

SRR IRIRIMIE

S
J
¢
&

Y

n
.
N

&
o
|

' 9

(a) Bunny dataset.

(b) Shark dataset.

(c) Real data (Maiko).

Figure 8: VH reconstruction result.

640 x 480 320 x 240
Camera | Points count | Time(ms) | Points count | Time(ms)
Cameral 1334 172 666 46
Camera2 1028 140 508 31
Camera3 973 141 482 31
Camera4 1242 156 611 31
Camera5 1302 172 648 47
Camera6 1121 156 559 32
Camera7 1093 141 543 31
Camera8 1061 141 531 32

Table 2: Comparison with the reconstruction using down-scaled
images.

In order to prove the effectiveness of the depth layer traversal
scheme, we computed the number of the traversed depth layers of
the drawn cones with different number of cameras using the direct-
CSG method and ours. We show the result in the graph presented
in Figure 10, where we can notice that our method requires less it-
erations than the native CSG method do to visit all candidate depth
layers. Furthermore, the more are the cameras the bigger is the dif-
ference. Also, we plot the number of viewing edges extracted after
each iteration on the graph of figure 11. 12 iterations are required
to permit all cameras to recover all viewing edges. In our tests, we
set the number of iterations to 15 for all models.

(a) Initial scale (640 x 480)

(b) Lower scale (320 x 240)

Figure 9: Reconstruction at lower scales.

6 Conclusion

In this paper, we proposed a new method for shape from occluding
contours. We proposed a CSG-like method for a fast depth layer
traversing and viewing edge computing, rather than just rendering
the depth of the shape from a desired view. The viewing edges are
extracted for each camera separately without camera-camera pro-

i y
7 4
10 ¥ -

Number of traversed depth layers

A
i /
] '
b L4
7] — Dirkct CSG
7 — Our method
0 T T T T T T T T T
0 1 2 3 4 5 6 7 8 9

Number of viewpoints

Figure 10: Evaluation the proposed method for depth layer travers-
ing: Comparison with the native direct CSG.

The viewing edges extracted at each iteration by each camera

Viewing edge numbe
g
-
|

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 11: Variation of the number of extracted faces within itera-
tions.

jection. This fact allows the system to be implemented in a dis-
tributed system where each camera is connected to one PC and op-
erates independently of the rest. This design will provide a faster
processing. The proposed reconstruction scheme doesn’t need any
approximation of the silhouette and, hence, preserves the details of
the shape.

References

BAUMGART, B. 1974. Geometric Modeling for Computer Vision.
PhD thesis, Stanford University.

BOYER, E., AND BERGER, M. O. 1997. 3d surface reconstruction
using occluding contours. Perception 22,3 (Mar.), 219-233.

CHIEN, C., AND AGGARWAL, J. 1986. Volume/surface octress
for the representation of three-dimensional objects. Computer
Vision, Graphics and Image Processing 36, 1 (Oct.), 100-113.

GOLDFEATHER, J., HULTQUIST, J. P. M., AND FucHs, H.
1986. Fast constructive solid geometry display in the pixel-
power graphics system. In Proceedings of the ACM Computer
Graphics - SIGGRAPH1986, vol. 20, 107-116.

GUHA, S., KRISHNANAND, S., MUNAGALA, K., AND VENKAT,
S.2003. Application of the two-sided depth test to csg rendering.
In Proceedings of Symposium on Interactive 3D Rendering, 177—
180.

KOENDERINK, J. 1984. What does the occluding contour tell us
about solid shape? Perception 13, 3, 321-233.

LAURENTINI, A. 1994. The visual hull concept for silhouette-
based image understanding. /[EEE Transactions on Pattern Anal-
ysis and Machine intelligence 16, 2 (Feb.), 150-162.

L1, M., MAGNOR, M., AND SEIDEL, H. 2004. Hybrid hardware-
accelerated algorithm for high quality rendering of visual hulls.
In Proceedings of Graphics Interface, 41-48.

MARTIN, W., AND AGGARWAL, J. 1983. Volumetric description
of objects from multiple views. IEEE Transactions on Pattern
Analysis and Machine intelligence 5, 2 (Feb.), 150-158.

MATUSIK, W., BUEHLER, C., RASKAR, R., GORTLER, S. J.,
AND MCMILLAN, L. 2000. Image-based visual hulls. In Pro-
ceedings of the ACM Computer Graphics - SIGGRAPH2000,
369-374.

MATUSIK, W., BUELER, C., , AND MCMILLAN, L. 2001. Poly-
hedral visual hulls for real-time rendering. In Proceedings of the
12th Eurographics Workshop on Rendering, 115-125.

MATUSIK, W., BUEHLER, C., MCMILLAN, L., , AND GORTLER,
S. 2003. An efficient visual hull computation algorithm. Tech-
nical Memo 623, LCS, MIT.

Princeton shape retrieval and analysis group - princeton shape
benchmark. In http://shape.cs.princeton.edu/benchmark/.

RoccHINI, C., CIGNONI, P., GANOVELLI, F., MONTANI, C.,
PINGI, P., AND SCOPIGNO, R. 2001. Marching intersections:
an efficient resampling algorithm for surface management. In
Proceedings of the International Conference on Shape Modeling
and Applications - SMI12001, 296-305.

STEWART, N., LEACH, G., AND JOHN, S. 1998. An im-
proved z- buffer csg rendering algorithm. In Proceedings of SIG-
GRAPH/Eurographics workshop on graphics hardware, 25-30.

TARINI, M., CALLIERI, M., MONTANI, C., AND ROCCHINI, C.
2002. Marching intersections: An efficient approach to shape-
from-silhouette. In Proceedings of the Vision, Modeling, and
Visualization Conference, 255-262.

WIEGAND, T. F. 1994. Interactive rendering of csg models. Com-
puter Graphics Forum 15, 4 (Oct.), 249-261.

