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The description of 3D shapes using features that possess descriptive power and are in-
variant under similarity transformations is one of the most challenging issues in content-
based 3D model retrieval. Spherical harmonics-based descriptors have been proposed
for obtaining rotation invariant representations. However, spherical harmonic analysis is
based on a latitude-longitude parameterization of the sphere which has singularities at
each pole, and therefore, variations of the north pole affect significantly the shape func-
tion. In this paper we discuss these issues and propose the usage of spherical wavelet
transforms as a tool for the analysis of 3D shapes represented by functions on the
unit sphere. We introduce three new descriptors extracted from the wavelet coefficients,
namely: (1) a subset of the spherical wavelet coefficients, (2) the L; and, (3) the Lo en-
ergies of the spherical wavelet sub-bands. The advantage of this tool is threefold; First,
it takes into account feature localization and local orientations. Second, the energies of
the wavelet transform are rotation invariant. Third, shape features are uniformly rep-
resented which makes the descriptors more efficient. Spherical wavelet descriptors are
natural extensions of spherical harmonics and 3D Zernike moments. We evaluate, on the
Princeton Shape Benchmark, the proposed descriptors regarding computational aspects
and shape retrieval performance.
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1. Introduction

The 21%¢ century is the era of digital media and substantial progress has been made
in the acquisition, storage and transmission of different types of information. While
text, images, sound and video have been the predominant forms of digital media,
3D models emerge as a new form. They have applications in many fields including
CAD, medicine, physical simulation, e-commerce and education. Consequently, a
huge amount of 3D data is nowadays available and therefore, significant research
effort is required for developing effective techniques for content-based retrieval of
3D data.

Content-based 3D retrieval (CB3DR) implies the indexation of the 3D model
database with geometric features extracted from the 3D models. A challenging issue
is the description of shapes with suitable numerical representations called shape
descriptors. In general a shape descriptor should be discriminative by capturing
only the salient features, robust to noise, compact, easy to compute, and invariant
under similarity transformations such as translation, rotation and scale 123, Other
invariant properties may be required for some applications, such as pose invariance
for matching articulated shapes®®.

In this paper we introduce a new 3D content-based retrieval method relying on
the spherical wavelet transform (SWT) of the shape function. Spherical Wavelets
have been proposed by Schréder and Sweldens ¢ and since, they have been used
to solve many geometry processing problems including 3D model compression’.
Similarly to first generation wavelets®, SWT is an effective tool to analyze shape
functions defined on the sphere as they provide a natural partition of the function
spectrum into multiscale and oriented sub-bands. SWT is a natural extension of
spherical harmonics? and 3D Zernike moments'®1!. It offers better feature local-
ization and all the advantages of wavelets over Fourier analysis.

2. Related work
2.1. Shape signatures

Most of 3D shape retrieval techniques proposed in the literature aim to extract
from the 3D model meaningful descriptors based on the geometric and topologi-
cal characteristics of the object. Survey papers of the related literature have been
provided by Tangelder and Veltkamp !2, and Iyer et al. 3. Existing techniques
fall into three broad categories; feature-based including global and local features,
graph-based, and view-based similarity.

View-based techniques compare 3D objects by comparing their two dimen-
sional projections. The Lightfields (LFD)* are reported to be the most effective
descriptor'®. View-based techniques are suitable for implementing query interfaces
using sketches!?.

Graph-based techniques are suitable for indexing articulated 3D models. They
reduce the problem of 3D shape comparison to the problem of comparing graphs.
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Reeb graphs 4, and skeletons ® are among the most popular. Cornea et al. ' used
the skeletal representation of 3D volumetric objects for many-to-many and part
matching. Biasotti et al. !” proposed a matching framework for sub-part corre-
spondences using graph matching. Their method builds the common sub-graphs
between the two shapes to match and highlights the maximal sub-parts having
similar structure and similar space distribution.

Graph matching is computationally very expensive, especially when the number
of nodes is high and when the graphes to match have different number of nodes.
Jain et al. '® avoid explicit comparison of graphes by using spectral techniques.
First the shape is embedded into another feature space using spectral embedding,
where similar shapes with different poses map to a single point. Shape descriptors
can then be extracted and used to compare articulated 3D models.

Feature-based methods aim to extract compact descriptors from the 3D object.
Johnson et al.'? introduced spin images as local features for matching 3D shapes.
They have been used for shape retrieval as well as for the matching and regis-
tration of 3D scans. Other techniques are based on the distribution of features,
such as shape distributions?®. Shilane et al.!® provided a comparison of these tech-
niques and reported that histogram-based methods are the less efficient in terms of
discriminative power.

Recently, Reuter et al.?! introduced the notion of shape DNA. They proposed
fingerprints for shape matching. The fingerprints are computed from the spectra
of the Laplace-Beltrami operators. These descriptors are invariant under similarity
transformations, and are very efficient in matching 2D and 3D manifold shapes.
However, it is not clear how they can be computed for polygon soup models.

2.2. Invariant shape features

The issue of extracting invariant shape features is an important problem in content-
based 3D model retrieval. While translation and scale invariance can be easily
achieved 2292, rotation invariance is still a challenging issue. Recently, much re-
search has been focused on this issue and various methods have been proposed to
cope with the problem. Some of them require pose normalization, where each shape
is placed into a canonical coordinate frame. These methods are usually based on
Principal Component Analysis (PCA)?3, such as continuous PCA?%, and other ex-
tensions for solving for axial ambiguity. However, PCA-based alignment is known
to misbehave and therefore, it hampers significantly the retrieval performance?.

A popular way to avoid explicit alignment of shapes is to represent the shape
using functions defined on the unit sphere. Funckhouser et al. ? then use spheri-
cal harmonics (SH) to analyze the shape function. They demonstrated later that
spherical harmonics can be used to achieve rotation invariance by taking only the
power spectrum of the harmonic representation, and therefore, discarding the rota-
tion dependent information 2. Novotni and Klein ' use 3D Zernike moments (ZD)
as a natural extension of SH. Representing 3D shapes as functions on concentric
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spheres has been extensively used. Our descriptors fall into this category and are a
natural extension of SH and ZD.

2.3. Ovwerview and contributions

This paper investigates the problem of extracting rotation invariant features and
introduces spherical wavelet analysis for content-based 3D Model retrieval. To the
best of our knowledge, spherical wavelets have not been applied to content-based
retrieval of 3D models so far. We make use of them and propose three new descrip-
tors; (1) spherical wavelet coeflicients as feature vector (SWCy), (2) the L1 energy
of the spherical wavelet coefficients (SWEL1), and (3) the L2 energy of the spherical
wavelet coefficients (SWEL2). This paper makes the following contributions:

(1) We address for the first time the problem of rotation invariant sampling of the
shape function. We found that the sensitivity of the latitude-longitude param-
eterization to rotations of the north pole affects the rotation invariance of the
shape descriptors. This paper proposes a new parameterization method based
on regular octahedron sampling.

(2) We propose new spherical wavelet-based shape descriptors. The SWC, takes
into account the localization and local orientations of the shape features, while
the SWEL1 and SWEL2 are compact and rotation invariant.

(3) The spherical wavelet descriptors we propose can be extracted from any spheri-
cal function. In our implementation, we experimented with the Spherical Extent
Functions (EXT)?, and the Gaussian Euclidean Distance Transforms (GEDT)?.

(4) We evaluate and compare the performance of the proposed descriptors using
the Princeton Shape Benchmark (PSB) evaluation tools.

In the next section we discuss the problems related to shape function sampling
and motivate the use of spherical wavelet analysis. Section 4 reviews the general
concepts of the spherical wavelet transform of functions on the sphere, and describes
how we use them for 3D shape analysis. Section 5 describes in detail the new
shape signatures and the similarity estimation method. Section 6 presents some
experimental results. Finally, we summarize in Section 7 the main findings of this
paper and discuss some issues for future research.

3. Rotation invariant shape description

One of the main issues in matching 3D models is the lack of proper parameterization.
Spherical representations have been introduced in order to overcome this limitation.
In this representation, each spherical location (6, ¢), where 0 <6 < 7 and 0 < ¢ <
27, encodes some shape properties, f(6, ¢), measured at its corresponding location
on the shape. The function f is called the shape function. The steps commonly used
to compare 3D shapes are:

(1) Normalization. Transform the center of mass of the object to the origin, and
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Fig. 1: Problem illustration: latitude-longitude parameterization generates shape
functions with singularities at each pole affecting the rotation invariance of the
shape descriptor.

scale the object to lie within a unit ball.

(2) Parameterization. Compute the shape function. In the discrete case, the
spherical shape function f is constructed by sampling the unit sphere, centered
at the shape’s center of mass, on a regular grid of size w x h of angles of
azimuth ¢, and elevation 6. For simplicity, we consider the Spherical Extent
Function (EXT) 22. Other types of spherical functions will be considered in the
experimental results section. The Spherical Extent Function f(6,¢) measures
the extension of the shape in the radial direction (6, ¢).

(3) Spherical harmonic transform (SHT). The shape function is expressed in
terms of its frequency components.

(4) Shape descriptors. Feature vectors are extracted and used as a mean for
shape comparison.

We refer to step 2 as the sampling stage, and steps 3 and 4 as the shape description
stage. Step 3 expresses the shape function in terms of its spherical harmonics:

F0,8) =" fim¥"(0,9). 1)

1>0 |m|<l

The vector of spherical harmonics Y;”*,|m| < [ forms a base for the irreducible
subspace V! which is also invariant under the rotation group. Therefore, the norms
of the harmonic coefficients:

= {lfimll}imi<tiz0 (2)

form a descriptor that is invariant to rotation about the north pole, and the power

spectrum:
F=Allizo=1 [ > fiml® 3)
Im|<l 1>0
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forms a descriptor that is invariant to all rotations 2.

The key observation is that the rotation invariance concerns only the shape
description stage, i.e, the shape descriptor is invariant to rotations applied to the
input of the shape description stage. In this paper, we investigate the rotation
invariance of the sampling stage.

3.1. The irregular sampling problem

At the sampling stage, the shape function f is sampled on a w x h regular grid along
the azimuthal and elevation angles. Figure 1 shows the Bunny’s power spectrum
descriptors® computed using different poses (rotation of 90 degrees around the X
axis), and the Lo distance between the frequency components of the two descriptors.
Note that:

(1) the sampling is regular in the spherical coordinate frame, but not in the Eu-
clidean space. Consequently, the obtained shape function depends heavily on
the alignment of the 3D model. Increasing the sampling rate will alleviate this
problem but at the cost of higher computation time.

(2) the shape function obtained with the latitude-longitude sampling procedure
has singularities at the north and south poles of the unit sphere, while the
areas near the equator are under-sampled. Consequently, small variations of
the shape near the two poles will affect significantly the descriptor.

(3) rotating the north pole around one of the other axis will result in a different
sample of points, therefore a different discrete shape function.

This shows clearly that, while in the continuous case the power spectrum-based
descriptors are rotation invariant, in the discrete case however, this property does
not hold. In this paper, we propose an alternative solution using a uniform sampling
of the unit sphere and spherical wavelet analysis to address these issues.

3.2. Rotation invariant sampling

The key idea of our approach is that rotation invariant sampling can be achieved
using an operator ® that samples the shape uniformly, in the Euclidean distance
sense, in all directions. To achieve this in practice, we investigated two approaches

originally proposed for spherical parameterization and geometry image compression
7,25.

(1) Geodesic sphere. We sample the shape function by casting rays from the
shape’s center of mass to the vertices of a geodesic sphere. The advantages
of this representation are two fold; first it guarantees a uniform sampling of
the shape since the vertices of the geodesic sphere are uniformly distributed

2For illustration purposes we used 32 x 32 grids but the descriptors are computed using 128 x 128
grids. In the literature, grids of 64 x 64 are the most popular.
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Fig. 2: Flat octahedron parameterization procedure. The flat octahedron is isomet-
rically unfolded onto the image plane. The left half of the image plane is mapped to
the top half of the flat octahedron, which is then mapped to the north hemisphere
of the geodesic sphere.

on the surface of a unit sphere. Second, it allows a multiresolution analysis of
the shape function where the coarsest (level-0) representation is obtained using
a basic geodesic dome of 20 vertices, and finer levels are derived by recursive
subdivisions.

(2) Flat octahedron parameterization. Hoppe and Praun "2°> map the sphere
onto a square domain using spherical parameterization of a flattened octahe-
dron domain. The interesting property is that the flattened octahedron unfolds
isometrically onto a rectangular lattice. Therefore, image processing tools can

7,

be used with simple boundary extension rules.

These two representations guarantee a uniform sampling of the shape function
and eliminate the singularities that appear at each pole in the latitude-longitude
parameterization. Therefore, the discrete spherical shape function becomes rotation
invariant within the sampling resolution. We make use of these properties to build
efficient shape descriptors.

3.3. The geomelry image

Our goal is to represent every 3D model O in the database by a geometry image
I of size k = w x h. We do this by first mapping the object to a unit sphere then
unfolding the sphere onto the image domain using flat-octahedron parameterization
(we will justify this choice in Section 4.2). The parameterization process performs
in three steps:

(1) Image - flat octahedron mapping: Figure 2 shows how the flat octahedron
is unfolded and mapped to different regions of the image I. We use barycentric
coordinates mapping to map each pixel of I into the octahedron domain.

(2) Flat octahedron - sphere mapping: we achieve this by simple spherical
projection. This step generates a set of points P = {p1,...,px} on the sphere.
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The mapping function associates to each image pixel a point p; on the unit
sphere.

(3) Shape function: we redefine the spherical extent function (EXT) f by: f =
{fi}E_,, where f; is the extent of the shape in the radial direction p;. f has the
domain I as a regular support.

Steps 1 and 2 are common to all objets, therefore, we run them once offline to
generate the set of points P. During runtime, all we need is to compute the shape
function (step 3), which requires the computation of ray-polygon soup model inter-
sections. This is a well studied problem, and can be performed at interactive rates.

In our implementation we used the method proposed in 24.

4. Spherical wavelets for 3D shape description

We now consider the problem of descriptor extraction from the spherical shape
function. A straightforward approach is to use a subset of the vector f as shape
descriptor 24, but it is well established that the L, metric is not effective in the
spatial domain. On the other hand, spherical harmonics cannot be engaged since
the sampling is not uniform in terms of azimuthal and elevation angles. In this
paper, we make use of wavelets %7 to efficiently extract shape descriptors. In the
following subsections we will review the general concepts and then describe how we
use them to analyze the shape function.

4.1. Spherical wavelets

Wavelets are basis functions which represent a given signal at multiple levels of de-
tail, called resolutions. They are suitable for sparse approximations of functions. In
the Euclidean space, wavelets are defined by translating and dilating one func-
tion called mother wavelet. In S?, however, the metric is no longer Euclidean.
Schréder and Sweldens ¢ introduced second generation wavelets. The idea was to
build wavelets with all desirable properties adapted to much more general settings
than real lines and 2D images.
The general wavelet transform of a function A is constructed as follows:

Analysis: Aik = 2iek () Pakadivi
(forward transform) Yk = ZleM(j) Gjm,iNj+1,1
Synthesis: Ajr1l = Dgek () Miki Akt
(backward transform) ZmeM(j) 9i.m,1Vim

where \; o and ;o are respectively the approximation and the wavelet coefficients
of the function at resolution j. The decomposition filters £, §, and the synthesis
filters h, g correspond to the spherical wavelet basis functions. The forward trans-
form is performed recursively starting from the shape function A = A, at the
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finest resolution n, to get \jo and 7,6 at level j,7 = n —1,...,0. The coarsest
approximation A,_; ¢ is obtained after i iterations (0 < ¢ < n). The sets M(j) and
K (j) are index sets on the sphere such that K (j)UM (j) = K(j+1),and K(n) = K
is the index set at the finest resolution.

4.2. Analysis of the spherical shape function

To analyze a 3D model, we first apply the spherical wavelet transform (SWT) to
the spherical shape function and collect the coefficients to construct discriminative
descriptors. The properties and behavior of the shape descriptors are therefore
determined by the spherical wavelet basis functions used for transformation.

Similar to 3D Zernike moments'? and spherical harmonics?3, the desired prop-
erties of a descriptor are: (1) Invariance to a group of transformations, (2) Or-
thonormality of the decomposition, and (3) Completeness of the representation.
The orthonormality ensures that the set of features will not contain redundant
information. The completeness property implies that we are able to reconstruct
approximations of the signal from the decomposition.

The SW basis function should reflect these properties. In our work we have
experimented with second generation wavelets ¢ including the linear and butterfly
spherical wavelets with lifting scheme, and image wavelets with spherical boundary
extension rules 7. In our experiments on the Princeton Shape Benchmark, we found
that the performance of both the linear and butterfly spherical wavelets is very low
(it is comparable to shape distribution based descriptors). Therefore, we decided to
use the image based wavelet with spherical boundary extension rules to build our
shape descriptors.

The image wavelet transform uses separable filters, so at each step it produces
an approximation image A and three detail images HL, LH, and HH. The forward
transformation algorithm, illustrated in Figure 3, performs as follows:

(1) Initialization:

(a) Generate the geometry image I (therefore the function f) of size w x h =
27+1 % 27 as explained in Section 3.3.
(b) A — f 1 —n.

(2) Forward transform: repeat the following steps until I = 0:

(a) Apply the forward spherical wavelet transform on A®), we get
the approximation A¢~Y, and the detail coefficients CU-D =
(LY gFLO-Y HHDY of size 2! x 2171,

(b) 11 —1.
(3) Collect the coefficients: the approximation A(® and the coefficients
CcO .., 01 are collected into a vector F.

In this paper, we experimented with the Haar wavelets, where the scaling func-
tion is designed to take the rolling average of the data, and the wavelet function
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Fig. 3: Spherical wavelet-based shape descriptors computation.

is designed to take the difference between every two samples in the signal. Other
wavelet bases can also be used but require further investigations.

5. Spherical wavelet-based descriptors

We now consider the computation of shape descriptors. We propose three meth-
ods to compare 3D models using their spherical wavelet transform: (1) Wavelet
coefficients as a shape descriptor (SWCy), where the shape signature is built by
considering directly the spherical wavelet coefficients, and spherical wavelet ener-
gies: (2) SWELL that uses the L1 energy, and (3) SWEL2 using the L2 energy of
the wavelet sub-bands. Figure 4 shows three models and their SW descriptors. The
following sections detail each method.

5.1. Wawvelet coefficients as shape descriptor

Once the spherical wavelet transform is performed, one may use the wavelet coeffi-
cients as a shape descriptor. Using the entire set of coefficients is computationally
expensive. Instead, we have chosen to keep the coefficients up to level d. We call
the obtained shape descriptor SWCy, where d € {0, ...,n— 1}. In our implementa-
tion we used d = 3, therefore we obtain two dimensional feature vectors F' of size
N = 24+2 x 2441 — 32 x 16.

Comparing the wavelet coefficients directly requires efficient alignment of the 3D
models prior to wavelet transform. A popular method for finding the reference co-
ordinate frame is pose normalization using Principal Component Analysis (PCA)*,
and continuous PCA?4. We perform the pose normalization in three steps;

(1) First we translate the shape’s center of mass to the origin (0,0, 0).

(2) Then we align the shape to its principal axis using continuous PCA?*. We use
the maximum area technique to resolve for the positive and negative directions
of the principal axis.

(3) Finally we scale the shape such that the average distance between the center
of mass and any point in the surface is equal to 1/2.

Figure 4c shows the SWCj; descriptors of the 3D models shown in Figure 4a. Note
that, the vector F' provides an embedded multi-resolution representation for 3D
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(a) 3D shapes

(b) Their associated geometry images of size w X h = 256 x 128
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(e) L1 energy descriptor (SWEL1).

Fig. 4: Example of different models with their spherical wavelet-based descriptors.
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shape features. This approach performs a filtering of the 3D shape by removing
outliers. A major difference to spherical harmonics is that SWT preserves the lo-
calization and orientation of local features. However, a feature space of dimension
512 is still computationally very expensive.

5.2. Spherical wavelet energy signatures

The wavelet energy signatures have been proven to be very powerful for texture

characterization 26. Commonly the L2 and L1 norms are used as measures 2728

Ky 2
1
EY = 5 2at, 4)
Ky =
1 &
1
FY =3 ] (5)
et
where z;;,7 = 1...k; are the wavelet coefficients of the [*" wavelet sub-band,

1t wavelet sub-band. To construct the

and k; is the number of coefficients in the
wavelet energy based shape descriptor we first perform n — 1 decompositions, then
we compute the energy of the approximation A and the energy of each detail
sub-band HVW VH® and HH®, yielding a one-dimensional shape descriptor
F={F}1=0...3x(n—1)ofsize N=3x (n—1)+ 1. In our case we use
n = 7, therefore N = 19. We refer to L1 energy and L2 energy-based descriptors
by SWEL1 and SWELZ2, respectively.

Observe that rotating a spherical function does not change its energy, therefore,
spherical wavelet-based energy descriptors are invariant under any rotation along
the axes of the coordinate frame. Since the sampling stage is also rotation invariant,
we obtain shape descriptors that are invariant to general rotations. However, similar
to the power spectrum 2, information such as feature localization is lost in the energy
spectrum. Finally, the energy descriptor is also very compact. Thus, the storage and
computation time required for comparisons are reduced.

Finally, Table 1 summarizes the performance of the proposed descriptors. The
SWEL1 and SWEL2 are more efficient in terms of storage requirement and compari-
son time. They are also rotation invariant, while SWC, requires pose normalization.
The discrimination efficiency of each descriptor will be evaluated and discussed in
the experimental results section.

5.3. The similarity metric

Since 3D shapes are now represented in the feature space with N-dimensional vec-
tors of real-valued components a natural way to measure the dissimilarity between
two models is to use the vector norms, called also L,, distances. In our implemen-
tation we experimented with the Lo distance. If F; and F5 are the feature vectors
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of a database object O; and a query object Os respectively, of dimension N, then
the dissimilarity between O; and O; is the Lo distance between their descriptors:

N

1/2
D(Fy, Fy) = <Z (F1(1) — F2(i))2> : (6)

=1

Note that the proposed spherical wavelet analysis framework supports retrieval at
different acuity levels. In some situations, only the main structures of the shapes are
required for comparison, while in others, fine details are essential. In this case, the
dissimilarity metric should be also adapted. In the former case, shape matching can
be performed by considering only the wavelet coefficients at large scales, while in
the later, coefficients at small scales are used. Hence the flexibility of the developed
method allows different retrieval requirements.

6. Experimental results

We have implemented the algorithms described in this paper and evaluated their
performance on the Princeton Shape Benchmark (PSB)!5. At the early stage of this
research, we have experimented with linear and butterfly spherical wavelets using
six decomposition levels (n = 6). We found, however, that the performance of the
descriptors is very low. Instead, we used image wavelets with boundary extension
rules. SWC, requires pose normalization, while SWEL1 and SWEL2 are rotation
invariant. For the SWC, descriptor, we use d = 3, therefore, we keep the first 512
coefficients.

To evaluate the efficiency of spherical wavelet analysis for shape retrieval we
considered two types of spherical functions:

(1) Spherical Extent Function (EXT)??: this is a measure of the extent of
the shape in the radial direction. We compute the spherical wavelet descriptors
SWCg4, SWEL1 and SWEL2 of length 512, 19, and 19, respectively. We refer to
these descriptors by EXT_SWC,, EXT_SWEL1 and EXT_SWEL2 respectively.

(2) Gaussian Euclidean Distance Transform (GEDT)?: a 3D function whose
value at each point is given by the composition of a Gaussian with the Euclidean
distance transform of the surface 215,

In our implementation the parameter o of the gaussian is set to 0.5. We
compute the GEDT on a 65 x 65 x 65 grid, then compute 32 spherical functions
representing the intersection of the voxel grid with concentric spherical shells,
in the same manner as in '°. We analyze the spherical functions and extract
spherical wavelet descriptors SWCy, SWEL1 and SWEL2 of length 32 x 512,
32 x 19 and 32 x 19 respectively. We refer to these descriptors by GEDT_SWC,
GEDT_SWEL1 and GEDT_SWEL?2, respectively.

In both cases we used spherical functions of size w x h = 256 x 128.
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1

Fig. 5: Some retrieval results from the PSB database!® using the (SWC,) descrip-
tor: First column is the query shape followed by top six matches. The first six
queries are from the query set provided in the first 3D Shape Retrieval Evaluation
Contest (SHREC06) 2°, while the last row query belongs to the PSB database!®.

6.1. The retrieval results

First we executed series of shape matching experiments on the base test classi-
fication of the PSB using Spherical Extent Functions. We select randomly a 3D
polygon soup model, and then compare it to the objects in the database. We show
in Figures 5, 6, 7 the results of several queries for each of our three descriptors
EXT_SWCy, EXT_SWEL1 and EXT_SWEL2. The top six matches are displayed.
A retrieved model is considered relevant if it belongs to the same class as the query
model.
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Fig. 6: Some retrieval results from the PSB database'® using the spherical wavelet
Ll-energy descriptor (SWEL1): First column is the query shape followed by top six
matches. The first six queries are from the query set provided in the first 3D Shape
Retrieval Evaluation Contest (SHREC06)2°, while the last row query belongs to
the PSB database!®.
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By visually inspecting these results, we noticed that the EXT_SWC, descriptor
performs better than the others. The L1 energy of the spherical wavelet coefficients
is ranked second.

6.2. Performance evaluation

The precision-recall curves on the base test classifications of the PSB of the spherical
wavelet-based shape descriptors are shown in Figure 8. We refer the reader to
the Princeton Shape Benchmark paper '° for comparison with other descriptors
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Fig. 7: Some retrieval results from the PSB database!'® using the spherical wavelet
Ll-energy descriptor (SWEL2): First column is the query shape followed by top six
matches. The first six queries are from the query set provided in the first 3D Shape
Retrieval Evaluation Contest (SHREC06)?°, while the last row query belongs to
the PSB database®®.

concerning the precision-recall measure.

We evaluated the performance of our descriptors using the nearest neighbor,
first and second-tier, E-measure and Discount Cumulative Gain measures '°. Table 1
summarizes the micro-averaged retrieval statistics of our descriptors. We performed
all the experiments on the base test classification of the PSB. Table 1 confirms the
visual evaluation, that is, spherical wavelet coefficients perform better, while the L1
and L2 energy come second and third, respectively. Note that the SWC, requires
more storage and comparison time.

Shilane et al. ! summarized the performance on the PSB of several shape
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Fig. 8: Precision-recall curves for SW-based descriptors.

descriptors and we use their results to compare with our descriptors. In this paper,
we show the performance of six descriptors, but we refer the reader to the original
paper for a complete evaluation. More precisely, we consider the:

(1) Lightfields descriptors (LFD) '4: the features representing a 3D model are
extracted from 2D images, which are rendered from cameras positioned on the
vertices of a regular dodecahedron. Each image is encoded with 35 coeflicients
of Zernike moments, and 10 coefficients to represent Fourier descriptors. The
dimension of the feature space is then 4500.

(2) Gaussian Euclidean Distance Transform (GEDT) 2: Each spherical shell
of the GEDT is represented by its spherical harmonic coefficients up to order
16 215, It uses the latitude-longitude parameterization.

(3) Spherical Harmonic Descriptor (SHD) ?: a rotation invariant represen-
tation of the GEDT obtained by computing the restriction of the function to
concentric spheres and storing the norm of each harmonic frequency 215,

(4) Spherical Extent Function (EXT) ?2: It was computed on a 64 x 64 spher-
ical grid using the latitude-longitude parameterization and then represented by
its harmonic coeflicients up to order 16. We obtain feature vectors of 153 float-
ing point numbers.

(5) Harmonics of the Spherical Extent Function (H-EXT) 2: a rotation
invariant representation of the EXT obtained by computing the norm of each
harmonic frequency. In our implementation, we consider the harmonic coeffi-
cients up to order 32 (similar to 2) obtaining feature vectors of 33 floating point
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Table 1: Performance of SW descriptors on the PSB base test classification. Size refers
to the dimension of the feature space.

Nearest First  Second E-
Size  Neighbor tier tier measure DCG
Spherical Extent SWCj. 512 46.9% 31.4%  39.7% 20.5% 65.4%
Function (EXT) SWEL1 19 37.3% 27.6%  35.9% 18.6% 62.6%
SWEL2 19 30.3% 24.9%  31.5% 16.1% 59.4%

Gaussian Euclidean SWCy;. 16384 53.6% 37 7% 471% 27.9% 69.8%
Distance Transform SWEL1 608 42.2% 31.8%  40.7% 22.3% 65.5%
(GEDT) SWEL2 608 40.2% 30.7%  38.8% 21.3% 64.5%

Table 2: Performance of the LFD, SHD, GEDT, EXT, H-EXT and
D2 on the PSB base classification. Size refers to the dimension of
the feature space.

Nearest First  Second E-
Size  Neighbor tier tier measure DCG
LFD 4500 65.7% 38.0% 48.7% 28.0% 64.3%
SHD 544 55.6% 30.9% 41.1% 24.1% 58.4%

GEDT 4896 60.3% 31.3%  40.7% 23.7% 58.4%
EXT 153 54.9% 286%  37.9% 21.9% 56.2%
H-EXT 33 28.1% 24.5%  31.3% 16.3% 58.6%
D2 64 31.1% 15.8%  23.5% 13.9% 43.4%

numbers. We used geometry images of size 128 x 128.

(6) Osada’s D2 shape distribution (D2) 2°: a one dimensional histogram that
measures the distribution of the pairwise distance between pairs of random
points on the shape surface. Similar to '°, we used histograms of 64 bins.

In the literature, the LFD is considered to be the best descriptor. Table 2 shows
the results according to the quantitative measures computed on these descriptors
(the results of LFD, EXT and D2 are the ones reported in the original paper 15,
while the results of H-EXT are from our implementation). Table 1 shows that the
GEDT-based wavelet descriptors outperform significantly the spherical extension
function-based wavelet descriptors. This was predictable since the GEDT takes into
account interior details of the shape.

Now comparing to other methods, spherical wavelet descriptors perform better
than the LFD, shape distributions and spherical harmonic descriptors according
to the DCG measure. An interesting observation is that the lightfield descriptor,
which is considered a very good signature 4, performs better than spherical wavelet
descriptors for the k—nearest neighbors related measures (nearest neighbor, first
and second tier), while the spherical wavelet descriptors perform better than the
lightfields descriptor for the precision/recall measures (DCG), which are considered
more indicative.
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Table 3: Evaluating retrieval performance for the EXT_SWCy,
descriptor on different classes using the PSB coarse2 test clas-
sification (6 classes).

Nearest First Second E-
Neighbor tier tier measure DCG
Animal 74.2% 41.4%  63.0% 19.9% 82.7%
Vehicle 72.2% 36.5%  65.8% 11.0% 82.2%

Household 63.2% 23.5% 38.2% 11.4% 74.8%
Furniture 53.2% 8.6% 14.3% 7.7% 62.3%
Plant 25.0% 8.1% 15.3% 5.9% 55.6%
Buildings 10.6% 11.1% 19.0% 10.3% 56.2%

Table 4: Evaluating the retrieval performance for the
EXT_SWEL1 descriptor on different classes using the PSB
coarse2 test classification (6 classes).

Nearest First Second E-
Neighbor tier tier measure DCG
Animal 54.8% 35.6% 58.3% 16.1% 79.6%
Vehicle 65.3% 35.4%  64.8% 10.3% 81.4%

Household 47.6% 22.3% 37.0% 10.2% 73.5%
Furniture 47.9% 15.0%  22.9% 11.9% 65.8%
Plant 41.7% 16.6% 25.3% 15.3% 62.7%
Buildings  34.0%  14.5% 242%  132%  60.1%

An interesting result is that the GEDT-based wavelet descriptors outperform
most of the existing descriptors on all measures. The GEDT_SWC, is very expensive
in terms of memory storage. However GEDT_SWEL1 and GEDT_SWEL2, which
very compact and rotation invariant, achieved very good performance compared to
SHD, EXT, GEDT, H-EXT and D2, and outperform the LFD on the DCG and
precision-recall measures.

Spherical wavelet descriptors have several benefits over lightfields, shape distri-
butions and spherical harmonic descriptors in terms of storage and computational
costs. Table 1 and 2 summarize the size of each shape descriptor. An interesting
result is that the performance on the DCG measure of the SWELL, a very compact
descriptor, is almost similar to the LFD. A comparison with the performance of the
EXT and H-EXT descriptors shows that energy-based wavelet descriptors (SWEL1
and SWEL2) have several benefits: (1) compactness, (2) rotation invariance without
pose normalization, and (3) they are easy to compute.

6.3. Performance on different shape classes

Finally, we evaluated the performance of the EXT_SWC,; and EXT_SWEL1 descrip-
tors on different shape classes. Table 3 and Table 4 summarize the micro-averaged
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performance of the two descriptors with respect to the quantitative measures. Six
classes of the coarse2 test classification of the PSB are used. The results show that
spherical wavelet coefficients perform better on animal, vehicle, household and fur-
niture classes, while the L1 energy is more efficient on plants and building classes.

7. Conclusions and future work

We proposed in this paper a spherical wavelet-based framework for the search and
retrieval of 3D shapes represented by functions on the sphere. We developed and
tested using the Spherical Extent Function (EXT) and the Gaussian Euclidean Dis-
tance Transform (GEDT) three new shape descriptors. Our results on the Princeton
Shape Benchmark show that the new framework outperforms, in terms of the Dis-
count Cumulative Gain measure, the spherical harmonic based descriptors, while
the spherical harmonic descriptors perform better on nearest neighbor measures.
We found that our sampling procedure is more efficient since it is rotation invariant
and samples uniformly all the shape features. An interesting property is that the
SWELL1 descriptor, which is very compact, performs similarly to the LightField de-
scriptor on the DCG measure when applied to EXT and outperforms the Lightfields
when applied to the GEDT.

Our best results have been obtained using SWCs after efficient pose normaliza-
tion. We explain this improvement in the performance by the fact that the spherical
wavelet transform filters small details that affect negatively the performance, while
it takes into account the spatial localization of the salient features. The SWEL1 and
SWEL?2 are equivalent to the power spectrum of the spherical harmonic analysis.
They have many desirable properties as they are compact and faster to compute,
and invariant under similarity transformations.

This work suggests a number of challenges that we would like to consider in the
future. First we found from our experiments that the developed descriptors behave
poorly on stick like shapes. We believe that this is the drawback of the sampling
procedure. We plan in the future to elaborate more on this issue. Second, the
proposed descriptors have been tested only on the Princeton Shape Benchmark, we
plan to evaluate them on other 3D model databases. Another issue is to experiment
with different spherical wavelet bases and compare their performance on different
classes of shapes. Finally, none of the developed descriptors perform equally well in
all situations and on all classes of shapes. A challenging issue is to investigate on
how to combine and select features in order to achieve best performance.
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