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Uncertainty in Optical Measurement Applications:
A Case Study

Markus Brandner, Member, IEEE, and Thomas Thurner, Member, IEEE

Abstract—The uncertainty related to a measurement is at least
as important as the measurement itself. Apart from being able to
determine intervals of confidence around the final result within
which the true measurement value is expected to lie at a cer-
tain level of confidence, the rigorous treatment of uncertainty
throughout an algorithm allows increasing its robustness against
disturbing influences and judging its applicability to a given task.
This paper addresses the propagation of uncertainty within a
quality control application using image-based sensors. Simulations
and real-world results are provided to show the applicability of
the proposed application.

Index Terms—Error estimation, optical measurement, range
sensor, uncertain geometry, uncertainty propagation.

I. INTRODUCTION

QUALITY control (QC) measurements are one of the most
frequently encountered tasks in current industrial mea-

surement applications. Apart from the ever-increasing demand
of manufacturing processes with little waste of raw material,
the industry is moving toward 100% QC of the produced parts.

Optical measurement systems can meet the requirements of
production lines: QC is performed in a fast, robust, and accurate
manner in many situations. The requirements on metric accu-
racy are comparably low for a significant portion of optical
QC measurements including color, presence of parts on the
conveyor belt, approximative verification of shape, and others.
However, there remains a segment of QC measurements that
relies on highly accurate metric reconstruction of visual enti-
ties. Examples are accurate validation of an object’s geometry,
measurement of distances and areas, and precise measurements
of surface deviations. In the following, we will concentrate
on precise measurements of known objects (i.e., with given
CAD reference). The high degree of complexity in these vision
systems often makes it exceedingly difficult to identify reliable
bounds to the measurement uncertainty. Some attempts have
been made in the literature to analytically deal with uncertainty
in applications that either directly measure properties [1] or
need to reason based on the geometry perceived by a vision
sensor [2]. The guide to the expression of uncertainty in mea-
surement [3] (GUM) classifies uncertainties according to the
method required to handle them into Type A and Type B uncer-
tainty components. In this paper, we discuss the different steps
of the design and implementation of an optical QC application
with special emphasis on traceable uncertainty propagation
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of measurement results. The geometric parameters of a large
cylinder are estimated using an estimation technique based on
the coefficients of the discrete Fourier transform (DFT).

II. UNCERTAINTY IN COMPUTER VISION

The extensive application of probability theory to many
different tasks in computer vision is largely motivated by
the desire to obtain robust algorithms. The incorporation of
robust methods enables algorithms to perform the step from
“clean” laboratory conditions to “real-world” problems. For an
algorithm to be robust against a certain degree of outliers or
to be able to be self-validating [4], additional—redundant—
information is required. In general, overdetermined systems of
equations need to be solved. Coordinates in two-dimensional
(2-D) and three-dimensional (3-D) Euclidean space are com-
monly represented using vectors in R2 and R3, respectively. If
the underlying geometry is subjected to unknown variations,
the coordinates are represented as random vectors x. Given the
frequently applied Gaussian assumption, the random vector is
characterized by

x ∼ N (µx,Σxx) (1)

where µx denotes the mean vector and Σxx denotes the co-
variance matrix of the random vector. The transformation of
a random vector using a vector-valued function f(·) results in
a new random vector y = f(x), the parameters of which are
given by

µy = f(µx) (2)

Σyy =J(x)ΣxxJT (x) (3)

where J(x) = (∂f(u)/∂u)|u=x denotes the Jacobian of the
transformation f(x) at a given point x. This resultant covari-
ance matrix Σyy is exact if and only if f(·) is linear and the
higher order terms O(‖∆x‖) of the Taylor series expansion

f(x + ∆x) = f(x) +
∂f(u)
∂u

∣

∣

∣

∣

u=x

∆x + O (‖∆x‖) (4)

vanish. For a general nonlinear function f(·), the matrix Σyy

only approximates the true covariance matrix. While numeri-
cal methods such as Monte Carlo analysis exist to determine
the covariance matrix of the transformed vector, an analytical
solution is possible for many transformations encountered in
computational geometry.

Apart from uncertainties in coordinates, transformation pa-
rameters can be subjected to uncertainty too. Typical scenarios
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Fig. 1. Mechanical structure to be verified by the QC application. (a) Image of the structure. The main components (bottom lid, cylinder, and top lid) are clearly
visible. (b) Simulation of an imperfectly manufactured cylinder. The top lid exhibits both offset and tilt errors relative to its nominal position and orientation. Two
sensors are used by the application: Sensor A mounted at the bottom lid and Sensor B mounted at the top lid. (c) Coordinate systems involved in the measurement
process. An overview of the applied assumptions and restrictions is given in Table I.

are uncertain parameters of a calibrated sensor as a result of
the calibration process. The rigorous application of first-order
uncertainty propagation allows to handle these cases. Consider
a linear transformation of a random vector in 3-D

y = M · x (5)

which can be rewritten as

y = Bx · m (6)

where Bx = I3 ⊗ xT using the Kronecker symbol. The vector
m = vec (MT ) is a column vector comprising all coefficients

of the transformation matrix. If we further denote the covari-
ance matrix of the transformation parameters by Σmm, the
transformed random vector can be described by

µy =M · µx (7)

Σyy =BxΣmmBT
x . (8)

Using the superposition principle allows to combine the two
cases to derive the parameters of a Gaussian random vector
y that results from transforming a known Gaussian random
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vector x using transformation parameters that themselves are
subjected to Gaussian variations, i.e.,

Σyy = (J Bx )
(

Σxx Σxm

Σmx Σmm

) (

JT

BT
x

)

. (9)

Note that using Euclidean coordinate vectors as indicated
above does not permit us to deal with pure translations in a
similar framework. However, the straightforward extension of a
coordinate vector in Rn by a nonzero homogeneous coordinate
leads to the representation of the point in homogeneous coordi-
nates within the projective space Pn within which all allowed
Euclidean transformations are representable in the form of
(5). The presented relations provide a basic tool for rigorous
first-order uncertainty propagation in signal processing chains
provided that the underlying processes are indeed Gaussian and
the uncertainty introduced by the implicit linearization using
Jacobian matrices is negligible.

III. OPTICAL QC

In the subsequent section, we present a system for optical
QC measurements on large rotationally symmetric structures.
In particular, the application targets cylinders with up to 6 m
in height and 5.5 m in diameter. Critical parameters of the
structure are the alignment of the top and bottom lid (both
relative to the cylinder axis and relative to each other). Given
restrictions during the manufacturing process, only parts of the
outer surfaces of both the bottom and the top lids of the cylinder
can act as metric references. Fig. 1(a) and (b) depicts a close-
up of the cylinder taken during a measurement and a sketch
of the setup consisting of the cylinder represented by two lids
and two sensors, respectively. As a consequence of cylinder
manufacturing, the following conditions apply:

1) It cannot be guaranteed that both the top and the bot-
tom lids are perfect discs. Deviations from the nomi-
nal radius along the circumference and nonplanarity are
encountered.

2) In order to access the cylinder, it is vertically mounted
on a turntable. Both the position of the cylinder on the
turntable and the orientation of the turntable axis are
subjected to unknown—but constant—deviations.

3) Measurements shall be performed during the whole pro-
duction process as to apply corrections upon notification
of manufacturing flaws. Therefore, the measurement ap-
paratus must be attached in such a way that it is not
influenced by ongoing work on the cylinder and that it
itself does not prevent manufacturing.

The different coordinate systems and variables of the pro-
posed QC application are outlined in Fig. 1(c); their description
is given in Table I. For a general constellation (i.e., TBLC

TC $= 0,
RBLC

TC $= I), the signals captured by the two 2-D range sensors
are periodic sinusoids parameterized by the displacement of the
respective lid as indicated by the simulation shown in Fig. 5(a).
This holds both for measurements in the direction of the
x-axis (perpendicular to the cylinder axis) and for deviations
in the direction of the z-axis (parallel to the cylinder axis).

TABLE I
OVERVIEW OF THE DIFFERENT COORDINATE SYSTEMS AND

VARIABLES ASSOCIATED WITH THE SETUP

The maximum misalignment of the cylinder on the turntable
and the maximum deviation of the turntable axis from the
normal are bound by the manufacturer to be small compared
to the radius R of the lids (‖TBLC

TC ‖ % R). Thus, the cross-
sensitivities of lid tilts to offset measurements and lid offsets
to tilt measurements are bound and—for this setup—can be
neglected. We denote our target measurements as tilt RTLC

TLRef

and offset TTLC
TLRef as indicated in Fig. 1(c). The rotational and

translational parameters RTC
WC , TTC

WC , RBLC
TC , and TBLC

TC are
unknown but assumed to be constant during the measurement
process.

A. Sensor Devices

The proposed QC application requires to measure the posi-
tion of the upper and lower lid circumferences with respect to
an upper and a lower sensor coordinate system, respectively. In
addition, the application requires to measure the current angular
position α [cf. Fig. 1(c)] of the turntable simultaneously with
the range sensor readings. The angular position of the cylinder
is measured using a camera that points toward the outer surface
of the cylinder. Periodic structures on the cylinder and regularly
spaced unique optical markers in conjunction with a constant
rate of rotation allow to accurately determine the current po-
sition of the turntable. The test measurement setup was used
to take 1500–2500 measurements during a single rotation of
the cylinder. The obtained expanded uncertainty of the angular
position measurement is Uα = 0.02◦ (k = 3, 99.74% level of
confidence) so that its influence to the final measurement result
can be neglected. The position of the lid reference surfaces
is measured using two 2-D range sensors that are positioned
next to the rotating cylinder as indicated by the two coordinate
systems Sensors A and B in Fig. 1(b). Each sensor consists of
a semiconductor laser module projecting a line onto the lid ref-
erence planes, a camera observing the area of intersection, and
an optional set of accelerometers to monitor vibrations of the
sensor platform [cf. Fig. 2(a) for a close-up of the final sensor
in operation without attached acceleration sensors]. A detailed
description of the range sensor design and associated signal
processing algorithms is given in [5]. However, the important
steps are repeated here to provide the reader with insights
important to the understanding of the uncertainty propagation
process. Using a precision macrolens, the active sensing area of
the setup is 12 × 10 mm2, corresponding to captured images
of 644 × 492 pixel2. The sensor principle is as follows: The
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Fig. 2. (a) Close-up of the 2-D range sensor hardware. (b) Signal processing involved in the sensor front-end. Robust line estimation algorithms are applied
to the acquired image. Matched filters using a priori setup information increase the robustness of the sensor with respect to ambient illumination and surface
imperfections.

projected line intersects with the respective reference planes
resulting in two perpendicular lines captured by the camera.
The sequence of images acquired during a single turn of the
turntable is processed by an algorithm as outlined in Fig. 2(b).
Using a priori geometric information about the reference planes
(given by the CAD model of the lids), two optimal filters are
used to increase the signal-to-noise ratio (SNR) of the sensor’s
input signal. Each of these 2-D matched filters is adjusted to its
respective target line of intersection. Parameters to be tuned are
filter width and filter orientation assuming a Gaussian intensity
profile across the lines. A robust line estimation algorithm is
applied to estimate both sets of line parameters for l1 and
l2, respectively. The point c(u, v) in image coordinates results
from intersecting the lines and denotes the position of the lid
circumference at the current angular position α of the turntable.
A calibration process performed under laboratory conditions
using a dedicated calibration target and an on-site adjustment
process result in the parameters of the homography matrix A
and the rotation matrix R.

In order to determine the uncertainty of the sensor’s mea-
surement setup, the following sources of uncertainty have to be
considered.

• Uncertainty of the image processing algorithms: The posi-
tion of the intersection point c(u, v) is subjected to random
variations. Possible causes for these variations are differ-
ent noise sources within the camera and the acquisition
hardware, mismatch of the reference surface model (e.g.,
deviations from the true planar surfaces), nonconstant
illumination (e.g., reflections, changes in ambient light),
and sensor vibrations.

• Prior to the measurement, the sensor has to be calibrated
(off-site) and adjusted with respect to the actual cylinder
(on-site). Both operations are subjected to uncertainties
due to, e.g., imperfections of the calibration target and
its positioning during the calibration process, and image
processing uncertainties as described in the previous point
causing deviations during calibration and adjustment.

Subsequently, we will follow the procedure suggested by
the GUM [3] to determine the overall uncertainty of the QC
system, taking into account both the uncertainty introduced by
the sensor calibration and the uncertainties introduced during
the measurement process.
1) Sensor Calibration: During the calibration process of the

sensor, the calibration target is positioned at discrete points
within the sensing area using a 2-D microtranslator setup.
Based on the known position of the distinct points on the cal-
ibration target and their corresponding points measured in the
camera image, the eight degrees of freedom 2-D homography
A is estimated using the normalized direct linear transform
method [6]. The homography affects the overall uncertainty of
the sensor in two ways. First, the parameters of the homography
are estimated in a least-squares sense. For a general calibration
scenario, the underlying system of equations is overdetermined
leading to residual errors spread over the whole set of input
points. Second, the parameters of the homography itself are
subjected to variations once both model points (i.e., the posi-
tions of the calibration target) and test points (i.e., the points
measured in the image) are uncertain. In this case, one can
associate a 9 × 9 covariance matrix Σhh to the homography
characterizing its uncertainty up to the first order.
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Fig. 3. Regions of confidence within the central area of the sensor. N =
105 Monte Carlo runs were performed to estimate the covariance matrices
of a set of mapped image points. The uncertainty in this image is caused
by both uncertain homography parameters and uncertain input points. The
maximum variance within the target area of the sensor is bound to σ2

Position ≤
1.606 · 10−7 mm2. Note that the variances have been scaled considerably for
visualization purposes.

In order to increase the accuracy of the calibration, we restrict
the working area of the sensor to an approximately 5 × 5 mm2

field around the center of the camera. This area is subsequently
referred to as center area Acenter. The homography parameters
for the proposed sensor are determined as follows. During an
experiment, pairs of model and test points are generated using
the calibration target as described above. Given the specifi-
cation of the microtranslator devices, a conservative estimate
of the positioning uncertainty σ2

Position ≤ 1.089 · 10−7 mm2

has been identified. The empirical covariance of the p(x, z)
estimates is found using N = 100 sensor readings per target
position. The maximum of the obtained variances (i.e., the
largest eigenvalue of all covariance matrices) was found to be
σ2

Image ≤ 0.0139 pixel2 within Acenter. Using this information,
N = 105 Monte Carlo runs using the above covariances have
been performed to estimate the covariance matrix of the ho-
mography parameters. The mean homography parameters are
used to determine the residual error that in this case is bound to
19.6 µm. Fig. 3 depicts the regions of confidence within which
a certain percentage of the projected image points lie. The
associated covariances have been scaled for visualization pur-
poses. The increasing size of the confidence intervals (i.e., the
variances of the projected points increase with the distance from
the image center) supports the choice of a restricted working
area Acenter. If, in addition to uncertainty in the homography
parameters, the input points are subjected to random variations,
(9) can be used to analytically derive the resulting covari-
ance matrices. Our setup results in a maximum covariance of
σ2

Position ≤ 1.606 · 10−7 mm2 within Acenter. In order to verify
the validity of the first-order uncertainty propagation introduced
in Section II, the sensor signals have been investigated ac-
cording to their statistical properties. Fig. 4 depicts normalized
quantile plots of the x- and z-sensor signals’ real-world input
data. Both distributions approach the Gaussian distribution jus-

tifying the first-order propagation of uncertainties as proposed
above. Assuming that 99.74% of the residuals lie within the
given boundary, we compute the combined uncertainty for this
sensor within the center area Acenter to be

u2
c(x) =u2

Transformation(x) + u2
Residual(x) (10)

=4.28 · 10−5 mm2. (11)

The same result applies to u2
c(z) for symmetry reasons. The

expanded uncertainty is given by

U = k · uc(x) = 3.0 · 6.54 · 10−3 = 1.962 · 10−2 mm (12)

for a level of confidence of 99.74% (3σ interval of confi-
dence).

B. Estimation of Lid Parameters

Due to its periodic nature, x[n] can be rewritten as

x[n] =
N−1
∑

k=0

ak cos
[

2πkn

N

]

+
N−1
∑

k=0

bk sin
[

2πkn

N

]

+ w[n]

(13)

using superposition of N harmonically related sinusoids of
frequencies ωk = 2πk/N . Based on this signal model, we
apply a DFT that results in the minimum variance unbiased
estimators (MVUE) âk and b̂k for amplitudes ak and bk of a
sinusoidal signal embedded in additive white Gaussian noise
[7]. The phase of the signal buried in Gaussian noise can be
estimated using

φ̂k = − arctan
∑N−1

n=0 bk sin
[

2πkn
N

]

∑N−1
n=0 ak cos

[

2πkn
N

]
(14)

which is the approximate maximum likelihood estimator
(MLE) [7]. The variances of these estimators are given by

var(âk) = var(b̂k) =
2σ2

Noise

N
(15)

var(φ̂) =
2σ2

Noise

N · a2
(16)

where a denotes the amplitude of the signal.

C. Estimating Offset and Tilt

In the sequel, we denote the offset of a lid with respect to its
ideal position by ∆ and subscripts A and B for the bottom and
top sensors, respectively, as shown in Fig. 1(b). The angle of the
offset vector will be denoted by θ. Similarly, the tilt of a lid is
expressed by a tilt vector Γ and its associated angular position
within the lid plane ϕ. The discrete time sensor signals are given
by xA[n] and zA[n] for the bottom sensor and xB[n] and zB [n]

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on December 17, 2009 at 03:57 from IEEE Xplore.  Restrictions apply. 



718 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 55, NO. 3, JUNE 2006

Fig. 4. Quantile plots of the sensor’s x (upper figure) and z (lower figure) signals. Deviations from the reference Gaussian indicate slightly long-tailed
distributions.

for the top sensor, respectively. Assuming that ‖∆A‖ % R and
‖∆B‖ % R, the sensor signals can be written as

xA[n] ≈ c1 − ‖∆A‖ cos
[

2π

N
n + θA

]

+ w1[n] (17)

zA[n] ≈ c2 + ‖ΓA‖ cos
[

2π

N
n + ϕA

]

+ w2[n] (18)

xB [n] ≈ c3 −
H

R
‖ΓA‖ cos

[

2π

N
n + ϕA

]

(19)

− ‖∆A‖ cos
[

2π

N
n + θA

]

(20)

− ‖∆B‖ cos
[

2π

N
n + θB

]

+ w3[n] (21)

zB [n] ≈ c4 + ‖ΓA‖ cos
[

2π

N
n + ϕA

]

(22)

+ ‖ΓB‖ cos
[

2π

N
n + ϕB

]

+ w4[n] (23)

where the signals wi[n] denote independent noise components.
All sensor signals consist of a phase-shifted sinusoid with
frequency (2π/N)n. By coefficient comparison, we obtain

â∆B = − H

R
âzA − âxA − âxB (24)

b̂∆B = − H

R
b̂zA − b̂xA − b̂xB (25)

âΓB = âzB − âzA (26)

b̂ΓB = b̂zB − b̂zA (27)

where the cis are setup-dependent constants, ∆̂B =
(â∆B , b̂∆B )T denotes the estimated top lid offset vector, and

Γ̂B = (âΓB , b̂ΓB )T denotes the estimated top lid tilt vector.
Since all contributing variables are subjected to Gaussian
deviations, the combined uncertainties of the estimation results
are given by

u2
c,â∆B

= u2
c,b̂∆B

= u2
c,(â,b̂)

[

(H/R)2 + 2
]

(28)

u2
c,âΓB

= u2
c,âΓB

= 2u2
c,(â,b̂)

(29)

where u2
c,(â,b̂)

denotes the combined uncertainty of the es-
timates â1 and b̂1, respectively. The final measurement re-
sults ∆̂B and Γ̂B now exhibit Rayleigh-distributed deviations
R(σ2) of the amplitude and uniformly distributed orientations.
Thus, the combined uncertainty for N measurements around
the lid is given by

u2
c (‖∆B‖) = 6.65 · 10−4 1

N
mm2 (30)

u2
c (‖ΓB‖) = 9.844 · 10−5 1

N
mm2 (31)

u2
c(θ) = 8.56 · 10−5 1

N‖∆B‖2
rad2 (32)

u2
c(ϕ) = 8.56 · 10−5 1

N‖ΓB‖2
rad2. (33)

IV. RESULTS

Fig. 5(b) and (c) shows the four sensor signals acquired
during an on-site QC measurement. Although the first harmon-
ics are in agreement with the simulation results, significant
higher order harmonics are present especially in z signals.
These harmonics are due to nonplanar lid elements. In fact,
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Fig. 5. Sensor data. (a) Simulation of a full cylinder rotation. (b) and (c) Sensor signals obtained during a QC measurement. Note the strong second-order
harmonics in the z signals that result from nonplanar lid elements with a sensor setup as shown in Fig. 1(b).

the cylinder was supported by four arms at positions of 0◦,
90◦, 180◦, and 270◦. The measurement results using a level of
confidence of 99.74% (k = 3) and N = 1500 are

‖∆B‖ =(0.616 ± 2 · 10−3) mm

θ =(2.33 ± 0.001) rad

‖ΓB‖ =(0.087 ± 8 · 10−4) mm

ϕ =(4.626 ± 0.008) rad.

The uncertainty budget covering expanded uncertainties at dif-
ferent processing steps of the QC application is summarized
in Table II.

V. CONCLUSION

In this paper, we discuss the issue of uncertainty propagation
in optical measurement applications. A QC setup is presented,

TABLE II
EXPANDED UNCERTAINTY BUDGET OF THE QC MEASUREMENT.
ELEMENTS ARE BASED ON A LEVEL OF CONFIDENCE OF 99.74%

and the assumptions and specifications of the system compo-
nents are addressed with respect to their influence on the overall
uncertainty of the measurement result. Simulations show the
principal functionality of the application, and a real-world
measurement indicates the feasibility of the proposed mea-
surement setup to fulfill the requested QC task. The expanded
uncertainties and the corresponding levels of confidence of the
final results are given.
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