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Abstract

In electrical capacitance tomography (ECT) the main focus is on the
reconstruction of distinct objects with sharp transitions between different
phases. Being inherently ill-posed, the reconstruction algorithm requires
some sort of regularization to stabilize the solution of the inverse problem.
However, introducing regularization may counteract the reconstruction of
well-defined contours for grid-based methods. Level set propagation
approaches which also rely on regularization are able to model sharp phase
boundaries but suffer from high computational demands. In this
contribution, two different state-space representations of closed contours
based on B-splines and on Fourier descriptors are investigated. Both
approaches allow us to describe the problem with only a small set of

state-space variables. Regularization is incorporated implicitly which can be
directly interpreted in the object domain as it relates to smooth contours. To
solve the inverse problem, statistical inversion is performed by means of

particle filtering providing the opportunity to conveniently incorporate prior

information and to take measurement uncertainties into account. The
proposed particle filter approach is compared to an extended Kalman filter
realization in terms of complexity, computation time and estimation

accuracy.

Keywords: electrical capacitance tomography, state-space representation,

statistical inversion, particle filter

1. Introduction

Electrical capacitance tomography (ECT) is a non-invasive
image-based technique that aims at estimating the permittivity
distribution (&, -distribution) within closed objects [1-3]. Such
objects are, for instance, pipelines in the oil industry or
chambers and vessels in the production of food, chemicals and
pharmaceuticals. ECT is able to provide information about
internal states with low-cost requirements and is therefore
well suited for industrial applications in order to determine
process parameters such as void fraction or the status of
completion of a mixing process. In ECT, voltage patterns
are applied to the electrodes which are mounted along the
circumference to acquire information about the interior of

a closed object. The resulting inter-electrode capacitances
which depend on the materials and their distribution inside the
closed object are measured. Based on these measurements,
the spatial material distribution is reconstructed. However, this
reconstruction task is a nonlinear and severely ill-posed inverse
problem [4, 5].

Many different algorithms have been developed and
applied to tomographic tasks for two-phase flow fields in recent
years with the objective of improving the image quality and
reducing computational efforts in order to achieve real-time
performance. The widely used deterministic reconstruction
algorithms such as Gauss—Newton or Newton—Raphson try to
fit the model to the data in a least-squares sense ignoring
the presence of any noise sources. Furthermore, these
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methods need some sort of regularization in order to stabilize
the solution of the inverse problem. Regularization simply
incorporates some a priori assumption on the material
distribution and is implemented by adding a regularization
term to the original cost functional to be minimized. The
choice of the regularization parameter which controls the
degree of regularization is crucial for the reconstruction task.
Although many different methods to determine this parameter
have been proposed in the literature (see, e.g., [6] for an
overview) the key drawback is that there is no universally valid
rule to adjust the regularization parameter up to now. Another
drawback of regularization when using a sensor model based
on the finite element method (FEM) is that it causes a blurring
of phase transitions. However, in process tomography the
main focus is on the identification of distinct objects with
sharp boundaries (e.g., gas bubbles in oil). To overcome
the problem of blurred images, different edge preserving
methods for finite element based reconstruction techniques
have been introduced. For example, the use of an auxiliary
variable permits us to linearize the problem and to derive
a deterministic algorithm based on alternate minimizations
[7]. Due to the increased computational effort, this method
is not applicable for real-time applications. Alternatively,
various mesh grouping methods have been proposed to avoid
blurred images (see e.g. [8]). The main disadvantage of these
methods is that they rely on threshold levels which have to be
identified by trial and error. A different possibility is to use
the boundary element method (BEM) instead of the FEM to
model the interior of the closed object. The inverse problem
can then be solved, for example, by applying a numerical
level set propagation approach [9]. The method inherently
preserves object edges and implements a regularization based
on the smoothness of the level set function. However, the
drawbacks are the choice of the regularization parameter and
the computational complexity due to a large number of model
parameters.

To achieve sharp edges without increased computational
effort it is reasonable to describe material boundaries by means
of parametrized curves. Possible methods to represent the
boundary of an object are the use of active contours [10]
or the application of Fourier descriptors [11, 12]. These
contour models are especially suitable for dynamic problems
such as streaming fluids. Both methods use low-order state-
space representations to incorporate model-based information
into a boundary finding process for continuously deformable
objects. Using these contour models the ECT problem can
be solved by minimizing a quality criterion which is based
on the difference between predicted and measured potentials.
Including object dynamics these models can further be used
to track objects. However, when reconstructing images from
measured data, measurement noise as well as process noise
cannot be neglected. To take both possible noise sources
into account the inverse problem can be formulated as a
statistical inference problem. The most natural approach
is the application of Markov chain Monte Carlo (MCMC)
methods (see, e.g., [13-16]). MCMC methods are very
time consuming since the entire state-space is explored in
terms of possible material distributions. MCMC methods
are particularly useful to evaluate the estimated parameters
with respect to sensitivity, bias, consistency and efficiency

given measurements. Bayesian recursive estimators which
are also able to incorporate stochastic state transitions
and measurements are well suited especially for dynamic
reconstruction tasks as is required in ECT. One such estimator
is the Kalman filter (KF) [17]. In order to deal with the inherent
nonlinearity of the measurement equations within the ECT
framework, the extended Kalman filter (EKF) has been applied
to tomographic tasks [18-20]. Its applicability is restricted to
state vectors that are characterized by first-order and second-
order statistical moments. This restriction still allows us to
propagate Gaussian random variables. The occurrence of
multiple object hypotheses—as frequently encountered during
the reconstruction of dynamical set-ups—cannot be tackled
properly by an algorithm restricted to unimodal state vector
distributions. A less restrictive formulation of the Bayes
principle based on sequential Monte Carlo (MC) simulations
and a numerical approximation of non-Gaussian state densities
is given by particle filters (PFs). In a direct comparison to
the EKF, the PF offers the possibility of a non-approximate
evaluation of the state transitions—even in the nonlinear
case—and of multimodal state densities. Another appealing
property of PFs is their straightforward incorporation of a
priori information about the inner state of a dynamic system.
On the downside, these advantages come at the cost of
additional computations spent in the density approximation
and the management of samples in state-space. The use of low-
order state-space representations of closed contours enables
the application of PF with considerably reduced computational
effort.

This paper is structured as follows. Section 2 briefly
describes the mathematical modelling of the ECT sensor. The
representation of closed contours in state-space by means of
B-splines and Fourier descriptors is addressed in section 3
followed by an introduction of the applied PF in section 4.
The contour models are used for the reconstruction of two-
phase test distributions based on synthetic data and compared
in terms of the achievable reconstruction performance in
section 5. The measurement set-up is outlined in section 6
followed by the evaluation of the proposed reconstruction
algorithm with measured data for two experiments in
section 7.

2. Mathematical model of the sensor

In ECT, the forward problem consists in determining the
distribution of the electric scalar potential u, for the active
electrode pattern p and subsequently the electric field strength
and the capacitance for a given permittivity distribution within
the pipe. In each cycle of the applied electrode pattern, two
electrodes are active, i.e. a certain potential is prescribed,
while the remaining electrodes are floating—the measurement
electrodes. The governing equation is a Laplace equation with
boundary conditions,

V- (eVu,) =0 (1)
uplro = uo,p’ (2)

where 'y are the transmitting electrodes, where Dirichlet
boundary conditions are prescribed. Figure 1(a) depicts the
model of the sensor consisting of a tube with 16 electrodes
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Figure 1. Cross-section of the ECT sensor with 16 electrodes
mounted on a pipe. The outer space is circumvented by a grounded
conductive shielding. On the right, the discretization into linear
finite elements of the electrodes, the tube and the outer space is
depicted. Object boundaries in the region of interest are described
by boundary elements.

equidistantly placed around the circumference and a
conductive shield at ground potential at some distance from
the tube outside the measurement volume. As neither the
geometry nor the material values between the tube and
the grounded shield change, it is advantageous to discretize
the Laplace equation in this region with finite elements,
whereas due to changing geometries and material values in
the interior of the pipe, the BEM is applied [9]. Using the
BEM in the region of interest increases the spatial resolution,
since the discretization error due to finite elements is avoided.
Figure 1(b) illustrates the discretization of the electrodes, the
tube and the outer space with linear triangular finite elements
while the interior of the pipe is one region for the BEM.

3. Representation of closed contours in state-space

Contours can be described as the boundaries between distinct
regions with different properties. In the case of ECT, regions
are distinguished by their distinct permittivity values. The
contour C in R? can be described by means of a vector-valued
function R — R x R : s > ¢(s) parametrized by s € [0, 1].
C is closed if and only if ¢(0) = c¢(1) and the Cartesian
coordinates (x, y) of a point on the contour are given by the
elements of ¢(s) as e(s) = (x(s), y(s))7.

Different representations of contours have been proposed
in the literature (see, e.g., [12] for an overview). The common
denominator of these contour models is the representation of
C by as few parameters as possible while still meeting the
requirements of the given application in terms of versatility.
The set of parameters needed to fully describe the contour at
any instance in time is referred to as the state of the model.
Taking into account any evolution of the contour over time we
can define the state-space representation of a contour by

x; = f(Xe—1, k1) 3)
Z, = h(Xk, Wk), (4)

where f(-) represents the state transition of the state x from
time k — 1 to time k subjected to process noise which is
modelled by v. A measurement based on the current state X
subjected to measurement noise w is modelled by h(-). We are
now able to formulate the reconstruction problem in the ECT
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(a) (b) (c)

Figure 2. Geometric deformations of a B-spline subjected to an
affine transformation (reference spline dashed): pure translation (a),
rotation () and scaling and shear (c).

as the problem of estimating the inner state (i.e. the current
contour) of a dynamic system. In addition to approaches that
reconstruct static set-ups, the use of dynamic models allows us
to extend the algorithm towards dynamically changing set-ups.

The different contour models have been designed in favour
of distinct application requirements. In the following, we will
introduce the B-spline model and Fourier descriptors and their
respective applicability to the ECT problem.

3.1. B-spline representation

Using splines to represent contours requires us to approximate
the true contour C by a linear combination of spline functions.
While we have some freedom in choosing different spline
functions, a commonly used set of basis functions b, (s) are
bicubic functions, where n = 0, ..., (N — 1) denotes the
current index in a representation using N basis functions.
The resultant model is referred to as the B-spline representation
of C:

- [bE)S) b?s)] [gz] — Uls)q. )

The vectors q° = (xg, X1, ..., xy_1)T and qQ’ = (Yo, Vis---»
yn—1)T denote the coordinates of the N control points and are
used as weights for the respective basis functions. The vector
b(s) is given by b(s) = (bo(s), b1(s), ..., by_1(s))". Thus,
a B-spline is represented by a vector q of size 2N. In order
to reduce the number of required parameters we introduce the
shape-space representation of B-splines [10]. The shape-space
of a contour is given by a linear transformation that maps a
shape-space vector x to a spline vector ¢ such that

q=Wx+qo. (6)

where o represents a reference shape. Given that the
dimension of the shape-space N, is usually small compared
to the size of the spline vector N, = 2N, the shape-space
representation results in a noticeable reduction of parameters.
A B-spline now is represented by a reference B-spline qo
and a shape-space vector. The N, x N, shape matrix W
enforces that deviations from the reference spline are restricted
to geometrically meaningful deformations. As an example,
the affine transformation in R? has five degrees of freedom
(dof) and can be represented in shape-space via the following
transformation,

10 g 0 0 q
q= O V) x+qo @)
01 0 q q3 0
where the reference shape is given by qp = (quqST)T.

Figure 2 depicts a reference spline and its possible geometric
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Figure 3. Reference contours (dashed) and five random instances of
the two contour models. (@) The B-spline representation is restricted
to geometric deformations based on the shape matrix. (b) Varying
the Fourier descriptors results in random contours not all of which
have a physical meaning (see, e.g., the dotted contour).

deformations based on an affine shape matrix W as given by
equation (7). Splines can be applied to problems where the
reference contour qq and its allowed geometric deformations
are known. The restriction to a certain class of transformations
in shape-space results in a high degree of regularization which
can be utilized in the reconstruction process. In addition,
splines lend themselves to stochastic shape representations by
the introduction of random variables as elements within the
shape-state vector x. Figure 3(a) depicts a reference spline
and five random instances of this model given that the state
vector is comprised of Gaussian random variables. A major
drawback of the B-spline representation is the restriction to
geometric deviations of the reference shape that are covered
by the transition model.

3.2. Fourier descriptors

An alternative representation of a closed contour C is based
on the property that for any closed contour the coordinate
functions x(s) and y(s) are periodic with a period 7 = 1.
Therefore, we can approximate both functions using the
Fourier series expansions to obtain

ts) = 20y : N§_1( (27ns) + by, sin(2mns))  (8)
xX(s) = — ay , cos(2mns ' n SIN(2Tns
2 2 o ' '
a 1 N—-1
~ .0 .
I(s) = y7+§§ (ay., cos(2mns) +by , sin(2ns)). (9)

n=1

The approximation improves as the number of coefficients in
the series representation increases. In this context, the Fourier
series coefficients are referred to as Fourier descriptors of the
contour.

As opposed to the B-spline representation, state
transitions of Fourier descriptors in general do not correspond
to any restricted family of geometric transformations of the
underlying shape. Thus, the geometric regularization is less
stringent than it is for the B-spline model. However, using
Parseval’s theorem the magnitude of the Fourier descriptors
m%, = aj,; + b, can be interpreted as the energy of the
contour in the given frequency band. This contour model can,
therefore, be used to apply a frequency-dependent convergence
criterion as low-frequency components (i.e. the lower order
Fourier descriptors) correspond to the coarse shape of the
contour and high-frequency components (i.e. the higher order
Fourier descriptors) correspond to details of the contour.

Figure 3(b) indicates the variations in shape as a consequence
of a stochastic Fourier descriptor model. As opposed to the
B-spline case the Fourier descriptors can result in intersecting
loops which cannot be used for the reconstruction of the objects
under consideration in ECT.

4. Particle filter

According to the Bayesian approach the estimate of the
unknown inner state x; of a dynamic system at any time k
is based on the totality of information present up to time k
which is available through the measurements z;,i = 1, ...,k
corresponding to equation (4). In the following, a brief
introduction to PFs is given; a detailed description can be
found, for example, in [21-23]. Whereas for the KF the state
is modelled using a multi-variate Gaussian distribution, the PF
numerically approximates the potentially multimodal density
of the state vector using the principle of stochastic sampling:
a set of N points—the samples or particles x""—randomly
chosen from the state-space and their respective weights w ™
can be used to represent a probability density function:

L&) = (X" w™y, (10)

This approximation of the true density can be used to
estimate moments such as the mean value. Assuming that
the underlying process represents a first-order Markov chain,
the state transition in equation (3) can be reformulated
as conditional density p(Xp|Xp—1). Furthermore, the
measurement model in equation (4) is expressed by p(z;|Xx)
assuming independence between consecutive measurements.
The PF keeps track of the current state estimate represented
by p(xx|Zy), where Zy = {z,,...,z;} denotes the history
of measurements acquired up to time step k. In a recursive
formulation, the PF performs two basic operations.

..... N-

Prediction. At each time step the transition model is applied
to obtain a state prediction p(xx|Zj—;) at time k using the
Chapman—Kolmogorov equation

p(xk|Zk71):/P(Xk|xk—1)p(xk—l|Zk—1)dxk71~ (11
Q

Numerically, the conditional density p(xy|Z;) is represented
using the sample set § = {x", w{™} where m = 1,..., N.
As indicated in figure 4, the prediction step comprises a
deterministic drift and a stochastic diffusion process. The
number of samples used to represent the state density is crucial
for real-time operation. In general a trade-off between the
quality of approximation and processing time is required. In
order to maintain a good approximation of the true density
using as few particles as possible a resampling step is
added to the PF algorithm. While resampling is a necessity
it also introduces considerable computational costs to the
algorithm. Among different resampling strategies reported
in the literature (see, e.g., [24-26] for a review) we apply
the computationally efficient and numerically robust residual
resampling [27]. The weights of the distinct samples in
figure 4 are denoted by their respective size. Note that for the
measurement step no weights are taken into account. It is only
during the measurement that the samples obtain new weights
based on their amplification or attenuation by the measurement
model.
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Figure 4. Principle of particle filtering. The old sample set at k — 1 approximates the previous state density p(X;_1|Z—1). The sizes of the
particles reflect the weights that are assigned to them. After resampling and propagation through the state model, all particles have the same
weights. However, samples with small weights have been removed, while samples with large weights have been replicated. In the
measurement step, the measurement model p(z;|x;) assigns new weights to each sample.

Measurement update. The second step within the PF iteration

uses the measurement model p(z|x;) to estimate the posterior

density p(xx|Zi) by applying Bayes’ theorem:

P(Zi|X) p(Xk | Zg—1)
p(Zy)

In our application the measurement process is modelled by
means of a multi-variate Gaussian distribution

pzIx) & expl—3(V,, —2)" 7'V, — 20}, (13)

where p(z;|x;) denotes a likelihood function and V,, is the
vector of measured electrode potentials. This assumption
which greatly simplifies the measurement update has to be
validated for the given measurement set-up (see section 6).
The output of the PF algorithm is a set of samples which is used
to approximate the posterior distribution. From these samples,
any point estimate of the system state such as the maximum
a posteriori estimate, the maximum likelihood estimate, the
median and the expected value of the state can be calculated.
In this work, the expected value given by

p(X|Zy) = (12)

N
% = E(xilZi} ~ ) w"x" (14)
m=1
is chosen to characterize the output of the PF. As a main
advantage of the PF over the EKF the resultant posterior
distribution gives information about confidence intervals of the
calculated estimates in the case of non-Gaussian state and noise
distributions as well as summary statistics about parameters of
interest.

5. Validation of the method

In order to validate the proposed approach two different
simulation experiments on two-phase flow fields are
performed. The simulations were carried out using a B-spline
representation with a circular reference contour and a five
dof shape vector. For the Fourier descriptor approximation
2(2N + 1) = 10 Fourier coefficients were used. The state
transition (3) is assumed to be a random walk process, i.e. the
change between two consecutive states is only influenced by
stochastic diffusion—the process noise. In order to improve
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(a) Iteration 2

(b) Tteration 4

Figure 5. Evolution of the PF with B-spline contour model for a gas
bubble immersed in oil. The plots show all particles (thin grey
contours) and the expectation of the posterior state density (bold
black contour) in comparison to the true bubble (bold dashed
contour) after iterations 2 and 4, respectively.

the convergence behaviour of the PF the state vector X is

segmented into the translation X7 and the deformation part xp

where different process noise levels for each part are assumed,
T

X = (xg,xD)T. (15)

A standard deviation of 0.5 x 1073 is assumed for the
process noise which corresponds to the translational part and a
standard deviation of 2 x 10~ is prescribed for the noise level
which is associated with the deformation part of the dynamic
contour. The standard deviation of the measurement noise
for the numerical experiments is set to 2 x 107> V. The first
test case illustrates the convergence behaviour of the applied
PF when the B-spline representation is used to describe the
boundaries of a gas bubble (¢, = 1) in o0il (¢, = 2). The PF is
initialized with 16 particles of circular shape that are uniformly
distributed over the cross-section of the pipe. The reference
object, i.e. the gas bubble to be located, has an elliptical
form. It is indicated as a bold dashed contour in figure 5.
The grey contours show the single particles, while the bold
black object stems from the expectation of the posterior state
density. The situation after the second iteration of the PF is
depicted in figure 5(a), while figure 5(b) shows the state after
iteration 4. After only four iterations almost all particles are
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Figure 6. Estimation result of the PF with B-spline contour representation after 25 iterations. The estimated shape (bold line) is almost
congruent with the reference shape (dashed line). The chart on the right illustrates the progression of the estimated centre coordinates where

the dashed line corresponds to the reference position (x = y = 0.01 m)

. The centre of the pipe is the point of origin.

(a) Iteration 2 (b) Tteration 30

Figure 7. Contour estimates of the PF with B-spline contour model
for a triangle-like gas bubble at different iterations. The dashed
contour indicates the true bubble shape. The used model does not
allow an exact match of the true shape.

contracted to the right position. However, the size and the
shape still have to be adjusted. The estimation result after 25
iterations is plotted in figure 6(a). There are still particles with
wrong position, size and shape originating from the stochastic
sampling, but the associated weights of these particles are
low. The expectation of the state density approximates the
true bubble reasonably well. The progression of the estimated
centre is illustrated in figure 6(b). It can be seen that after
about five iterations the estimate for the centre is within a
tolerance band where it remains over the iterations. The
second experiment consists of a gas bubble resembling a
triangular shaped gas inclusion in oil, shown as bold dashed
contour in figure 7. Such a shape cannot be emulated with
splines based on an affine transformation of a circular reference
shape, as used in our work. The performance of the PF with
spline-based contour model is illustrated in figure 7, where
the expectations of the posterior distribution at two different
iterations are compared with the true bubble. The filter is
initialized with 30 particles to allow for a better coverage of
the true object shape. The filter estimates after 2 and 30
iterations are shown in the figure. Similar to the first example
shown in figure 5 the true object position can be reached after
a few filter iterations, while a reasonable approximation of the
reference shape takes more iterations. The estimate of iteration

(a) Iteration 2 (b) Tteration 30

Figure 8. Contour estimates of the PF with Fourier coefficient
contour model for a triangle-like gas bubble at different iterations.
The dashed contour indicates the true bubble shape. The used model
would allow us to exactly match the true shape, but it cannot be
achieved due to the ill-posedness of the problem.

30 is depicted in figure 7(b), where the shape of the spline
contour is an ellipsoidal approximation of the true bubble. A
better match is not achievable with the used contour model.
However, the filter with B-spline model is able to produce
robust approximations of complex contours due to the low
number of hidden states. The performance of the PF with
a second-order Fourier descriptor shape model on the same
reconstruction problem is illustrated in figure 8. The evolution
of the shape estimates is very similar to that of the spline-based
filter. In contrast to the spline model, the Fourier descriptor
model is in principle capable of exactly matching the reference
contour. However, the ECT problem is ill-posed, i.e. the
sensitivity of the measured electrode potentials with respect
to higher order contour details is very poor. Therefore the
power of the Fourier descriptor model cannot be exploited in
the present application. As can be seen from figure 8(b), the
shape reconstruction is qualitatively similar to the spline-based
results. To further study the correlation between the sensitivity
of the forward problem and the reconstruction quality, the PF
with Fourier descriptors is applied to a third test case. The
reference bubble is a triangle with sharp edges and a dent on
one side. The edges cannot be reconstructed if a gas bubble
with a relative permittivity &, = 1 is assumed. However, in
the performed experiment the bubble is assumed to consist of
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Figure 9. Mean squared deviation of the simulated electrode
potentials for a small disturbance of varying permittivity in the
centre of the pipe in comparison to the homogeneous case with a
constant relative permittivity of 1. The sensitivity of the electrode
potentials initially increases with rising permittivity, but strong
saturation occurs for relative permittivity values above 10.

(a) Tteration 2

(b) Iteration 40

Figure 10. Contour estimates of the PF with Fourier contour model
for a triangle-like water bubble with sharp edges at different
iterations. The dashed contour indicates the true shape. Due to the
high permittivity contrast between water and oil the details of the
true contour can be better matched than for gas bubbles.

water with e, = 80. This results in a stronger contrast between
the bubble and the background medium and therefore in a
higher sensitivity of the forward problem to fine details in the
problem region. Figure 9 gives an indication of the sensitivity
of the electrode potentials to a small inclusion as a function
of the permittivity contrast of the perturbation. A circular
inclusion with a diameter of 5 mm placed in the centre of the
pipe and with a varying relative permittivity has been simulated
against a background with ¢, = 1. The figure shows the mean
squared deviation of the simulated electrode potentials with
respect to the unperturbed case (empty pipe). The deviation
rises steeply with increasing permittivity. However, the curve
quickly flattens above a relative permittivity of 10. The
strongest contrast with respect to the electrode potentials can
be attained with permittivities higher than 40. It is rather
low in comparison for small permittivities. The mean squared
deviation at &, = 2, for example, is only 12% of the value
achievable with &, = 80. The resultant filter performance in
the high-contrast case is illustrated in figure 10. The edges
and the straight lines of the reference contour can be matched
much better than for gas bubbles.
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6. Measurement set-up

6.1. General description

Figure 11 illustrates the ECT measurement set-up. Our ECT
sensor consists of a PVC pipe with a diameter of 75 mm with
16 electrodes mounted equidistantly around the circumference.
In order to apply a two-dimensional imaging technique and to
overcome field inhomogeneities at the edges of electrodes,
the electrodes must have a certain length compared to their
width. In fact, the electrodes are designed to a size of
70 mmx 7.3 mm. A grounded copper shielding is used to avoid
stray capacitances. To achieve a good overall sensitivity within
the entire cross-section of the pipe, a predefined sequence
of excitation voltages is applied to the electrodes. Each
measurement cycle consists of eight individual measurements.
During each such measurement two electrodes are active
(i.e. driven to Uy = =£2.5 V) while the remaining 14
electrodes are floating and switched to receiving mode. The
resulting potentials on the receiving electrodes depend on the
material distribution, i.e. the dielectric permittivities, inside
the pipe. The signals captured by each receiving electrode
are amplified, bandpass filtered, and passed on to a peak
detector. Prior to A/D conversion the logarithm of each
signal is determined in the analogue domain ensuring a highly
dynamic signal acquisition and thus the coverage of a wide
range of permittivities. The control of the sensor is performed
by adSPACE prototyping system. A set of measured potentials
which is used to reconstruct a two-dimensional permittivity
distribution of the cross-section of the pipe is depicted in
figure 12.

6.2. Measurement noise analysis

Both the sensor front-end and the subsequent signal processing
introduce noise sources to the measurement process. As
indicated in section 4 the particle filter updates can be
simplified based on the assumption of Gaussian measurement
likelihoods.  In order to validate this assumption the
distribution of the measured potentials has been examined
based on N = 50000 repeated measurements for an empty
pipe. Figure 13 depicts the normalized quantile plot and
the histogram of the received potential of electrode 9. This
particular electrode is in good agreement with the Gaussian
noise assumption. However, imperfections in the hardware
set-up such as signal coupling (crosstalk between transmitter
and receiver) between electrodes and saturation effects in the
analogue front-end result in potential distributions that deviate
from the Gaussian assumption. An example measured at
electrode 12 is shown in figure 14. In both cases electrodes
3 and 13 have been used as transmitting electrodes. Similar
to electrode 12 deviations from the Gaussian distribution have
been carried out for electrodes 2, 4 and 11. From these results
one can gather that there is obviously crosstalk between the
transmitting electrode and its adjacent electrodes yielding a
one-sided longer tailed Gaussian distribution towards smaller
amplitudes of the electric potential. This asymmetry gives
rise to a bias of the measured electric potentials at adjacent
electrodes. However, the small amplitude of the bias error
does not affect the convergence behaviour of the reconstruction
algorithm (cf section 7).
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Figure 11. Block diagram of the measurement set-up consisting of the ECT sensor, a control unit and the sensor signal processing to obtain
images of the cross-sectional permittivity distribution of the pipe based on particle filtering.
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Figure 13. Normalized quantile plot (top) and histogram (bottom)
of the potentials measured at electrode 9 during N = 50 000
repeated measurements. The potential distribution meets the
Gaussian assumption.

In summary, the majority of the measured electrode
potentials exhibit noise properties that can be properly
modelled by additive white Gaussian noise as assumed by
our PF implementation. Deviations from this assumption are
minor and still result in satisfactory convergence properties of
the reconstruction algorithm.
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Figure 14. Distribution of the N = 50 000 measured potentials of
electrode 12. Due to crosstalk between transmitting electrode 13
and adjacent electrodes (12 and 14) a bias is introduced and hence
the distribution deviates from the Gaussian assumption which is
clearly visible in the normalized quantile plot (top) and the
asymmetric histogram of the potentials (bottom).

7. Results with measured data

In order to present the applicability of the proposed approach
for measured data the following two static experiments have
been performed:

e PVC rod (¢, =~ 3.5) with a diameter of 20 mm placed
inside the air-filled pipe (cf figure 15).

e Half of a 50 mm PVC rod (¢, & 3.5) placed inside the
air-filled pipe (cf figure 16).

The first experiment leads to a circle in the case of the cross-
sectional imaging technique while the second experiment
yields a semi-circle. Based on the two measured data sets
the proposed PF approach and the EKF are applied to invert
the data given measurement noise. Both algorithms are
subsequently compared in terms of complexity, computation
time and efficiency. The implementation of an EKF for
ECT in order to estimate phase boundaries is discussed in
[28]. Figure 15(b) depicts the reconstruction results for
both algorithms. The bold black line denotes the estimated
contour after 20 iterations using the PF approach while the
dashed grey shape corresponds to the result of the EKF after
60 iterations. Both reconstruction algorithms use the B-
spline state-space representation of the closed contour. For

37



D Watzenig et al

()

Figure 15. Result of the PF- and the EKF-based image
reconstruction using the B-spline contour model for the PVC rod in
air. (a) Top view of the sensor. (b) Reconstructed images using the
B-spline model. The black bold contour indicates the result of the
PF after 20 iterations, the dashed grey contour denotes the result of
the EKF-based reconstruction after 60 iterations. Applying the
Fourier contour model yields the same result.

()

Figure 16. Results of the PF- and the EKF-based image
reconstruction approaches. (a) Top view of the sensor.

(b) Reconstructed images. The black bold contour represents the
estimated contour using the PF approach while the dashed grey
shape corresponds to the estimated contour using the EKF. Both
reconstruction approaches are based on the Fourier descriptor
contour model. In addition, the PF-based contour estimation using
the B-spline model is depicted (bold light grey shape). The centre of
mass is reconstructed reasonably well while the reconstruction of
the contour fails due to the restricted class of possible deformations
of the B-spline model.

the circular PVC inclusion both state-space approaches—
the Fourier descriptors and the B-spline model—Ilead to the
same result. The second experiment treats a more complex
shape. Due to the fact that the shape matrix is restricted to
a certain class of deformations, namely translation, rotation,
scaling and shear, the B-spline model is not able to match
the semi-circle properly. On the other hand, the truncated
Fourier model of order 10 fits the PVC object in both position
and shape very well. It takes 60 iterations for the EKF
and 25 iterations for the PF to estimate the contour of the
unknown object. Figure 16(b) depicts the estimation results
for both approaches. In both cases the Fourier contour model
is applied. The bold black shape is associated with the PF
while the dashed grey contour corresponds to the estimation
result using the EKF. In addition, the reconstruction result
using the B-spline model in combination with the PF is
presented. As a matter of fact, the contour model is not
able to estimate the semi-circle-shaped contour. However,
the centre of mass is reconstructed reasonably well. Table 1
summarizes the differences between EKF and PF in terms of
required iterations, complexity and computation time. The
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Table 1. EKF and PF compared for one complete inversion using
measured data.

Comparable quantities EKF PF
Number of iterations i 60 20
Number of particles n - 20
Solved forward problems 60 i xn =400

Number of calculated Jacobians 60 -
Computation time 47.047s 147.375s

EKF solves the forward map once in each iteration while
the PF requires the solution of i x n forward problems in
order to invert the measured data set. Consequently, the
contour estimation using the PF takes three times longer than
the application of an EKF. The estimation results are carried
out on a personal computer (AMD Athlon 1.73 GHz, 1 GB
RAM). In the present work, the EKF is initialized with a
circular-shaped contour in the centre of the pipe. If the initial
state is far away from the target the EKF tends to diverge
even if the number of iterations is increased. The PF is
initialized with 20 particles which are uniformly distributed
throughout the cross-section of the pipe. As discussed in
section 5 it takes about five iterations for the PF to concentrate
the involved particles around the target. Furthermore, there
is no need to calculate the Jacobian—the derivatives of the
boundary elements with respect to their normal directions.
Consequently, PFs are applicable for highly nonlinear forward
maps or in cases where singularities occur in the Jacobian.
However, the main advantage of applying a PF to solve the
inverse ECT problem is that the solution is a probability
distribution—the posterior distribution—rather than a single
point estimate. From this posterior distribution any estimates
such as the median and the maximum a posteriori estimate for
the unknown parameters can be calculated and their reliability
by considering confidence intervals and marginal densities can
be investigated.

Table 2 summarizes different quantities of interest such
as estimated area and circumference of the target and
obtained void fraction averaged over five independent image
reconstructions in order to discuss the efficiency of the PF
compared to the EKF. Both reconstruction algorithms use
the Fourier descriptor model to represent a closed contour
in the state-space. Due to the absence of a reference
measurement system the position of the targets cannot be
used as a reconstruction quality parameter. The estimation
results for the simple circular contour are quite similar between
EKF and PF. Once the EKF and the PF are in equilibrium,
i.e. the difference between measured and calculated electric
potentials is below a certain level (<10 mV), the collected
data for area are averaged. PF-based estimated area and
estimated circumference are closer to the true values compared
to the EKF yielding better results in void fraction. The
relative error in void fraction is reported to be 3.5 times
smaller than that using the EKF. However, due to the property
of the PF to explore the state-space in each iteration using
20 particles more stochastic variability is incorporated into the
estimation process yielding improved results for the complex-
shaped contour. In fact, the relative error in void fraction is
about 0.3% which is 6.5 times smaller than the remaining error
using the EKF.
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Table 2. Reconstruction results of EKF and PF compared.

Quantities True values Results by EKF  Results by PF
Area of circle (m?) 3.1416 x 107*  3.262 x 107* 3.109 x 10~*
Circumference of circle (m) 0.0628 0.0714 0.0672

Void fraction of circle (%) 8.1633 8.4761 8.0786
Relative error in void fraction of circle (%) — 3.8327 1.0375

Area of semi-circle (m?) 9.8175 x 10* 1.0 x 1073 9.7895 x 10~
Circumference of semi-circle (m) 0.1285 0.1187 0.1164

Void fraction of semi-circle (%) 25.5102 25.9845 25.4374
Relative error in void fraction of semi-circle (%) — 1.8592 0.2852

Table 3. Posterior variability for the first experiment.

Quantities Mean Standard deviation
x-coordinate of

centre of mass (m)  8.000 x 10~ 1.997 x 10~*
y-coordinate of

centre of mass (m)  1.328 x 1072 1.249 x 10~*
Area (m?) 2.269 x 107 6.660 x 1077
Circumference (m) 5.498 x 1072 7.948 x 107

Table 4. Posterior variability for the second experiment.

Quantities Mean Standard deviation
x-coordinate of

centre of mass (m) 4.883 x 10~ 1.463 x 10~
y-coordinate of

centre of mass (m)  9.691 x 1073 4.318 x 107
Area (m?) 9.054 x 107*  2.263 x 107
Circumference (m) 1.172 x 1071 1.023 x 1073

An important feature of particle filtering is the possibility
of calculating different statistics from the resultant sample set.
The posterior variability in shape, position, circumference
and estimated area at iteration 20 for the first experiment is
summarized in table 3. Table 4 shows summary statistics
for the second experiment after iteration 25 considering
20 particles.

8. Conclusions

In this contribution, a novel approach to represent closed
contours in state-space for two-phase fields in ECT is
proposed. The boundary of the object to be located is
modelled by means of a parametrized curve. Two different
approaches—a description with B-splines and a Fourier
representation—are investigated and compared. In order
to take measurement uncertainties into account the inverse
problem is recast in the form of statistical inference and solved
numerically by means of particle filtering. Regularization
is implicitly achieved which can be directly interpreted in
the object domain as it relates to smooth contours. Due to
the restriction to a certain class of transformations in shape-
space B-splines are only applicable to problems where the
reference contour and its allowed geometric deformations
are known. In contrast to B-spline contour models Fourier
descriptors are able to model more complex contours. While
the B-spline model fails to properly model shapes containing
higher frequency parts the application of a second-order
Fourier model enables the reconstruction of corners and

indentations within such shapes. The proposed PF approach
to solve the nonlinear inverse ECT problem has been validated
for both contour models using simulated and measured data.
By setting up two different static experiments corresponding
to a circular and a semi-circular inclusion with a known
constant and homogeneous permittivity in an air-filled pipe
the applicability of the contour models has been investigated.
The PF approach has been compared to an EKF reconstruction
algorithm in terms of complexity, computation time and
accuracy of the obtained estimates. As a result, the EKF
is about three times faster than the PF, however, the estimated
parameters such as area, circumference and void fraction are
closer to their true values using the PF due to the stochastic
variability incorporated by the PF algorithm.

Since this first approach is based only on static
experiments, future work will focus on simultaneously
tracking a moving object inside the pipe and recovering its
shape. Furthermore, the reconstruction of multiple inclusions
and the extension of the state-space vector in order to estimate
shape parameters as well as absolute permittivity values within
two-phase flow scenarios should be addressed.
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