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Abstract—Measurement systems perform a quantitative com-
parison of an unknown physical quantity with a known reference.
Vision sensors used in metrological applications provide a non-
intrusive and non-invasive way to estimate geometric measurands
and are, therefore, well suited for many industrial applications.
In recent years the availability of high-resolution sensors and
adequate processing power has led to an increased importance of
vision-based measurement applications. This paper is concerned
with the evaluation of measurement uncertainties in vision-
based applications. In particular, we discuss the applicability of
Gaussian uncertainties in vision-based metrological applications
and present a frame-work for the uncertainty propagation
of Gaussian quantities. The frame-work includes a guideline
to model the measurement process based on the cause-effect
diagram using simple graphical building blocks.

I. INTRODUCTION

Efforts have been undertaken in metrology in order to

develop a general frame-work that can be used to identify
the quantity of the measurand and to provide means to judge
on the quality of this result. These developments led to the
introduction of the Guide to the Expression of Uncertainty in
Measurement (GUM, [1]). The foremost aim of the GUM
developments was to provide a recommendation for the treat-
ment of measurement uncertainty that is universal, internally
consistent, and transferable [1].
The standard GUM extensively uses the concept of degrees
of freedom to fuse information from different sources. This
concept is a constant point of criticism in the literature
(cf. Lira [2]). In particular, the fusion of quantities derived
using statistical methods (e.g. averaging over a number of
measurements) with quantities denoting an expert opinion
(e.g. prior knowledge about interval boundaries) are not satis-
factorily covered by the GUM proposal. Weise and Woger [3]
and later Kacker and Jones [4] resort to the consistent use
of Bayesian statistics in the context of uncertainty com-
putations. Both approaches remove an inconsistency in the
GUM interpretation of coverage probabilities. Kacker and
Jones [4] provide a modified set of rules based on the GUM
recommendations that are built upon the Taylor approximation
of the measurement equation. Their proposed modifications
cover the propagation of first and second order moments
neglecting modifications of the underlying distributions. Weise
and Woger [3] instead propagate distributions providing a
frame-work that is more generally applicable.
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Different approaches to the treatment of uncertainty in the
domain of computer vision have been reported in the litera-
ture [5]-[8]. Using the central limit theorem (CLT, cf. e.g. [9])
as a key argument, the use of the Gaussian assumption is
suggested by many researchers. Heuel [10] and Criminisi [11]
show that Gaussian densities can be applied to represent
homogeneous geometric entities. In an earlier work [12] we
apply first order propagation of Gaussian quantities to a
vision-based tracking application. Based on the exclusive use
of Gaussian densities to describe both physical quantities
and prior information, the Bayesian extensions of the GUM
document are easily implemented in analytic form.

Sommer and Siebert [13] propose a systematic solution to
the model building problem in metrology. The authors use
three building blocks to identify and visualise influencing
factors and uncertainty contributions. Based on the cause-
and-effect approach, Parameter Sources, Transmission Units,
and Indicating Units are employed to obtain the measurement
equation. This equation is then reversed to obtain the GUM-
compliant model equation. Finally, the measurement uncer-
tainty of the unknown quantity can be derived.

In this work we formulate a frame-work for the prop-
agation of Gaussian uncertainties in the context of vision-
based metrology. All processing steps can be carried out
analytically, thus avoiding any simulation-based computations
with the potential lack of real-time performance. The frame-
work is consistent with the Bayesian extensions to the standard
GUM. Using a number of simple building blocks we propose
simple modelling steps to analytically derive the measurement
uncertainty in vision-based applications explicitly covering
inter-parameter dependencies.

II. UNCERTAINTY IN VISION-BASED METROLOGY

Our discussion follows the flow of information within
a typical vision-based metrology application as outlined in
Figure 1: The camera maps the scene onto its image plane
and acquires a 2D intensity profile Z. A feature detector is
then used to identify features f (e.g. circular blobs) and to
estimate their respective parameters (e.g. blob area and centre
of gravity). These parameters are then being further processed
by means of a transformation in order to obtain the best
estimate of the unknown parameter 6. Using this example we
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Fig. 1. Components of a typical vision-based measurement system. The best
estimate of the unknown quantity @ is obtained given an 2D intensity profile
7 acquired by the sensor.

identify the following requirements on a frame-work for the
treatment of uncertainties:

1) Treatment of multivariate measurands
2) General applicability to geometric entities
3) Common handling of Type A and Type B uncertainties
4) Propagation through different processing blocks
5) Real-time performance
6) Handling of ‘single measurement’ scenarios
7) Proper treatment of statistical dependencies
Combining the ideas of uncertain projective geometry
(cf. Heuel [10]) with the GUM/Bayes approach to the treat-
ment of measurement uncertainty allows us to simplify and
unify the modelling process for problems in geometric metrol-
ogy. In summary our approach covers the following situations:
« Homogeneous entities represented by Gaussian random
vectors. For example, a homogeneous point in 2D is given
by
x ~ N (X, Xxx)- (1

e Mapping of homogeneous entities including the prop-
agation of parameter uncertainties. Mapping functions
include: geometric transformations such as translations,
rotations, and perspective mappings. Further, geometric
construction (e.g. point results from intersecting two
lines) and Euclidean and spherical normalisation are
covered.

o Measurement updates of geometric entities with prior
knowledge based on Gaussian random vectors.

o Correlations between geometric entities.

A. Nomenclature

In the subsequent modelling process, we will use a unified
nomenclature which assigns underlined symbols to quantities
in a metrological sense. Their corresponding non-underlined
version is used to denote realisations of the quantity. If it is
clear from the context, we will also use the non-underlined
symbols to denote the best estimates of the corresponding
quantities. Thus, ¢ is a scalar quantity and c is the corre-
sponding realisation or best estimate. We use u, to denote the
standard uncertainty of the best estimate and U, as expanded
uncertainty associated to a given coverage factor k. Similarly,
a vector-valued quantity is referred to as x. The best estimate
of x is given by x. The uncertainty matrix Ux of x corresponds
to the covariance matrix > xx of the quantity. It is now straight

forward to make explicit the correlation between two different
quantities m and n by means of their cross-covariance matrix
> mn. The multivariate equivalent to the expanded uncertainty
is obtained by finding constant density curves of the PDF
which correspond to a given coverage probability p. For
2D Gaussian quantities these curves are ellipses of general
orientation.

B. Steps of the Modelling Process

The model equation expresses the functional relationship be-
tween the measurand Y and the input quantities X1, ..., Xn.
However, the structure of the model equation usually does
not directly reflect the processing steps involved in the mea-
surement process. If we assume that the measurand Y is
determined by reading the result of the quantity X3, the model
equation can be reformulated such that X3 is given by

X3:fM(lel7X23X47'-'7XN)7 (2)

which is referred to as the measurement equation. Sommer
and Siebert [13] suggest to base the model building process on
this measurement equation as it physically relates the cause,
i.e. the measurand Y, to an effect, i.e. the reading X3. We
propose to perform the following steps in order to evaluate the
measurement uncertainty of a vision-based metrology system
using this model equation:

Description of the Measurement Task: A complete de-
scription of the measurement task is the most important step
of the modelling process. This description includes the input
quantities and — most importantly — the measurand as well as
their mutual statistical dependencies.

Cause-Effect Relations: All quantities included in the
above description must be brought into a form following the
idea of the cause-effect approach. It is helpful to visualise
these relations using a simple graph [13].

Measurement Model: In the next step, the measurement
model is derived using cause-effect relations identified in
the previous modelling step. The measurement model now
relates indications or observations made by the sensor to the
measurand. In most cases, it is not necessary to develop the
measurement model in full detail. Rather, a coarse overview
of the processing steps involved in the measurement process
is sufficient as the next step in the modelling procedure aims
at a fully qualified uncertainty model.

Model Equation: The model equation relates all observa-
tions and other input quantities to the measurand. This core
equation of the metrological system includes all quantities
and their respective uncertainties. This step can be simplified
by developing a graphical model. Due to the fact that all
geometric quantities in our framework are represented by
Gaussian random variables and linear transformations thereof
are again Gaussian random variables, the graphical model is
composed of a small number of building blocks:

e Source: Uncertain quantity characterised by its best es-
timate and the uncertainty matrix. The source block is
frequently used to represent prior information.
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o Transformation using constant parameters: Simple trans-
formations such as scaling functions are covered by this
more general class of transformations. The uncertainty of
the output quantity is only caused by the uncertainty of
the input quantity.

o Transformation of uncorrelated quantities: Transforma-
tions with stochastic parameters extend the previous
building block by the ability to model uncertainty contri-
butions caused by uncertainties of the parameters. Exam-
ples for this class of transformations are geometric con-
structions such as the intersection of two lines resulting
in an uncertain point. The lack of correlation between
the input quantities is depicted by input quantities that
enter the block on different sides or equivalently by small
rectangles attached to the input quantities denoting the
range of correlated quantities.

o Transformation of correlated quantities: As opposed to the
previous class of transformations, this block explicitly
covers correlations between quantities. Examples of this
class of transformations are geometric constructions using
entities which are based on a common source of uncer-
tainty. Graphically, correlation is indicated by grouping
all correlated input quantities onto the same side of the
block.

o Bayesian update: This block performs the Bayesian up-
date for input quantities. Prior knowledge is provided by
means of Gaussian random variables. Example applica-
tions for this building block include the update step of
recursive Bayesian filters (e.g. Kalman filter) or Bayesian
feature detectors.

In summary, the components of the graphical model and
their respective laws for the propagation of uncertainties are
shown in Table I. Note that in contrast to [13], no indication
block is used in our context. In most vision-based metrol-
ogy applications digital indications with quantisation steps
associated to the resolution of the underlying number format
are used. As this resolution is usually much higher than the
uncertainties under consideration, we skip this explicit block
from the model. Instead, we explicitly visualise statistical
dependencies between quantities.

C. Limitations of the Approach

The transformation of Gaussian quantities results in another
Gaussian quantity only for linear transformations. As soon as
the transformation exhibits a non-linear contribution, the re-
sultant quantity starts to deviate from the Gaussian assumption
with the degree of deviation depending on the degree of non-
linearity introduced by the transformation function. From the
metrological point of view, these deviation from the Gaussian
are of concern for the following reasons:

1) Non-linearities cause the PDF of the output quantity to
deviate from the Gaussian shape. An example of a non-
linear transformation function frequently encountered in
vision-based metrological applications is the correction
for lens-distortions.

2) The analytic derivations of Bayes’ law are only appli-
cable to Gaussian quantities. Any deviation from this
Gaussian assumption will lead to approximate solutions
and, therefore, to inaccurate uncertainty estimates.

3) Non-linearities introduce a bias of the best estimate of
the output quantity. The bias generally is a function of
the best estimates of the input quantities as well as of
the input uncertainties.

These effects usually strongly dependent on the degree of
correlation between the input quantities. The impact on the
determination of the measurement uncertainties in such situa-
tions is shown in the next section.

III. EXAMPLES

In this section we present two examples to illustrate the
modelling process and to show the limitations of the linear
propagation of Gaussian uncertainties. We start with the de-
velopment of a graphical model of a vision-based measure-
ment application and report about the impact of a neglected
parameter correlation in a simple transformation function.

A. 2D Displacement Measurement

We derive the uncertainty model of a 2D displacement
measurement system which reflects the general structure of
a vision-based metrological system as shown in Figure 1. The
measurement system is part of a creep test apparatus used to
obtain material parameters of polymer samples under specific
conditions. The experimental setup and the measurement sys-
tem are explained in more detail in Brandner et al. [14]. Our
focus in this section is to justify the particular uncertainty
model applied for this measurement system.

Figure 2 depicts the geometric sketch of the displacement
system. A single camera is used to acquire an image of a
scene comprising a planar reference target and a planar sample
target. These targets each consists of circular blob features
manufactured into a stainless steel sheet by laser marking.
By construction of the setup, the two targets are coplanar so
that a homography H can be used to relate the image plane
of the sensor Iljye to the (2 = 0)-plane which holds both
targets. During the measurement process a single image is used
to simultaneously obtain image points corresponding to the
reference target and the sample target. Based on these image
points, the sensor estimates the parameters of the homography
which are then used to reconstruct the 2D displacement of the
sample target with respect to the reference target.

Uncertainty Propagation: For this specific measurement ap-
plication we note that each image point is mapped by the same
sensor and detected under the same illumination conditions
of the scene. The common sensor calibration and detection
conditions introduce a correlation between the points used to
estimate the homography and the points which are transformed
using the estimated homography.

Figure 3 shows the graphical model relating the input
quantities (i.e. the image centres of the blobs) to the mea-
surand (i.e. the position ¢ in metric coordinates). This model
graphically represents the measurement equation. Note that
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TABLE I

BUILDING BLOCKS OF THE GRAPHICAL MODEL. UNCERTAINTY CONTRIBUTIONS ARE EXPRESSED BY MEANS OF THEIR RESPECTIVE UNCERTAINTY
MATRICES. THE TRANSFORMATION FUNCTIONS g() ARE LINEARISED TO THE FIRST ORDER USING THEIR RESPECTIVE JACOBIAN MATRICES Jg.
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Fig. 3. Uncertainty model of the 2D displacement measurement system. The simultaneous estimation and application of the homography parameters require

the proper handling of correlations.
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Fig. 2. Outline of the geometry of a single camera/target pair. This single
image acquisition setup processes the same image twice: First, features on
the reference target are used to estimate the transformation parameters H.
Second, these parameters are applied to features on the sample target in order
to estimate the displacement of this target.

we explicitly visualise parameter correlations which is shown
by the following two examples: First, the estimation of the
homography parameters is performed using the direct linear
transform algorithm (DLT, [15]). This algorithm takes as input
a sequence of image points, g4 and their corresponding model
points 7. While the image points are correlated due to their
common acquisition conditions, no dependency between the
image points and their models is considered in this model. This
is denoted by the two rectangles within the DLT block restrict-
ing correlations to appear within the rectangle only. Second,
the final homography parameters are used to map the image
point p, in order to obtain t;. The common acquisition of
pa and gg gives rise to a inter-parameter correlation between
the input parameters to the homography block. The rectangle
corresponding to the range of correlated input quantities is
now extended to all quantities entering the block on the right
— and, consequently, omitted for a clear representation.

B. Product of Gaussian Quantities

In the subsequent paragraphs we use the product of two
Gaussian random variables to discuss the limitations of the
linear propagation of Gaussian uncertainties and the effects of
neglecting parameter correlations in more detail. We consider
the simple example of a function g(-) which transforms two
Gaussian input quantities into their product, i.e.

Z=g(X1,X5) = X1 X5. 3)

We denote the mean values of the input quantities by ux,
and px,, the standard uncertainties by uy, and uy, and the
correlation coefficient by p. Using these abbreviations the joint
density characterising the input quantities is given by

1 —H (X px )T (X )T
fx(X)= — —— ¢ 2 &) Txx(Xoux
- 2my/[Ex x|

where the vectors X = (X1, X0)" and px = (ux,,px,)"
denote the vector valued input quantity and its mean, respec-
tively. The uncertainty matrix ¥ x x expands to

2
Yxx = ( Ux, pUX, UX, >
= . .
pUX,UX, Ux,

“4)

(&)

We are now interested in the uncertainty of the resultant quan-
tity Z as well as in any bias introduced by the transformation
function g(-). We observe that the transformation is bilinear in
the input quantities. As opposed to strictly linear conditions,
the density of the resultant quantity Z deviates from the
Gaussian density depending on the means and uncertainties of
X. The bias is defined as the difference between the estimated
mean and the undisturbed result of the transformation function.
Thus, we obtain the bias of Z as

b(Z) = E{Z} - Q(Mzuﬂéz) (6)

Analytically, the first order moment of the quantity Z is given
by

E{Z} = px, pix, + pux, ux,, ©)
and, consequently, the bias is given by
b(Z) = pux, UX,, ®)

indicating a linear dependency on both the correlation coeffi-
cient an the product of the contributing standard uncertainties.
Assuming a common relative standard uncertainty of both
input quantities, we directly observe the quadratic dependency
between b(Z) and the product of the contributing input
uncertainties. The amplification property of the correlation
coefficient is visualised in Figure 4. Using relative standard
uncertainties of the input quantities, i.e.
2.€}

UX relative = s
20.¢1

(©))
we find a general upper bound for the bias of g(-) over the

full range of correlation coefficients by

bmax (Z) = UX, relativel X o relative d X 4 X 5 - (10)
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Fig. 5. Estimated relative output standard uncertainty of the bilinear model

Z = X1X2 as afunction of the relative input standard uncertainty. Again the
correlation coefficient significantly impacts on the uncertainty of the result.

The standard uncertainty of the output quantity is given by

Uz =
VR, + 1k, + 20 pxux s + pPuk, vk,
(11
which simplifies for uncorrelated input quantities to
uz = \/Milu%’z + 'UQK2u2X1' (12)

Figure 5 depicts the resultant standard uncertainty of Z for
a setup with py = (1, 1)T and UX, relative = UXy relative =
UX relative- 1t 1S important to note that the correlation coeffi-
cient has a strong impact on uz reaive: While for negatively
correlated input quantities, i.e. p = —1, the resultant standard
uncertainty is significantly smaller than the input uncertainties,
a strong positive correlation characterised by p ~ +1 amplifies
the resultant standard uncertainty. For the uncorrelated case
U Z relative takes on a value of UZ relative = \/iui ,relative-

We conclude that neglecting the correlations of the input
quantities results in two effects: First, a systematic bias is
introduced in the result Z. The upper bound of this bias is
given by Equation 10. Second, the standard uncertainty vy is
over- or underestimated as shown in Figure 5. Again, upper
bounds can be derived given that the input uncertainties are
known.

IV. SUMMARY

In this work we discuss a graphical approach to the
modelling of uncertainties in vision-based metrology. The
presented approach is based on the Bayesian extensions of
the GUM and the consistent use of Gaussian densities to
describe both the state of knowledge of different quantities
and prior information. Our approach extends the state of the
art by an explicit visualisation of statistical dependencies in the
graphical model. This is in particular useful for measurements
based on single image acquisitions, which frequently result
in correlations between estimated quantities. We discuss the
limitations of the modelling approach and present a modelling
example using the proposed building blocks.
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