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Abstract – Propagating uncertainty is one of the key issues
in complex measurement systems. This paper addresses the
propagation of uncertainty applied to the field of optical mea-
surement systems, focusing on the objective speckle correlation
(OSC) technique for strain and displacement measurement on
rough surfaces in a contact-less manner. Due to the complexity
of the underlying physical and electrical phenomena we apply
a Monte-Carlo analysis to determine the uncertainties for a
given experimental setup, and verify some of the outcomes of
investigations with practical measurements under laboratory
conditions.
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I. INTRODUCTION

Laser speckle techniques are widely used for displacement
and strain measurement in non-destructive testing and mate-
rial science applications since they are very attractive due to
the non-contacting operating principle and the attainable high
measurement resolution. Speckle-based metrology can be di-
vided into interferometric methods such as electronic speckle
interferometry (ESPI), speckle holography and speckle shear-
ing interferometry, and correlation-based speckle techniques
such as speckle photography [1], [2]. The investigated mea-
surement technique utilizes the properties of objective laser
speckles which originate from a coherently illuminated opti-
cally rough surface. Information about the topology of the il-
luminated part of a specimen’s surface are coded into the scat-
tered light waves. When observing the interference of these
scattered wavelets on an intensity basis in an observation plane
in the far field, a speckle pattern appears which can be acquired
by means of a CCD sensor. Since there is no need for imag-
ing lenses, the observed speckles are called objective speckles.
In contrast to subjective speckles observed with the help of an
imaging system, each local speckle of an objective speckle pat-
tern bears information about the topology of the whole illumi-
nated surface area [3].

The described OSC technique can be utilized to measure dis-
placement, rotation and surface strain of diffusely reflecting
specimen requiring only a very basic optical setup. Since
the OSC method is a non-contacting measurement principle,
strain measurement on specimen with highest surface temper-
atures is possible – most desirable in material science applica-
tions [4], [5], [6]. Furthermore it is possible to evaluate surface
strain within a very small area on the device under test (DUT),
achieved by illuminating only a very small area of less than
1mm in diameter on the specimen – this can be viewed as a
point-like measurement of strain, which can hardly be done by
alternative measurement principles [7].
A practical measurement arrangement for OSC measurement

Fig. 1. Optical arrangement for strain measurement with objective speckle
techniques. A laser beam illuminates a certain surface area of the specimen,
producing two speckle patterns which are observed from two directions on

observation planes arranged perpendicular to the observation direction. lS is
the illumination distance, l0 the observation distance and ϑ0 is the

observation angle.

of surface strain is schematically depicted in Fig. 1, where it
can be seen that the mean surface normal, the laser source, and
the centers of the observation planes need to lie in the (ξ, ζ)-
plane. To be able to separate the influence of surface strain (the
mostly desired physical parameter) on speckle pattern move-
ments from surface rotations and displacements, further re-
strictions on the geometry of the optical arrangement must be
made. In particular, the symmetric arrangement of the obser-
vation planes with respect to the normal direction of the mean
surface on the object under test, and the collinear alignment of
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the laser beam with respect to the surface normal are promi-
nent influencing factors. Any practical measurement geometry
deviates from the above restrictions and other manufacturing
tolerances such as misalignment in the setup, leading to mea-
surement uncertainties. Furthermore, the use of a not perfectly
stable laser source – e.g. an unstabilized laser diode module –
further causes additional uncertainties in the measurement re-
sults [8]. To our knowledge, the estimation of uncertainty in
the measurement results obtained by OSC measurements has
not satisfactorily been discussed within the scientific commu-
nity.

II. OBJECTIVE LASER SPECKLE CORRELATION

A. Theoretical Background for OSC

A theoretical description of the objective speckle formation has
been given by I. Yamaguchi [9] more than 20 years ago, where
he investigated the consequences of translation, rotation, and
surface strain of a coherently illuminated plane surface objec-
tive laser speckle dynamics. The mechanical changes of the
illuminated surface area are described by the translation vector
α = [αξ,αη,αζ ]T , the rotation vector Ω = [Ωξ,Ωη,Ωζ ]T , and
the symmetric linear surface strain tensor

ε̆ =
[

εξξ εξη

εξη εηη

]
,

as depicted in Fig. 2. These mechanical changes of the illu-
minated surface primarily lead to a speckle pattern displace-
ment a = [ax, ay]T in an observation plane. Secondary, the
movement and microstructural change in the illuminated sur-
face area lead to a certain degree of decorrelation in the ob-
served speckle pattern thus introducing random noise.
Based on a modified version of the not exact theory of Fres-
nel diffraction [10], including several further assumptions and
restrictions as outlined in [8], analytic formulae describing the
desired local behavior of a speckle pattern can be derived [9]:
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ay =−αξ

(
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lS

eSηeSξ

)
−αη

(
l0
lS

(e2
Sη − 1)− 1

)
−

−αζ

(
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lS
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)
−

− εηη l0eSη − εξη l0 (eSξ + sinϑ0)+
+ Ωζ l0 (eSξ + sinϑ0)−Ωξ l0 (eSζ + cosϑ0) . (2)

The formulae describe the shift of an objective speckle pattern
a = [ax, ay]T in an observation plane, obtained by the geo-
metrical arrangement depicted in Fig. 3: The mean surface of

Fig. 2. Rigid body translation α, rotation Ω, and linear strain ε̆ within the
surface area of interest (local (ξ,η,ζ)-coordinate system).

the illuminated surface area (the scattering spot on the DUT)
is located in the (ξ, η)−plane in the local surface coordinate
system, with the center of the illuminated spot arranged at the
coordinate origin. The observation plane is located at distance
l0 from the surface, with the observation surface normal lying
in the (ξ, ζ)−plane of the specimen’s surface coordinate sys-
tem.
The observation plane is oriented perpendicular to the obser-

vation direction, such that the y−axis of the observation co-
ordinate system is parallel to the η−axis, and the x−axis lies
in the (ξ, ζ)−plane. Thus the distance l0 and the angle ϑ0 be-
tween the mean surface normal (i.e. the ζ−axis) and the obser-
vation direction describe the given observation position. The
illuminating coherent point source is located at distance lS in
direction eS = [eSξ, eSη, eSζ ]T from the origin, where colli-
mated illumination can be introduced by lS →∞.
The derived formulae hold for observation in the far-field, i.e.
the observation distance l0 by far exceeds the size of the scat-
tering spot D on the surface l0 $ D, but only for small surface
displacement compared to D, small linear surface strain and
limited rotation. Furthermore, the spatial extent of the obser-
vation plane needs to be much smaller than the observation
distance l0 – such that the properties of the objective speckles
remain unchanged within the observation plane.

Fig. 3. Geometry for the description of speckle displacement due to surface
displacement, rotation and strain.

B. Practical Setup for Strain and Displacement Measurement

The described change in the speckle patterns can be used to es-
timate surface displacement, strain, and rotation. A closer look
on Eqs. 1 and 2 reveals, that at least 5 different observation lo-
cations are needed to estimate all 9 surface parameters out of
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the observed speckle pattern displacements. The relationships
drastically reduce in complexity when collimated illumination
(lS → ∞) and observation from two symmetrical observation
directions are introduced by the so-called single-beam OSC
setup as schematically sketched in Fig. 1. The speckle pat-
tern shifts in the two observation planes 1 and 2 are given by
a1 = [ax,1, ay,1]T ,a2 = [ax,2, ay,2]T , where the differential
shift ∆ax,∆ay and the average shift ax,ay are given by

∆ax = ax,1 − ax,2 = −2εξξ l0 tanϑ0 − 2αζsinϑ0 , (3)

∆ay = ay,1 − ay,2 = −2εξη l0 sinϑ0 + 2Ωζ l0 sinϑ0 , (4)

ax =
1
2
(ax,1 + ax,2) = αξ cosϑ0 + Ωη l0 (cosϑ0 + 1) , (5)

ay =
1
2
(ay,1 + ay,2) = αη −Ωξ l0 (cosϑ0 + 1) . (6)

Most desirable in material science applications is the measure-
ment of in–plane surface strain components of a specimen. Es-
pecially for tensile tests the measurement of the uniaxial sur-
face strain in direction of the mechanical load εξξ needs to be
measured. The desired strain component can be obtained out
of Eq. 3 by

εξξ = − ∆ax

2l0 tanϑ0
+

αζ cosϑ0l0
. (7)

The speckle patterns are acquired by 2D imaging cameras, in-
troducing spatial quantization and integration as well as inten-
sity quantization and temporal integration. The shift in each
speckle pattern (the spatial pattern shift between two consecu-
tive image acquisitions in the same observation plane) is es-
timated by a correlation–based algorithm from the digitized
speckle patterns [8].

Eq. 7 is used in almost all practical realizations of the de-
scribed OSC principle for strain measurement. It is evident that
a major drawback of the principle is the dependence of ∆ax

on known or unknown out–of–plane surface displacement αζ

in the ζ−direction, which need to be measured by alternative
principles or must remain small to be able to neglect this influ-
ence on the measurement result [8]. In the following we will
discuss the the topic of measurement uncertainty introduced by
an uncertain or misaligned geometry and the data acquisition
and processing.

III. UNCERTAINTY IN OSC

To reduce the complexity we focus our investigation to obtain
an uncertainty budget only for measurement of in-plane sur-
face strain εξξ and displacement in the ξ−direction, since these
measures are most important in practical applications of the
OSC principle. Fig. 4 outlines the processing steps involved in
estimation of the desired horizontal displacement and strain pa-
rameters. Subsequently we comment on each processing step.

A. Sensor Geometry

For deviations from the ideal geometry of the single-beam
setup described above, Eqs. 1 and 2 have to be used for each

observation geometry (i.e. positions of light source, illumi-
nated surface, and observation plane as indicated in Fig. 3). Af-
ter the combination of two observation geometries – as needed
for strain and displacement measurement – into a full sensor
model, the following influencing factors contribute to the dif-
ferential speckle shift ∆a:

∆a = f (α,Ω, ε̆, l0,1,ϑ0,1, l0,2,ϑ0,2,

eS,1,eS,2, lS ,R0,1,R0,2,RDUT ) ,
(8)

where RDUT , R0,1 and R0,2 describe rotations of the spec-
imen’s mean surface and the observation planes 1 and 2, and
eS,1,eS,2 are the relative positions of the illuminating laser
source as seen from the corresponding observation plane.
A reduction in complexity can be obtained by neglecting influ-
ences from non-ideal alignment of the inspected surface with
respect to the two observation planes and the neglect of pos-
sible tilts in the observation planes and the DUT’s surface
with respect to their nominal positions: in this case RDUT =
R0,1 = R0,2 = I and both observation planes see the same
position of the light source, i.e. eS,1 = eS,2 = eS . All these
simplifications are justified when the optical setup has been
carefully aligned according to the ideal sensor geometry. Re-
maining parameters influencing the uncertainty in the optical
setup are:

• Positioning of the observation planes: l0,1 %= l0,2 and
ϑ0,1 %= ϑ0,2

• Illumination direction: eS %= [0,0,1]T
• Non-collimated illumination: lS ≤∞.

Due to the chosen simplifications the relevant speckle dynam-
ics for strain and displacement measurement in the ξ−direction
appear within the (ξ,ζ)−plane only.

B. Image Acquisition

The acquisition of the laser speckle patterns is performed by
two identical digital CCD cameras of Type DMK-21BF04 with
a 640 × 480 pixel2 CCD detector array and a pixel size of
5.6 × 5.6µm2. The acquired image data is quantized to ob-
tain 8 bit digital images.
The transform of a spatially and temporally continuous in-
tensity information in the plane of the CCD array to digital
image data clearly influences the information content of the
data. The intensity-to-voltage and analog-to-digital conversion
within the CCD sensor produces additional noise – so-called
electronic noise, comprised from detector noise (photon shot
noise, dark current noise, fixed pattern noise and reset noise),
amplifier noise (1/f -noise) and quantization noise. All these
noise components determine the Signal-to-Noise-Ratio (SNR)
of the used camera. This additional noise clearly contributes to
decorrelation of the acquired speckle patterns. Although, for
the used camera these influences need to be incorporated only
for very low light conditions. Under normal light conditions as
it is the case for OSC measurements, the decorrelation due to
electronic noise can be characterized by a correlation factor in
excess of 0.99 [11], justifying the neglect of these influences.
The influences of temporal intensity integration during the im-
age acquisition can be neglected when the movement of the
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Fig. 4. Parameters and noise sources determining measurement uncertainty of OSC principles. The optical setup transforms mechanical deformation of the
DUT (α,ω, ε̆) into 2D displacement (a1,a2) of two speckle patterns acquired via two cameras, which are used to estimate the desired surface displacement αξ

and linear surface strain εξξ . The measurement process can be divided into three separate parts, the optical setup producing speckle pattern shifts in the
observation planes correlated to mechanical deformation on the surface, the image acquisition and signal processing estimating the speckle shift in the
observation plane, and the parameter estimation calculating the desired mechanical measures strain and displacement out of the speckle pattern shifts.

observed speckle patterns during the period of intensity inte-
gration in the CCD camera remain small compared to the given
pixel size. The sampling of the continuous intensity distribu-
tion is done by the regularly spaced pixel array. The structural
size within a fully developed speckle pattern is limited in case
of a uniformly illuminated circular area of diameter D and our
chosen optical setup, and determined by the minimum speckle
sizes [8]

dmin,x =
λ

D cosϑ0
l0 , dmin,y =

λ

D
l0 (9)

in the directions of the sampling grid. Given pixels of size
px, py , the sampling theorem is fulfilled when dmin,x > 2px

and dmin,y > 2py . Clearly, any violation of the sampling the-
orem introduces systematic errors into the measurement. For
the given optical setup the allowed range for the diameter of
the illumination spot D can be obtained as

D <
λl0

2px cosϑ0
≈ 23mm , (10)

where the parameters of the chosen optical setup were used to
determine the limit for our experiments.
Spatial sampling of the intensity distribution comes with spa-
tial integration within the active area of each pixel. For a high
fill factor of the pixel array – which is necessary for high sen-
sitivity of the camera – the high frequency components close
to half the sampling frequency of the speckle pattern are at-
tenuated. This influence can be neglected in our case due to
the relatively low spatial frequency of the speckle pattern ob-
tained by an illumination spot size of D = 2 . . .6mm during
our experiments.

C. Signal Processing

Speckle pattern displacements between consecutive images
bear the desired measurement information within. A straight-
forward method of determining the speckle pattern displace-
ment is the calculation of the 2D cross–correlation function
of two speckle images and the search for the peak posi-
tion of the obtained correlation function. We use a modified
version of cross-correlation, which is the normalized cross-
covariance function (CCF) of the reference image Ir[m,n] of

size Mr ×Nr and the template image It[m,n] of size Mt×Nt

c[k, l] = (11)

=

Mr−1∑

m=0

Nr−1∑

n=0

[
Ir[m,n]− Ir

][
It[m− k,n− k]− It

]

√√√√
Mr−1∑

m=0

Nr−1∑

n=0

∣∣Ir[m,n]− Ir

∣∣2 ·
Mt−1∑

m=0

Nt−1∑

n=0

∣∣It[m,n]− It

∣∣2

where it is assumed that the template is smaller than the refer-
ence, Mr > Mt and Nr > Nt. The result is a cross-covariance
function of size (Mr − Mt + 1) × (Nr − Nt + 1), contain-
ing the correlation peak where the shifted template image best
matches the corresponding area in the reference image. The
normalization of the CCF ensures that the maximum value of
the CCF – the value at the position of the peak in the CCF
– corresponds to an estimate of the correlation coefficient γ
between the shifted template and the reference image. A sinc-
interpolation of the CCF by zero-padding in the Fourier do-
main [8] is applied to achieve sub-pixel resolution.
The uncertainty of a correlative speckle pattern displacement
estimation as described above has been determined for speckle
patterns with a correlation factor γ in [12],[13] as

uCCF,x = k
d2

sp,x

Bx

√
1− γ

γ
, (12)

where k is a constant factor determined as k =
√

2/π/1.2 ≈
0.7 as outlined in [13]. Bx is the width of the image template,
given by Bx = Mtpx, and dsp,x is the average speckle size on
the detector in x−direction, determined by [8],[3]

dsp,x = 1.22
λ

D cosϑ0
l0. (13)

Within a real measurement the value of the correlation coeffi-
cient can be obtained by evaluating the peak value of the nor-
malized cross-covariance function CCF for each estimation of
speckle displacement.
For our estimation of uncertainty within the signal processing
scheme we follow the ideas in [13] applied to the free space
geometry of the OSC principle, which allows the estimation of
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the correlation coefficient γ – also known as the Yamaguchi
correlation factor – by

γ =
(

Θ− sinΘ
π

)2

, Θ = 2arccos
|∆|
D

. (14)

∆ is the relative shift of the specimen’s surface with respect
to the illumination spot on the surface of Diameter D. The
decorrelation δ in the acquired speckle patterns is related to
the correlation coefficient by δ = 1−γ. The primary source of
objective speckle pattern decorrelation is the in-plane displace-
ment of the specimen’s surface with respect to the illumination
spot. Other influencing factors like surface strain, surface tilt,
and the limited speckle size in the out-of-plane direction can
be neglected [8].

IV. UNCERTAINTY ESTIMATION

For a practical setup the uncertainty associated to the measure-
ment result has been evaluated using both a simulation envi-
ronment and a real-world OSC setup.
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Fig. 5. Estimated pdf obtained from a Monte-Carlo analysis for uncertain
parameters in the measurement of in–plane surface displacement α̂ξ and a

true displacement of αξ = 100µm.

A. Monte-Carlo Simulations

The complex measurement model and the diversity of influenc-
ing parameters render an analytic treatment of the propagation
of uncertainty as suggested by the GUM [14] impossible for
all but the most trivial sensor geometries. We use probability
density functions (pdfs) as information carriers for the relevant
input parameters of a Monte-Carlo (MC) simulation. The pa-
rameters covered by the simulation are:

1. Laser Source: Both position and distance of the laser
source are subjected to variations. Emphasis is put on
imperfect laser collimation which results in large varia-
tions of the source distance ls. From experience we allow
the distance to uniformly take on any value in the interval
[1,100) m.

2. Sensor: Both cameras can only be setup at a certain level
of accuracy. We allow independent uniform deviations
of ±1 mm in position and ±1 ◦ in orientation for each
camera.

3. Mechanical Vibrations: Vibration of the whole sensor
setup impacts on the sensor uncertainty. In our simulation
a random motion of the DUT in 3D subjected to a Gaus-
sian distribution with independent standard deviations of
σx,y,z = 1µm for each axis is assumed.

4. Image Processing: The detection performance depends
on the decorrelation of the speckle patterns. In our sim-
ulations an additive Gaussian component with a standard
deviation as given by Eqn. 12 is used.

In order to obtain comparable results the sensor geometry of
our laboratory interferometer is adopted. In particular, our
setup is defined by the parameters D = 3mm, l0 = 0.145m,
ϑ0 = ±45◦, eS = [0,0,1], and a HeNe-Laser with wavelength
λ = 632.8 nm and a collimated beam expanded to a diame-
ter of 3 mm. Fig. 5 depicts the simulated pdf of the mea-
sured displacement for a true displacement of αξ = 100µm
and a surface strain of εξξ = 20ppm. During this simulation
M = 106 samples of the displacement are computed using the
above listed input parameter pdfs. The resultant pdf deviates
from the standard Gaussian pdf by a long tail towards larger
displacements. This deviation is caused by the imperfect con-
figuration of the light source. The associated strain estimate
as shown in Fig. 6 exhibits no significant bias and shows good
performance.
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Fig. 6. Estimated pdf obtained from a Monte-Carlo analysis for uncertain
parameters in the measurement of in–plane surface strain ε̂ξξ and a true strain

value of εξξ = 20ppm.

B. Experiments

In our laboratory OSC setup the DUT is an aluminum plate
with an optically rough surface, mounted onto a motorized
3D translation stage with a resolution and repeatability of
0.1µm, allowing for displacement measurements under suf-
ficiently controlled laboratory conditions. The main purpose
of the practical experiments is the evaluation of the results
from our Monte-Carlo Simulation. The solid line in Fig. 7
shows the standard deviation σα for displacement measure-
ments obtained from evaluating 100 independent measurement
cycles, each consisting of 200 surface displacements from
αξ = 0,2, . . . ,200µm, plotted over the true surface displace-
ment. All measurement cycles have been carried out with the

78

Authorized licensed use limited to: Technische Universitaet Graz. Downloaded on December 17, 2009 at 04:05 from IEEE Xplore.  Restrictions apply. 



identical optical setup, only the illuminated surface area has
been changed such that the speckle patterns for each measure-
ment cycle are independent from each other. For larger sur-
face displacements the standard deviation in the displacement
measurement increases. Comparing these experimental results
with values obtained from our simulation (dotted line in Fig. 7)
reveals some significant differences between them. Although
both results are in the same order of magnitude and show simi-
lar dependencies from the true surface displacements, the plot-
ted curves are not in perfect agreement as discussed below.
Fig. 8 shows the plot of correlation coefficients γ1 and γ2 as a
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Fig. 7. Standard deviation in a speckle pattern shift estimation, obtained from
100 experiments.

0 20 40 60 80 100 120 140 160 180 200
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

true displacment αξ in µm

co
rr

el
at

io
n 

co
ef

fic
ie

nt

γ
1

γ
2

γ

Fig. 8. Comparison of correlation coefficients γ1,γ2 obtained from
evaluating the CCF from speckle patterns acquired in observation planes 1,2

during surface displacement from αξ = 0 . . .200µm, with the theoretical
value of the correlation factor γ for the given displacements.

dotted and a dashed line. An average over 100 statistically in-
dependent measurement cycles each comprising 200 displace-
ment measurements in the range of αξ = 0,2, . . . ,200µm are
shown. Comparing these coefficients with the theoretical value
calculated out of Eq. 12 and plotted as solid line over the true
surface displacement, shows that our model for estimating the
correlation coefficient does not sufficiently well fit to the un-
derlying physical phenomena. For small displacement values
the measured correlation factor decreases much faster with in-
creasing displacement as the theoretical, whereas for displace-
ments larger than 80µm both the experimental and the theoret-

ical correlation factor show the same dependence on the true
displacement, although the real-world estimation of the corre-
lation factor remains below the theoretical value with a bias
of approx. 0.04. Recalling the comparison of standard devia-
tions in measurement results and simulation results discussed
above, the observed relationships explain the differences be-
tween experiment and simulation: For small displacements,
the dominating influence factors in the Monte-Carlo simula-
tion are assumed surface vibrations, leading to higher values
than the values obtained for our laboratory setup. For larger
displacement values, the simulation results show the same de-
pendence on surface displacements as the experimental results,
but remain smaller due to the use of the theoretical correlation
coefficient γ for estimation of the uncertainty in the signal pro-
cessing.

V. CONCLUSION

Objective laser speckle correlation methods are used to directly
measure linear surface strain on specimen with a diffusely scat-
tering surface. An analytic investigation of the performance of
OSC setups is exceedingly difficult given the complex mea-
surement model and the different natures of the contributing
parameters. In this work we investigate the performance of an
OSC setup using Monte-Carlo simulations and propagations of
uncertainties as suggested by the GUM.
Experimental validations indicate the feasibility of this ap-
proach. A further refinement of the measurement model and
associated parameter uncertainties is a current topic of research
at our institution.

REFERENCES

[1] R. S. Sirohi, Ed., Speckle Metrology. New York: Marcel Dekker, Inc.,
1993.

[2] P. K. Rastogi and D. Inaudi, Eds., Trends in Optical Non–Destructive
Testing. Kidlington, Oxford, UK: Elsevier Science, Ltd., 2000.

[3] J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser
Speckle and Related Phenomena, 2nd ed., J. C. Dainty, Ed. Berlin:
Springer–Verlag, 1984, pp. 9–75.

[4] T. Thurner, S. C. Schneider, and B. G. Zagar, “Laser–Speckle–
Dehnungsmessung und deren Anwendung in der Materialwissenschaft,”
tm — Technisches Messen, vol. 02/2003, no. 70, pp. 71–78, 2003.

[5] P. Zimprich, S. C. Schneider, M. Kastner, and B. Zagar, “New develop-
ments in laser speckle strain measurement techniques,” Proceedings of
ODIMAP IV, 2004.

[6] S. C. Schneider, Y. Gautam, and B. G. Zagar, “Application of a locally
operating laser–speckle strain sensor,” IEEE Transactions on Instrumen-
tation and Measurement, vol. 52, no. 4, pp. 1025–1029, 2003.

[7] T. Thurner and P. Wilksch, “A laser speckle sensor for single–point mea-
surement of strain,” Proceedings of the 19th IEEE Instrumentation and
Measurement Technology Conference, pp. 741–745, 2002.

[8] T. Thurner, “Local strain measurement by objective laser speckle tech-
nique,” PhD Thesis, Graz University of Technology, 2004.

[9] I. Yamaguchi, “Speckle displacement and decorrelation in the diffraction
and image fields for small object deformation,” Optica Acta, vol. 28,
no. 10, pp. 1359–1376, 1981.

[10] J. W. Goodman, Introduction to Fourier Optics, 2nd ed. McGraw–Hill,
New York, 1996.

[11] T. Fricke-Begemann, “Optical measurement of deformation fields and
surface processes with digital speckle correlation,” Ph.D. dissertation,
Universität Oldenburg, 2002.

[12] M. Sjödahl, “Accuracy in electronic speckle photography,” Applied Op-
tics, vol. 36, pp. 2875–2885, 1997.

[13] ——, “Digital speckle photography,” in Digital Speckle Pattern Inter-
ferometry and Related Techniques, P. K. Rastogi, Ed. John Wiley and
Sons, 2001.

[14] Guide to the Expression of Uncertainty in Measurement. Genève,
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