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Abstract

 

—In this paper we present a system for statistical object classification and localization that applies a
simplified image acquisition process for the learning phase. Instead of using complex setups to take training
images in known poses, which is very time-consuming and not possible for some objects, we use a handheld
camera. The pose parameters of objects in all training frames that are necessary for creating the object models
are determined using a structure-from-motion algorithm. The local feature vectors we use are derived from
wavelet multiresolution analysis. We model the object area as a function of 3D transformations and introduce
a background model. Experiments made on a real data set taken with a handheld camera with more than
2500 images show that it is possible to obtain good classification and localization rates using this fast image
acquisition method.
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INTRODUCTION

For many tasks the localization and classification of
objects in images is very useful, sometimes even neces-
sary. Possible applications in this area are, for example,
face recognition [3], localization of obstacles on the
road with a camera mounted on a driving car, service
robotics [15], and so on. The learning process in most
object recognition systems begins with the image
acquisition of all possible object classes in many known
poses. In a laboratory environment, the images can be
taken with a special setup such as a turntable with a
camera arm (Fig. 1, left).

In real problems of object recognition in images, it
is much easier to record the objects using a handheld
camera (Fig. 1, right). For this reason we propose a new
approach for object recognition, where the image
acquisition is done in this way. The goal of our algo-
rithm is to optimize the training process with respect to
execution time and ease of image acquisition while still
getting satisfying classification and localization rates.
The poses of the objects in all training frames are com-
puted using a structure-from-motion algorithm [5]. The
whole learning process is therefore independent of
environment assumptions, but we have to deal with an
additional training inaccuracy.

Two main approaches exist to solving the problem
of object recognition in images: the model- and the
appearance-based methods. The model-based systems
use a segmentation step to extract features of objects
[6]. The appearance-based approaches compute the fea-
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ture vectors directly from pixel intensities in the images
[3, 11]. There are appearance-based systems that use
one global feature vector for the whole image (e.g., the
eigenspace approach [2]), and those that use more local
feature vectors (e.g., neural networks [9]). In the
present work, local feature vectors with two compo-
nents are applied, which are computed with a wavelet
multiresolution analysis [7] and statistically modeled
by density functions.

In the next section, we introduce the pose parameter
reconstruction using a structure-from-motion algo-
rithm, which yields the training pose parameters
needed for object modeling. In the following two sec-
tions, the training of statistical object models and the
algorithm for object localization and classification is
presented. After that we describe experiments and dis-
cuss the results. We close our contribution with a con-
clusion.

 

Fig. 1.

 

 Left: turntable with camera arm. Right: handheld
camera.
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POSE PARAMETER RECONSTRUCTION

Suppose an image sequence is given which was
taken by moving a handheld camera around an object
and showing it from different directions (Fig. 1, right).
In order to train the object recognition system, it is nec-
essary to estimate the internal and external object pose
parameters for all frames. The internal pose parameters
denote two translations and a rotation inside the image
plane. The external pose parameters are two rotations
outside the image plane and a translation along the opti-
cal axis of the camera. Only four of these six pose
parameters—internal translations 
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—are used in our experi-
ments; therefore, only the computation of these param-
eters will be explained in the following.

The first step is to compute a 3D reconstruction of
the camera motion and scene structure using a struc-
ture-from-motion algorithm [5]. This requires the
knowledge of the point correspondences in the images,
which are retrieved by a feature detection and tracking
algorithm based on the gradient tracking technique
introduced by Tomasi and Kanade [12]. The extensions
of the original algorithm, including affine distortion
handling and robustness against illumination changes,
are explained in detail in [14].

By applying a factorization method, in this case the
paraperspective factorization introduced by Poelman
and Kanade [10], the camera motion parameters and
3D point positions corresponding to the tracked 2D fea-
tures are reconstructed for a relatively short initial sub-
sequence. The subsequence is chosen as the longest one
with a certain number of features visible in all its
images, since this is a prerequisite of the factorization
algorithm. The results are refined by a nonlinear opti-
mization as proposed in [4], which minimizes the back-
projection error of the reconstructed 3D points. In order
to obtain a Euclidean reconstruction, the intrinsic cam-
era parameters, are set to approximations of the true
values, i.e., the principal point is set to the center of the

image, the focal length is roughly estimated and the
image skew is assumed to be zero. If the intrinsic
parameters are not exactly the correct ones, the recon-
struction will be slightly skewed projectively. However,
this effect is not sizable, as examined in [8]. The
remaining camera and point positions are estimated by
a similar optimization image by image. For this, previ-
ously unused features' correspondences are triangu-
lated after each estimation of a new camera pose to
increase the number of available 3D points. As an ini-
tialization for each new image the projection matrix of
a neighboring image in the sequence is used. The
method is explained in detail in [5].

At this point the cameras parameters for each image
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 1 denote the rotation and
translation of the camera. The object recognition sys-
tem, on the other hand, requires an entirely different
parameter representation. Therefore, the parameters are
transformed as follows. First, the origin of the coordi-
nate system is translated into the center of mass of the
object . Since the object was placed on a black back-
ground, the feature-tracking algorithm is only able to
track features on the object itself, and all 3D points are
assumed to be on the surface of the object. Thus, the
centroid of the reconstructed 3D points is used as an
approximation to the center of mass of the object. The
calculated translation is applied to all camera and 3D
point positions.

The external rotations in polar coordinates for the
training image 
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 can now be calculated easily, as
depicted in Fig. 2. For a given translation 
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 of the camera in world coordinates, the angle 
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The internal translation is estimated by back-pro-
jecting the center of mass of the object into image coor-
dinates, i.e.,  = 
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TRAINING OF STATISTICAL OBJECT MODELS

In order to learn a statistical object model 
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 for an
object class 
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, we take an image sequence of the
object, determine the pose parameters in each frame
using the structure-from-motion algorithm, and prepro-
cess and compute feature vectors in the training images.
An object area is then defined, and the feature vectors
modeled as density functions.
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 Calculating 
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 using the camera pose. The
camera is depicted as a pyramid with its tip being the optical
center and its base being the image plane.
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The original training images are preprocessed by
resizing them to square gray level images with a size of
2
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 pixels, where 
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 {7, 8, 9}. One image of each
object class is used as a reference image. With a pose of
an object in the image 
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, we denote the 3D transforma-
tion (translation and rotation) that maps the object in
the reference image to the object in 

 

f

 

i

 

. Up to the end of
the current section, the number of object class 

 

κ

 

 is omit-
ted, because the training of the statistical object model
is identical for all object classes.

For the feature extraction we divide each prepro-
cessed training image into squares of size 2
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pixels, and set in their centers grid points 

 

x

 

m

 

. 2D feature
vectors 

 

c

 

m

 

 = 

 

c

 

(

 

x

 

m

 

) are computed on all of these 2

 

n

 

 – 

 

s

 

 

 

×

 

2

 

n

 

 – 

 

s

 

 grid points. For this purpose we perform 

 

s times
the wavelet multiresolution analysis [7] using Haar
Wavelet. The components of the feature vectors are
given by

(3)

where bs, m is a low-pass coefficient and d0…2, s, m result
from combination of high-pass and low-pass filtering.
An illustration for the feature vector computation for
s = 2 can be seen in Fig. 3. The indices s and m are omit-
ted.

For the object model, we consider only those feature
vectors that belong to the object and not to the back-
ground. For each feature vector cm in each external
training pose (Fext, t, uext, t) (for each training image), a
discrete assignment function is defined:

(4)
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The threshold value St is chosen manually. In the test
images, objects appear not only in the training poses,
but also between them. In order to localize such objects,
we construct a continuous assignment function

ξm(Fext, uext) using values of (Fext, t, uext, t) by inter-
polation with trigonometric functions. The set of fea-
ture vectors belonging to the object for the given exter-
nal pose (Fext, uext) can be now determined with the fol-
lowing rule:

(5)

The threshold S0 is also chosen manually. In the case
of internal transformations, the object area does not
change size and can be translated and rotated with these
transformations. Thus, we can write the object area as a
function of all transformation parameters: O(F, u).

All feature vectors computed in the training phase
(3) are interpreted as random variables. The object fea-
ture vectors are modeled with the normal distribution
[11]. For each object feature vector cm ∈ O, we com-
pute a mean value vector mm and a standard deviation
vector sm. The density of the object feature vector can
be written as

(6)

The feature vectors, which belong to the back-
ground are modeled with the uniform distribution, and
their density functions are constant: p(cm) = pb.

LOCALIZATION AND CLASSIFICATION

After a corresponding object model Mκ is created
for each object class ΩK, we can localize and classify
objects in test images. At the beginning, each test image
is preprocessed and feature vectors are computed with
the same method as in the training phase. Then, we start

ξ̂m

ξm Fext uext,( ) S0≥
⇒ cm Fext uext,( ) O Fext uext,( ).∈

p cm( ) p cm mm sm F u, , ,( ).=

xm∆r
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2n × 2n Gray level image
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Step 1
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Step 2

Fig. 3. Computation of a feature vector at a grid point xm for the scale s = 2. bij are calculated by horizontal and vertical low-pas
filtering of aij and resolution reduction by factor 0.5. The final coefficients result from bij as follow: b2—low-pass horizontal and
low-pass vertical, d0—low-pass horizontal and high-pass vertical, d1—high-pass horizontal and high-pass vertical, and d2—high-

pass horizontal and low-pass vertical. ∆r = 2s = 4 in this case.
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our localization and classification algorithm based on
the maximum likelihood estimation [13], which maxi-
mizes the object density value.

In order to compute the object density value for the
class ΩK in the pose (F, u) for the given test image f we
determine the set of feature vectors that belong to the
object C = {c1, c2, …, cM} according to (5) and compute
their values with Eq. (3). Then, we compare the calcu-
lated feature vectors with the object densities stored in
the object model Mκ and determine the values of these
vectors (p(c1), p(c2), …, p(cM)). The density value of the
object ΩK in the pose (F, u) for the given test image f is
given by

(7)

where Bκ comprehends the trained mean value vectors
and standard deviation vectors from the model Mκ and
pb is the background density value.

The localization and classification algorithm is real-
ized with a maximum likelihood estimation and can be
described with the following equation:

(8)

where  is the classification result and ( , ) is the
localization result. First, the object density (normalized
by G) is maximized according to the pose parameters
(F, u) and then to the object class κ. The norm function
G is defined by

(9)

where M is the number of feature vectors belonging to
the object area Oκ(F, u). This norm function reduces
the dependency between the maximization result and
the object area size.
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EXPERIMENTS AND RESULTS

We count a localization result as correct if the error
for the external rotations is not larger than 15° and the
error for the internal translations is not larger than
10 pixels.

We tested our approach on a data set that consisted
of eight objects, which are illustrated in Fig. 4.

In the training phase, sequences with more than
200 frames of each object class were taken with a hand-
held camera (Fig. 1, right), which accelerates the image
acquisition process compared to the common methods.
The recording of 200 training images of objects located
on a turntable (Fig. 1, left) takes about 20 minutes.
Using the handheld camera, we obtained a video with
200 frames in about 5 seconds. Next, we preprocessed
the original images by converting the 512 × 512-pixel
color images to gray level images with sizes of 128 ×
128, 256 × 256, and 512 × 512 pixels and created the

Fig. 4. Used object classes. In the first row from left: cup,
toy fire engine, mouse, and pen. In the second row from left:
toy passenger car, hole puncher, candy box, and stapler. 20020 40 60 80 100 120 140 160 180
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Fig. 5. Classification rate depending on the number of train-
ing images sized 128 × 128, 256 × 256, and 512 × 512 pix-
els.
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Fig. 6. Localization rate depending on the number of train-
ing images sized 128 × 128, 256 × 256, and 512 × 512 pix-
els.
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object models. The preprocessing of 100 training
frames and creation of one object model takes 27 s for
an image with a size of 128 × 128 pixels, 36 s for 256 ×
256 pixels, and 44 s for 512 × 512 pixels on a Pentium
4 (2.66 GHz).

For the recognition phase, we took eight image
sequences with about 120 frames on a homogeneous
background. The recognition time in 100 test images
amounts to 72 s for the 128 × 128-pixel images, 114 s
in the case of images with sizes of 256 × 256 pixels, and
158 s for 512 × 512 pixels.

The classification rates as a function of the number
of training images are presented in Fig. 5.

A very good classification result (98.8%) with a rel-
atively short execution time (training of one object
class 38 s and recognition in 100 test images 72 s on a
Pentium 4, 2.66 GHz) was obtained using 140 training
images with a size of 128 × 128 pixels. The results
show that using larger images does not bring about an
improvement in the classification rates.

In the case of localization, the results are much bet-
ter for images with a size of 512 × 512 pixels than for
resolutions of 256 × 256 and 128 × 128 pixels (Fig. 6).

A comparison of the classification and localization
rates for the case of 120 training images can be seen in
the table.

CONCLUSIONS

In this paper we presented an approach for statistical
object classification and localization of 3D objects in
which image data acquisition was performed using a
handheld camera. This innovation accelerated, simpli-
fied, and universalized the learning process compared
to most other object recognition systems. The pose
parameters of the training frames needed for creating
the object models were calculated using a structure-
from-motion algorithm. To insure robustness of the sys-
tem, we applied a statistical framework that included
both object and background models.

In the experiments we showed that it is possible to
obtain excellent recognition rates in a relatively short
execution time.

In the future we will work on the algorithm for pose
parameter reconstruction and the system for statistical
object recognition in order to improve the localization
rates.
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