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Abstract. In this paper we present an approach for image region clas-
sification that combines low-level processing with high-level scene under-
standing. For the low-level training, predefined image concepts are sta-
tistically modelled using wavelet features extracted directly from image
pixels. For classification, features of a given test region compared with
these statistical models provide probabilistic evaluations for all possible
image concepts. Maximising these values themselves already leads to a
classification result (label). However, in our paper they are used as an
input for the high-level approach exploiting explicitly represented spa-
tial arrangements of labels, so called spatial prototypes. We formalise the
problem using Fuzzy Constraint Satisfaction Problems and Linear Pro-
gramming. They provide a model with explicit knowledge that is suitable
to aid the task of region labelling. Experiments performed for nearly 6000
test image regions show that combining low-level and high-level image
analysis increases the labelling accuracy significantly.

1 Introduction

It has been shown in various studies [1] that semantic access to multimedia
content is desired by most users, regardless of whether they are professional or
private users. An important field of research is automatic annotation of images,
and specifically the automatic labelling of image regions [2]. Region-level an-
notations provide more detailed information about the image contents, allow
for answering complex queries, and can be used to improve global classification
accuracy [3].

Since exploiting solely low-level features often leads to unsatisfactory results,
research towards using contextual and spatial features is a prominent research
topic recently. A comprehensive study of using context for improving object
recognition was carried out in [4, 5], showing the importance of contextual in-
formation. In [6] a survey of using spatial features for image region labelling
based on graph models was performed and showed that spatial features improve

⋆ The research activity leading to this work has been supported by the European
Commission under the contract FP6-027026-K-SPACE.
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Fig. 1. Overall workflow of the approach for image region labelling.

the labelling accuracy. In [7] an approach based on explicitly defined spatial
constraints was introduced that employed genetic algorithms to compute a fi-
nal labelling. We have also published results on exploiting explicitly represented
spatial constraints for improving image labelling accuracy in [8].

The experiments in [8] indicate that our approach based on explicit repre-
sentation of spatial context requires only a low amount of labelled examples for
acquiring the explicit model. In this paper we conduct a new study focusing on
the performance of our approach with different training set sizes. However, we
combined the spatial reasoning part with a new low-level classification technique
based on wavelet features, and provide a new formalisation of spatial constraints
using binary integer programs. As we will show, the combination provides much
better labelling accuracy with only few training examples.

The overall workflow of our method is depicted in Figure 1. The algorithm
starts with the low-level training (Section 2.1). Here, all image concepts consid-
ered in our labelling task are modelled using feature vectors computed directly
from image pixels. Instead of using MPEG-7 descriptors [9], we represent the im-
age contents by wavelet features [10] and statistically model the concepts (e. g.,
sky, road, building, etc.) by density functions [11]. Subsequently, the low-level la-
belling is performed (Section 2.2). Both the training and labelling take advantage
of automatic image segmentation algorithms. The low-level labelling results are
used for further high-level processing, namely the extraction of spatial relations
(Section 3) and spatial reasoning (Section 4). Here, we formalise the problem
using Fuzzy Constraint Satisfaction Problems and Linear Programming. They
provide a model with explicit knowledge that is suitable to aid the task of region
labelling. Finally, the image region labels are provided by our algorithm. Results
of experiments performed for nearly 6000 test image regions show that using the
combination of low-level and high-level image analysis increases the labelling
accuracy significantly (Section 5). This leads to some interesting conclusions
presented in Section 6.

2 Content-Based Image Region Classification

In this section the low-level algorithm for content-based image region classifica-
tion (labelling) is described, whereas the set of image concepts Ω = {Ω1, Ω2, . . . ,
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Fig. 2. Wavelet decomposition for a local neighbourhood of size 4 × 4 pixels done
separately for the green, the red, and the blue channel. The final coefficients for the blue
channel result from b0,k,l and have the following meaning: b

−2 : low-pass horizontal and
low-pass vertical, d0,−2 : low-pass horizontal and high-pass vertical, d1,−2 : high-pass
horizontal and high-pass vertical, d2,−2 : high-pass horizontal and low-pass vertical.

Ωκ, . . . , ΩNΩ
} is assumed to be a-priori known and constant. First, the statis-

tical learning process is explained (Section 2.1). Second, the automatic labelling
of image regions based on their contents is presented (Section 2.2).

2.1 Training of Image Concepts

In order to statistically train concepts (e. g., sky, road, building, etc.) based on
image contents (pixel values), representative sets of example images for those
concepts are required. The size of the training sets may vary, however, as you
can see in Section 5, the performance of our image region classification algorithm
depends on the number of training images. In order to reduce the amount of
resources required to describe a large set of training images and to simplify the
description, image contents are represented by feature vectors.

In our case RGB colour images are used for feature extraction. In order to
calculate the vectors, a two-dimensional discrete signal decomposition with the
wavelet transform [10] is applied for local neighbourhoods, whereas the Johnston

8-TAB wavelet is used as the basis function. A grid with size ∆r = 2|̂s|, where
ŝ is the minimum multiresolution scale parameter1 s, is overlaid on the image
[12]. Figure 2 depicts this procedure for the case of colour scenes divided into
local neighbourhoods of size 4 × 4 pixels. Further, the results of the low-pass
filtering for all three colour channels (bR

s , bG
s , and bB

s ) in Figure 2 represented as
bs are taken into consideration for feature computation. Although the wavelet
analysis is done for local neighbourhoods (see Figure 2), a training image should
rather be described by a single global feature vector independent of the location
in the image. For this reason the results of the local wavelet analysis are put
together and their mean values are used for image description. Finally, each

1 Further decomposition of the signal with the wavelet transform is not possible.



training image fκ,i obtains a global four-dimensional feature vector

cκ,i = (cκ,i,1, cκ,i,2, cκ,i,3, cκ,i,4)
T

. (1)

The first component cκ,i,1 of this feature vector is simple a mean pixel value in
the image fκ,i

cκ,i,1 =
1

3 · Nκ,i

Nκ,i∑

n=1

(fR
κ,i,n + fG

κ,i,n + fB
κ,i,n) , (2)

where Nκ,i is the number of all pixels representing the concept Ωκ in the training
image fκ,i. The remaining three components of the global feature vector cκ,i (1)
result from the low-level wavelet coefficients bR

s , bG
s , and bB

s for the red, green,
and blue channel respectively. They are computed as simple mean values of those
coefficients for all local neighbourhoods defined according to Figure 2

cκ,i,2 =
1

Mκ,i

Mκ,i∑

n=1

bR
s,n , (3)

cκ,i,3 =
1

Mκ,i

Mκ,i∑

n=1

bG
s,n , (4)

and

cκ,i,4 =
1

Mκ,i

Mκ,i∑

n=1

bB
s,n , (5)

where Mκ,i is the number of all local neighbourhoods defined as in Figure 2
representing the concept Ωκ in the training image fκ,i.

Since the number Tκ of training images fκ,i for each concept Ωκ is usually
quite high2, statistical modelling can be applied for training. It has been observed
that the values of the feature vector components cκ,i,n=1,...,4 behave regularly
and can perfectly be modelled by normal density functions [13]. In order to
do so, the mean values µκ,n=1,...,4 and the standard deviations σκ,n=1,...,4 for
the feature vector components cκ,i,n=1,...,4 are computed in accordance to the
well-known formulas

µκ,n =
1

Tκ

Tκ∑

i=1

cκ,i,n , (6)

and

σ2
κ,n =

1

Tκ

Tκ∑

i=1

(cκ,i,n − µκ,n)2 . (7)

Therefore, all concepts Ωκ considered in the image region classification task are
represented by a mean value vector

µκ = (µκ,1, µκ,2, µκ,3, µκ,4)
T

, (8)

2 In our experiments presented in Section 5 it varies from 50 to 400 in 7 steps.



and a standard deviation vector

σκ = (σκ,1, σκ,2, σκ,3, σκ,4)
T

(9)

after the training phase.

2.2 Labelling of Image Regions

In order to classify image regions, first, a test image f is automatically segmented
into test regions fr. Then, each region found in the image fr is described by a
four-dimensional feature vector

cr = (cr,1, cr,2, cr,3, cr,4)
T

. (10)

This global feature vector is computed in exactly the same way as in the training
phase (2, 3, 4, 5). The first component cr,1 is a mean pixel value in the test re-
gion, while the remaining components cr,n=2,...,4 result from the wavelet analysis
performed separately for the red, green, and blue channel of the image (see Fig-
ure 2). Now, for all possible concepts Ω = {Ω1, Ω2, . . . , Ωκ, . . . , ΩNΩ

} trained as
shown in Section 2.1, the comparison with the test region is performed. For this,
density values pκ,r,n=1,...,4 for all feature vector elements cr,n=1,...,4 are computed
using the trained mean (8) and standard deviation vectors (9) according to the
definition of the Gaussian density function [11]

pκ,r,n = p(cr,n|µκ,n, σκ,n) =
1

σκ,n

√
2π

exp

(
(cr,n − µκ,n)2

−2σ2
κ,n

)
. (11)

Assuming the statistical independency between the feature vector elements, the
final evaluation of the test region represented by cr and a hypothesis concept
Ωκ is computed with

pκ,r = p(cr|µκ, σκ) =

4∏

n=1

p(cr,n|µκ,n, σκ,n) . (12)

Finally, the classification result Ω
κ̂

(region label) is found by maximisation of
the density value (12) over all possible concepts represented by their index κ

κ̂ = argmax
κ

pκ,r = argmax
κ

p(cr|µκ, σκ) . (13)

The correspondence between the training results and the image region to be
classified is presented in Figure 3.

3 Spatial relations extraction

Within our region labelling procedure we consider four relative and two absolute
spatial relations to model the spatial arrangements of the regions within an
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Fig. 3. The results of the training phase in form of mean vectors µκ and standard
deviation vectors σκ for all concepts Ωκ are compared with the image region to be
classified fr represented by cr. As evaluation of this comparison density values pκ,r for
all pairs “image region – hypothesis concept” are achieved.

image. The relative spatial relations are above-of, below-of, left-of, right-of, and
the absolute spatial relations are above-all and below-all.

The directional relations are computed based on the centres of the minimal
bounding box containing a region. We have illustrated the definition of the di-
rectional relations in Fig. 4a. Based on the angle α we determine the relation
between two regions.

Computing whether a region is above-all or below-all is done with three
different approaches. First of all, we use the centre of the bounding box and
check whether it is above (below) a certain threshold. Second, we take the region
with the highest (lowest) bounding box centre. Finally, we also check for regions
that “touch” either the top or the bottom edge of the image. If a region touches
both the top and the bottom edge of the image, it is assigned neither of the two
absolute regions, in order to not produce any contradictory constraints.

4 Spatial Reasoning Based on Constraints

The goal of the spatial reasoning step is to exploit background knowledge about
the typical spatial arrangements of objects in images in order to improve the
labelling accuracy compared to pure local, low-level feature-based approaches.
As we will discuss in the following, the spatial background knowledge is auto-
matically extracted from labelled examples, which we call the spatial prototypes.
The knowledge consists of spatial constraint templates, which are explicitly rep-
resented spatial arrangements of concepts, possibly associated with a degree of
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Fig. 4. Definition of the a) directional and b) absolute spatial relations.

confidence. We provide two formalisations of the problem, one based on Fuzzy
Constraint Satisfaction Problems, which was already discussed in [8], and a new
formalisation based on Linear Programming.

Our following discussions will be based on some fundamental formal defini-
tions. Let L be the set of labels, and T the set of supported spatial relation
types. An image is a tuple I = {S, R}, and S is the set of regions created by
the segmentation. Each region si ∈ S is associated with a membership function
θi : L → [0, 1] with θi = {(lk, pk,i)}, which associates each label with the prob-
ability provided by the low-level classification. Further, let R = {r1, . . . , rk} be
the set of extracted spatial relations. An absolute spatial relation r is a region
itself, i.e. r ∈ S, while relative spatial relations are pairs of regions, i.e. r ∈ S2.
Each spatial relation is associated with a type t ∈ T .

We will first discuss the acquisition of constraint templates from a set of
spatial prototypes, and then describe the formalisation of the problem both
using Fuzzy Constraint Satisfaction Problems and Binary Integer Programs.

4.1 Constraint Acquisition

Spatial constraint templates constitute the background knowledge in our ap-
proach. Manually defining these templates is a tedious task, specifically if the
number of supported concepts and spatial relations becomes larger. We derive
these templates from spatial prototypes, which are manually labelled images.
We mine the prototypes using support and confidence as selection criteria, and
come up with a set of templates representing typical spatial arrangements.

Let the set of prototypes be a set of images P = {I1, . . . , Iq}. For each region
si of the images we assume that only one label exists, i.e. there is only one li ∈ L,
such that θi(li) = 1, and ∀lj ∈ L, lj 6= li : θi(lj) = 0. In the following we will say
that li is the label associated with region si. We want to acquire one template
for each spatial relation type t ∈ T . We denote the template as Tt, and interpret
each template as a fuzzy relation on the set of labels, i.e. Tt : Ln → [0, 1]. n

equals 1 in the case of an absolute relation, and 2 for relative spatial relations.



In order to determine the membership degrees for each tuple of labels, we
use the information present in our set of prototypes. For each label l we have to
determine in what spatial relation to other labels it might be found. Therefore,
for each spatial relation type t ∈ T , we consider the set of relations

Rt↓l := {r|∃I = {S, R} ∈ P : ∃si ∈ S : θi(l) = 1 ∧ r ∈ Rt}, (14)

where Rt ⊆ R denotes the set of relations with type t.
This set only contains relations from images depicting l, i.e. we limit both

support and confidence to the context of label l. We then define R
l,l′

t ⊆ Rt↓l

to be the set of relations between segments s, s′ depicting l and l′, respectively.

Finally, we write R
∗,l′

t↓l ⊆ Rt↓l to denote all relations between an arbitrary region
and a region depicting l′. The confidence of a label arrangement is then defined
as

γt(l, l
′) =

|Rl,l′

t |
|R∗,l′

t↓l |
, (15)

and the support as

σt(l, l
′) =

|Rl,l′

t |
|Rt↓l|

. (16)

This definition can easily be modified for unary relations. In that case we are
interested in the set Rl

t, which contains all absolute spatial relations on some
region s that depicts label l. Further, we denote with |l| the number of regions
associated with label l. Support and confidence for absolute spatial relations can
then be defined as

γt(l) =
|Rl

t|
|l| , (17)

and

σt(l) =
|Rl

t|
|Rt↓l|

. (18)

Finally, we have to define the template Tt for the spatial relation type t. We
consider only two degrees of confidence for templates. We define Tt(l, l

′) = 1 if
we accept the pair, or Tt(l, l

′) = 0 if we reject it. In order to determine whether
we want to accept or reject a certain pair of labels for the relation t, we use two
thresholds thσ and thγ , and define a template as

Tt(l, l
′) =

{
1 if σt(l, l

′) > thσ and γt(l, l
′) > thγ

0 else
(19)

For absolute spatial relations, the template is defined accordingly.

4.2 Spatial Reasoning with Fuzzy Constraint Satisfaction Problems

We transform the segmented and labelled image along with the spatial proto-
types into a Fuzzy Constraint Satisfaction Problem. In the following, we will first
introduce Fuzzy Constraint Satisfaction Problems as a formal model and then



discuss the transformation. Our definition is based on [14] extended with fuzzy
domains.

A Fuzzy Constraint Satisfaction Problem consists of an ordered set of fuzzy
variables V = {v1, . . . , vk}, each associated with the crisp domain L = {l1, . . . , ln}
and the membership function µi : L → [0, 1]. The value µi(l), l ∈ L is called the
degree of satisfaction of the variable for the assignment vi = l. Further, we de-
fine a set of fuzzy constraints C = {c1, . . . , cm}. Each constraint cj is defined
on a set of variables v1, . . . , vq ∈ V , and we interpret a constraint as a fuzzy
relation cj : Lq → [0, 1]. The value c(l1, . . . , lq), with vi = li is called the de-
gree of satisfaction of the variable assignment l1, . . . , lq for the constraint c. In
case that c(l1, . . . , lq) = 1, we say that the constraint is fully satisfied, and if
c(l1, . . . , lq) = 0 we say it is fully violated. The purpose of fuzzy constraint rea-
soning is to obtain a variable assignment that is optimal with respect to the
degrees of satisfaction of the variables and constraints. The quality of a solution
is measured using a global evaluation function, which is called the joint degree
of satisfaction.

We first define the joint degree of satisfaction of a variable, which determines
the local satisfaction degree of the problem. Let P = {l1, . . . , lk}, k ≤ |V | be a
partial solution of the problem, with vi = li. Let C+

i ⊆ C be the set of the fully
instantiated constraints on vi. Further, let ĉ stand for the degree of satisfaction
of c given the current partial solution. Finally, let C−

i ⊆ C be the set of partially
instantiated constraints on vi. We then define the joint degree of satisfaction as
dos(vi) := 1

ω+1 ( 1
|C+

i
|+|C−

i
|
(
∑

c∈C
+

i
ĉ+|C−

i |)+ωµi(li)), in which ω is a weight used

to control the influence of the degree of satisfaction of the variable assignment
on the joint degree. In this definition we overestimate the degree of satisfaction
of partially instantiated constraints to 1.

We now define the joint degree of satisfaction for a complete Fuzzy Constraint
Satisfaction Problem. Let J := {dos(vi1 ), . . . , dos(vin

)} be an ordered multiset
of joint degrees of satisfaction for each variable in V , with ∀vik

, vil
∈ V, k < l :

dos(vik
) ≤ dos(vil

). The joint degree of satisfaction of a variable that is not yet
assigned a value is overestimated to 1. We can now define a lexicographic order
>L on the multisets. Let J = {γ1, . . . , γk}, J ′ = {δ1, . . . , δk} be multisets. Then
J >L J ′, iff ∃i ≤ k : ∀j < i : γj = δj and γi > δi. If we have two (partial)
solutions P, Q to a Fuzzy Constraint Satisfaction Problem with according joint
degree of satisfactions JP , JQ, solution P is better than Q, iff JP >L JQ.

Now, we can transform an initially labelled image into a Fuzzy Constraint
Satisfaction Problem using the following algorithm.

1. For each region si ∈ S create a variable vi on L with µi := θi.

2. For each region si ∈ S and for each spatial relation r of type type defined
on si and further segments s1, . . . , sk create a constraint c on vi, v1, . . . , vk

with c := p, where p ∈ P is a spatial prototype of type type.

The resulting Fuzzy Constraint Satisfaction Problem can efficiently be solved
using algorithms like branch and bound, as was also discussed in [14].



4.3 Spatial Reasoning with Linear Programming

We will show in the following how to formalise image labelling with spatial
constraints as a linear program. We will first introduce Linear Programming as
a formal model, and then discuss how to represent the image labelling problem
as a linear program.

A linear program has the standard form

minimize Z = cTx

subject to Ax = b

x ≥ 0
(20)

where cT is a row vector of so-called objective coefficients, x is a vector of control
variables, A is a matrix of constraint coefficients, and b a vector of row bounds.
Efficient solving techniques exist for linear programs, e.g. the Simplex Method.
Goal of the solving process is to find a set of assignments to the variables in x with
a minimal evaluation score Z that satisfy all the constraints. In general, most
non-standard representations of a linear program can be transformed into this
standard representation. In this paper we will consider binary integer programs
of the form

maximize Z = cTx

subject to Ax = b

x ∈ {0, 1}
(21)

where x ∈ {0, 1} means that each element of x can either be 0 or 1.
In order to represent the image labelling problem as a linear program, we

create a set of linear constraints from each spatial relation in the image, and de-
termine the objective coefficients based on the hypotheses sets and the constraint
templates.

Given an image I = {S, R}, let Oi ⊆ R be the set of outgoing relations
for region si ∈ S, i.e. Oi = {r ∈ R|∃s ∈ S, s 6= si : r = (si, s)}. Accordingly,
Ei ⊆ R is the set of incoming spatial relations for a region si, i.e. Ei = {r ∈
R|∃s ∈ S, s 6= si : r = (s, si)}. For each spatial relation we need to create a
set of control variables according to the following scheme. Let r = (si, sj) be
the relation. Then, for each possible pair of label assignments to the regions,
we create a variable cko

itj , representing the possible assignment of lk to si and

lo to sj with respect to the relation r with type t ∈ T . Each cko
itj is an integer

variable and cko
itj = 1 represents the assignments si = lk and sj = lo, while

cko
itj = 0 means that these assignments are not made. Since every such variable

represents exactly one assignment of labels to the involved regions, and only one
label might be assigned to a region in the final solution, we have to add this
restriction as linear constraints. The constraints are formalised as

∀r ∈ R : r = (si, sj) ∈ R →
∑

lk∈L

∑

lo∈L

cko
itj = 1. (22)

These constraints assure that there is only one pair of labels assigned to a pair
of regions per spatial relation, but it does not guarantee, that for all relations



involving a specific region the same label is chosen for the region. In effect, this
means that there could be two variables cko

itj and ck′o′

it′j′ both being set to 1, which
would result in both k and k′ assigned to si. Since our solution requires that
there is only one label assigned to a region, we have to add constraints that
“link” the variables accordingly.

We basically require that either all variables assign a label lk to a region si,
or none. This can be accomplished by linking pairs of relations. We first have
to link the outgoing relations Oi, then the incoming ones Ei, and finally link
one of the outgoing relations to one of the incoming ones. This system of linear
constraints will ensure that only one label is assigned to the region in the final
solution.

We will start by defining the constraints for the outgoing relations. We take
one arbitrary relation rO ∈ Oi and then create constraints for all r ∈ Oi \ rO.
Let rO = (si, sj) with type tO, and r = (si, sj′) with type t be the two relations
to be linked. Then, the constraints are

∀lk ∈ L :
∑

lo∈L

cko
itOj −

∑

l′o∈L

cko′

itj′ = 0. (23)

The first sum can either take the value 0 if lk is not assigned to si by the relation
r, or one if it is assigned. Equation (22) ensures that only one of the cko

itj is set to
1. Basically, the same applies for the second sum. Since both are subtracted and
the whole expression has to evaluate to 0, either both equal 1 or both equal 0
and subsequently, if one of the relations assigns lk to si, the others have to do the
same. We can define the constraints for the incoming relations accordingly. Let
rE ∈ Ei, rE = (sj , si) with type tE be an arbitrarily chosen incoming relation.
For each r ∈ Ei \ rE with r = (sj′ , si) and type t create constraints

∀lk ∈ L :
∑

lo∈L

cok
jtE i −

∑

l′o∈L

co′k
j′ti = 0. (24)

Finally we have to link the outgoing to the incoming relations. Since the
same label assignment is already enforced within those two types of relations,
we only have to link rO and rE , using the following set of constraints:

∀lk ∈ L :
∑

lo∈L

cko
itOj −

∑

l′o∈L

co′k
j′tEi = 0 (25)

Absolute relations are formalised accordingly. Let Ai ⊆ R be the set of
absolute relations defined on si. For each r ∈ A of type t we define a set of
control variables ck

it, ∀lk ∈ L. The constraint enforcing only one label assignment
is defined as ∑

lk∈L

ck
it = 1, (26)

and we link it to all remaining absolute relations r′ on the region si with

∀lk ∈ L : ck
it − ck

it′ = 0. (27)



Further we have to link the absolute relation to the relative relations. Again,
linking one of the relations is sufficient, and therefore we choose either the rela-
tion rO or rE and an arbitrary absolute relation a:

∀lk ∈ L : ck
ita

−
∑

lo∈L

cko
itOj = 1 (28)

Eventually, let tr and ta refer to the type of the relative relation r and the
absolute relation a, respectively, then the objective function is defined as

∑

r=(si,sj)

∑

lk∈L

∑

lo∈L

min(θi(lk), θj(lo))∗Ttr
(lk, lo)∗cko

itrj+
∑

a=si

∑

lk∈L

θi(lk)∗Tta
(lk)∗ck

ita
.

(29)
For label pairs that violate our background knowledge, the product in the sum
will evaluate to 0, while for pairs satisfying our background knowledge, we take
the minimum degree of confidence from the hypotheses sets. Therefore we reward
label assignments that satisfy the background knowledge and that involve labels
with a high confidence score provided during the classification step.

5 Experiments and Results

Since we are interested in providing good labelling performance with only few
training examples, we conducted an evaluation of our approach with varying
training set sizes on a dataset of over 900 images with region-level annotations.
The dataset was divided into a test and a number of training sets of different
sizes. We then carried out a number of experiments on the largest training set
to determine a set of spatial relation types and acquisition parameters used for
the final evaluation. The differences achieved with variations in the parameters
or spatial relations are only minor, so that we do not expect a large impact on
the final results if the parameters are changed. We will continue by describing
the image database first, and then give the results of our experiments both for
the pure low-level approach, and the combination with the spatial reasoning. In
the end we will discuss the lessons learned.

5.1 Image Database

The dataset consists of 923 images depicting outdoor scenes ranging from beach
images over mountain views and cityscape images. An overview is provided in
Figure 5. We chose a set of 10 labels that were prominent in the images and where
a correct segmentation was feasible. The labels are building, foliage, mountain,
person, road, sailing-boat, sand, sea, sky, snow. Additionally, we used the label
unknown for regions where we could not decide on a definite label.

For preparing the groundtruth, all images were segmented by an automatic
segmentation algorithm that was available from a research project [15], and the
resulting regions were labelled using exactly one of the labels. We always used
the dominant concept depicted in a region, i.e. the concept covering the largest



Fig. 5. Overview of the image database used for the experiments.

part of the region, and labelled the region with the according label. Regions
without a dominant concept, or regions depicting an unsupported concept, were
assigned the unknown label.

In total the dataset contained 6258 regions, of which 568 were labelled with
the unknown label. This resulted in a dataset of 5690 regions labelled with a
supported concept. 3312 were used for evaluation, and in the largest data set we
used 2778 for training.

5.2 Experimental Results

The goal of our experiments was to determine the performance of our approach
with varying training-set sizes. For that a series of experiments was performed
in order to determine the influence of different parameters and features on the
overall performance using the largest training set. We fixed those parameters and
then performed the experiments using different training set sizes. The final setup
consisted of the spatial relations discussed in Section 3, and using the thresholds
σ = 0.001 and γ = 0.2 for both relative and absolute spatial relations. As one can
see from the final thresholds, filtering on support is not feasible, but confidence
provides a good quality estimation for spatial constraint templates.

For each approach, i.e. pure low-level classification, spatial reasoning using
Fuzzy Constraint Satisfaction Problems, and spatial reasoning using Binary In-
teger Programs, we measured precision (p), recall (r) and the classification rate
(c). Further we computed the F-Measure (f). In Table 1 the average for each of
these measures is given.

One can clearly see, that both spatial reasoning approaches improve the pure
low-level classification results. This observation is fully consistent with earlier
findings [8], and also other studies that were performed [6, 4, 7]. It is also obvious
that the binary linear programming approach outperforms the fuzzy constraint
satisfaction approach. This is probably due to the different objective functions
used. The Lexicographic order is still a rather coarse estimation of the overall



Low-Level FCSP BIP

set size p r f c p r f c p r f c

50 .63 .65 .57 .60 .65 .64 .62 .67 .77 .75 .73 .75

100 .70 .67 .65 .69 .67 .67 .65 .70 .78 .77 .75 .80

150 .67 .63 .61 .66 .66 .64 .63 .69 .74 .71 .70 .75

200 .69 .65 .63 .67 .67 .64 .64 .68 .80 .75 .76 .80

250 .69 .64 .60 .66 .69 .66 .65 .70 .78 .73 .72 .77

300 .68 .63 .61 .66 .68 .65 .64 .69 .82 .77 .78 .82

350 .63 .68 .61 .66 .70 .66 .66 .70 .80 .75 .76 .80

400 .68 .63 .61 .66 .69 .66 .65 .70 .80 .75 .75 .79
Table 1. Overall results for the three approaches.

labelling accuracy, while the objective function for the binary integer program
well integrates the two important properties, i.e. satisfying spatial constraints
and a high probability score from the classifier.

Fig. 6. Development of the classification rate with different training-set sizes.

Fig. 7. The improvement over the low-level classification achieved with increasing num-
ber of training examples.

In Figure 6 we have visualised the performance development with increasing
data set sizes. Against our initial assumptions, we do not see a steady increase
in performance, but already with 100 training examples nearly the best perfor-
mance, which stays pretty stable for the rest of the experiments. One can also
see that incorporating spatial context provides the largest performance increase



for the smallest training set, which is an indicator that a good set of constraint
templates is already acquired with only 50 prototype images. We have sum-
marised the classification rate improvement achieved with the spatial reasoning
in Figure 7.

5.3 Lessons Learned

The improvement is most significant for the training set with only 50 images.
For this set, the low-level classification rate is worst, but the large improvement
indicates that the background knowledge already provides a good model after
acquisition from only 50 examples. The best overall classification rate is achieved
with the binary integer programming approach on the data set with 300 training
images. However, the classification rate with 100 training examples is nearly the
same, which indicates that 100 training examples are a good size for training a
well performing classifier.

In general, the experiments show that the combination of the statistical train-
ing of low-level classifiers with an explicit spatial context model based on binary
integer programming provides a good foundation for labelling of image regions
with only few training examples.

Further, our experiments also revealed that solving this kind of problem is
much more efficient using binary integer programs. In average, the binary integer
programming approach requires 1.1 seconds for one image, with a maximum
value of 41 seconds and a minimum of only 6 ms. The fuzzy constraint reasoning,
however, takes several hours for a few images, while in average it takes around
40 seconds. So, for the FCSP the runtime is much less predictable and also much
higher in the average case. So, especially for real applications the binary integer
programming approach clearly seems preferable.

6 Conclusions

In this paper we have introduced a novel combination of a statistical method for
training and recognising concepts in image regions, integrated with an explicit
model of spatial context. We have proposed two ways of formalising explicit
knowledge about spatial context, one based on Fuzzy Constraint Satisfaction
Problems, that was already presented in [8], and a new one based on Binary
Integer Programming.

Our results show that the combination of both approaches results in a good
classification rate compared to results in the literature. We have further evalu-
ated how the classification rate develops with an increasing number of training
examples. Surprisingly, nearly the best performance was already reached with
only 100 training images. But also with 50 training images (approx. 344 regions)
the combined approach provided a reasonable classification rate.

We are going to continue this work in the future introducing some improve-
ments. For instance, new low-level features combining the texture and shape
information will be applied for image content description.
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