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Abstract—This article presents a system for texture-based
probabilistic classification and localisation of 3D objects in 2D
digital images and discusses selected applications. The objects are
described by local feature vectors computed using the wavelet
transform. In the training phase, object features are statistically
modelled as normal density functions. In the recognition phase, a
maximisation algorithm compares the learned density functions
with the feature vectors extracted from a real scene and yields the
classes and poses of objects found in it. Experiments carried out
on a real dataset of over 40000 images demonstrate the robustness
of the system in terms of classification and localisation accu-
racy. Finally, two important application scenarios are discussed,
namely classification of museum artefacts and classification of
metallography images.

Index Terms—Object Recognition, Statistical

Wavelet Analysis, Image Processing

Modelling,

I. INTRODUCTION

fundamental problem of computer vision is the recog-
nition of objects in digital images. The term object
recognition covers both, classification and localisation of
objects. For the problem of object classification the system
must determine the classes of objects occurring in an image
from the set of known object classes 2 = {21, 2o,...,
24,..., 2N, }. However, the number of objects in a scene is
typically unknown and must also be determined. In the case of
object localisation, the recognition system must estimate the
pose of an object in the image. The object pose is defined with
a translation vector t = (¢, t,, tZ)T and three rotation angles
(¢, ¢y, and @) around the axes of the Cartesian coordinate
system. The origin of the Cartesian coordinate system is
placed in the symmetry centre of the image, the z- and y-
axes lie in the image plane, and the z-axis is orthographic to
the image plane. These transformation parameters are divided
into internal (¢ = (., ty)T, Gint = ¢.) for 2D objects and
external (fext = tz, Goyy = (Pus ¢y)T) for 3D objects.
For recognition of 3D objects in 2D images, two main
approaches are known in computer vision: based on the result
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of object segmentation (shape-based), or by directly using the
object texture (texture-based). Shape-based methods make use
of geometric features such as lines or corners extracted by
segmentation operations. These features as well as relations
between them are used for object description [1]. However, the
segmentation-based approach often suffers from errors due to
loss of image details or other inaccuracies resulting from the
segmentation process. Texture-based approaches avoid these
disadvantages by using the image data, i.e., the pixel values,
directly without a previous segmentation step. For this reason
the texture-based method for object recognition has been
chosen to develop the system presented in this contribution.

The object recognition problem has been intensively inves-
tigated in the past. Many approaches to object recognition,
like the one presented in this paper, are founded on proba-
bility theory [2], and can be broadly characterised as either
generative or discriminative according to whether or not the
distribution of the image features is modelled [3]. Generative
models such as principal component analysis (PCA) [4], inde-
pendent component analysis (ICA) [5] or non-negative matrix
factorisation (NMF) [6] try to find a suitable representation
of the original data [7]. In contrast, discriminative classifiers
such as linear discriminant analysis (LDA) [8], support vector
machines (SVM) [9], [10], or boosting [11] aim at finding
optimal decision boundaries given the training data and the
corresponding labels [7]. The system presented in this paper
represents the generative approaches.

Classification and localisation of objects in images is a use-
ful, and often indispensable step, for many real life computer
vision applications. Algorithms for automatic computational
object recognition can be applied in areas such as: face classi-
fication [12], [13], fingerprint classification [14], handwriting
recognition [15], service robotics [16], medicine [17], visual
inspection [18], the automobile industry [13], [19], etc. Al-
though successful applications have been developed for some
tasks, e. g., fingerprint classification, there are still many other



areas that could potentially benefit from object recognition.
The system described in this article has been tested in real
application scenarios. One of these is the classification of
artefacts following a visit to a museum, another is the analysis
of metallography images from an ironworks.

There are further interesting approaches for object recog-
nition. Amit et al. proposes in [20] an algorithm for multi-
class shape detection in the sense of recognising and localising
instances from multiple shape classes. In [21] a method for
extracting distinctive invariant features from images that can
be used to perform reliable matching between different views
of an object or scene is presented. In [22] the problem of
detecting a large number of different classes of objects in
cluttered scenes is taken into consideration. [23] proposes a
mathematical framework for constructing probabilistic hier-
archical image models, designed to accommodate arbitrary
contextual relationships. In order to compare different methods
for object recognition, in [24] a new database specifically
tailored to the task of object categorisation is presented. In
[25] an object recognition system is described that uses a new
class of local image features. The features are invariant to
image scaling, translation, and rotation, and partially invariant
to illumination changes and affine or 3D projection. In [26] a
multi-class object detection framework whose core component
is a nearest neighbour search over object part classes is
presented.

As can be seen above, a lot of valuable research work
has been done in the field of object recognition in the past.
However, many features of our system prove its novelty
and originality as well as high performance in the sense of
classification and localisation accuracy. One of them is the
fusion of multiple views based on a recursive density propa-
gation. Furthermore, the training phase in our system can be
performed using images taken with a hand-held camera. The
missing pose parameters are then automatically reconstructed
with the so called structure-from-motion algorithm [27]. In
order to improve the performance of our system, we also
introduced the colour and the context modelling. Moreover,
the object feature extraction can be performed on different
resolution levels of the wavelet transform [28]. The object
models learned for these different resolutions can be then
combined with each other to accelerate the search and improve
the recognition results.

Many of the system features are presented on the following
pages. Section II describes the training procedure for the
object and context modelling. The object recognition phase
is detailed in Section III. Section IV covers the experimental
results achieved on a large database of over 40000 images
of real objects captured against heterogeneous backgrounds.
Section V describes two real application scenarios success-
fully implemented with our system: classification of museum
artefacts and classification of metallography images. The final
conclusions of this work are presented in Section VI.

II. TRAINING

This section starts with a short description of the acquisition
of data for training in Section II-A, followed by an explanation

on the feature extraction process in Section II-B. The so called
“object area” is then defined in Section II-C. The statistical
methods for object and background modelling are presented
in Sections II-D and II-E respectively. Finally, Section II-F
briefly presents the statistical context modelling, which can
also be performed using the system in training mode. Since
the training process is identical for all objects (2, the object
class index x will be omitted ({2, = {2) until the end of
Section II-E.

A. Training Data Collection

In order to capture training data, objects are put on a
turntable that rotates to set angles, and training images are
taken for each of these angles. The camera is fixed on a
mobile arm that can move around the object. The turntable
position produces information about the rotation ¢, of the
object around the vertical y axis. The position of the camera
relative to the object yields the object’s rotation ¢, around
the horizontal x axis. The object’s scale (translation ¢, along
the z) can be set with the zoom parameter of the camera, or
by moving the camera closer or further from the object. By
modifying the camera parameters and position, images can
be captured from all top and sidewise views of the object,
with their external pose parameters (@, text) known for each
training image.

ext’

B. Feature Extraction with Wavelet Transform

Both gray level and colour images can be used for object
modelling. First, the system converts and resizes the original
training scenes into gray level or RGB images of size 2" x 2"
(n € N) pixels, then local feature vectors c,, in these images
are computed via the discrete wavelet transform [28]. In order
to calculate the ¢, vectors, a grid with the size Ar = 2‘§‘,
where 3 is the minimum multiresolution scale parameter! s, is
overlaid on the image [29]. Figure 1 depicts this procedure for
the case of gray level scenes divided into local neighbourhoods
of size 4 x 4 pixels. Using the coefficients introduced in Figure
1, the local feature vector ¢, for the gray level image is

defined by,
In(2°|bs]) >
< (2 (do 3| + |d 5] + |d51)] M

In the feature vector, the first component stores information
about the mean gray level (low-frequencies) in the local neigh-
bourhood, while the second component represents discontinu-
ities (high-frequencies). The natural logarithm (In) helps to
depress local artefacts which can occur in real environments.
In the case of RGB images, each colour channel is treated
independently. The feature computation for each channel is
performed in the same way as for gray level images (see Figure
1). Therefore, the local feature vector for colour images has six
components. The first ¢, 1 and the second c¢,, » components
are calculated from the red channel, the third ¢, 3 and the
fourth ¢, 4 from the green channel, and the fifth ¢,, 5 and

li.e. Further decomposition of the signal with the wavelet transform is not
possible.



2™ x 2" Gray Level Image

Figure 1.
bo, 1 and have the following meaning: b_o
horizontal and high-pass vertical, do, _2

the sixth ¢, ¢ from the blue channel. Generally, the system is
able to compute local feature vectors for any resolution scale
3, but in practice 5 € {—1,—2, —3} is preferred.

C. Object Area Definition

Since the object usually only composes a part of the image,
a tightly enclosing bounding region O is defined for each
object class. From here on we will term this bounding region
the object area. By this term the set of features belonging
to the object will be referred. The object area can change its
location, orientation, and size from image to image depending
on the object pose parameters. In the simplest case, when
the object is rotated by ¢i,, € IR around the perpendicular
axis to the image plane and translated by #;,; € IR? in the
image plane, its appearance and size will not change. For more
complex transformations in the external pose, not only its size,
but also its appearance, i. e., pixel values in the object area, can
change. Thus for some external transformations (.., text)
a local feature vector ¢, describes the object (¢,, € O),
whilst for others the same vector belongs to the background
(em ¢ O). For this reason, the object area is modelled as a
function of the external pose parameters

O O(¢cxt7 Cxt) ) (2)

ideally within a continuous domain. This is done by using the
so called assignment functions & defined for all feature vectors
¢y, and all training viewpoints (@, text) as,

5 gm (¢cxta CXt) . (3)

The assignment function &,, decides, whether the feature
vector ¢, belongs to the object in the pose (Pgyi, Lext) OF
to the background, as follows,

{ gm((ﬁcxta cxt) > SO
gm((ﬁcxta CXt) < SO

where the threshold value Sp is set experimentally and has the
same value for all object classes. The assignment functions are
trained for each training view separately

= Cn € O((z)cxtv tCXt)

= Cnm g O( ext» CXt) (4)

1, if ema > S

gm(qbcxﬁte"t) - { O7 if Cm,1 < Sf 7 (5)

N

2D signal decomposition with the wavelet transform for a local neighbourhood of size 4 x 4 pixels. The final coefficients result from gray values
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where S¢ is a threshold value?. Since there is a finite number of
training views (@, text), these are discrete functions initially,
but after interpolation with the sine-cosine transformation they
become continuous. Therefore, considering both the internal
and external transformation parameters, the object area can be
expressed by the function

O =0(¢,t) (6)

defined in a continuous six-dimensional pose parameter space
(¢, t). Please note that an object feature vector (¢, € O) for a
particular view (@, Lext) 1s always computed on a particular
object point x,,, i. e., it moves with the object within the image
plane in terms of internal pose parameters (¢ing, tint)-

D. Statistical Object Modelling

In order to handle illumination changes and low-frequency
noise, the elements c,,, of the local feature vectors c,,
are interpreted as normal random variables. Assuming the
object’s feature vectors ¢, € O as statistically independent
of the feature vectors outside the object area, the background
feature vectors ¢, ¢ O can be disregarded and modelled
separately as outlined in Section II-E. The elements of the
object feature vectors are represented with Gaussian den-
sity functions p(cm,q|tm.qs Om.q, @, t). The mean p, , and
standard deviation o, , values are estimated for all training
VIeWS (@Poyt, text), Which form a subspace of (¢, ). Assuming
the statistical independence of the elements c,, 4, which is
valid due to their different interpretations in terms of signal
processing (Section II-B), the density function for the object
feature vector ¢, € O can be written as,

Ny
p(cm|/1’ma0'ma¢at): Hp(Cm,qu,q,Um,q,(P,t) , (D

q=1

where p,,, is the mean value vector, o, the standard deviation
vector, and NN, the dimension of the feature vector ¢,,, (N, = 2
for gray level images, N, = 6 for colour images). Further, it
is supposed that the feature vectors belonging to the object
¢, € O are statistically independent of each other. Under

’In the training phase objects are acquired against homogeneous back-
ground, either black (bright objects) or white (dark objects). Therefore, a
simple thresholding is sufficient for object area detection. (5) assumes bright
objects and would change its direction for dark ones.



this assumption, an object can be described by the probability
density p as follows,

p(O|B,¢.t) = ] plemlpm ome.t) . ®)

cm €0

where B comprehends the mean value vectors g, and the
standard deviation vectors o,,. This probability density is
called the object density and, taking into account (7), can be
written in more detail as,

Ny
p(O|B,¢,t): H Hp(cm,q|ﬂm,qaa'm,qv¢vt) )

cm €0 g=1

In order to complete the object description with the object
density (9), the means fi,, , and the standard deviations o, 4
for all object feature vectors c,, have to be learned. For this
purpose, N, training images of each object f, are used in as-
sociation with their corresponding transformation parameters
(¢p,tp). The mean vectors p,,, concatenated written as g,
and the standard deviation vectors o,,, concatenated written
as o, can be estimated from the maximisation of the object
density (9) over all N, training images,

Np
(B,0) = alggm?XHp(OlB@p,tp) (10)
12204 p:l

As a result of a subsequent interpolation step, the mean vectors
I, and standard deviation vectors o, are trained for all pose
parameters (¢, t) in a continuous sense.

E. Statistical Background Modelling

As mentioned in Section II-D, the background feature vec-
tors ¢, ¢ O are assumed to be statistically independent of the
feature vectors inside the object area O and can be modelled
separately. Since in the recognition phase the background is a-
priori unknown, each possible value of the background feature
vector element ¢,,, 4 can be observed with the same probability.
Thus, they are modelled as uniform random variables, and their
constant density functions,

1

max(cp,q) — min(cm,q)

p(cm,q) = (1 1)
do not depend on the transformation parameters (¢, t). Assum-
ing the statistical independence of c¢,, 4, (11) can be extended
to

N,
T 1
p(cm) = H Inax( =D
g=1

12)

Cm,q) — MiN(Cy q)

where py, is a constant value called background density.

F. Statistical Context Modelling

Usually, statistical approaches for object classification as-
sume the same a-priori occurrence probability for all consid-
ered object classes. However, with additional knowledge about
the environment in which a scene was captured, the occurrence
of some objects might be more likely than the occurrence of
others. Taking into consideration this additional knowledge in

the learning phase is called context modelling. In our approach
the contexts are trained separately from the objects. For all
considered contexts 1",—1 .. n, the statistical context models
M,—1,... N, are learned. The context models contain a-priori
densities p,(2,;) for all objects classes (2.,—1,.. N, taken
into account in the recognition task. It is assumed that the
number Ny and the types of context are known. The training
starts with the image acquisition where N, images are taken
from random viewpoints with a hand-held camera for each
context 1°,. The objects £2,,—1, .. N, occurring in the images
are counted for each context. In the following N, ,, denotes
how often the object {2, occurs in the context 7°,. This number
defines the a-priori occurrence probability for the object (2,
in the context 7, as follows

pL('QK) :nLNL,R 5

whereas the normalisation factor 7, ensures that the sum of the
a-priori occurrence probabilities for all objects in the context
T, is equal to 1.

13)

III. CLASSIFICATION AND LOCALISATION

This section describes the recognition mode of the system.
The classification and localisation algorithm for single-object
scenes is presented in Section III-A, while Section III-B deals
with multi-object scenes.

A. Single-Object Scenes

In this section it is assumed that each image contains exactly
one single object. In order to perform the classification and
localisation in the image f, the density values

Pr,h = p(OH|BHa ¢h7th)

for all objects £2,; and for a large number of pose hypotheses
(¢y,, tr) are compared to each other. As you can see, the pose
parameter space has been discretised again (¢, t) and the
training interpolation to a fully continuous model (see Section
II-D) might seem to had been unnecessary. However, the time
optimisation in the recognition phase has got a higher priority
than the time reduction in the training process. First, the test
image f is taken, preprocessed, and the local feature vectors
¢, are determined according to Section II-B. The computation
of the object density value p, ; for the given object (2,
and pose parameters (¢,,, tp) starts with the estimation of the
object area O,;(¢,,, t,) which has been learned in the training
phase (Section II-C). For feature vectors from this object area
cm € O, (¢, ty) the mean value vectors f,; ,,, and standard
deviation vectors o, ,, have been trained and are stored in the
object models. Therefore, their density values

(14)

DPe,, :p(cm|ﬂn,maan,mv¢hath) (15)

can be easily determined. Now, the object density value is
calculated as follows

pen = || max{pe,.pe} (16)

cm€0,

where py, is the background density introduced in Section II-E.
This is applied as a minimum multiplication component in



Training Image of (2, in pose (¢, tn)

Test Image of {2, in pose (¢, tr)

Figure 2.

Training image and test image of the same object in the same pose. Due to the occlusion with a razor in the test image, the test feature vector

cm is completely different from the corresponding training feature represented by iy, and o m. Thus, the density value for ¢y, is very close to zero

p(cm“"n,m, Or,m; ¢’h7 th) =~ 0.

order to solve object occlusions such as that presented in
Figure 2. The object densities (16) normalised by a quality
measure () are maximised over all object classes {2,; and a
large number of pose hypotheses. The quality measure (also
called geometric criterion), defined in the following way

Q(pn.,h) = Nod/Pr,n

decreases the influence the object size has on the recognition
results. IV, 5, denotes the number of feature vectors that belong
to the object area O, (¢, tr). The classification and localisa-
tion process can be described by the following maximisation
term

7)

~ o~

(/’%7 ®, t) = ?rima)i Q(p(omle ¢h7 th))
K, h;th

(18)

where (%, qAb,f) represent the final recognition result, i.e., the
class index and the pose parameters of the object found in
image f.

B. Multi-Object Scenes

This section deals with multi-object scenes under considera-
tion of context dependencies. These context dependencies have
been modelled in the training phase as described in Section
II-F. In the recognition phase there is no a-priori knowledge
about the context 7°,, in which the test image f has been
taken. For this reason the algorithm automatically determines
the context first. When searching for the first object (2,;, in
the multi-object scene f, the algorithm does not make use of
contextual information. The class «; and the pose ((;51,?1) of
the first object is estimated by maximisation of the normalised
object density value with (18). It is assumed that at least one
of the objects from the set 2 = {21, 22,...,2,,...,2n,}
occurs in the image f. Subsequently, the context 17 for the
scene f (the context number 7) is determined by maximisation
of the a-priori probability for the first object p,—1,.. N ({24,)
over all modelled contexts

T= argmaXpL(Qlﬂ) (19)
In the next step, the system estimates the optimal pose param-
eters (¢, t,;) for all objects £2,,—1,.. N, using the Maximum
Likelihood (ML) method presented in Section III-A

(fr b)) = azigmaicQ(p(ONIBm D, th))
hath

(20)

Then, the object density values for the optimal pose parameters
are weighted with the a-priori probabilities p;({2,;) learned for
the context 7 in the training phase

@fﬁ = Q{m(ﬂm)p(Oﬁ|Bm7 g)ﬁa/t\ﬁ)

These normalised and weighted object densities Q; .
are now sorted in non-increasing order

QﬁleK/gz"'ZQﬁiZQﬁi+1Z"'
dy d;

21

>Q,, , 2

where I = N, and d; is a difference between neighbouring
elements,

di = d(@l{i7@ﬁi+1) = @ni - @.‘Qi+1

The index i of the highest distance d; (Vi # iid; < d7) is
interpreted as the number of objects found in the multi-object
scene f and is calculated as

(23)

i = argmaxd;
i

(24)

The final recognition result in the multi-object scene f are the
following object classes and poses:

o~

(Hl, ?K/] 1?&1)
(525 qbﬁzatﬁg)

first object

second object
(25)

(’ifa E)Hg ) /t\m;)

In order to evaluate the recognition algorithm for multi-object
scenes, not only the object classification result {2, and the
object localisation result (¢,,,%.,) have to be verified, but
also the number 7 of objects found in the scene f must be
checked.

last object

IV. EXPERIMENTS AND RESULTS

This section discusses the performance of our system on
3D object recognition in a real world environment. The
image database (3D-REAL-ENV) used in this experiment is
described in Section I'V-A. Classification and localisation rates
for single-object scenes are presented in Section IV-B, while
Section IV-C evaluates the system performance for multi-
object scenes.



Type = hom

Type = weak

Type = strong

Figure 3. Examples of test scenes on all three types of background Ty pe € {hom, weak, strong}. The top row shows images with homogeneous background
(Type = hom), the middle row images with weak heterogeneous background (Type = weak), and the bottom row images with strong heterogeneous

background (Type = strong).

A. 3D-REAL-ENV Image Database

In our experiments we used the 3D-REAL-ENV [30]
database consisting of ten real world objects which can be
seen in Figure 3. The object pose in 3D-REAL-ENV is defined
by internal translations ¢, = (., ty)T and external rotation
parameters ¢, = (¢m,¢y)T. The objects were captured in
RGB at a resolution of 640 x 480 pixels under three different
illumination settings I}, € {bright, average, dark}. For this
experiment the images were resized to 256 x 256 pixels.

Training images were captured with the objects against a
dark background from 1680 different viewpoints under two
different illumination settings Iy, € {bright,dark}. This
produced 3360 training images in total for each 3D-REAL-
ENYV object. Each object was placed on a turntable performing
a full rotation (0° < ¢aple < 360°) while the camera attached
on a robotic arm was moved on a vertical to horizontal
arc (0° < ¢am < 90°). The movement of the camera
arm ¢, corresponds to the first external rotation ¢,, while
the turntable spin ¢aple corresponds to the second external
rotation parameter ¢,. The angle between two successive steps
of the turntable amounts to 4.5°. The rotation of the turntable
induces an apparent translation in the object position in the
image plane, which results in varying internal translation pa-
rameters tiny = (L, ty)T. These translations parameters were
determined manually after acquisition.

For testing, the ten 3D-REAL-ENV objects were captured
from 288 different viewpoints under the average illumina-
tion setting (/juym = average) and against three different
backgrounds: homogeneous, weak heterogeneous, and strong
heterogeneous. This resulted into three test sets of 2880
images each denoted according to the background used as
Type € {hom,weak,strong}. Test scenes of the first type
(Type = hom) were taken on homogeneous black background,
while 200 different real backgrounds were used to create het-
erogeneous backgrounds (Type € {weak, strong}). In scenes
with weak heterogeneous background (Ty,. = weak) the
objects are easier to distinguish from the background than
in scenes where strong heterogeneous background (Ty,. =
strong) have been used (see Figure 3). Similarly to the
acquisition of training images, the objects were put on a
turntable (0° < ¢aple < 360°) and the camera moved on

Classification Rate [%] Localisation Rate [%]
3D-REAL-ENV Hom. Weak Strong Hom. Weak Strong

Back. Het. Het. Back. Het. Het.
4.5° [ GL J[ 100 [ 92.2 [ 541 [[ 99.1 [ 80.9 [ 69.0 |
) [ C ] 100 [ 88.0 | 823 [[ 985 | 77.8 | 73.6 |
9.0° [ GL ][ 100 [ 92.4 [ 554 [[ 987 [ 80.0 [ 67.2 |
) [ C ] 100 [ 883 | 8I.2 [[ 982 | 764 [ 721 |
13.5° [ GL ][ 994 [ 89.7 [ 56.2 [[ 96.9 [ 78.6 [ 65.4 |
) [ C ] 996 [ 8.7 | 80.3 [[ 949 | 684 [ 66.6 |
18.0° [ GL ][ 999 [ 89.2 [ 551 [[ 96.6 | 71.4 [ 545 |
) [ C ] 973 [ 80.6 | 686 [[ 943 | 649 [ 60.7 |
22.5° [ GL ][ 99.4 [ 86.0 [ 52.8 [[ 94.5 [ 60.7 [ 38.6 |
) [ C 947 [ 748 ] 59.2 [[ 89.4 | 522 [ 46.2 |
27.0° [ GL ][ 965 [ 69.4 | 544 [ 83.8 | 49.9 [ 32.8 |
i} [ C ] 938 [ 536 | 502 [[ 783 | 358 | 356 |

Table 1

CLASSIFICATION AND LOCALISATION RATES OBTAINED FOR
3D-REAL-ENV IMAGE DATABASE WITH GRAY LEVEL (GL) AND COLOUR
(C) MODELLING. THE DISTANCE OF TRAINING VIEWS VARIES FROM 4.5°
TO 27° IN 5 STEPS. FOR EXPERIMENTS, 2880 TEST IMAGES WITH
HOMOGENEOUS, 2880 TEST IMAGES WITH WEAK HETEROGENEOUS, AND
2880 IMAGES WITH STRONG HETEROGENEOUS BACKGROUND WERE USED.

a robotic arm from vertical to horizontal (0° < ¢ < 90°).
However, for test images the turntable’s rotation between two
successive steps is 11.25°. Thus, test views are different from
the views used for training. Also, the illumination in the test
scenes is different from the illumination in the training images.

B. Experimental Results for Single-Object Scenes

The recognition algorithm for single-object scenes described
in Section III-A was evaluated for the 3D-REAL-ENV image
database presented in the previous section. The training of
statistical object models was performed for 6 angle-steps
(4.5°, 9°, 13.5°, 18°, 22.5°, 27°). Since this was done twice,
i.e., for gray level and colour images, it resulted in 12
training configurations. The classification and localisation rates
obtained for these configurations are summarised in Table I. A
classification result is counted as correct when the algorithm
returns the correct object class. A localisation result is counted
as correct when the error for internal translations is not greater
than 10 pixels and the error for external rotations not greater
than 15°. The results show that colour modelling brings a
significant improvement in the classification and localisation
rates for test images with strong heterogeneous background.
For scenes with homogeneous and weak heterogeneous back-
ground the recognition algorithm performs well even for gray



With Context Modelling |

Without Context Modelling ]
i

Hom [ Weak [ Strong Hom [ Weak [ Strong |
ON 100% 83.9% 43.2% 99.9% 88.2% 59.2%
CL 100% 91.9% 62.9% 100% 97.0% 87.5%
LL 99.7% 81.7% 58.1% 99.7% 81.7% 58.1%
Table II

QUANTITATIVE COMPARISON OF THE SYSTEM’S PERFORMANCE WITH
AND WITHOUT CONTEXT MODELLING. ON - OBJECT NUMBER
DETERMINATION, CL - CLASSIFICATION, LL - LOCALISATION.

level modelling. For these types of background the use of
computational demanding colour information can be avoided.
Object recognition takes 3.6s in one gray level image and 7s
in one colour image on a workstation equipped with a Pentium
4, at 2.66 GHz, and 512 MB of RAM.

C. Experimental Results for Multi-Object Scenes

For recognition of multi-object scenes, context modelling
was incorporated in the system in addition to statistical object
modelling. For each context considered in the experiments
(1 = kitchen, To = nursery, 7’3 = office), 100 images
were captured with a hand-held camera at random viewpoints.
Then, the a-priori occurrence probabilities for all objects in all
contexts were trained as described in Section II-F.

Altogether 3240 gray level multi-object scenes sized 512 x
512 pixels were used in the testing phase of the recognition
algorithm. Each image contains between one and three objects
from the 3D-REAL-ENV database pictured in Figure 3. Sim-
ilarly to the case of single-object scenes, the test images were
divided into three types: 1080 images with homogeneous back-
ground, 1080 scenes with weak heterogeneous background,
and 1080 with strong heterogeneous background. Additionally,
the 3D-REAL-ENV objects were assigned into three different
contexts, namely the kitchen 771, the nursery 1°5, and the office
Ts. For each background type and each context, 120 one-
object images, 120 two-object images, and 120 three-object
images were created.

The quantitative comparison of our system’s performance
with and without context modelling is presented in Table
II. Since object localisation is performed for a-priori known
object classes, the context modelling does not influence its
performance rate. However, the classification and the object
number determination rates increase significantly when using
context modelling for scenes with real heterogeneous back-
ground.

D. Experimental Results for COIL Image Database

In order to allow a performance comparison of our system
with other object recognition approaches, we performed ad-
ditional experiments on the so called COIL image database
(Columbia Object Image Library). COIL-20 presented in [31]
consists of 20 objects, while COIL-100 [32] is a completion
of COIL-20 with additional 80 objects. Although the COIL
image database provides only gray level images and we could
not make use of the colour modelling, we achieved satisfactory
classification rates, namely 100% for COIL-20 and 98.9% for
COIL-100.

V. REAL WORLD APPLICATION SCENARIOS
A. Annotation of Museum Visit Photos

It often happens that after spending few hours in a museum
we only remember some of the most impressive artefacts
on display. Fortunately digital photo cameras are convenient
extensions for our short-lived memory; pictures help us re-
member our experiences. Nowadays, cameras are omnipresent
on holidays, excursions and cultural tours.

Research initiatives such as SCULPTEUR 2 [33] and CHIP
# [34] have targeted innovative ways of bringing the benefits
of digital technology for preservation, study and protection of
heritage collections. Recently, radio frequency identification
(RFID) tags have also been used to guide visitors through
discovery tours in museums and to provide enhanced infor-
mation on the items of interest to visitors [35]. Although
less interactive than solutions using radio tags the image-
based recognition of artefacts is less expensive considering that
RF tagged collections need to provide visitors with wireless
PDA devices that trigger these tags. Furthermore, it is not
encumbered by privacy concerns since the interests of visitors
cannot be traced without their consent as in the case of RF
tags.

Our targeted application starts from the observation that
many museum visitors actually take photos of items on display.
As the time goes by they remember less and less information
about the artefacts in the photos. In order to enrich the visit
experience the museum can provide the visitors with an on-line
or on-site service in which a visitor presents a set of digital
photos taken inside the museum and the museum returns
additional information about the artefacts contained in the
photos. Due to the amount of photos that would be presented
for annotation such an application is feasible for museums
only when the annotation process is entirely automated.

The crucial bottleneck in the automatic annotation system
corresponds to artefact identification i.e the classification
process that should have the ability to accurately recognise
the artefacts depicted in the submitted photos. The photos
submitted by visitors are quite diverse, being taken at various
positions around the artefact display. The scales at which
the artefacts appear in various photos also vary according to
the distance to the camera and the zoom level used when
the photo was captured. However the lighting conditions are
mostly invariant and known deriving from the light provided
in the museum exhibit space. Therefore, the challenges in
artefact recognition derive mainly from the changes in view
(angle) and scale of the artefact in the photos. Clearly this
is an ideal application scenario for the approach proposed in
this paper. In order to deal with changes in position multiple
views of the artefact can be captured on a turntable that
rotates the artefact in controlled steps around its own vertical
axis during the museum’s cataloguing process. The lighting
could be constrained to be similar to that in the room where
the artefact is exhibited. Each photo to be recognised is
then matched to multiple-views of artefacts in the collection

3Semantic and content-based multimedia exploitation for European benefit
http://www.sculpteurweb.org
4Cultural Heritage Information Personalisation http://www.chip-project.org



captured in controlled conditions. A multi-scale approach can
deal with scale variations. We are currently designing and
building an prototype end-user application for this scenarios
in consultation with the National Museum of Ireland.

For preliminary experiments, we used an image database
containing 75 artefacts. For training, 72 different viewpoints
of all artefacts were used. For classification, 300 additional
images under real museum-like conditions were acquired. Our
system performed well for this image database and achieved
a classification rate of 95.3%.

B. Classification of Metallography Images

The system presented in this contribution is being success-
fully applied for analysis of metallography images from the
Ironworks in Ostrava (Czech Republic) [36]. The aim of this
analysis is monitoring the quality process in the steel plant.
Metallography is a complex analysis process performed in the
production of metal and composite materials with the purpose
of controlling the composition and quality of the final alloy.
This process involves various preparations of the metal speci-
men to be analysed followed by specialised visual inspection
carried out under optical or electron microscopy. Based on
the microscopy images a skilled technician can identify alloy
composition and processing conditions. Considering the visual
nature of the examination, metallography is an appealing test
application for our texture-based image recognition approach.

In order to classify metallography images into quality
categories (image concepts) the object recognition problem
reduces to an image classification task. The ground truth
knowledge about the quality categories was provided by a
human expert. The system has to find the concept (27, (its
index k) present in a test image f. For that, the density
values for all concepts {2,; have to be compared to each other.
Assuming the feature vectors c,, as statistically independent
on each other the density value for the given test image f and
concept {2,; is computed with

m=M
P = H p(cm|,ufn,m70'n,m) )

m=1

(26)

where M is the number of all feature vectors in the image
f. All data required for computation of the density value p,
with (26) is stored in the statistical concept model M. These
density values are then maximised with Maximum Likelihood
(ML) Estimation [37]

R = argmax py 27
Having the index % of the resulting concept the classification
problem for the image f is solved.

We tested our approach on 240 example metallography
images categorised into four quality classes by a human expert.
Our system provided the same classification results in 223
cases which yields a classification rate of 92.9%. We are
continuing the work with a comprehensive investigation on
quality scoring of metallography images, currently collecting
data and setting up a large ground truth database.

VI. CONCLUSIONS

This article presents a system for 3D texture-based prob-
abilistic object classification and localisation and its appli-
cations. In contrast to shape-based approaches, texture-based
methods do not use any segmentation techniques for feature
extraction. The features are computed directly from the image
pixels as described in Section 1.

The training mode of the system (Section II) starts with
the local feature extraction by the discrete wavelet transform.
Subsequently, a tightly enclosing object area is learned for
each object class. Feature vectors inside this object area are
represented by normal density functions, while background
features are modelled with the uniform distribution. Finally,
context dependencies between objects are modelled in the
training phase.

The recognition mode of the system is described in Section
III. At first we present an approach that deals with single-
object scenes and solves the recognition problem by the max-
imum likelihood estimation. The second recognition algorithm
addressed in this paper deals with the problem of object classi-
fication and localisation in multi-object scenes. However, it
takes into consideration context dependencies between objects,
which are statistically modelled in the training phase.

As can be seen in (18), in order to perform the classification
and localisation of a single object in a single image the density
values p,. , are compared to each other for all objects (2,
and for all pose hypotheses (¢}, tr,). However, the number of
objects Ny, and the number of pose hypotheses N}, might vary
depending on the task definition and the desired localisation
accuracy. The running time of the recognition algorithm 7iec
highly depends on these numbers and can be expressed by
Trec ~ Ng - Np,.

Experimental investigation has been carried out (Section
IV) on an image database of over 40000 images specifically
recorded for 3D object recognition in a real world environment
(3D-REAL-ENYV). The classification and localisation results
obtained in the experiment prove the high performance of
our system. A boost in performance is obtained by using
colour and context modelling. The classification rate achieved
for 3D-REAL-ENV test images with strong heterogeneous
background is 54.1% for gray level modelling while when
colour information is applied the classification reaches 82.3%.
The performance of the localisation algorithm is also improved
by colour modelling for difficult heterogeneous environments
from 69.0% on gray level modelling to 73.6% on colour
modelling. Furthermore, due to the modelling of context de-
pendencies between objects, higher classification rates where
obtained for multi-object scenes. The classification rate for
multi-object scenes with strong heterogeneous background but
without considering context dependencies amounts to 62.9%,
while taking into account context increases the classification
rate to 87.5%.

The system described in this paper is currently being em-
bedded in real applications (Section V). The first application
targeted is recognition of museum artefacts from photos taken
by visitors. The second application investigated is the analysis
of metallography images from an steel plant.



As shown, the texture-based statistical object classification
approach presented in this article can be easily adapted to other
computer vision tasks. Two such tasks, namely classification of
museum artefacts and of metallography images are described
in here. Improvements are possible and we are currently inves-
tigating some promising paths. One extension of our approach
is combining the appearance-based model with a shape-based
model for object recognition. There are objects with the same
shape, which are distinguishable only by texture, but one can
also imagine objects with the same texture features, which
can be easily distinguished by shape. Finally, since our system
is adaptable to many image classification tasks we intend to
apply it for image and video content retrieval.
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