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Robert Wang, Member, IEEE, Otmar Loffeld, Senior Member, IEEE,
Holger Nies, and Joachim H. G. Ender, Senior Member, IEEE

Abstract—This paper focuses on the bistatic synthetic aperture
radar (SAR) data processing in a spaceborne/airborne hybrid
bistatic configuration. Due to the extreme differences in plat-
form velocities and slant ranges, the airborne system operates
in the inverse sliding-spotlight mode, while the spaceborne sys-
tem works in the sliding-spotlight mode to achieve a tradeoff
between azimuth scene size and azimuth resolution. In this ex-
treme bistatic configuration, our original bistatic formula shows
a limitation of accurately describing the bistatic point-target ref-
erence spectrum, owing to the assumption of equal contributions
of transmitter and receiver to the total Doppler spectrum. We
extend our previous formula using the weighting operation where
the weighting factor is the ratio of the azimuth time-bandwidth
product (TBP) of the platform to the total azimuth TBP. In this
paper, the bistatic-deformation and azimuth-dependent range–
cell-migration terms were removed with phase multiplications
performed blockwise in range–azimuth subsections. The remain-
ing quasi-monostatic term shows the characteristic of the con-
ventional monostatic SAR besides an additional azimuth-scaling
term. For the monostatic characteristic, any precision mono-
static SAR processing algorithms can handle. In this paper,
we prefer the wavenumber-domain algorithm (also known as
Omega-K), since it can accurately correct the range depen-
dence of the range–azimuth coupling, as well as the azimuth-
frequency dependence. For the azimuth-scaling term, an inverse
scaled Fourier transformation is performed to correct it. Finally,
a hybrid spaceborne/airborne simulation experiment is conducted
to validate the proposed processing procedure.

Index Terms—Bistatic point-target reference spectrum
(BPTRS), bistatic synthetic aperture radar (BiSAR), range cell
migration (RCM), time-bandwidth product (TBP).

NOMENCLATURE

τ , t Azimuth and range time variables.
τ0R, τ0T Zero Doppler times of receiver and transmitter,

respectively.
R0R, R0T Closest ranges from receiver and transmitter to

the point target P (τ0R, R0R), respectively.
(τ0R, R0R) Receiver-referenced coordinates defined as the

coordinates of image space.
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σ(τ0R, R0R) Backscattering coefficient of the point target
located at (τ0R, R0R).

Rm Closest range from the scene center to the ideal
trajectory of receiver.

r Zero-offset receiver-to-target range variable
defined by r = R0R − Rm.

vR, vT Platform velocities of receiver and transmitter,
respectively.

c Speed of light.
λ, f0 Carrier wavelength and carrier frequency of the

transmitted signal, respectively.
f , fτ Range and azimuth-frequency variables.

I. INTRODUCTION

B ISTATIC synthetic aperture radar (BiSAR) is character-
ized by different locations for transmitter and receiver

and, hence, offers considerable flexibility in designing BiSAR
missions [1], [2]. However, this flexibility configuration is paid
by a huge processing complication, since the bistatic range
equation consists of a double square-root term. Therefore, the
bistatic point-target reference spectrum (BPTRS) does not offer
the analytical simplicity of the single square root in monostatic
SAR using the principle of stationary phase (PSP), which im-
plies that monostatic processing algorithms cannot be directly
applied [3]–[14].

In [4], based on an approximately analytical BPTRS, the
2-D inverse-scaled Fourier transform (ISFT) is applied to fo-
cus BiSAR data. Using the numerical solutions of the double
square-root phase term, wavenumber-domain algorithm is also
used to focus BiSAR data [7] where only azimuth-invariant
configurations are handled. In addition, a numerical transfer
function for BiSAR has been published in [8], where a stan-
dard SAR processor can be used to process the BiSAR data
of azimuth-invariant configurations. In [9], a preprocessing
technique known as dip move out is employed to transform
the azimuth-invariant bistatic configuration to the monosta-
tic one. A modified range-Doppler algorithm is proposed to
process space–surface BiSAR data in [10], where it is suitable
for stripmap space–surface bistatic configuration. In particu-
lar, based on an analytical BPTRS [11], a nonlinear chirp-
scaling algorithm and range-Doppler algorithm has been used
to process BiSAR data [12], [13].

Loffeld’s bistatic formula (LBF) has been originally de-
veloped for the general bistatic configuration in [2] with the
assumption of the equal contributions of both range equations to
the total Doppler spectrum. This assumption is no longer valid
in the hybrid spaceborne/airborne case where transmitter and
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receiver highly differ in the velocities and slant ranges [14]. The
considerable differences in velocity and slant range result in un-
equal contributions of both range equations to the total Doppler
spectrum [14]. In order to focus the spaceborne/airborne hybrid
configuration, we have developed the extended LBF (ELBF) in
[5], where the time-bandwidth products (TBPs) of the phase
histories of transmitter and receiver are used to weigh the
contributions of transmitter and receiver to the total Doppler
spectrum. Aiming at the planned spaceborne/airborne exper-
iment (TerraSAR-X as the illuminator and the airborne SAR
system PAMIR of FGAN as the bistatic receiver [15], [16]), the
accuracy of ELBF has been validated in [14].

The ELBF still consists of two components: quasi-
monostatic (QM) phase term and bistatic-deformation (BD)
phase term. In this paper, we first linearize the QM term, factor
out the azimuth-dependent range-cell-migration (RCM) com-
ponent, and incorporate it into the BD term. Then, we remove
the new BD term using phase multiplication in range–azimuth
subsections [4]. Subsequently, for the convenience of process-
ing, the remaining QM term is decomposed into three com-
ponents: range-invariant, range-variant, and azimuth-scaling
terms. The range-invariant and range-variant terms are the
inherent components of the conventional monostatic SAR [6].
Therefore, after compensating the new BD term, only an addi-
tional azimuth-scaling term is left in the remaining QM term
as compared with the monostatic spectrum [6]. Thus, the well-
known monostatic SAR algorithms (e.g., range-Doppler, chirp-
scaling, and Omega-K algorithms) can be applied to focus the
BiSAR data. In this paper, the range-invariant term is removed
with reference phase multiplication; for the range-variant term,
we adopt the Stolt interpolation to correct its nonlinear de-
pendence on the range and azimuth frequencies [6], [17].
Finally, the azimuth-scaling term can be corrected with ISFT
or interpolation.

This paper is organized as follows. In Section II, the ELBF
is derived and explained. Moreover, the further overview of our
weighting idea is left to the Appendix. Section III describes the
processing procedure with the wavenumber-domain algorithm
(WDA). Some simulations to verify the proposed processing
method are performed in Section IV. Finally, some conclusions
are reported in Section V.

II. ELBF

In this paper, we consider the bistatic geometry in the hybrid
spaceborne/airborne configuration, as shown in Fig. 1. The
mathematical symbols and their definitions used in this paper
are given in the Nomenclature. The received signal from a point
target located at (τ0R, R0R) after demodulation is given by

g(τ, t, τ0R, R0R) = σ(τ0R, R0R)sl

(
t − RR(τ) + RT (τ)

c

)

× exp
[
−j2π

RR(τ) + RT (τ)
λ

]
w(τ − τcb) (1)

where w(τ − τcb) is the composite azimuth antenna pattern
centered on azimuth time τcb. sl(t) represents the transmitted
signal. RR(τ) and RT (τ) are the instantaneous slant ranges

Fig. 1. Imaging geometry of the spaceborne/airborne BiSAR configuration.
X , Y , and Z represent the along-track, cross-track, and vertical directions,
respectively.

from receiver and transmitter, respectively, to the point target,
defined as

RR(τ) =
√

R2
0R + (τ − τ0R)2v2

R

RT (τ) =
√

R2
0T + (τ − τ0T )2v2

T . (2)

Performing the Fourier transformation (FT) with respect to
the range time variable t, we can transform (1) into the range-
frequency/azimuth-time domain

G(τ, f, τ0R, R0R) = σ(τ0R, R0R)S1(f)w(τ − τcb)

× exp
[
−2π(f + f0)

RR(τ) + RT (τ)
c

]
(3)

where S1(f) is the baseband spectrum of the transmitted signal.
Then, an azimuth FT is performed to transform the signal

into the 2-D frequency domain.

G(fτ , f, τ0R, R0R) = σ(τ0R, R0R)S1(f)

×
∫

w(τ − τcb) exp [−jφb(τ, fτ )] dτ (4)

where

φb(τ, f) = 2π(f + f0)
RR(τ) + RT (τ)

c
+ 2πfττ. (5)

Because of the double square root contained in the integral
of (4), the PSP cannot directly be applied to obtain the bistatic
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stationary point. To circumvent this limitation, two equivalent
terms are introduced into (5) [2]

φb(τ, f) = φR(τ) + φT (τ) (6)

where

φR(τ) = 2π
[
f + f0

c
RR(τ) +

fττ

2

]

φT (τ) = 2π
[
f + f0

c
RT (τ) +

fττ

2

]
. (7)

From (7), it can be seen that we equalize the contributions
of both range equations to the total Doppler frequency. In the
spaceborne/airborne hybrid configuration, the contributions are
considerably different due to the extreme difference in slant
range and velocity of transmitter and receiver, which results in
the degradation of the LBF.

In this paper, we adopt the TBP to weigh contributions of the
range equations of transmitter and receiver to the instantaneous
Doppler frequency. This weighting operation will result in the
fact that the azimuth modulations of both range equations will
well agree with the individual instantaneous Doppler frequen-
cies (see Appendix). Therefore, (6) can be reformulated as

φb(τ, f) = 2π
{

f + f0

c
[RR(τ) + RT (τ)] + (kR + kT )fτ τ

}
=φRW (τ, f) + φTW (τ, f) (8)

where

φRW (τ, f) = 2π
[
f + f0

c
RR(τ) + kRfττ

]

φTW (τ, f) = 2π
[
f + f0

c
RR(τ) + kRfττ

]
(9)

kT =
TBPT

TBPR + TBPT

=

(
v2

T /λR0T

)
T 2

a

(v2
R/λR0R) T 2

a + (v2
T /λR0T ) T 2

a

kR =
TBPR

TBPR + TBPT

=

(
v2

R/R0R

)
T 2

a

(v2
R/λR0R) T 2

a + (v2
T /λR0T ) T 2

a

. (10)

TBPR and TBPT are the TBPs of the azimuth-modulation
signals from receiver and transmitter, respectively. For the
calculation of TBPs, we use the composite synthetic aperture
time Ta. Therefore, the weighting factor based on the TBPs is
also equivalent to using the azimuth chirp rates and Doppler
bandwidths. The reason for using the TBP as the weighting
factor is that it can be seen as indicators of modulation degree
of a chirp signal [6]. From (10), it is clear that we always have
kR + kT = 1. Via this weighting operation, the contributions
of receiver and transmitter to the azimuth Doppler spectrum are
restricted by the factors kR and kT , respectively. Equation (7)
is only the special case of (9) when contributions of transmitter
and receiver are equally weighted (kR = kT = 1/2).

To address the problem of double square-root term, we
expand φRW and φTW in second-order Taylor series around
their stationary points: τ̃RW and τ̃TW [2]. These two quadratic
functions are given as

φRW (τ, f) ≈ φRW (τ̃RW , f) +
1
2
φ̈RW (τ̃RW , f)(τ − τ̃RW )2

φTW (τ, f) ≈ φTW (τ̃TW , f) +
1
2
φ̈TW (τ̃TW , f)(τ − τ̃TW )2

(11)

where τ̃WR and τ̃WT are defined as

τ̃RW = τ0R − kR
cR0R

v2
R

fτ

FRW

τ̃TW = τ0T − kT
cR0T

v2
T

fτ

FTW
(12a)

FRW =

√
(f + f0)2 −

(
kRcfτ

vR

)2

FTW =

√
(f + f0)2 −

(
kT cfτ

vT

)2

. (12b)

To obtain the bistatic stationary point, substituting (11) into
(8) yields

φb(τ, f) ≈ φRW (τ̃RW , f) +
1
2
φ̈RW (τ̃RW , f)(τ − τ̃RW )2

+ φTW (τ̃TW , f) +
1
2
φ̈TW (τ̃TW , f)(τ − τ̃TW )2. (13)

Applying the PSP to (13) yields the common stationary
point as

dφb(τ, f)
dτ

∣∣∣∣
τ=τ̃W

= 0. (14)

Solving (14) for τ̃W yields

τ̃W =
φ̈RW (τ̃RW , f) × τ̃RW + φ̈TW (τ̃TW , f) × τ̃TW

φ̈RW (τ̃RW , f) + φ̈TW (τ̃TW , f)

=
R0T v2

RF 3
RW τ0R + R0Rv2

T F 3
TW τ0T

R0T v2
RF 3

RW + R0Rv2
T F 3

TW

− cfτ

R0RR0T

(
kRF 2

RW + kT F 2
TW

)
R0T v2

RF 3
RW + R0Rv2

T F 3
TW

. (15)

Evaluation of (4) proceeds by substituting τ̃W for τ in
the right-hand side of (4) and disregarding the nonessential
complex factor. The result is

G(fτ , f, τ0R, R0R) = σ(τ0R, R0R)S1(f)w(τ̃W − τcb)

× exp [−jΨQMW (fτ , f, R0R)] exp
[
−j

ΨBDW (fτ , f, R0R)
2

]
(16)
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where ΨQMW and ΨBDW refer to the QM and BD terms,
respectively. They are defined as

ΨQMW (fτ , f, R0R)

= φWR(τ̃WR, f) + φWT (τ̃WT , f)

= 2πfτ (kRτ0T + kT τ0R) +
2π

c
(R0RFRW + R0T FTW )

(17)

ΨBDW (fτ , f, R0R)

= φ̈RW (τ̃RW , f)(τ̃W − τ̃RW )2

+ φ̈TW (τ̃TW , f)(τ̃W − τ̃TW )2

=
2πv2

Rv2
T F 3

RW F 3
TW

c(f + f0)2 (R0Rv2
T F 3

TW + R0T v2
RF 3

RW )

×
[
(τ0T − τ0R) − cfτ

v2
Rv2

T FRW FTW

×
(
kT R0T v2

RFRW − kRR0Rv2
T FTW

) ]2

. (18)

In [2], the QM and BD terms are defined as

ΨQM(fτ , f, R0R)

= 2πfτ (τ0T + τ0R) +
2π

c
(R0RFR + R0T FT ) (17a)

ΨBD(fτ , f, R0R)

=
2πv2

Rv2
T F 3

RF 3
T

c(f + f0)2(R0Rv2
T F 3

T + R0T v2
RF 3

R)

×
[
(τ0T − τ0R) − cfτ

2v2
Rv2

T FRFT

×
(
R0T v2

RFR − R0Rv2
T FT

) ]2

(18a)

where

FR =

√
(f + f0)2 −

(
cfτ

2vR

)2

FT =

√
(f + f0)2 −

(
cfτ

2vT

)2

. (19)

Comparing (17) and (18) and (17a) and (18a), it can be seen
that ΨQMW and ΨBDW would be equal to ΨQM and ΨBD if
letting kR = kT = 1/2.

III. WDA FOR THE SPACEBORNE/AIRBORNE

HYBRID BiSAR DATA

In this section, we begin with the 2-D linearization of
ΨQMW . We bilinearly express τ0T , R0T , and R0R in terms of
(τ0R, r) [4].

τ0T = p10 + p11r + p12τ0R

R0T = p20 + p21r + p22τ0R

R0R = r + Rm. (20)

Substituting (20) into (17) yields

ΨQMW (fτ , f, r)
≈ 2πp10kT fτ + 2πp11rkT fτ

+ 2π(kT p12 + kR)τ0Rfτ +
2π

c
p22τ0RFTW

+
2π

c
(r + Rm)FRW +

2π

c
(p20 + p21r)FTW . (21)

From (21), it can be seen that 2πp22τ0RFTW /c contains
an azimuth-dependent RCM term which is introduced by the
azimuth-variant baseline between transmitter and receiver. For
clarity, we expand FTW with respect to fτ and f as

2π

c
p22τ0RFTW ≈

⎡
⎢⎢⎣
√

f2
0 −

(
kT cfDc

vT

)2

+

(
kT cfDc

vT

)2

√
f2
0 −

(
kT cfDc

vT

)2

+
f√

1−
(

kT λfDc
vT

)2
−

(
kT c
vT

)2

fDc√
f2
0 −

(
kT cfDc

vT

)2
fτ

⎤
⎥⎥⎦2π

p22τ0R

c
(22)

where fDc specifies the Doppler centroid of azimuth signal. In
(22), the first two terms represent the residual phase terms and
are negligible if a magnitude image is the final product; the third
term is the azimuth-dependent RCM; the last term denotes the
azimuth-scaling term [4].

This azimuth-dependent RCM term must be removed after
azimuth compression and registration. However, this leads to
a conflict: It is known that the focusing quality of azimuth
compression will be affected by the accuracy of the RCM
correction. To deal with the conflict, we will factor out the
azimuth-dependent RCM from (21) and incorporate it into
ΨBDW . The new expressions of QM and BD are then given as

Ψ̄QMW (fτ , f, r)

= 2πp10kT fτ + 2πp11rkT fτ +
2π

c
(r + Rm)FRW

+
2π

c
(p20 + p21r)FTW + 2πβAτ0Rfτ (23)

Ψ̄BDW (fτ , f, R0R)

= ΨBD(fτ , f) +
4πp22τ0Rf

c

√
1 −

(
kT λfDc

vT

)2
(24)

where the nonessential phase terms [i.e., the first two terms
in (22)] have been neglected, the azimuth-scaling factor βA is
defined as

βA = kT p12 + kR − p22λk2
T fDc

v2
T

√
1 −

(
λkT fDc

vT

)2
. (25)

Some short remarks concerning (23) and (24) will be helpful
to understand the idea.

1) Ψ̄BDW (fτ , f, R0R) includes the 2-D space-variant
RCM, range–azimuth coupling, azimuth scaling, and az-
imuth modulation. To deal with Ψ̄BDW , we perform a
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preprocessing operation in the range–azimuth subsec-
tions to remove it [4]. For each subsection, the correction
factor for Ψ̄BDW is substituted by averaged values over
slant range and azimuth time.

2) After removing Ψ̄BDW , Ψ̄QMW shows an additional
azimuth-scaling term as compared with the conventional
monostatic spectrum [6]. Therefore, any efficient mono-
static processing algorithms can be applied to focus the
BiSAR data.

After preprocessing, (16) becomes

Ḡ(fτ , f, τ0R, r) = σ(τ0R, R0R)S1(f)w(τ̃W − τcb)
× exp

[
−jΨ̄QMW (fτ , f, r)

]
. (26)

For further clarity, we decompose Ψ̄QMW into a range-
invariant, range-variant, and azimuth-scaling terms

Ψ̄QMW (fτ , f, r) = ΦIV(fτ , f) + ΦV(fτ , f, r)︸ ︷︷ ︸
Monostatic

+ΦAS (fτ )

(27)

where the range-invariant, range-variant, and azimuth-scaling
terms are denoted by the subscripts IV, V and AS

ΦIV(fτ , f) = 2πkT p10fτ +
2π

c
RmFRW +

2π

c
p20FTW

(28)

ΦV(fτ , f, r) = 2π
(1+ p21)r

c

[cp11kT fτ + (FRW + p21FTW )]
(1 + p21)

(29)
ΦAS(fτ ) = 2πβAτ0Rfτ . (30)

For clarity, some further comments concerning (28)–(30) are
given as follows.

1) ΦIV(fτ , f) represents the range-invariant component.
It is responsible for the range-invariant RCM,
range–azimuth coupling, and azimuth modulation.
It can be removed with reference function multiplication
(RFM) in the 2-D frequency domain [6].

2) ΦV(fτ , f, r) is the range-variant component. It accounts
for the range-variant RCM, range–azimuth coupling, and
azimuth modulation. It is zero at the swath center because
of the factor r in (29), but it exists at other ranges [6].
It is necessary to correct ΦV in a subsequent operation
to focus precisely over the whole scene. In this paper,
we prefer the Stolt interpolation (nonlinear mapping) to
correct the nonlinear dependence of ΦV on the range and
azimuth frequencies.

3) ΦAS(fτ ) shows an intrinsic feature (i.e., azimuth scaling)
of BiSAR in the azimuth-variant configuration, which can
be removed with interpolation or ISFT.

Based on the aforementioned description, the range compres-
sion can also be incorporated into RFM. Thus, the RFM filter
can be expressed as

HRFM(fτ , f)

= exp [jΦIV (fτ )] S∗
l (f) exp

{
−j2π

Rm + p20

c
f

}
. (31)

The last exponential term of (31) denotes a phase correction
to establish the phase reference to the scene center. The param-

eter p20 is the closest range from the scene center to the ideal
trajectory of transmitter. After RFM filtering, the remaining
bistatic signal is expressed as

G1(fτ , f, r, τ0R) = Ḡ(fτ , f, R0R, τ0R) × HRFM

= σ(τ0R, R0R)w(τ̃W − τcb)

× exp {−j [ΦV(fτ , f, r) + ΦAS(fτ )]} .

(32)

Based on (29), the Stolt interpolation can be expressed as
[6], [17]

[cp11kT fτ + (FRW + p21FTW )]
(1 + p21)

→ f0 + f ′. (33)

This interpolation transformation is a nonlinear mapping
of the original range-frequency variable f into a new range-
frequency variable f ′ [6]. Substituting (33) into (29), ΦV can
be rewritten as

ΦV(fτ , f, r) = 2π
(1 + p21)r

c
[f0 + f ′]. (34)

From (33), it can be seen that the range-variant RCM,
range–azimuth coupling, and azimuth modulation are corrected
by the nonlinear interpolation. A subsequent range FT will
compress and register the signal in range

G2(fτ , t, r, τ0R) = σ(τ0R, R0R)w(τ̃W − τcb)

× exp [−jΦAS(fτ )] pr

(
t − (1 + p21)r

c

)
(35)

where pr(t) is the compressed pulse envelope in the range.
Because the azimuth dependence has been removed by the
preprocessing step, we have R0R + R0T ≈ Rm + p20 + (1 +
p21)r. Thus, (35) can also be expressed as

G2(fτ , t, r, τ0R) =σ(τ0R, R0R)w(τ̃W − scb)

× exp [−jΦAS(fτ )] pr

×
(

t − R0R − Rm + R0T − p20

c

)
. (36)

Equation (36) implies that the range signal is registered to the
relative position of scene center. At this stage, only an azimuth-
scaling term remains. According to [4], an azimuth ISFT can
be employed to correct the scaling and transform signal into the
image domain.

G3(t, Rm + r, τ0R) = σ(τ0R, R0R)pr

(
t − (1 + p21)r

c

)
×

∫
w(τ̃W − τcb) exp [−jΦAS(fτ )]

× exp (j2πβAτfτ ) d(βAfτ )

= σ(τ0R, R0R)pr

(
t − (1 + p21)r

c

)
× pa(τ − τ0R). (37)

In (37), pa(τ) is the compressed signal envelope in azimuth.
Based on the aforementioned description, the processing steps
of the proposed approach are shown in Fig. 2.
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Fig. 2. Block diagram of WDA for BiSAR processing in spaceborne/airborne
configurations.

Fig. 3. Simulated scene with nine point targets.

IV. SIMULATION EXPERIMENT

In this section, we carry out some simulations, using the
airborne SAR system parameters, FGAN’s PAMIR, and satel-
lite parameters of TerraSAR-X. This spaceborne/airborne hy-
brid experiment is being planned in cooperation with ZESS,
FGAN/FHR, and DLR [15], [16], [18]. TerraSAR-X works in
the sliding-spotlight mode; PAMIR is in the inverse sliding-
spotlight mode, which is a special case of the sliding-spotlight
mode [15], [18]. In this double sliding-spotlight model, azimuth
spectrum’s center frequency of a target depends on its azimuth
coordinate, which implies that the azimuth scene has a higher
bandwidth as compared to a single point target [18], [19].
Therefore, a higher pulse repetition frequency (PRF) is required
to properly sample the azimuth signal.

The simulated scene consists of nine point targets, which are
located on the vertices of a 3 × 3 matrix, shown in Fig. 3.

The parameters are listed in Table I.
In this simulation, the maxima of the Doppler spectrum shift

and Doppler bandwidth are −964 and 671 Hz, respectively.
Therefore, for the simulated scene, the excursion for azimuth
frequency is less than 1635 Hz. Thus, a PRF of 4000 Hz can
properly sample the simulated signal.

To emphasize the role of azimuth scaling, we first show
the focusing result without the azimuth-scaling correction in
Fig. 4(a).

Before the azimuth-scaling correction, the azimuth relative
distances of PT4 and PT6 to PT5 are 6.375 m (the theoretical
distance is 200 m), i.e., the azimuth scene is compressed by a
ratio of 31.37, which implies that the scaling factor is 0.031875.
According to (31), the azimuth-scaling factor βA is equal to

TABLE I
SPACEBORNE/AIRBORNE SAR SYSTEM PARAMETERS

Fig. 4. (a) Focused scene before azimuth-scaling correction. (b) Focused
scene after azimuth-scaling correction.

0.031901379. The error of the scaling correction is 0.0827%.
Due to the limitation of computer’s memory, we only correct
the scaling to 16.67% of the real value and show it in Fig. 4(b).

Comparing Fig. 4(a) and (b), we can see that the azimuth
scaling is considerably severe in this extreme azimuth-variant
bistatic configuration.

To quantify the precision of the presented processing method,
the impulse-response width (IRW), peak sidelobe ratio (PSLR),
and integrated sidelobe ratio (ISLR) are used as quality cri-
teria. A rectangular window is used in the range and azimuth
processing.

To examine focusing quality in more detail, the target away
from the center (i.e., PT9) is highlighted in more detail in Fig. 5.
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Fig. 5. Two-dimensional impulse response of PT9.

In Fig. 5, the azimuth PSLR and ISLR agree well with the
theoretical values of −13.2 and −9.7 dB; the range PSLR and
ISLR show a deviation of less than 0.2 dB with respect to the
theoretical values; the measured range IRW and azimuth IRW
agree nicely with the theoretical values of 1 and 0.149 m.

V. CONCLUSION

In this paper, the original LBF is extended to focus the space-
borne/airborne hybrid BiSAR data. To facilitate processing, the
QM term is linearized in both directions, which clearly shows
the 2-D scaling phenomenon in the spaceborne/airborne hybrid
bistatic configuration. We use Stolt interpolation to correct the
range-variant range scaling (RCM), range–azimuth coupling,
and azimuth modulation. In the spaceborne/airborne config-
uration, the additional azimuth scaling appears considerably
severe. Moreover, it is corrected by using ISFT. The simulations
validate the performance of the proposed model and method.
The proposed signal mode and processing approach can also
be applied to focus the BiSAR data in the azimuth-variant
configurations. However, the range–azimuth partitioning is re-
quired in the preprocessing. More subsections mean expensive
computational cost, but less subsections could result in an
inaccurate compensation of the BD term.

APPENDIX

OVERVIEW OF WEIGHTING IDEA

This appendix shows how the weighting idea was developed.
In the derivation of LBF, the same azimuth modulations of both
of platforms are assumed. When both of platforms contribute
unequally to the total azimuth modulation, this assumption
would result in the inaccurate individual stationary points τ̃R

and τ̃T [refer to (41)]. Accordingly, the inaccurate stationary
points cannot represent the individual time-Doppler correspon-
dences [20].1 Therefore, the time differences (τ − τ̃R) and
(τ − τ̃T ) would become larger, which means that the neglected
third or higher order phase terms in (11) as the functions of
(τ − τ̃R) and (τ − τ̃T ) would introduce a significant phase
error and might further result in the failure of the second-order

1The instantaneous Doppler frequency fτ and the azimuth time variable
τ have an inverse relationship [20]. This relationship can be approximately
represented by the stationary point τ̃p. When τ̃p accurately represent the time-
Doppler correspondence, we approximately have τ̃p ≈ τ .

model which is the basis of deriving our bistatic spectrum [2].
The purpose of our weighting idea is to improve the accuracy
of the quadratic mode around τ̃R and τ̃T by obtaining the more
accurate individual time-Doppler correspondences. It can be
implemented by making azimuth modulations of both range
equations to agree with the individual instantaneous Doppler
frequencies in the respective slant range histories.

The instantaneous Doppler frequency of the total range his-
tory in the spaceborne/airborne configuration (i.e., small squint
case) can be formulated as [6]

fτ (τ) = − f + f0

c

d

dτ
[RR(τ) + RT (τ)]

≈ −f + f0

c

v2
R

R0R
(τ − τcb)︸ ︷︷ ︸

Receiver

− f + f0

c

v2
T

R0T
(τ − τcb)︸ ︷︷ ︸

Transmitter

.

(38)

From (38), we see that the contributions of the Doppler mod-
ulations from the individual platform to the total instantaneous
Doppler frequency are approximately proportional to the slopes
of the respective range equations v2

R/R0R and v2
T /R0T . LBF

works well when the ratio (v2
R/R0R)/(v2

T /R0T ) is near unity.
LBF would fail in cases where the ratio deviates from unity,
e.g., in a spaceborne/airborne configuration.

Starting from (38), the weighted individual phase histories
are formulated as in (9). To show validity of the weighting oper-
ation, we define the phase-error functions of the quadratic slant
range histories of receiver and transmitter in (11) and [2] as

ER(τ, f) ≈φR(τ, f)−
[
φR(τ̃R, f)+

1
2
φ̈R(τ̃R, f)(τ−τ̃R)2

]
ET (τ, f) ≈φT (τ, f)−

[
φT (τ̃T , f)+

1
2
φ̈T (τ̃T , f)(τ−τ̃T )2

]
(39)

ERW (τ, f) =φRW (τ, f)−
[
φRW (τ̃RW , f)

+
1
2
φ̈RW (τ̃RW , f)(τ − τ̃RW )2

]
ETW (τ, f) =φTW (τ, f)−

[
φTW (τ̃TW , f)

+
1
2
φ̈TW (τ̃TW , f)(τ − τ̃TW )2

]
(40)

where τ̃R and τ̃T are defined as

τ̃R = τ0R − cR0R

2v2
R

fτ

FR

τ̃T = τ0T − cR0T

2v2
T

fτ

FT
(41)

FR =

√
(f + f0)2 −

(
cfτ

2vR

)2

FT =

√
(f + f0)2 −

(
cfτ

2vT

)2

. (42)

In this Appendix, PT9 is used as an example to display the
approximation error of the quadratic model. The phase errors
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Fig. 6. (a) ER(τ, f). (b) ET (τ, f). (c) ERW (τ, f). (d) ETW (τ, f).

in the LBF (ER and ET ) are shown in Fig. 6(a) and (b); the
phase errors for ELBF (ERW and ETW ) are shown in Fig. 6(c)
and (d).

Fig. 6(a) shows that the phase error appears to be nonlinear
in azimuth and approximately linear in range. It is the reason

why the focused point target in a spaceborne/airborne case by
using the LBF deteriorates visibly in azimuth [5].

Comparing Fig. 6(a) and (b) with Fig. 6(c) and (d), it can be
seen that the weighting operation can eliminate this phase error
and results in a significant improvement of the accuracy of the
quadratic mode in this spaceborne/airborne configuration.

In addition, the plots in Fig. 6(c) and (d) also shows that the
larger the TBP of the slant range history is, the more accurate
the second-order model will be. When the TBP is larger than
100, the slant range histories can be accurately represented by
its second-order approximation [6], [20].
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