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Abstract—The  combination of frequency-modulation
continuous-wave (FMCW) technology and synthetic aperture
radar (SAR) promises a lightweight, cost-effective, and
high-quality imaging sensor for remote sensing. However, the
long signal duration time leads to the failure of the conventional
start/stop approximation of the pulsed SAR. In this paper, a
signal model is proposed to address the effects of the continuous
motion during the transmit time on the echoed signal. Based
on the model, an analytical point target reference spectrum is
derived. From the spectrum, it will be seen that the continuous
motion introduces an additional range-azimuth coupling term
and a range walk term compared with the conventional pulsed
SAR. The range walk term is well known, whereas the foregoing
range-azimuth coupling term is formulated for the first time
in the FMCW SAR community. For the squint and spotlight
modes, these range walk and range-azimuth coupling terms
might significantly degrade the image quality. In this paper, based
on the proposed analytical signal model, we further discuss the
application of the wavenumber domain algorithm for the FMCW
SAR data. In addition, different approximations of the Stolt
mapping are made to highlight the effect of the range-dependent
higher-order range—azimuth coupling terms on the 2-D impulse
responses. Finally, X-band simulated experiments and Ka-band
real FMCW SAR data are used to validate the signal model and
the processing method.

Index  Terms—Frequency-modulation continuous wave
(FMCW), point target reference spectrum (PTRS), range cell
migration correction (RCMC), wavenumber domain algorithm
(WDA).

1. INTRODUCTION

ONVENTIONAL synthetic aperture radar (SAR) works

in pulsed mode [1]. Continuous-wave technology, how-
ever, requires less peak transmit power [2], [3]. Hence,
frequency-modulation continuous-wave (FMCW) SAR offers
the benefits of compact size and low cost. However, it is
currently applied only in the short-range case.

For FMCW SAR, the variation of the instantaneous slant
range introduced by the continuous motion during the pulse
time is no longer negligible since the conventional start/stop
approximation does not hold. Conceptually, this start/stop ap-
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proximation assumes that any transmitted pulse experiences a
delay time, which is constant during the pulse duration and only
varies from pulse to pulse (known as range migration), whereas
in principle, leading edge and trailing edge of any transmitted
pulse experience different delay times introduced by the time-
varying slant range. Therefore, processing of FMCW SAR
differs from the conventional pulsed SAR due to the fact that
the range walk term and an additional range—azimuth coupling
are introduced by the continuous motion of the antenna while
transmitting and receiving the signal. The range walk term is
discussed in detail in [3], whereas the additional range—azimuth
coupling term is not mentioned. Therefore, conventional SAR
algorithms cannot directly be applied. Recently, several con-
ventional algorithms have been modified to focus FMCW SAR
data [3]-[7]. The range-Doppler algorithm has been modified
to focus FMCW SAR data in [4]. In [4], the continuous motion
within the sweep is discussed and compensated by modifying
the range migration compensation. Meta et al. [5] present a
nonlinear frequency-scaling algorithm, which simultaneously
performs the nonlinear correction, Doppler-shift correction, and
range cell migration correction (RCMC) in the wavenumber
domain. It can be considered as an extension of the result
proposed in [6]. In addition, a chirp transformation algorithm is
also used to process FMCW SAR data [7]. The aforementioned
three methods neglect the range-dependent second- and higher-
order range—azimuth coupling terms that play a key role in the
squint or spotlight modes.

In this paper, we begin with a signal model, which accurately
represents the effect of the variation of the instantaneous slant
range during the pulse time on the transmitted and echoed
signal. This variation during the transmitting time introduces
a range-invariant range walk and a range—azimuth coupling.
The range walk is corrected by a phase multiplication, which
can be incorporated into the reference function multiplication
(RFM) [9]. RFM is applied in the 2-D frequency domain. It
works as a bulk compressor [9] and is responsible for the range-
independent range walk, high-order range frequency terms, and
azimuth compression. After RFM, we perform the Stolt inter-
polation in the wavenumber domain [8], [9]. The Stolt inter-
polation can correct the range-dependent RCM and cancel the
range-dependent higher-order range—azimuth coupling terms
and azimuth modulation. Therefore, it is suitable to process the
FMCW SAR in the spotlight and high-squint modes. To demon-
strate the performance of the wavenumber domain algorithm
(WDA), the different approximations of the Stolt mapping are
used to highlight the effect of the range-dependent higher-order
range—azimuth coupling components on 2-D focusing. In this
paper, our processing procedure proceeds with the removal of
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Fig. 1. Geometry of the SAR system.

the residual video phase (RVP), which is introduced by the
applied dechirp-on-receive operation. The compensation of the
RVP has been discussed in detail in [10] and [11].

This paper is organized as follows. In Section II, the signal
model and the point target reference spectrum (PTRS) are
derived. Section III begins with the spectrum and uses the
WDA for processing FMCW SAR data. Hereafter, we show the
processing results of simulated raw data in Section IV and of
real FMCW SAR data in Section V. Finally, conclusions are
reported in Section VI.

II. SIGNAL MODEL AND PTRS

In this paper, we consider the general SAR geometry, as
shown in Fig. 1.

The mathematical symbols and their definitions used in this
paper are given as follows.

7,1 Azimuth and range time variables.

To Closest ranges from the antenna to the target
P (T 05, T‘()).

Te Reference slant range for the dechirp-on-receive
approach.

To Zero-Doppler time of the target P (7, ro).

o(70,70) Backscattering coefficient of the point target
P (T 05, ’r‘o).

Tm Closest range from the scene center to the flight
trajectory.

A fo Carrier wavelength and carrier frequency of the
transmitted signal.

c Speed of light.

I fr Range and azimuth frequency variables.

K, Chirp rate of the transmitted signal.

T, Pulse repetition period.

In the pulsed SAR, the start/stop approximation is commonly
used, where the instantaneous slant range from the antenna to
the target is assumed to remain constant during the pulse time.
In the case of the continuous-wave (CW) SAR, however, the
instantaneous slant range can no longer be assumed constant
due to the long signal duration. To develop the signal model for
the CW SAR system, we first perform an analysis of the round-
trip delay time. Let the time 74 be the round-trip delay time for
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the wave propagation. The signal is transmitted at an arbitrary
time 7 at an instantaneous slant range R(7) and arrives back
at the receiver at time 7 + 74, having traveled along the slant
range from the target to the receiver R(7 + 7). Thus, we can
express the round-way delay time as

R(t+74) + R(7)

; =14 (1

where
R(7) = /13 +2(r — m)? &)
R(T + 74) :\/7”8+v2(7+7d —79)2. 3)

Shifting R(7)/c to the right-hand side and squaring both
sides, we can obtain a quadratic equation in terms of 74. By
solving the quadratic equation for 74, we obtain

R(r v?
e {() + — (7 —70) 4)
C C
where the “Doppler factor” « is defined as
1
o= =. 5)
1-2 (

By using (4), and neglecting the timescaling influences on
the pulse envelope, the echoed signal can be expressed as

gT(T, t, To, 80) = (T(To, To)sl(t — Td) exp [j271’f0(t — Td)] (6)

where s;(t) represents the transmitted FM signal, which is
defined as s;(t) = exp(jmK,t?). Since the SAR is time co-
herent, the transmitted signal is synchronized by the repetition
period, i.e., t = 7 — nT),. The signal is transmitted at the time
Tn = nI}, where n denotes the period number.

In the pulsed mode, the pulse duration is short on the order
of a few microseconds; however, for the FMCW mode, the
pulse duration is on the order of milliseconds, corresponding to
the pulse repetition interval. The dechirp-on-receive technology
is generally used in the FMCW SAR system to reduce the
sampling requirements and data rate [3], [10]. The reference
signal for dechirp processing is defined as

Gref (7—7 t7 tc) = 87 (t - Tc) exp [_j27rf0 (t - Tc)] (7)

where s (t) denotes the conjugate of the transmitted signal
s1(t), and 7, is the time delay of the reference signal. For nota-
tional convenience, 7. is defined as 7. = 2ar./c. The dechirped
signal can be expressed as

gir (7, t,70,70) = g(7,t,70,70) X Gret (T, 1, )
=0(70,70) exp [527 fo(Ta — 7¢)]
x exp [—j2n K, (14 — Tc)(t — 7¢)]
X exp [—j27rK,r(Td - TC)Q] ) ®)
The last exponential term of (8) is well known as an RVP

[10]. Removing the RVP needs Fourier transformation (FT),
phase multiplication, and inverse FT (IFT) [10], [11]. The
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following derivation assumes that the RVP has been removed,
ie.,
gir(7,t,70,70) = 0(70,70) €xp [—j27 fo(Ta — 7¢)]

X exp [—j2r K (14 — ) (t — 7). (9)

Performing the time—frequency substitution of K,.(t — 7,)
— f yields

gIF(Ta fa To, TO) :O'(To, TO) X exp [_.727T(f0 + .f)(Td - TC)] .
(10)

To segment the received signal into the 2-D discrete domain,
we substitute 7 = 7,, + ¢ into (10). Equation (10) can then be
reformulated as

gIF(Tn7 ta f7 To, 7—0)

= o(70,70)

exp { — jdma(fo+ f)

2
XPhﬁﬂ+Zme—m—ni}UU
c ¢ ¢

To obtain the PTRS, we apply the FT to (11) with respect to
the discrete-time variable 7,, i.e.,

GIF(fT7t) fa To, TO):/QIF(TTH f7 7"0,7'0)

X exp|—j2m fr7p]dTn =0 (70,70) /exp [—i®(fr, f, )] dTn
(12)
where @(f,, f, ) is defined as

(I)(f'rvtafaTn) = 47‘—@(.](.0 +f)

2
Bt | A T} +2nf T, (13)
c c c

Consequently, the principle of stationary phase can readily be
applied to obtain the solution of the integral to derive the desired
PTRS. At the point of stationary phase, the first derivative of the
phase ®(f., f, ) is zero, i.e.,

d(b(f7—7 t’ f7 Tn)
_— =0. 14
e (14)
Solving (14) for 7, yields
2 [t sty
Ty =1To — AT 1N N— (15)

v cf. 2
1= [+ smcten]
Substituting 7;, on the right-hand side of (12) for 7,, gives the

desired PTRS (The nonessential amplitude and phase terms are
disregarded.). Thus

Grr(fr, fy70,50) = 0(70,70) exp [=j®(fr, fim0)]  (16)

‘ Raw data ‘

v

‘ 1 Remove RVP ‘

v

‘2 Azimuth FT ‘

v

‘ 3 RFM ‘

v

Stolt interpolation ‘

v

‘ 5 Two-dimensional IFT ‘

v

‘ Complex image ‘

‘ )

Fig. 2. Block diagram of the focusing algorithm.

where the phase term in the 2-D frequency domain can be
expressed as (note that the substitution K.(t —7.) — f is
further introduced)

cfr 1?
200

4rary

©(fr. fim0) = ¢%+ﬁ2[3h+ﬁ+

c

—27TfTKi + 27 fr7o — dma(fo + f)%c - 4o¢7rr—ccf7. (17)

Some short remarks concerning (17) will be helpful to under-
stand the characteristics of this FMCW SAR.

1) The square root contains the additional term (v/c)(fo +
f), which is not presented in the pulsed SAR PTRS
[9]. It adds a range—azimuth coupling in the 2-D fre-
quency domain, which results in the skewness of the
2-D spectrum along the range frequency direction [9]. It
is introduced by the variation of the slant range during
the long pulse duration. This coupling term is the basic
difference between this proposed spectrum and the one
presented in [3], where it is neglected.

2) The second term in (17) (i.e., —27(f,/K,) f) is a range-
invariant range walk term, which is also caused by the
variation of the slant range during the pulse duration.

3) 2w f,7p is linearly dependent on the zero-Doppler time
of the target and thus determines the azimuth registration
position of the target after azimuth compression.

The last two terms, ie., 4ma(fo+ f)(r./c) and
27 f-(2r./c), refer to the constant range and azimuth shifts,
respectively, and are introduced by the dechirp-on-receive
approach. They can be removed by using RFM.

III. PROCESSING PROCEDURE

This section provides the processing steps of the proposed
algorithm shown in Fig. 2 and illustrates its basic operation.
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The basic steps are outlined in the list that follows.

1) Remove RVP. This operation requires the range FT, chirp
phase multiplication, and range IFT. It is described in
detail in [10] and [11].

2) Perform the FT in the azimuth to transform the raw data
into the 2-D frequency domain.

3) RFM. It is carried out to remove the range-invariant
phase (i.e., bulk range walk, constant azimuth shift, az-
imuth modulation, bulk RCM, and bulk secondary range
compression (SRC) [9]). Thus, the RFM filter can be
expressed as

HRFM(fTa f7 Tref) = exp [jq)R(frv f7 rref)]

where @z (f, f, rret) is defined as

(18)

AT QT et

cI)R(fTv f7 rref) —

2av

whmtk%ﬁH%r

—2wa% — dra(fo + f)’icc - 4a7r%ch (19)

where 7.t denotes the reference range for focus process-
ing, which is generally defined as the closest slant range
from the scene center to the receiver. Via RFM filtering,
the targets at the reference range are correctly focused,
but the targets away from the range are only partially
focused [9]. After RFM filtering, the remaining signal

becomes
Gl(f'raf7 7’(),7'()) :GIF(f'r7f7 TO77—0) X HRFM(f'r7f7 Tref)
=0(70,70) exp [—jPremM(fr. f,70)]  (20)
where ®rpm(fr, f,70) is formulated as
4 — I're
(I)RFM(f‘rvar()) = M
v cf. 2
X\/(fo +f)? - [(fo + )+ 7= —2nfrr0. D
c 200

From (21), it can be seen that the range walk caused by
the continuous motion is removed by RFM.

4) Perform the Stolt interpolation. After removing the range
walk, the conventional WDA can directly be applied
to focus FMCW SAR data. For the WDA, the Stolt
interpolation needs to be performed to remap the range
frequency variable and is formulated as

cfs

20

2
\/(fo-l-f)Q—K(fo*Ff)‘i‘ } = fot+f1. (22

For the traditional pulsed SAR processing, the Stolt inter-
polation is defined as [9]

2
¢%+ﬂt(20-ﬁh+h

Therefore, the additional range—azimuth coupling term
in the Stolt variable is the essential difference between

(23)
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the traditional pulsed SAR and the FMCW SAR. In [12],
another Stolt interpolation is presented, which is given as

2
cfr

20w

— fo+ fi. 24

\/Oé(erfo)2 - é {Z(f+f0) -

The Stolt variable involved in (24) is derived based on the
assumption that the time from the transmitter to the target
is equal to half of the round-trip delay. In fact, as stated in
the footnote of [12], it is an approximation, whereas (22)
is obtained based on the analytical derivations shown in
(1)—(4). After the remapping transformation, the resulting
phase is now linearly dependent on the new range fre-
quency variable fi, i.e.,

_47r04(7“0 — Trof)

Psiole (fr, fr70) = (fo+ f1) — 27 fr7o.

(25)

From (25), we can find that the Stolt interpolation com-
pletely removes the range—azimuth coupling and azimuth
modulation.
5) Transform the signal into the complex image domain by
performing the 2-D IFT. We obtain
20(rg — Tref)

gl(TataTO7r0) = Dr (t_ )pa(T_TO) (26)

c
where p,.(t) and p,(7) are the compressed pulse envelope
in the range and the azimuth, respectively.

From (22), it can be seen that no approximations have been
performed for the RCMC and SRC. Hence, it has an advantage
of precisely correcting the range-dependent second- and higher-
order range—azimuth coupling terms, regardless of the squint or
the aperture width.

The range-dependent second- and higher-order range—
azimuth coupling terms not only result in the range focusing
degradation but also defocus the azimuth impulse response
since they also contain azimuth modulation components. The
involved azimuth modulation components can be understood
by expanding (21) using a Taylor series, i.e.,

(I)RFM(fTa fa TO)
_Ama(rg — rrer)
- c

(L= ppo) o (o = p2)” 4

D
x| Plot+—7p 2fo D5

(p1 — M2)2(1 - /~L1M2)

* 22D

ﬁ+~}—%ﬁm(ﬂ)

where D denotes the cosine of the instantaneous squint angle
in the Doppler domain and is defined as

D=/1-u3 (28)
The parameters 11 and po are formulated as
v o cfr v

=+ f po = —. (29)
c  2av c
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Fig. 3. Scene geometry with three point targets. Target PT2 is located in the
scene center. PT1 and PT3 have the relative slant ranges: —150 and 150 m,
respectively, with respect to PT2.

TABLE 1
SYSTEM PARAMETERS

Carrier frequency 10.0 GHz
Range bandwidth 500 MHz
PRF 700 Hz
Velocity 45 m/s
Azimuth beamwidth 2.5°
Squint angle 0/40°
Mid-swath slant range 800 m
Swath width 400 m
Sampling frequency 1.2 MHz

For the methods in [4], [5], and [7], the effect of the second-
and higher-order terms are neglected. It means that (27) is
terminated after the first-order term and is given as

_Ama(ry — Tref)

q)RFM(fT7faTO) ~ c

(1 — pyp2)

x |Dfo+ D

f| =2 frmo. (30)

The approximation involved in (30) can be considered as
their limitation. In the following section, we will highlight the
limitation using a simulation experiment.

IV. SIMULATION EXPERIMENT

In this section, an airborne simulation is carried out to
validate the performance of the present methods and analyze
the effect of the higher-order range—azimuth coupling terms. To
highlight the range dependence of the PTRS and the focusing
capacity of the WDA, the designed scene consists of three point
targets orthogonal to the flight direction, as shown in Fig. 3. The
system parameters are listed in Table 1.

In this experiment, different broadside and squint configu-
rations are simulated to highlight the role of the higher-order
range—azimuth coupling terms. To quantify the precision of
processing, the impulse response width (IRW), peak sidelobe
ratio (PSLR), and integrated sidelobe ratio (ISLR) are used as
criteria. For the ongoing simulation, we assume the window
function of rectangular shape in both directions.

A. Broadside Configuration

In the broadside configuration, the ideal IRW is 0.3 m in
range and 0.343 m in azimuth. In the following, we perform
the two kinds of Stolt interpolation transformation.

1) Case 1: an approximated interpolation neglecting the
second- and higher-order coupling terms, i.e.,

Dfp+ IZHb) (] o g

5 31

2) Case 2: the Stolt interpolation described by (22).

1) Case 1: The first interpolation transformation is based
on the approximation of (30), which neglects the second- and
higher-order coupling terms. The resulting phase error can be
expressed as

_dma(ro — Tref)

Qp(fr, firo) =

c
2 v Cf'r ?
X (fo+f) _[c(f0+f)+2cw]
—Dfo—(l_/wf]. (32)
D

The focused result using the transformation of (31) is shown
in Fig. 4(a).

To examine the focusing performance in more detail, the
point target PT3 is highlighted, and the contour of the target
energy is shown in Fig. 4(b). From Fig. 4(b), it can be seen that
the 2-D measured parameters agree well with the theoretical
values, which means that the ignored second- and higher-order
phase-coupling terms do not seriously degrade the focusing
performance. This phenomenon can be explained using the ap-
proximation phase error term (32), which is shown in Fig. 4(c).

From Fig. 4(c), we can find that the maximum of the phase
error is less than 0.1, i.e., |Pg| < 0.1, which satisfies an ac-
ceptable level of 7w /4 [9]. Therefore, in this case, it is reasonable
to neglect the second- and higher-order terms in (31). This is
also the right reason that the preceding three methods (i.e., [4],
[5], and [7]) achieve satisfactory focusing results.

2) Case 2: This interpolation transformation is the original
Stolt interpolation [8], [9]. The resulting focusing result is
shown in Fig. 4(d). To observe more clearly, the 2-D impulse
response of PT3 is shown in Fig. 4(e).

From Fig. 4(e), it can be seen that the WDA also focuses
the simulated scene well in the broadside case. Comparing
Fig. 4(b) and (e), we may note that the second- and high-order
range—azimuth coupling components almost have no effect on
the 2-D impulse response in the broadside case.

B. High-Squint Configuration

In the squint configuration of 40°, the ideal IRW is 0.3 m
in range and 0.4485 m in azimuth. We use three interpola-
tion transformations to demonstrate the performance of the
WDA and highlight the role of the second- and higher-order
range—azimuth coupling terms.
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Fig. 4. (a) Focused scene processed using the interpolation transformation of (18) in the broadside configuration. (b) Impulse responses of target PT3.

(c) Approximation phase error of PT3 in the broadside configuration. (d) Focused scene processed using the interpolation transformation of (18) in the broadside

configuration. (e) Impulse responses of target PT3.

1) Case 1: the first-order polynomial interpolation transfor-
mation, i.e., (31).

2) Case 2: the Stolt interpolation, i.e., (22).

3) Case 3: the third-order polynomial interpolation transfor-

mation, i.e.,
(1= papg) , (1 —p2)? o
Df0+ D f 2f0D3 f
(11— p2)*(1 — pa o)
e | A 69

1) Case 1: First, we show the focusing result by using (31)
in Fig. 5(a).

From Fig. 5(a), it can be seen that the targets away from
the swath center considerably degrade in both directions. The
degradations imply that the neglected range—azimuth coupling
components have a significant effect on the 2-D impulse re-
sponses. To clearly identify the effect of the phase error, we
show the approximation phase error of PT3 in Fig. 5(b).

Fig. 5(b) shows that the maximum of the approximation
phase error |® | is greater than 107, which is much more than
the acceptable level of 7/4 [9]. It is caused by the neglected
higher-order range—azimuth coupling components.

The methods proposed in [4], [5], and [7] are originally de-
signed for swath SAR zero-Doppler processing and thus neglect
higher-order range—azimuth coupling components. Apparently,
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Fig. 5. (a) Focused scene by using the first-order polynomial interpolation transformation. (b) Approximation phase error of the first-order polynomial
interpolation transformation in the squint configuration. (c) Focused scene processed using the interpolation transformation of (13) in the squint configuration.
(d) Impulse responses of target PT3. (e) Focused scene processed using the interpolation transformation of (20) in the squint configuration. (f) Impulse responses
of target PT3. (g) Approximation phase error ® g3(fa, f) of PT3 in the squint configuration. (h) Approximation phase error ® g2 (fa, f) of PT3 in the squint
configuration.
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they are not suitable to process FMCW SAR data in the high-
squint case.

2) Case 2: The focused result by using (22) is shown in
Fig. 5(c). For clarity, PT3 is zoomed and shown in Fig. 5(d).

From the measured parameters shown in Fig. 5(d), IRW
broadening is 1.67% in range and 0.84% in azimuth; the degra-
dation in the ISLR is less than 0.3 dB in both directions; and
the PSLR agrees well with the theoretical value, which means
that the WDA works well in the squint configuration.

3) Case 3: This case is to further validate the role of the
higher-order phase terms. The phase error introduced by (33) is
defined as
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The focused scene is shown in Fig. 5(e). In addition, the zoomed
impulse response of PT3 is given in Fig. 5(f).

Comparing this with the results shown in Fig. 5(d), only
the range impulse response has little degradation. The range
IRW deteriorates with a broadening of 3%, and the range PSLR
has a deviation of less than 0.1 dB compared with the theo-
retical values. Therefore, we conclude that the result with the
transformation (33) approximately agrees with the ideal one,
which implies that the second- and third-order components play
a significant role in the high-squint configuration. For further
clarity, we show the approximation phase error ® g3 (f,, f) of
PT3 in Fig. 5(g).

From Fig. 5(g), it can be seen that the approximation error
®p3(fr, f) is negligible. Comparing Fig. 5(b) and (g), it can be
seen that the second- and third-order range—azimuth coupling
components play a key role in the high-squint configuration.
Neglecting them might result in considerable focusing degra-
dation in both directions.

To further highlight the role of the third-order term, the phase
error of the second-order polynomial interpolation transforma-
tion is shown in Fig. 5(h). The phase error function for the
second-order polynomial is formulated as
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Fig. 6. (a) SAR image processed by the presented algorithm. (b) Optical
image from Google Earth. The processed image has a size of 331 m (slant
range) X 897 m (azimuth) at Herrenchiemsee, Germany. The horizontal and
vertical directions denote the range and the azimuth, respectively.

From Fig. 5(h), it can seen that the phase error in the
second-order model is greater than the acceptable level of 7 /4.
Therefore, the third-order term in (33) is necessary for this 40°
squint case.

V. PROCESSING RESULT OF REAL FMCW SAR DATA

In this section, the signal model and the processing method
are validated by real Ka-band FMCW SAR data, which are
acquired by using FHR’s airborne millimeter-wave SAR system
(i.e., MEMPHIS) [13], [14], in April 2008. MEMPHIS is a
unique experimental millimeter-wave SAR system that contains
two front ends: one operates at 35 GHz (Ka-band) and another
at 94 GHz (W-band). The radar system is mounted on a Transall
C-160 aircraft with a flight altitude of 320 m, a velocity of
75 m/s, and a looking angle of 70°. For this flight campaign,
the minimum slant range is 600 m, and the maximum range
is 1000 m. The system has a range bandwidth of 2 GHz and
an azimuth Doppler bandwidth of 295 Hz. The corresponding
range resolution is 0.075 m, and the azimuth resolution is
0.25 m. It needs to emphasize that a sampling frequency of
25 MHz is applied in the range since the dechirp-on-receive
technology is used.

To obtain accurate focusing, the onboard Inertial Navigation
System and Global Positioning System are used to collect the
information of the position and attitude of the antenna phase
center. For this processing, we only implement the range-
invariant correction, i.e., the correction for the reference slant
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range [11], [15]-[17]. In this paper, we choose the slant range
at the middle swath as the reference slant range. Since our real
data have a short swath of 400 m, and thus the range-invariant
component (i.e., at the reference slant range) is dominant, we
neglect the range-variant component for our processing.

By using the proposed signal model and imaging algorithm,
the focused SAR image is shown in Fig. 6(a). For comparison,
the optical image of the processed scene is shown in Fig. 6(b).

The real Ka-band data are acquired in approximately the
broadside case (yaw angle: 2.44°). Therefore, for these real
data, the suggested WDA processing does not demonstrate
the improved performance since the previous algorithms (i.e.,
[4], [5], and [7]) can also work well in the broadside case
[see Fig. 4(c)].

VI. CONCLUSION

In this paper, we have developed a signal model for the
FMCW SAR to address the range variation during the long
pulse duration, which is different from the pulsed SAR. Based
on the signal model, an analytical PTRS has been developed.
Compared with the PTRS of the pulsed SAR, an additional
range walk term and a range—azimuth coupling term are found.
The range—azimuth coupling term has been disregarded so far
in the FMCW SAR community. After RFM to remove the
range walk, we use the WDA to focus FMCW SAR data.
Simulation experiments show that the WDA can focus FMCW
SAR data well in the broadside and high-squint cases. In the
high-squint case, it does not require additional computational
burden compared with the broadside case. It needs to emphasize
that the previous algorithms in [4], [5], and [7] perform well in
the broadside case but fail in high-squint cases.

In addition, three interpolation mapping transformations are
used to emphasize the role of the range-dependent second- and
higher-order range—azimuth coupling components in the high-
squint case. Simulations also show that neglecting the higher-
order phase terms will result in a significant degradation in both
directions. The processing result of the real data shows that the
proposed signal model and the processing method can work
well in the case of the millimeter-wave FMCW SAR.
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