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Abstract. It has been highlighted by many researchers, that the use of10 10

context information as an additional cue for high-level object recognition11 11

is important to close the gap between human and computer vision. We12 12

present an approach to context extraction in the form of global features13 13

for place recognition. Based on an uncalibrated combination of range14 14

data of a time-of-flight (ToF) camera and images obtained from a visual15 15

sensor, our system is able to classify the environment in predefined places16 16

(e.g. kitchen, corridor, office) by representing the sensor data with vari-17 17

ous global features. Besides state-of-the-art feature types, such as power18 18

spectrum models and Gabor filters, we introduce histograms of surface19 19

normals as a new representation of range images. An evaluation with20 20

different classifiers shows the potential of range data from a ToF camera21 21

as an additional cue for this task.22 22

1 Introduction23 23

The development of time-of-flight (ToF) cameras [1], which provide range infor-24 24

mation in realtime, has lead to a large number of applications. Most of them25 25

concentrate on the support of vision-based systems in tasks like 3d reconstruction26 26

and robot navigation [2]. Alternatively to geometric reconstruction techniques,27 27

we show how to utilize a classification based system for place recognition or28 28

rough self localization of a mobile robot.29 29

Instead of describing the position of a robot in exact geometric terms, it is30 30

often beneficial to use a discretization of predefined places or scenes, e.g. kitchen,31 31

corridor or office. Especially for subsequent object detection tasks [3], informa-32 32

tion about the current place can be used as high-level contextual information [4].33 33

Due to the large variability of scene appearances, the estimation of the most34 34

probable label is a challenging recognition task. For this reason we calculate a35 35

feature representation from ToF range data and from an image obtained using36 36

a standard visual sensor (Fig. 1). This allows to describe a scene using rough37 37

3d information and visual appearance. Furthermore we present a simple method38 38
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Fig. 1. Setup of our place recognition system with a ToF sensor and a visual sensor
mounted on a mobile robot. Data is obtained from both uncalibrated cameras in order
to build the combined feature representation of the current view.

for feature calculation in range images which describes the image as a collection39 39

of planar patches. It can be seen as an instance of the bag-of-features concept,40 40

which has been shown to be well suited for scene recognition [5]. Features from41 41

visual images are calculated using two state-of-the-art approaches often used for42 42

the task of scene recognition. Our work extends the scene recognition approach43 43

of [4] to multiple sensors and range data.44 44

The remainder of the paper is organized as follows: First of all, we present45 45

histograms of surface normals as a feature type for range images which is well46 46

suited for the place recognition task. In Sect. 3 we describe state-of-the-art global47 47

feature representations that can be applied to data from the visual and the48 48

range sensor. Classification techniques and details of the feature combination49 49

are explained in Section 4. Experiments in Sect. 5 compare feature types and50 50

different classifiers and show the performance benefit of feature combination51 51

from different sensors. A summary of our findings and a discussion of future52 52

research directions conclude the paper.53 53

2 Histogram of Surface Normals54 54

Range images captured by ToF sensors consist of dense distance measurements55 55

of scene elements in the field of view of the camera. Using a simple histogram56 56

representation of all depth values would be a typical global representation of the57 57

scene. However, for scene and place recognition with standard cameras, feature58 58

types that use aggregated local statistics of pixel neighborhoods showed to be59 59

successful. A simple but efficient approach to incorporate information from a60 60

small environment of a pixel is the representation of a range image as a collection61 61

of small planar patches or patchlets [6]. A statistic of the orientation of such62 62

planar patches then corresponds to local surface characteristics.63 63

Let x be a three dimensional point obtained from the range image and N(x)64 64

the set of all points in the (rectangular) image neighborhood of size P × P65 65

with center (x1,x2)T . By assuming orthogonal projection, each plane that does66 66

not intersect the camera center can be described by nT x = 1, where n =67 67

(nx, ny, nz)T denotes the surface normal. We estimate the parameters of the68 68
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(a) (b)

Fig. 2. a) Representation of surface normals as angles in sphere coordinates [7]. b) Sam-
ple image and its power spectrum representation with 16 sectors.

planar patch in each point xi with Iteratively Reweighted Least Squares (IRLS)69 69

applied to the resulting optimization problem: ni = arg min
n

∑
x∈N(xi)

|nT x− 1| .70 70

Instead of absolute depth values, we use local surface characteristics as a71 71

feature. Therefore we utilize the normal representation of Hetzel et al. [7], which72 72

transforms ni in a pair of angles (ϕi, θi)T in sphere coordinates, where ϕ =73 73

arctan
(

nz

ny

)
and θ = arctan

(
n2

y+n2
z

nx

)
, as illustrated in Fig. 2. Thus, the resulting74 74

representation is a two dimensional histogram with Bϕ and Bθ bins for φi and75 75

θi, and Bϕ ×Bθ entries.76 76

3 Visual Features77 77

In the subsequent sections low-level visual features are described. In addition to78 78

its originally motivated purpose, which is the representation of visual images, we79 79

also use the following features to extract second order and structure information80 80

from range images.81 81

3.1 Power Spectrum Features82 82

One famous approach, which was first described by Mezrich et al. [8] in the late83 83

seventies, is to fit the Fourier power spectrum to an isotropic model. Empirical84 84

studies on natural images [8, 9] show that the average power spectrum approxi-85 85

mately obeys the power law M(f) = A · ||f ||−α
2 , with parameter A and α, where86 86

f denotes frequency. Straightforward linear least squares optimization can be87 87

used to estimate the model parameters.88 88

However, Oliva and Torralba [9] empirically show that the power law does89 89

not hold for artificial images. Thus, since we concentrate on indoor environments90 90

and want to calculate features from a single image, it is unlikely that an isotropic91 91

representation is sufficient to properly describe present second order statistics.92 92

We therefore use an extended representation [9], where the power spectrum is93 93
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radially divided in Ω non-overlapping sectors. Each sector ω is then assumed to94 94

obey a power law:95 95

Mω(f) =
Aω

||f ||αω
2

1 ≤ ω ≤ Ω . (1)

However, this anisotropic power spectrum model, which is illustrated in Fig. 2,96 96

is a weak representation, since all phase information is lost. In the remainder of97 97

this paper, a 16-sector model is used which results in a 32-dimensional feature98 98

vector (α1, . . . , α16, A1, . . . , A16).99 99

3.2 Gabor Features100 100

Phase preserving representations can be computed using properties of the am-101 101

plitude spectra. Gabor filters are selective filters that respond to structures of a102 102

specific range of frequencies and orientations. A bank of Gabor filters, therefore,103 103

can be used as a global image representation. Since the collection of responses is104 104

very high dimensional, we follow the approach of [10], where subsampled squared105 105

response images are used. This results in substantially reduced feature vectors.106 106

Prior to gabor filtering, the image is preprocessed by a whitening step, followed107 107

by divisive normalization in order to increase contrast and, thus, amplify higher108 108

order structures.109 109

4 Classification and Feature Combination110 110

In this paper, three different classifiers were used in order to learn the mapping111 111

between features and scene labels: multi-layer Perceptron (MLP), Parzen classi-112 112

fier, and Randomized Decision Forests (RDF). However, for the sake of brevity,113 113

only the latter two classifiers are described here.114 114

4.1 Parzen Classifier Using Kernel Density Estimation115 115

Core of the generative Parzen classifier for Gaussian kernel densities is the esti-116 116

mation of empirical likelihoods for each class κ:117 117

p(f | Sκ) =
1

Mκ

Mκ∑
i=1

Kκ(f − fi) , (2)

where Kκ is a zero-mean normal density with covariance matrix Σκ and the set118 118

Sκ = {f1, . . . , fMκ} denotes the n-dimensional training data labeled with class119 119

κ. An unseen feature f is then classified using maximum likelihood estimation.120 120

Although the shape of the empirical density is determined by the observed121 121

data Sκ, the smoothness depends solely on the kernel bandwidth parameter Σκ.122 122

The appropriate choice of a bandwidth is the most critical step in kernel density123 123

estimation, since small bandwidths lead to over-fitting, whereas huge bandwidths124 124
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result in oversmooth densities. In this paper, we use an ad-hoc method for band-125 125

width selection known as generalized Scott’s rule [11] for kernel densities:126 126

Σκ ≈ M
− 1

n+4
κ Σ̂

1
2
κ , (3)

where Σ̂κ is the sample covariance with respect to Sκ.127 127

4.2 Randomized Decision Forest128 128

A Randomized Decision Forest (RDF) is a discriminative classifier that can129 129

handle a large set of features without issues due to the curse of dimensionality.130 130

Standard decision tree approaches suffer from severe over-fitting problems. A131 131

RDF overcomes these problems by generating an ensemble (forest) of T decision132 132

trees. During the classification, the overall probability of a class κ given a feature133 133

vector f can be obtained by simple averaging of the posterior probabilities pτ (·)134 134

estimated by each tree of the ensemble:135 135

p(κ | f) =
1
T

T∑
τ=1

pτ (κ | f) . (4)

In contrast to Boosting, the RDF approach uses two types of randomization136 136

to learn the ensemble. The first type of randomization is Bootstrap Aggregat-137 137

ing [12], where each tree is trained with a random fraction of the training data.138 138

Additionally, to reduce training time and to incorporate randomization into the139 139

building process of a tree, the search for the most informative split function in140 140

each inner node is done using only a random fraction of all features [13].141 141

4.3 Feature Combination and Temporal Context142 142

In order to combine a set of features F = {f1, . . . , f|F|}, simple concatenation143 143

is performed. To avoid facing the curse of dimensionality, which often occurs144 144

with generative classifier, a different scheme is used for the Parzen classifier.145 145

In addition to subspace reduction via PCA, we choose a soft voting approach,146 146

where each feature type fi is classified separately. The overall class probability147 147

p(κ|F) is then computed by averaging the separate class probabilities p(κ|fi).148 148

To further improve the classification performance, a hidden Markov model is149 149

used to exploit temporal contextual properties. We use the approach from Tor-150 150

ralba et al. [4], but instead of a sparse Parzen classifier, we utilize the classifiers151 151

listed above.152 152

5 Experiments153 153

We experimentally evaluated our approach to illustrate the benefits of the com-154 154

bination of range and visual features for the task of place recognition. In the155 155

next sections the following hypotheses are empirically validated:156 156
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Fig. 3. Example images from one sequence, i.e. intensity images (upper row) and cor-
responding range images (lower row).

1. Incorporation of range features substantially improves the recognition per-157 157

formance.158 158

2. A Randomized Decision Forest possesses the highest potential in combining159 159

a set of different feature types.160 160

3. The use of temporal context information by means of hidden Markov models161 161

leads to an important gain in performance.162 162

Our empirical evaluation is based on a place recognition scenario with seven163 163

different rooms (classes). The final dataset consists of eight sequences, where164 164

each sequence was captured by navigating a mobile robot through a subset of165 165

the rooms. Each second, a PMD[vision] 19k camera and a standard CCD camera166 166

obtained range and visual images (Fig. 1). As can be seen in Fig. 3, the images do167 167

not contain exactly the same image sections, which is due to the different angle168 168

of view of the cameras. Note that a calibration of the cameras was not necessary,169 169

because features are calculated from the different sensor images independently.170 170

Training is done on two chosen sequences, which together cover all classes of171 171

the dataset. The remaining six sequences were then used to test the recognition172 172

performance. To measure recognition performance, unbiased average recognition173 173

rate was computed. Since more than one scene is used for testing, the mean of all174 174

average recognition rates (one for each sequence) is used to evaluate our system.175 175

5.1 Evaluation of Feature Types and Combinations176 176

In order to evaluate the effects of combined features, we first analyzed the clas-177 177

sification performance on each feature type separately. The recognition results178 178

are illustrated in Table 1, whereby only the best (out of three) classifier result179 179

is shown. Regarding the range features, our experiments show that the surface180 180

normal histogram (Bϕ = Bθ = 10, P = 3) achieves the best place recognition181 181

result. However, gabor features computed using the data from the visual sensor182 182

yield a higher recognition performance.183 183

As can be seen in Table 1, feature combination leads to a substantial per-184 184

formance gain over single feature types. The best combination scheme achieved185 185

hereby a recognition rate of 71.9%.186 186
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Table 1. Evaluation of different features types (incl. computation time). Features
computed on the range image of the ToF sensor are tagged with a preceding r−.

Feature type Avg. Recognition Rate Time (in sec)

r−histogram 44.2 0.024
r−power-spectrum 45.8 0.031
r−gabor 47.4 0.140
r−surface-normal 49.1 0.303

power-spectrum 49.2 0.040
gabor 63.3 0.512

feature combination 71.9 1.050
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Fig. 4. a) Performances of features type combination, influence of range features, and
impact of HMM. b) Average confusion matrix of best feature combination.

5.2 Evaluation of Different Classifiers187 187

In the preceding section we showed that the combination of features can im-188 188

prove the classification performance. However, the amount of performance gain189 189

depends on the used classifier. Fig. 4(a) (full model) contains the average clas-190 190

sification rate of RDF (T = 100), MLP, and the Parzen ensemble. The RDF191 191

classifier was trained with all feature types listed in Table 1. We also observed192 192

that the MLP and the Parzen approach did not achieve comparable results when193 193

all feature types were used. We therefore searched for appropriate feature type194 194

combinations using a greedy strategy. Nevertheless, the RDF turned out to have195 195

the highest classification rate for our dataset. The detailed classification behavior196 196

is illustrated in the average confusion matrix shown in Fig.4(b).197 197

In order to further evaluate the power of range information, we extracted all198 198

range features from the used feature type subsets mentioned above, i.e. only a199 199

combination of visual features remains. The average recognition rates in Fig. 4(a)200 200

(no range features) illustrates a drop in classification performance. These results201 201

clearly show the superiority of our multi-sensor approach. To finally analyze the202 202

impact of temporal contextual cues, we switched off the hidden Markov model203 203

(HMM) which leads to a substantial decrease in performance (cf. Fig. 4(a)).204 204
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6 Conclusion and Further Work205 205

We presented an approach to place and scene recognition which combines infor-206 206

mation from both a ToF sensor and a standard visual sensor without calibration.207 207

We utilized state-of-the-art feature representations from the field of scene recog-208 208

nition [9, 4] and developed a novel description of the range image using planar209 209

patches. To show the applicability of our method, we performed experiments210 210

with multiple image sequences collected by a mobile robot. The resulting im-211 211

pressive performance gain of the combined feature representation highlights the212 212

usefulness of a ToF sensor for the task of place recognition.213 213

As an interesting direction for future research, our feature description of the214 214

range image as a histogram of surface normals could be used in conjunction with215 215

the principle of spatial pyramid matching [5]. This approach has shown to lead to216 216

a significant performance gain by incorporating rough spatial information within217 217

images. The most interesting application of our place recognition system would218 218

be to use the probabilities of places as prior information in an object detection219 219

setting as proposed in [10].220 220
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