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Global Context Extraction for Object
Recognition Using a Combination of Range and
Visual Features
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Abstract. It has been highlighted by many researchers, that the use of
context information as an additional cue for high-level object recognition
is important to close the gap between human and computer vision. We
present an approach to context extraction in the form of global features
for place recognition. Based on an uncalibrated combination of range
data of a time-of-flight (ToF) camera and images obtained from a visual
sensor, our system is able to classify the environment in predefined places
(e.g. kitchen, corridor, office) by representing the sensor data with vari-
ous global features. Besides state-of-the-art feature types, such as power
spectrum models and Gabor filters, we introduce histograms of surface
normals as a new representation of range images. An evaluation with
different classifiers shows the potential of range data from a ToF camera
as an additional cue for this task.

1 Introduction

The development of time-of-flight (ToF) cameras [1], which provide range infor-
mation in realtime, has lead to a large number of applications. Most of them
concentrate on the support of vision-based systems in tasks like 3d reconstruction
and robot navigation [2]. Alternatively to geometric reconstruction techniques,
we show how to utilize a classification based system for place recognition or
rough self localization of a mobile robot.

Instead of describing the position of a robot in exact geometric terms, it is
often beneficial to use a discretization of predefined places or scenes, e.g. kitchen,
corridor or office. Especially for subsequent object detection tasks [3], informa-
tion about the current place can be used as high-level contextual information [4].
Due to the large variability of scene appearances, the estimation of the most
probable label is a challenging recognition task. For this reason we calculate a
feature representation from ToF range data and from an image obtained using
a standard visual sensor (Fig. 1). This allows to describe a scene using rough
3d information and visual appearance. Furthermore we present a simple method
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Fig. 1. Setup of our place recognition system with a ToF sensor and a visual sensor
mounted on a mobile robot. Data is obtained from both uncalibrated cameras in order
to build the combined feature representation of the current view.

for feature calculation in range images which describes the image as a collection
of planar patches. It can be seen as an instance of the bag-of-features concept,
which has been shown to be well suited for scene recognition [5]. Features from
visual images are calculated using two state-of-the-art approaches often used for
the task of scene recognition. Our work extends the scene recognition approach
of [4] to multiple sensors and range data.

The remainder of the paper is organized as follows: First of all, we present
histograms of surface normals as a feature type for range images which is well
suited for the place recognition task. In Sect. 3 we describe state-of-the-art global
feature representations that can be applied to data from the visual and the
range sensor. Classification techniques and details of the feature combination
are explained in Section 4. Experiments in Sect. 5 compare feature types and
different classifiers and show the performance benefit of feature combination
from different sensors. A summary of our findings and a discussion of future
research directions conclude the paper.

2 Histogram of Surface Normals

Range images captured by ToF sensors consist of dense distance measurements
of scene elements in the field of view of the camera. Using a simple histogram
representation of all depth values would be a typical global representation of the
scene. However, for scene and place recognition with standard cameras, feature
types that use aggregated local statistics of pixel neighborhoods showed to be
successful. A simple but efficient approach to incorporate information from a
small environment of a pixel is the representation of a range image as a collection
of small planar patches or patchlets [6]. A statistic of the orientation of such
planar patches then corresponds to local surface characteristics.

Let « be a three dimensional point obtained from the range image and N ()
the set of all points in the (rectangular) image neighborhood of size P x P
with center (x1,x2)T. By assuming orthogonal projection, each plane that does
not intersect the camera center can be described by n’x = 1, where n =
(ng,ny,n.)T denotes the surface normal. We estimate the parameters of the
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Fig. 2. a) Representation of surface normals as angles in sphere coordinates [7]. b) Sam-
ple image and its power spectrum representation with 16 sectors.

planar patch in each point 2! with Iteratively Reweighted Least Squares (IRLS)

applied to the resulting optimization problem: n’ = argmin Y, |nfz —1] .
n zEN (x?)

Instead of absolute depth values, we use local surface characteristics as a

feature. Therefore we utilize the normal representation of Hetzel et al. [7], which

transforms n' in a pair of angles (¢,0%)T in sphere coordinates, where ¢ =

,n2 ,n2 . . . .
arctan ("z> and 6 = arctan ( Thais ), as illustrated in Fig. 2. Thus, the resulting

E x
representation is a two dimensional histogram with B, and By bins for ¢' and
0°, and B, x By entries.

3 Visual Features

In the subsequent sections low-level visual features are described. In addition to
its originally motivated purpose, which is the representation of visual images, we
also use the following features to extract second order and structure information
from range images.

3.1 Power Spectrum Features

One famous approach, which was first described by Mezrich et al. [8] in the late
seventies, is to fit the Fourier power spectrum to an isotropic model. Empirical
studies on natural images [8, 9] show that the average power spectrum approxi-
mately obeys the power law M (f) = A-||f||3¢, with parameter A and «, where
f denotes frequency. Straightforward linear least squares optimization can be
used to estimate the model parameters.

However, Oliva and Torralba [9] empirically show that the power law does
not hold for artificial images. Thus, since we concentrate on indoor environments
and want to calculate features from a single image, it is unlikely that an isotropic
representation is sufficient to properly describe present second order statistics.
We therefore use an extended representation [9], where the power spectrum is
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radially divided in {2 non-overlapping sectors. Each sector w is then assumed to
obey a power law:
Ay

1<w< 2. (1)
F115~
However, this anisotropic power spectrum model, which is illustrated in Fig. 2,
is a weak representation, since all phase information is lost. In the remainder of
this paper, a 16-sector model is used which results in a 32-dimensional feature
vector (Oél, e 70[16,141, . ,A16).

My (f) =

3.2 Gabor Features

Phase preserving representations can be computed using properties of the am-
plitude spectra. Gabor filters are selective filters that respond to structures of a
specific range of frequencies and orientations. A bank of Gabor filters, therefore,
can be used as a global image representation. Since the collection of responses is
very high dimensional, we follow the approach of [10], where subsampled squared
response images are used. This results in substantially reduced feature vectors.
Prior to gabor filtering, the image is preprocessed by a whitening step, followed
by divisive normalization in order to increase contrast and, thus, amplify higher
order structures.

4 Classification and Feature Combination

In this paper, three different classifiers were used in order to learn the mapping
between features and scene labels: multi-layer Perceptron (MLP), Parzen classi-
fier, and Randomized Decision Forests (RDF). However, for the sake of brevity,
only the latter two classifiers are described here.

4.1 Parzen Classifier Using Kernel Density Estimation

Core of the generative Parzen classifier for Gaussian kernel densities is the esti-
mation of empirical likelihoods for each class k:

1
p(f ‘ SN) = ﬁZK:K(f - fz) ; (2)
Ri=1

where C,; is a zero-mean normal density with covariance matrix 3, and the set
S = {f1,...,far.} denotes the n-dimensional training data labeled with class
k. An unseen feature f is then classified using maximum likelihood estimation.
Although the shape of the empirical density is determined by the observed
data S, the smoothness depends solely on the kernel bandwidth parameter 3.
The appropriate choice of a bandwidth is the most critical step in kernel density
estimation, since small bandwidths lead to over-fitting, whereas huge bandwidths
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result in oversmooth densities. In this paper, we use an ad-hoc method for band-
width selection known as generalized Scott’s rule [11] for kernel densities:

1

—__1r 1
.o~ M, 52 (3)

K

where 2‘5 is the sample covariance with respect to Sj.

4.2 Randomized Decision Forest

A Randomized Decision Forest (RDF) is a discriminative classifier that can
handle a large set of features without issues due to the curse of dimensionality.
Standard decision tree approaches suffer from severe over-fitting problems. A
RDF overcomes these problems by generating an ensemble (forest) of T' decision
trees. During the classification, the overall probability of a class k given a feature
vector f can be obtained by simple averaging of the posterior probabilities p, ()
estimated by each tree of the ensemble:

pr ] £)= S pe(n | ) (4)

In contrast to Boosting, the RDF approach uses two types of randomization
to learn the ensemble. The first type of randomization is Bootstrap Aggregat-
ing [12], where each tree is trained with a random fraction of the training data.
Additionally, to reduce training time and to incorporate randomization into the
building process of a tree, the search for the most informative split function in
each inner node is done using only a random fraction of all features [13].

4.3 Feature Combination and Temporal Context

In order to combine a set of features F = {f,...,fjg}, simple concatenation
is performed. To avoid facing the curse of dimensionality, which often occurs
with generative classifier, a different scheme is used for the Parzen classifier.
In addition to subspace reduction via PCA, we choose a soft voting approach,
where each feature type f; is classified separately. The overall class probability
p(k|F) is then computed by averaging the separate class probabilities p(|f;).

To further improve the classification performance, a hidden Markov model is
used to exploit temporal contextual properties. We use the approach from Tor-
ralba et al. [4], but instead of a sparse Parzen classifier, we utilize the classifiers
listed above.

5 Experiments

We experimentally evaluated our approach to illustrate the benefits of the com-
bination of range and visual features for the task of place recognition. In the
next sections the following hypotheses are empirically validated:
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Fig. 3. Example images from one sequence, i.e. intensity images (upper row) and cor-
responding range images (lower row).

1. Incorporation of range features substantially improves the recognition per-
formance.

2. A Randomized Decision Forest possesses the highest potential in combining
a set of different feature types.

3. The use of temporal context information by means of hidden Markov models
leads to an important gain in performance.

Our empirical evaluation is based on a place recognition scenario with seven
different rooms (classes). The final dataset consists of eight sequences, where
each sequence was captured by navigating a mobile robot through a subset of
the rooms. Each second, a PMD|[vision] 19k camera and a standard CCD camera
obtained range and visual images (Fig. 1). As can be seen in Fig. 3, the images do
not contain exactly the same image sections, which is due to the different angle
of view of the cameras. Note that a calibration of the cameras was not necessary,
because features are calculated from the different sensor images independently.

Training is done on two chosen sequences, which together cover all classes of
the dataset. The remaining six sequences were then used to test the recognition
performance. To measure recognition performance, unbiased average recognition
rate was computed. Since more than one scene is used for testing, the mean of all
average recognition rates (one for each sequence) is used to evaluate our system.

5.1 Evaluation of Feature Types and Combinations

In order to evaluate the effects of combined features, we first analyzed the clas-
sification performance on each feature type separately. The recognition results
are illustrated in Table 1, whereby only the best (out of three) classifier result
is shown. Regarding the range features, our experiments show that the surface
normal histogram (B, = By = 10, P = 3) achieves the best place recognition
result. However, gabor features computed using the data from the visual sensor
yield a higher recognition performance.

As can be seen in Table 1, feature combination leads to a substantial per-
formance gain over single feature types. The best combination scheme achieved
hereby a recognition rate of 71.9%.
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Table 1. Evaluation of different features types (incl. computation time). Features
computed on the range image of the ToF sensor are tagged with a preceding r—.

Feature type Avg. Recognition Rate Time (in sec)
r—histogram 44.2 0.024
r—power-spectrum 45.8 0.031
r—gabor 47.4 0.140
r—surface-normal 49.1 0.303
power-spectrum 49.2 0.040
gabor 63.3 0.512
feature combination 71.9 1.050
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Fig. 4. a) Performances of features type combination, influence of range features, and
impact of HMM. b) Average confusion matrix of best feature combination.

5.2 Evaluation of Different Classifiers

In the preceding section we showed that the combination of features can im-
prove the classification performance. However, the amount of performance gain
depends on the used classifier. Fig. 4(a) (full model) contains the average clas-
sification rate of RDF (T' = 100), MLP, and the Parzen ensemble. The RDF
classifier was trained with all feature types listed in Table 1. We also observed
that the MLP and the Parzen approach did not achieve comparable results when
all feature types were used. We therefore searched for appropriate feature type
combinations using a greedy strategy. Nevertheless, the RDF turned out to have
the highest classification rate for our dataset. The detailed classification behavior
is illustrated in the average confusion matrix shown in Fig.4(b).

In order to further evaluate the power of range information, we extracted all
range features from the used feature type subsets mentioned above, i.e. only a
combination of visual features remains. The average recognition rates in Fig. 4(a)
(no range features) illustrates a drop in classification performance. These results
clearly show the superiority of our multi-sensor approach. To finally analyze the
impact of temporal contextual cues, we switched off the hidden Markov model
(HMM) which leads to a substantial decrease in performance (cf. Fig. 4(a)).
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6 Conclusion and Further Work

We presented an approach to place and scene recognition which combines infor-
mation from both a ToF sensor and a standard visual sensor without calibration.
We utilized state-of-the-art feature representations from the field of scene recog-
nition [9,4] and developed a novel description of the range image using planar
patches. To show the applicability of our method, we performed experiments
with multiple image sequences collected by a mobile robot. The resulting im-
pressive performance gain of the combined feature representation highlights the
usefulness of a ToF sensor for the task of place recognition.

As an interesting direction for future research, our feature description of the
range image as a histogram of surface normals could be used in conjunction with
the principle of spatial pyramid matching [5]. This approach has shown to lead to
a significant performance gain by incorporating rough spatial information within
images. The most interesting application of our place recognition system would
be to use the probabilities of places as prior information in an object detection
setting as proposed in [10].
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