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Figure 1: Two fluids flooding a valley with a salt diffusion (from white to blue) in our interactive fully GPU-based PCISPH shown
for two different time-steps. The particle resolution is smoothly doubled around the village by using blend-sets (orange).

Abstract

In this paper we introduce a fast and consistent Smoothed Particle Hydrodynamics (SPH) technique which is
suitable for convection-diffusion simulations. We employed a temporal blending technique to reduce the number
of particles in the simulation while smoothly changing quantity fields. Our approach preserves the accuracy and
minimizes the error in the pressure term introduced when changing particle configurations. Compared to other
methods, this allows to apply larger time-steps in the transition phase. Our implementation is fully GPU-based in
order to take advantage of the parallel nature of SPH simulations.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation

1. Introduction

The simulation of fluids is important to many applications
such as physically based animation and interactive computer
graphics. Compared to grid-based (Eulerian) techniques,
particle-based (Lagrangian) approaches, like Smoothed Par-

ticle Hydrodynamics (SPH) automatically include conserva-
tion of mass and are very suitable to handle free surfaces.
SPH, as introduced by Gingold and Monaghan [GM77], mod-
els the dynamics of fluids based on particle motions apply-
ing forces to ensure the Navier-Stokes equations. Various at-
tempts have been made to optimize SPH by improving the
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accuracy and/or reducing the computational costs. Regard-
ing accuracy, SPH for incompressible fluids has been intro-
duced to Computer Graphics by Becker et al. [BT07]. Differ-
ent SPH parameters are crucial for the performance of a SPH
simulation for incompressible fluids: for example, using small
particle support radii [MCG03] minimizes the neighbourhood
complexity. Dynamically adjusting the integration time step
based on the Courant-Friedrich-Levy (CFL) condition short-
ens the overall simulation time [IAGT10]. Another intuitive
idea to speed-up simulations is to reduce the overall particle
count by using adaptive particle sizes [APKG07] or two co-
existing resolution levels [SG11]. Beside optimizing SPH pa-
rameters, prediction-correction steps enable larger integra-
tion time-steps [SP09] for incompressible fluids (PCISPH).
Last but not least, graphics processing units (GPUs) are
able to exploit the highly parallel nature of SPH simula-
tions [GSSP10].

The overall goal of this paper is to provide a consistent
and an accurate adaptive SPH while allowing for large inte-
gration step sizes. For this purpose, we introduce a feature-
specific adaptation of the influencing SPH-parameters, i.e.
the number of particles in combination with an adaptive time
stepping and small support radii using prediction-correction
steps. However, an instantaneous replacement of particle
configurations introduces a significant change in the pressure
term. This leads to small time steps when CFL conditions are
dynamically enforced. Our main idea is to apply a temporal
blending scheme to stabilize the error in the pressure term. In
detail, our approach incorporates the following contributions:

• a novel approach for a consistent adaptive SPH using a
temporal blending of quantities which allows to use large
time-steps and,

• a scheme to estimate the blending step size based on
a predicted error in the pressure term enabling an error-
dependent blending time, and

• a solely GPU-based implementation for incompressible
fluids including an efficient handling of explicit neighbour
lists for each particle exploiting the highly parallel nature
of today’s GPUs.

Compared to prior approaches, the temporal blending proves
to be very robust in terms of the pressure error, allowing for
large integration time-steps. As such, we believe that it is pos-
sible to integrate the proposed temporal blending into any
other existing SPH scenario where a smooth exchange of
particle sets is required which might not only be motivated by
performance reasons.

In the remainder of the paper, we first discuss related work
(Sec. 2) and introduce relevant aspects of our adaptive SPH
(Sec. 3) including a motivation for our temporal blending ap-
proach as presented in Sec. 4. Implementation aspects are
given in Sec. 5. In Sec. 6 we present advantages and limita-
tion of our adaptive re-sampling which we conclude in Sec. 7.

2. Related Work

Since the introduction of SPH by Monaghan
[Mon92, Mon05], many improvements on computation
speed have been introduced. We cluster them according to
the complexity of the underlying physics, data-parallelism
in combination with neighbor-finding and the adaption of
particle sets. For further details, we refer the reader to
surveys, e.g. [KCR08, Bri08].

Physics: Desbrun et al. [DC96] introduced SPH to the com-
puter graphics community. They designed kernels with small
compact support radii in order to decrease the total num-
ber of particle interactions. Based on this work, Müller et
al. [MCG03] presented a set of smoothing kernels with com-
pact support in order to simulate fluids at interactive rates.
Becker et al. [BT07] employed Tait’s equation of state to en-
force incompressibility, however, requiring small timesteps.
Instead, Solenthaler et al. [SP09] employed a predictive-
corrective loop with a small number of iterations allowing
for larger integration-time steps. Ihmsen et al. [IAGT10] ex-
tended their approach by smoothly adapting the integration
time for all particles after a simulation step. Additionally, they
have improved direct forcing at boundaries as proposed by
Becker et al. [BTT09] by including boundary particles in the
pressure update loop. Beside convective flux, diffusion for
SPH has been introduced to computer graphics by Stora et
al. [SAC∗99] to animate lava flows which has been extended
by Müller et al. [MSKG05] to simulate a fluid-fluid interaction.
However, for SPH the laplacian is better approximated by us-
ing an integral approximation [CM99] as used by Kristof et
al. [KBKS09] to simulate the transport of sediments.

Data-Parallelism and Neighbours: Kolb et al. [KC05] and
Kipfer et al. [KSW04] were the first who took advantage of
the data parallel nature of particle systems on programmable
graphics hardware. In contrast, collecting quantities is to be
preferred on parallel architectures as it reduces costly mem-
ory collisions [SDG08]. The first gathering approach on the
GPU has been published by Harada et al. [HKK07], incorpo-
rating a bucket structure on the GPU to accelerate neighbor-
hood searches. Green [Gre09] and Le Grand et al. [Gra08]
have taken this idea one step further by sorting particles
according to their current location in a fixed size hash-grid.
Ihmsen et al. [IABT11] and Goswami et al. [GSSP10] im-
proved their cache-coherence by utilizing a z-indexing. Fur-
thermore, Goswami et al. [GSSP10] split bins according to
shared memory demands on the GPU.Pelfrey et al. [PH10],
however, maintain neighbour references for each particle in
order to avoid unnecessary memory reads which at the same
time simplify SPH operations.

Adaptivity: Reducing the overall particle count either lo-
cally or globally is very appealing in order to improve the
simulation efficiency as for SPH, the overall computational
cost increases linearly with the number of particles. Bonet et
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al. [FB07] utilize a non-linear minimization of the density er-
ror. However, their method is too time critical for interac-
tive simulations. In computer graphics simple replacement
schemes are used to allow for a high performance, however,
increasing the approximation error.[DC99, ZSP08] employed
the differential form of the continuity equation in order to avoid
high local changes of mass-density due to split or merge op-
erations. Unfortunately, in the differential form, the error intro-
duced into the density field is accumulated over time which
leads to instabilities. As first published by Becker et al. [BT07]
the summation approach is much more stable for large time
steps, as was confirmed by our experiments as well. Lasti-
wka et al. [LQB05] relate a particle’s support radius to the
estimated volume after re-sampling using large support radii,
however, inducing additional computational costs. Zhang et
al. [ZSP08] adjust masses to stabilize the differential conti-
nuity equation, violating the principle of mass conservation.
Adams et al. [APKG07] determine valid positions for splitted
particles and stop if they are too close to their neighbours
in order to avoid instantaneous pressure changes. Keiser et
al. [KAG∗06] have utilized virtual particles, i.e. particle which
are passively moved with the flow. As virtual particles do not
get a direct contribution from real particles they introduce er-
rors to quantity fields when they turn into real particles. In or-
der to avoid merging and splitting Cottet et al. [CKS00] divide
the fluid domain into several areas with different resolutions.
Unfortunately, their system depends on a frequent global re-
meshing of all particles onto a regular grid [CPK02], which
distracts from the adaptive character of Lagrangian systems.
Recently, Solenthaler et al. [SG11] have proposed a parti-
cle simulation with coexisting resolution levels with the nice
property to quadruple resolution. Unfortunatelly, the utilized
feedback forces are not physically motivated and do not pre-
vent divergence between resolution levels, which may lead to
conservation problems especially in case of unbounded free
surface scenarios or diffusion simulations, such as shown
in Fig.1. In contrast, in our approach particle levels interact
using standard SPH rules enabling multi-level convection-
diffusion simulations.

3. Adaptive SPH

In this section, we describe SPH basics (Sec. 3.1) for
convection-diffusion simulations and the principles of adap-
tive SPH systems (Sec. 3.2) such as shown in Fig. 2. In
Sec. 3.3 we discuss major challenges in realizing an adaptive
sampling mechanism while giving reason for our proposed
blending of quantities as described in Sec.4. Our specific im-
plementation is described later in Sec. 5.

3.1. SPH Background

In Lagrangian systems, particles represent mass points
which are moved with the flow field. Beside a mass value
m, particles carry specific flow properties. In SPH, such a

Neighbour
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Time
IntegrationSPH

Figure 2: A schematic overview of a typical simulation loop
for adaptive SPH systems. Our temporal blending easily in-
tegrates into SPH field evaluations and uses an error estima-
tion during time-integration in order to avoid artificial shocks
caused by an adaptive particle sampling.

quantity is reconstructed at a position x by particles x j in the
neighbourhood:

Q(x) = ∑
j

Q j
mj

ρ j
W(|x−x j |,h j), (1)

where W(|x− x j |,h j) is a radial symmetric kernel function
with small compact support radius h j [MCG03]. We use the
short notation Wi j = W(|xi − x j |,h j) in case it is evaluated
for a particle i. Mass transport of a soluble substance is de-
scribed by convection-diffusion equations of which the veloc-
ity vi is described by the Navier-Stokes equations:

∂vi

∂t
=

1
mi

[Fp
i + Fµ

i + Fσ
i + Fe

i ].

Fe
i is an external force, e.g. gravity. For the viscous force Fµ

i
and the surface tension force Fσ

i we refer to [Mon05] and
[BT07], respectively. However, a particle’s pressure force Fp

i
is derived from symmetrized gradient approximations as de-
scribed by [CEL06]:

Fp
i =−mi ∑

j 6=i

mj (
pi

ρ2
i

+
p j

ρ2
j

)∇Wi j (2)

where pi and ρi are the pressure and the density of a particle.
In summation form, the density ρi = ρ(xi) for a particle is
computed by:

ρi = ∑
j

mj Wi j . (3)

Pressure is modelled via an equation of state and e.g. may
linearly depend on the density via p= k(ρ−ρ0), where ρ0
e.g. is the rest density of a fluid. k is either defined by the
compression ratio [MCG03] or is precomputed over an opti-
mal neighbourhood for incompressible fluids [SP09]. Beside
convection, an isotropic diffusion is modelled by a exchange
of concentrations c of a soluble substance, like salt in Fig.1,
between neighbouring particles [CM99]:

∂ci

∂t
= D ∑

j 6=i

mj

ρ j ρi
(ci −c j )|∇Wi j |. (4)

D is the diffusivity constant, controlling how fast substances
propagate in fluids.
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3.2. Adaptive Sampling

Figure 3: Mixing of coffee and cream in an Utah Teapot.
Blend-sets (bottom) are used to dynamically adapt to the
convective and the diffusive flux (top), shown for t=2 and t=6.

An adaptive mechanism shifts computational resources to
regions of interest. Adaptive simulations use particles with
non-uniform support radii hi and masses mi depending on
their current level l = 0,1,2, ..., lmax:

hi = σ
(

mi

ρ0

) 1
3

, mi = 2l m0 (5)

where ρ0 is the rest density of the fluid, m0 is the reference
mass for level zero particles. Here σ ≈ 1.3 in order to con-
serve a fluid’s volume [Mon05] over resolution levels.

High-resolutions are either pre-defined (See Fig. 1) or
change dynamically, as dictated by the flow. For our exam-
ples, such an adaptive high-resolution region is defined by
the fluid’s surface in combination with the diffusion layer, i.e.
the contact-line between the two fluids as shown in Fig. 3.
Particles xi belong to a high-resolution area as long as one
of the following conditions holds true:

|∑
j

mj

ρ j
∇Wi j |> εs or |∑

j

mj

ρ j
(ci −c j )∇Wi j |> εc

where εs,εc are certain user defined thresholds for the vol-
ume gradient (See also Mueller et al. [MSKG05]) and the
concentration gradient, respectively. Once high-resolution
particles are identified, simple sampling operators, such as
shown in Fig.5, are used to refine a local particle set, aim-
ing for a good performance. High-resolution particles of level
l try to split to N child particles of level l − log2(N). Vice
versa all other particles, not in a high-resolution region,
try to merge to a single particle of level l + 1. Similar to

Adams et al. [APKG07], we leave an intermediate area of
particles which are not re-sampled in order to avoid split-
merge fluctuations. However, many other re-sampling criteria
exist throughout the literature [SZP07]. Please note that field
quantities, like velocities and concentrations, are not directly
assigned and are instead interpolated over time as described
later in Sec. 4.3.

However, consistent adaptive systems differ in the way
particles of different levels contribute to each other. Parti-
cles may only contribute to particles of their level [KAG∗06]
or may exchange information with all neighbour particles di-
rectly [APKG07]. In the latter case, which we use due to it’s
simplicity, according to Monaghan [Mon92] one has to av-
erage the influence of neighbour particles in order to sym-
metrize contributions and satisfy Newton’s third law for action
and reaction:

Wi j =W(|xi −x j |,
hi +h j

2
),

Please note that alternative averaging operators [DC99] may
be applied as well.

Due to smaller particle sizes, high resolution regions need
smaller integration time-steps in order to secure simulation
stability. According to the Courant-Friedrich-Levy (CFL) con-
dition the velocity vi , the force Fi and the support radii hi of a
particle i then determine it’s maximum allowed time-step:

∆ti = min(λv
hi

|vi |
, λF

√
hi

|Fi |
). (6)

where λv = 0.4 and λF = 0.25 according to Mon-
aghan [Mon92]. The overall simulation speed then depends
on the minimum over all individual time-steps. However, in the
context of PCISPH the time-step must be changed smoothly
and requires a separate shock handling as described by Ihm-
sen et al. [IAGT10].

3.3. Challenges for Adaptive SPH

Adaptive SPH systems re-sample particles globally or locally,
while preserving simulation accuracy. Consequently, a sam-
pling mechanism has to approximate a particle set as good
as possible. In case of regular particle lattices [CPK02], a
higher order interpolation in combination with frequent global
remeshing is applied which distracts from the adaptive char-
acter of particle sets. Instead, in case of free surface flows
including irregular particle structures, one has to minimize a
local error function of a quantity field at position x [FB07]:

E(x) = |Q(x)− Q̃(x)|. (7)

Here, Q(x) is the quantity evaluated for the old particle set
and Q̃(x) is the quantity interpolated on the re-sampled par-
ticle field. Lagrange multipliers and costly iterative solvers
are required in order to conserve the total amount of quan-
tities and to account for non-negativity constraints [LB95]. In
computer graphics, simple sampling patterns as described
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(a) Ground Truth (b) Non Continuous (c) Error-Independent (d) Error-Dependent

Figure 4: In 4(a) we visualize the pressure distribution for the scene shown in Fig.8 after 1.5 seconds of simulated real-time.
In 4(b) high pressure is introduced due to an abrupt merging of 60k particles as utilized by [APKG07, KAG∗06] in the context of
PCISPH leading to an unstable simulation in case the number of merging particles is not reduced as shown later in 8. In 4(c) our
error-independent linear blending function is applied which gives a result close to the original pressure field. However, an error
estimation in combination with our linear blending preserves the overall pressure distribution much better as shown in 4(d).

in Sec. 3.2 distribute flow quantities equally to the new child
particle(s) which are within the same distance to their par-
ent particle(s). In general, such operators do not include
any neighbour particles to minimize E(x) and cannot pre-
serve the overall regular particle structure resulting in possi-
ble particle overlaps. Thus, they are very fast to compute but
approximate the old quantity field with larger errors. Fig. 4
gives an example of the resulting error which is introduced
into the density field. Differentials in SPH are quite sensitive
to such irregular particle structures and field discontinuities.
Thus, they are sensitive to abrupt changes in the particle
set. Solenthaler et al. [SG11] have utilized an impulse-based
transition for high-level boundary particles turning into real
particles. It is applicable only if two resolution levels are al-
lowed to coexist within the same region, possibly leading to
divergence problems. In consistent systems communication
with different smoothing radii increases the error as well, as
shown by Borve et al. [BOT01]. In general, this error can
be reduced by avoiding direct communication among levels
as proposed by Keiser et al. [KAG∗06] or by using a 1 : 2
replacement structure as has been proposed by Adams et
al. [APKG07]. In either case, large pressure forces are in-
troduced, as a result of a non-optimized sampling, irregular
particle distributions, different support radii and small com-
pact smoothing kernels. By applying the CFL condition in
each step, such forces dramatically decrease the integration
time in order to preserve simulation stability and accuracy.
Even worse, in the context of PCISPH such forces may trig-
ger a shock handling mechanism as described by Ihmsen et
al. [IAGT10]. Instead, our blending approach reduces the er-
ror of irregular particle structures for consistent simulations
by using an error-dependent (Sec. 4.4) transition over time
via our adaptive quantity blending (Sec. 4.1- 4.3). Thus, we
enable the system to use large time steps in combination with
small smoothing kernels which are required for a fast and in-
compressible SPH.

4. Temporal Blending

As shown in Fig. 4, sampling errors for new particles lead to
discontinuous quantity fields over time. Instead, we propose
a blending approach in order to smoothly interpolate between
two interchangeable fluid representations over time. The idea
of blending between multiple representation of objects is well
known in computer-graphics.The following summation trans-
fers the idea of a blending between two representations of a
fluid into the context of SPH:

Q(x) = b

QH (x)︷ ︸︸ ︷
∑
j∈H

Q j
mj

ρ j
W(|x−x j |) +

(1−b) ∑
j∈L

Q j
mj

ρ j
W(|x−x j |)

︸ ︷︷ ︸
QL(x)

.
(8)

Here, a low-resolution particle set L and a high-resolution
particle set H, represent two interchangeable blend-
domains. Both corresponding quantity fields QH(x) and
QL(x) are smoothly blended with respect to a blend-weight
b ∈ [0,1]. Over time, b increases from zero to one or de-
creases from one to zero dependent on the required reso-
lution. As a result, particles of one blend-domain smoothly
replace the particles in their complementary blend-domain,
their so-called blend-partners.

As described in Sec. 4.1, instead of just refining one global
fluid volume, we blend between many local blend-sets (i.e.
sub-volumes of the fluid) simultaneously as shown in Fig. 5.
In each simulation step, particles first evaluate SPH quan-
tities in their blend-domain only, as described in Sec. 4.2.
Subsequently, blend-domains synchronize quantities by us-
ing an interpolation within their complementary blend-domain
as described in Sec. 4.3. At the end of each simulation step,
blend-weights are updated according to the estimated blend-
ing error as described in Sec. 4.4.
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Figure 5: In 5(a) particles are split to 8 child particles in or-
der to double resolution close to the pillars. With blend-sets,
new (black) particles are smoothly blended in over time un-
til they fully contribute to neighbouring particles (white) while
contribution of the old particles is simultaneously reduced. In
5(b) particles are replaced by two child particles three times
in order to double resolution. Due to blending and proper ini-
tialization the result is independent from the utilized pattern.

4.1. Blend-Sets

Blend-sets represent local fluid volumes with changing parti-
cle representations. As such, each blend-set sconsists of two
interchangeable particle sets, a low resolution particle set Ls

and a high resolution particle set Hs, as shown in Fig. 5. The
transition between these local blend-domains is controlled by
a blend-weight bs∈ [0,1] assigned to a blend-set.

Due to multiple co-existing blend-sets, the SPH system
needs to handle several individually blending particles with
changing contributions over time. As sketched in Fig. 6,
two subsequent steps resemble Eq. (8) for blend-sets in or-
der to account for such varying particle interactions: Firstly,
particles compute a flow quantity Q̃i , like velocity or den-
sity, using SPH summations in their blend-domain as de-
scribed in Sec. 4.2. Secondly, they interpolate quantities Q̂i in
their complementary blend-domain (See Sec. 4.3). Particles
then blend both separately calculated quantities by using the
blend-weight bs of their blend-set s:

Qi =

{
bs Q̃i + (1−bs) Q̂i i ∈ Hs

(1−bs) Q̃i + bs Q̂i i ∈ Ls
(9)

With such a blending of quantities, blend-partners synchro-
nize flow dynamics between blend-domains which leads to a
consistent and conservative transition over time. For exam-
ple, in case of a split, bs = 0 smoothly increases over time
until bs = 1 is reached. Consequently, newly created parti-
cles i ∈ Hs gain influence on the local flow dynamics while
simultaneously, old particles in Ls become passive over time.
Vice versa, in case of a merge, the new particle in Ls con-
sistently replaces the old particles in Hs. Please note that

tt
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Figure 6: During a simulation step ∆t, a blending of parti-
cles requires two subsequent steps in order to update flow
quantities: Particles blend between a quantity which they
evaluate in their blend-domain (See Sec. 4.2) and a quan-
tity which they interpolate within their complementary blend-
domain (See Sec. 4.3). Both steps require different pair-wise
contributions between neighbouring particles as shown for
the orange blend-set.

particles which are not part of a blend-set do not need any
synchronization, thus, Qi = Q̃i .

However, both operations, the quantity summation and the
subsequent quantity interpolation step, imply different "visibil-
ities" among neighbouring particles. Consequently, particles
apply blend-weights with respect to the current operation and
with respect to their blend-domain as described in the next
sections.

4.2. Quantity Summation per Blend-Domain

In order not to change quantity fields abruptly, particles
smoothly change their contribution to neighbouring particles
by using the blend-weight bs of their blend-set s. We en-
force such a smooth transition by integrating pair-wise con-
tributions b̃ j→i into the SPH summation interpolants (Eq. 1),
which results in:

Q̃i = ∑
j

b̃ j→i Q j
mj

ρ j
Wi j . (10)

A contribution of a particle j onto it’s neighbouring particle i
is defined by:

b̃ j→i =





0 j ∈ Hs∧ i ∈ Ls ∨ j ∈ Ls∧ i ∈ Hs

bs j ∈ Hs∧ i /∈ s

1−bs j ∈ Ls∧ i /∈ s

1 else.

As blend-partners represent the same fluid volume, they do
not contribute to each other during a SPH summation step as
shown in Fig. 6. Instead, blend-domains exchange flow infor-
mation afterwards by employing a quantity interpolation. In
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contrast, particles of the same blend-domain fully contribute
to each other during a SPH summation. Note that particles j ,
which are not part of a blend-set, fully contribute to all of their
neighbouring particles, i.e. b j→i = 1.

With such pair-wise contributions b̃ j→i the system
smoothly avoids instantaneous changes in the density field
which otherwise would lead to strong pressure forces:

ρ̃i = ∑
j

b̃ j→i mj Wi j .

As contributions are applied as an inherent particle property,
they do not change the way spatial derivatives are computed.
For example pressure forces (See Eq. (2)) are evaluated by:

F̃
p
i =−mi ∑

j 6=i

b̃ j→i mj (
pi

ρ2
i

+
p j

ρ2
j

)∇Wi j .

As blend weights are particle inherent properties, they are
easily apply to all other kinds of symmetrized gradient ap-
proximations. Consequently, the convective flux is computed
by

∂ṽi

∂t
=

1
mi

[F̃
p
i + F̃

µ
i + F̃

σ
i + F̃

e
i ].

Similarily, the diffusive flux (See Eq. (4)) with support for
blend-sets is computed by:

∂c̃i

∂t
= D ∑

j 6=i

b̃ j→i
mj

ρ j ρi
(ci −c j )|∇Wi j |.

With the described SPH summations neighbouring particles
smoothly adapt to a new particle configuration. However,
particles within a blend-domain still receive a full contribu-
tion from their neighbouring particles which still might lead
to pressure changes. We smooth these remaining sampling
errors by utilizing a quantity interpolation between blend-
domains.

4.3. Quantity Interpolation between Blend-Domains

In each step of the simulation, a blending of quantities be-
tween blend-domains of a blend-set reduces divergence
among blend-domains and smooths sampling errors be-
tween blend-partners. However, particles cannot use the
SPH summation interpolant directly in order to interpolate
accurate quantities in the complementary blend-domain as
Eq. (1) does not preserve constant functions and is sensitive
to a varying number of neighbouring particles, e.g. at free
surfaces. Instead, we utilize a constant correction as pro-
posed in [BK02]In combination with pair-wise contributions
particles then interpolate flow quantities Q̃i , like velocities ṽi
or densities ρ̃i , in their complementary blend-domain by:

Q̂i =
∑ j b̂ j→i Q̃ j Ŵi j

∑ j b̂ j→i Ŵi j
(11)

During this step, the contributions from neighbouring parti-
cles are defined by:

b̂ j→i =





0 i, j ∈ Ls ∨ i, j ∈ Hs

bs j ∈ Hs ∧ i /∈ s

1−bs j ∈ Ls ∧ i /∈ s

1 else.

In contrast to the previous summation step, the interpolation
is applied over blend-partners as well as neighbouring par-
ticles which either do not undergo any transition or belong
to a different blend-set. In order to give particles some more
space to adapt we slightly increase the interpolation radius:

Ŵi j =W(|xi −x j |,k
hi +h j

2
)

where k = 1.25 in all our examples. However, in rare cases,
blend-partners may still diverge, e.g. due to contact with
sharp boundaries or due to a strong divergence between
neighbouring particles. In case blend-partners appear to

loose contact, i.e |xi −x j |> k hi+h j

2 , we average the veloc-
ity among blend-partners in order to let them stick together.
On the one hand this effectively reduces their dynamics but
on the other hand avoids non-physically motivated bonding
mechanisms.

Please note that with interpolation we get a good approx-
imation but do not directly preserve linear nor angular mo-
mentum.As a solution, one could employ a normalization
of the interpolated quantities afterwards. As the introduced
damping of flow dynamics is not noticeable we do not apply
a subsequent normalization of the interpolated density and
velocity values. However, we must conserve the total amount
of a soluble substance c just as we conserve a fluid’s mass.
Fortunately, due to isotropic diffusion, the concentration pro-
file is rather homogeneous. As concentrations are given with
respect to a particles mass, we conserve concentrations by:

ĉi = ∑
j

c̃ j (12)

where in this case the contributing particle set j is restricted
to blend-partners only, i.e. j ∈ Hs, i ∈ Ls or j ∈ Ls, i ∈ Hs.

4.4. Blending Duration

After each simulation step blend-sets smoothly update their
blend-weights in order to enable a stable transition from one
time-step to the next. Over time, the contribution of new parti-
cles increase from zero to one and simultaneously smoothly
decrease from one to zero for old particles as modelled by
the following piecewise linear blending function:

bs(t +∆t) = bs(t)+

{
∆bs(t) Ls splitted

−∆bs(t) Hs merged
(13)

where ∆bs(t) is a error-related blend-increment of a blend-
set. Note that re-sampling mechanisms, which have been
utilized so far, correspond to a non-continuous replacement
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Figure 7: Top-view (left) of the "Valley"-scene in combina-
tion with the estimated sampling-errors (right). Newly cre-
ated (blue) particles may introduce large blend-errors (red),
i.e. Ei,ρ(∆bmax) > Emax,ρ, due to strong overlaps with their
neighbour particles.

of particles, i.e. ∆bs(t) = 1 ∀s, t. However, we restrict blend-
increments ∆bs(t)∈ [∆bmin,∆bmax], where ∆bmax= ∆t/Tmin
and ∆bmin = ∆t/Tmax, in order to give the user control over
the blending duration with respect to the current integration
time-step ∆t as controlled by CFL conditions. By defining a
minimum blending time Tmin and a maximum blending time
Tmax a user can steer the blending either towards perfor-
mance or towards accuracy. For all our examples we have
set Tmin = 40ms and Tmax= 200ms which according to our
experiments results in a smooth transition. As soon as old
particles do not contribute to their neighbouring particles any-
more, i.e. bs(t) = 1 in case of a split or bs(t) = 0 in case of a
merge, they will be removed from the system.

In order to reduce sampling errors as shown in Fig.4, we
increment blend-weights over time with respect to the intro-
duced sampling error which we measure by applying a global
blend-increment ∆b∈]0,1] for all blend-sets, which then re-
sults in the predicted contributions:

b̃∗j→i =





0 j ∈ Hs∧ i ∈ Ls ∨ j ∈ Ls∧ i ∈ Hs

bs+∆b j ∈ Hs∧ i /∈ s

1− (bs+∆b) j ∈ Ls∧ i /∈ s

1 else.

By assuming a static particle neighbourhood we are then
able to measure the sensitivity of a quantity field with respect
to a change of blend-weights:

Ei,Q = | Q̃i − Q̃∗i |
= | ∑ j b̃ j→i Q j

mj

ρ j
Wi j −

∑ j b̃∗j→i Q j
mj

ρ j
Wi j |

As particles which do not undergo blending naturally do not
introduce sampling errors, we can reduce the summation to
blending particles j only, which then simplifies the estimation
of the sampling error to:

Ei,Q = ∑
j

∆b Qj
mj

ρ j
Wi j

Even if we can deduce sampling errors for all quantity fields,
we only measure the sensitivity of the density field, as it is
most important to stability, by:

Ei,ρ(∆b) = ∑
j

∆b mj Wi j . (14)

In each time step, one could now iteratively adjust ∆b in or-
der to stay below a maximum user defined error Emax,ρ̃. By
assuming a linear dependency between blend-weights and
the sampling error, we instead apply only a single error es-
timation step with respect to the current maximum allowed
blend-increment ∆b = ∆bmax (See Fig.7). After estimation
of individual sampling errors a blend-set then computes its
blend-increment by:

∆b(t) = ∆bmax− (∆bmax−∆bmin) min
j

E j,ρ(∆bmax)

Emax,ρ
(15)

where j includes blending particles as well as non-blending
neighbouring particles of a blend-set and Emax,ρ = 0.06∗ρ0
in all our examples.

However, as shown in Fig.7, newly created particles may
introduce larger errors than Emax,ρ due to excessive overlaps
with neighbouring particles or due to particle boundaries. We
improve their initial positions over 10 simulation steps by us-
ing their pressure force and keeping bi = 0:

xi ← xi + ∆t2 1
mi

F̃
p
i . (16)

We restrict such virtual particles not to move more than hi
away from the mass center of their blend-partners. Please
note that such impulses can only improve positions to a cer-
tain extent. A merge or a split is postponed if the error is still
too high, i.e. Ei,ρ(∆bmax)> Emax,ρ.

5. Implementation

We have implemented the state-of-the-art PCISPH algo-
rithm [SP09] in combination with a diffusive flux [CM99] on
the GPU as shown in Alg. 1. Changes to the standard algo-
rithms due to blend-sets are highlighted in orange. As can be
seen, particles of a blend-set synchronize their density, veloc-
ity and concentrations among blend-domains as described
throughout Sec. 4.1-4.3. Please note that we do not include
a blending of forces. Instead, we synchronize the convective
flux at the level of velocity. At the end of each simulation step
blend-sets update their blend-weights by predicting a sam-
pling error as described in Sec. 4.4.

In contrast to the diffusive flux, which is implemented in a
straight-forward fashion, the convective flux has to iteratively
solve an equality constraint ρi(t +∆t)− ρ0 = 0 in order to
enforce incompressibility. On the GPU, the termination of the
loop could be evaluated by an parallel add-reduction over the
particle’s convergence decisions. However, in practice, three
steps have turned out to be sufficient [IAGT10]. Since we
utilize non-uniform particle sizes we pre-compute constants
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Algorithm 1: Parallel-adaptive PCISPH simulation step.

Diffusive Flux
foreach particle i inparallel do

compute density ρ̃i(t)

foreach blended particle i inparallel do
interpolate density ρ̂i(t)(Eq. (11))
synchronize density ρi(t)(Eq. (9))

foreach particle i inparallel do
update concentration c̃i(t +∆t)

foreach blended particle i inparallel do
interpolate concentration ĉi(t +∆t)(Eq. (12))
synchronize concentration ci(t +∆t)(Eq. (9))

Convective Flux
foreach particle i inparallel do

compute non-pressure forces F̃
µ+e+σ
i (t)

initialize pressure pi(t) = 0
initialize pressure force F̃

p
i (t) = 0

while n< 3 do
foreach particle i inparallel do

predict velocity v∗i (t +∆t)
predict position x∗i (t +∆t)

foreach particle i inparallel do
predict density ρ̃∗i (t +∆t)

foreach blended particle i inparallel do
interpolate density ρ̂∗i (t +∆t)(Eq. (11))
synchronize density ρ∗i (t +∆t)(Eq. (9))

foreach particle i inparallel do

compute pressure force F̃
p
i (t)

correct pressure pi(t)+=κl (ρ∗i (t +∆t)−ρ0)

foreach particle i inparallel do
update velocity ṽi(t +∆t)

foreach blended particle i inparallel do
interpolate velocity v̂i(t +∆t)(Eq. (11))
synchronize velocity vi(t +∆t)(Eq. (9))

Error Estimation
foreach particle i inparallel do

estimate blend error Ei,ρ(t)(Eq. (14))

foreach blend-set s inparallel do
compute blend increment ∆bs(t)(Eq.(15))
update blend weights bs(t +∆t)(Eq. (13))

foreach blended particle i inparallel do
if bs(t) = 0∨bs(t) = 1 : relax position xi(t)(Eq. (16))

Time Integration
foreach particle i inparallel do

update position xi(t +∆t)
estimate time step ∆ti

adapt ∆t using parallel Min-Reduction over ∆ti

κl , l = 0,1, .., lmax to correct the density errors. Each is pre-
computed independently for a prototype particle of level l with
a filled neighbourhood with only level-l particles. During pres-
sure correction, each particle has to choose it’s correspond-
ing constant κl according to it’s level l . Note that according
to our measurements, it is sufficient to only synchronize a
particle’s density within the correction loop. As an adaptive

spatial discretization directly implies adaptive temporal dis-
cretization, particles evaluate their own time-step restriction
∆ti by using Eq. (6). The overall integration time step ∆t is
then smoothly adapted using a parallel min-reduction over all
individually evaluated time-step restrictions. For reasons of
simplicity, we refer to the excellent related work for a descrip-
tion of the predictive-corrective convection loop [SP09] in
combination with adaptive time-stepping and particle bound-
aries [IAGT10].

In order to improve memory coherence, particles are
sorted according to their current indices into a regular hash
grid, using a radix sort algorithm on the GPU [Gre09, Gra08].
Bins of the hash grid have a size equal to the maximum
support radius hmax, as visualized in Fig. 7. Sorting allows
the system to easily insert or remove particles at the end
of the respective linear data arrays, without taking care of
memory fragmentations. Similar to Pelfrey et al. [PH10], we
build neighbour lists for each particle including blend part-
ners in order to speed-up SPH summations and interpola-
tions. On the one hand such reference lists increase mem-
ory requirements and need to be updated each time particles
have been sorted. But on the other hand, subsequent opera-
tions compute much faster as global memory reads for non-
contributing particles are avoided. Furthermore, SPH oper-
ations are easier to implement, require less computing re-
sources and avoid branch divergences on the GPU as they
do not need an optimized neighbour search.

Scene "Valley" "Pillars" "Teapot"
Sim. Time [s] 75 21 35
Avg.∆t [ms] 2 2.5 2
Min #ptcls [k] 0-500 / 0-1000 210,500,700 / 0-470 / 0-1000

500,1000,1500
0-270* 380*,820*,1100* 0-700*

Comp. Time [min] 34 / 57 5.9,13.7,18.1 / 15.8 / 19.8
7.6,17.3,26.7

32.3* 9.9*,23.9*,31.3* 18.68*
Snapshot Fig.1 at 30s Fig.8 at 5s Fig.3 at 4.5s
#ptcls [k] 310[20]/ 635 500[40]/ 960 100[40]/ 128
Neighbours [ms] 10.1[0.7]/ 18.2 14.6[1.4]/ 26.5 5.2[2]/ 4.1
Diff. Flux [ms] 6.9[0.3]/ 12.4 9.67[1.1]/ 16.9 1.7[0.6]/ 2.1
Conv. Flux [ms] 27.1[3.3]/ 47.7 41.1[3.8]/ 65.7 11[2.5]/ 9.5
Est. Error [ms] 5.1[5.1]/ 0 9[9]/ 0 1.7[1.7]/ 0
Time Int. [ms] 1.1[0]/ 2.1 1.9[0]/ 4 1.9[0]/ 0
Split/Merge [ms] 0.7[0]/ 0 1.7[0]/ 0 0.2[0]/ 0
Total [ms] 51[9.4]/ 80.4 78.1[15.3]/ 113.1 20.5[6.8]/ 16.6

Table 1: Timings of our adaptive / a non-adaptive PCISPH.
The overhead due to blend-sets is highlighted in orange.
Overall timings for [APKG07] are marked with *.

6. Results and Discussion

We have tested our scenes on an Intel Dual-Core 2.66 GHz
with a NVidia GTX 580 Graphics Card with 1.5 GB VRAM. In
order to demonstrate the applicability of our temporal blend-
ing we compare our method to the technique from Solen-
thaler et al. [SP09], Müller et al. [MCG03] and Adams et
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Figure 8: PCISPH simulation of two colliding fluid fronts after 5 seconds (top row). Only 160k of the 960k particles can be
stably merged with a non-continuous replacement of particles according to Adams et al. (second row) in combination with our
relaxation (Eq. (16)). In contrast, our temporal blending (third row) achieves a speed-up of 1.6 by halving resolution with similar
visual results. Increasing the particle resolution further to level lmax= 6 (last row) significantly damps the flow dynamics.

al. [APKG07] with particle numbers varying from 500k par-
ticles to 1,5M particles. Table 1 gives an overview over the
simulation times for all presented scenes and shows timings
for the operations as presented in Alg.1. Results are visual-
ized by using an interactive volume ray-casting.

In the "Village" scene, Fig.1, the particle count increases to
one million particles over time in case of a non-adaptive simu-
lation and 500k in case of a comparable adaptive SPH within
a fixed pre-defined high-resolution region around the village.

As shown in Fig. 9, the workload scales linearly with the num-
ber of particles in the predictive-corrective loop. As expected,
our adaptive method clearly outperforms the PCISPH [SP09]
method by a factor of 1.6 and speeds-up a compressible SPH
simulation [MCG03], by a factor of 1.4 when doubling reso-
lution. As shown in Table1, the overhead due to blending is
comparatively low and extra workload is only introduced by
the error estimation step, as it is executed for all particles.
Such workload could be avoided by just using a constant lin-
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Figure 9: Due to the linear dependency between perfor-
mance and the number of particles our temporal blending
(λmax= 3) speeds-up the simulation in Fig.1 by a factor 1.6
in case of PCISPH [SP09] and by a factor of 1.3 in case of
SPH [MCG03].

ear blending, but which result in either longer blending times
or larger errors as shown in Fig. 4. With an error-estimation,
the speed-up is still up to factor of 1.5 in case of dynamically
changing high-resolution regions (which we recompute every
20 frames in order to effectively distribute the workload to the
intermediate frames). However, in very complex flow scenar-
ios the number of blend-sets might be very high compared to
the overall particle count, as in the beginning of our Teapot-
example (See Fig.3). As blend-sets need some time to adapt
to a specific situation the overall speed-up is comparably low.
Still, resolution regions are in good agreement with the flow
dynamics.

By inserting particles abruptly [APKG07] high artificial
pressure forces are introduced as visualized in Fig.4 which
may result in an unstable simulation. In general, only very
few particles can be stably re-sampled as shown in the sec-
ond row of Fig. 8. Even if the average density error is less
then 0.4% compared to a non-adaptive PCISPH, a non-
continuous sampling still introduces high occasional pressure
forces which results in a flickering of the integration time-step
as shown in Fig. 10. In contrast, with our temporal blending
the integration time-step is preserved while the number of
particles can be halved as shown in the third row of Fig. 8.
Unfortunately, in case of lmax= 6 as shown in the last row of
Fig.8, we cannot receive much speed-up compared to non-
adaptive methods, since the cell-size which depends on the
maximum support complicates neighbour search which then
becomes a new bottleneck. Additionally, neighbour lists dic-
tate the overall memory consumption. Please note that in our
examples we reserve space for 40 neighbours per particles,
including references for boundary particles as well. However,
more sophisticated hash structures should solve the prob-
lem. Still, with an non-continuous replacement, it was not
possible to stably merge particles up to level l = 6 even in
case of highly viscous fluids. Beside refinement errors, they
make a tracking of dynamic high resolution areas error-prone

Figure 10: Time-step size (top) and average density (bot-
tom in percentage of the rest density) for methods presented
in Fig. 8. Even if all adaptive methods preserve the density
profile, a stable non-continuous replacement (blue) results in
a flickering of the integration time-step (top) due to occasional
high pressure forces. In contrast, our temporal blending still
preserves the integration time-step, even for lmax= 6.

and that they damp flow dynamics notably as shown in the
last row of Fig. 8. In the future we like to improve on the iden-
tification of high-resolution regions by addressing the error
and including turbulent flow criterion. In it’s current state, in
our opinion, when doubling resolution, i.e. lmax= 3, our adap-
tive simulation is in good agreement with a non-adaptive sim-
ulation.

7. Conclusion

We have presented a novel temporal blending approach
which is capable of exchanging particle sets while maintain-
ing a consistent convection-diffusion simulation while using
standard SPH rules only. Our temporal blending is utilized for
splitting and merging particles in order to adapt particle con-
figurations according to flow requirements with minimal er-
rors. We introduced a scheme to estimate the blending step
size based on a predicted error in the pressure term in com-
bination with an adaptive time-stepping. In order to evaluate
the flexibility of our system we integrated a temporal blending
in the latest approaches presented in the field of incompress-
ible fluid simulations. We achieve interactive frame-rates with
our fully GPU-based implementation for up to a million of cou-
pled particles in combination with our blending approach.
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