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1 Introduction

The purpose of scientific visualization is to generate meaningful images. Those im-
ages should depict certain properties of an underlying abstract data field in a way
that is intuitively understandable for the user. As a consequence all visualization
techniques require a type of mapping between abstract data values and a corre-
sponding visual representation. One of the most frequently applied operations in
this context is the direct assignment of visual attributes to data values. A simple
example is the linear mapping of a scalar temperature or density sample to the hue
value of a color in HSV space.

From the theoretical point of view, such a mapping is an arbitrary one in general,
in the sense that there is no correct or incorrect mapping, as well as there is no
correct or incorrect way a density or temperature value should look like. One might
want to choose warm and cool colors to represent high and low temperatures, but
this is simply a matter of choice for the domain scientist, probably based on existing
conventions, and to a great extent on his own personal taste. The usefulness of the
mapping, however, is determined by the way it helps the user finding the correct
interpretation of the data.

In complex visualization systems, however, finding appropriate settings that yield
a desired visual appearance is often a tedious process of manual parameter tweak-
ing. There are two different types of approaches to tackle such problems. Many re-
searchers have developed algorithms to automatize the assignment procedure. Other
scientists work on concepts to facilitate the interactive process by making it more
intuitive, controllable and goal-directed. Both the automatic approaches and the de-
sign of easy-to-use interfaces are still topics of active research. This chapter gives a
survey on strategies for assignment of visual properties in scientific visualization.
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Fig. 1 Left: Superquadrics can be used to generate a variety of different shapes, such as spheres,
discs and rods. Image courtesy of Gordon Kindlmann [13] ( c©2004 IEEE). Right: Isosurface ren-
dering of the Veiled Chameleon computed tomography from the UTCT data archive [2]. The shini-
ness of the surface encodes the gradient magnitude

2 Visual Parameters

We have already mentioned color as the most prominent visual attribute. Appro-
priate strategies for the generation of color maps for different purposes have been
investigated by various researchers [4, 30, 42]. Color, however, is not the only visual
attribute that is important.

A student who tries to visualize his first vector field will most likely start with a
program which draws tiny arrows on the screen. This is a typical example for what
is called a vector glyph. The length and direction of the arrow shows the magni-
tude and orientation of the vector field at a given point. We then draw differently
colored arrows and use the color to encode another variable from the data set, say,
local pressure. We can as well vary the thickness of the arrows to display additional
variables.

As we see, shape is another important visual property. For more sophisticated
vector and tensor glyphs, a variety of shapes can be generated using parametric func-
tions such as the super-quadrics (Figure 1, left) proposed by Kindlmann et al [13].

Almost all rendering techniques in computer graphics separate the shape of an
object from its appearance. The shape is specified by a geometric description, usu-
ally by a set of polygons. The appearance of an object is defined by textures, mater-
ial properties and shading algorithms. Figure 1 (right) shows an isosurface extracted
from the 3D computed tomography (CT) of the Veiled Chameleon [2]. The shape
is defined by carefully selecting an appropriate iso-value. The appearance of the
object is used to visualize data properties beyond the isosurface: The magnitude of
the gradient vector at every point on the isosurface is encoded as the shininess of
the Phong illumination term. Surface areas which have a high gradient due to the
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Fig. 2 Visualization of an engine block with different style transfer functions for illustrative ren-
dering. Images courtesy of Stefan Bruckner [5] ( c©2007 Eurographics Association)

bone being close to the skin will appear more shiny. Likewise, surface areas with
low gradient magnitude will reflect light more diffusely. This is an unusual example
of data attributes being mapped to material properties.

Isosurface display is considered an indirect volume rendering technique. For di-
rect volume rendering, a 3D scalar field is interpreted as a participating medium
which simultaneously emits and absorbs light. The scalar variable is mapped to an
emission and an absorption coefficient which is used to calculate light transport
in a participating medium. While the emission coefficient is usually specified as an
RGB color value representing the wavelength of the emitted light, the absorption co-
efficient is given as an achromatic opacity value. Bruckner and Gröller expand the
transfer function to transfer more complex visual style for illustrative visualization,
as illustrated in Figure 2

As we see, there are numerous visual properties, including shape, color, trans-
parency and material properties, which can be used to encode information from the
underlying abstract data field.We have the freedom and flexibility to choose what-
ever visual attribute we believe is appropriate to depict a certain property of the
underlying data set.

Nevertheless, in complex visualization systems, changing the mapping of one
parameter may have considerably large influence on the final image. There may be
other parameters which seem to have no effect on the visual result at all. Remark-
ably, the visual influence of a single parameter often strongly depends on the settings
chosen for other parameters. Imagine a simple glyph, such as the arrow mentioned
above, where the size and the color represent different data variables. If the glyph
vanishes due to its size approaching zero, the color variable cannot be observed
anymore. While in this simple example the relationship between the parameters is
easy to recognize, in complex systems the interdependency of visual parameters is
usually not that obvious and often hardly predictable. We will address this prob-
lem in Section 4.2. For now, let us start by examining how the mapping of visual
parameters is achieved.
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3 Transfer Functions

A function which maps abstract data values to visual parameters is called a transfer
function, regardless of whether it is specified explicitly as an analytic function or
discretized as a lookup table. One of the most prominent examples of a transfer
function in scientific visualization is the assignment of optical properties for direct
volume rendering. However, we point out that the general principles are the same
for any kind of mapping of abstract data to optical properties. In practice, useful
transfer functions are difficult to accomplish due to their high degrees of freedom.
This is especially true for multivariate and multidimensional data. Before we have a
look at techniques to improve usability, we will examine the mathematical aspects
of transfer function design.

Let D be the range of our data field and V be a set of visual attributes. A transfer
function T is defined as the mapping of a data sample d ∈ D to a visual attribute
v ∈ V :

T : D 7→ V (1)

In many scientific terminologies, this mapping step is called classification, because
it categorizes data samples into different classes, represented by distinct visual at-
tributes. While the above definition is fairly simple, things get more intricate if we
look at the discretization of continuous data fields.

sinc(x)

tent(x)

s(x)

s(x)

si

si

Fig. 3 Reconstruction filters for discrete 1D signals. The ideal sinc filter (top row) cannot be
used in practice due to its infinite extent. The tent filter (bottom row) approximates the signal by
piecewise linear segments, which linearly interpolate between adjacent sample positions.
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3.1 Mapping of Discrete Signals

To understand the sampling process, let us consider a 1D scalar field s(x) ∈ IR with
x ∈ IR. According to the Nyquist theorem, a continuous signal s can be fully recon-
structed from a set of discrete sampling points si,

si = s(xi) with xi = i ·∆x, i ∈ IN (2)

if the original signal s is band-limited with a limiting frequency F and the sampling
step size ∆x obeys

∆x <
1

2F
. (3)

In order to process continuous signals in our computer, we must discretize them ac-
cording to this sampling theorem. In theory, we can then reconstruct the continuous
signal s(x) without loss by convolving the samples with a sinc filter (see Figure 3,
top row):

s(x) = ∑
k

sk · sinc(
x− k∆x

∆x
) with sinc(x) =

sin(πx)
πx

(4)

Due to its infinite extent the sinc filter, however, is never used for reconstruction in
practice. We usually set the step size ∆x much smaller than required in Equation 3
and replace the sinc by a tent filter for linear interpolation (Figure 3, bottom row). It
is important to note, that interpolation within a data grid means reconstructing the
original continuous signal from its discrete samples. In most cases, however, this
reconstruction is performed lazily, which means that signal values are reconstructed
only on demand, e.g. values required to calculate the color of a pixel in the final
image.

Now, in order to generate visual attributes C, the transfer function T must be
applied to the scalar signal. For a given position x, we reconstruct the scalar signal
s(x) and apply the transfer function afterwards:

pre-classification post-classificationpre-classification post-classification

Fig. 4 Comparison of pre- and post-classification for the 2D heat distribution (left) and for a high-
resolution CT of the inner ear (right).
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C(x) = T (s(x))

= T

(
∑
k

sk · sinc(
x− k∆x

∆x
)

)
(5)

This process is called post-classification, because the classification step is per-
formed after signal reconstruction. The sinc filter may again be substituted by the
tent filter. In practice this means, that for each pixel position x of the image we want
to generate, we have to reconstruct the original signal s(x) and use this value as
input for the transfer function.

A common pitfall is that it may seem adequate to apply the transfer function
directly to the discrete samples si and reconstruct the continuous signal from the
classified samples T (si):

C̃(x) = ∑
k

T (sk) · sinc(
x− k∆x

∆x
) (6)

Obviously, this will result in a different visual attribute C̃ compared to Equation 5.
The application of the transfer function before signal reconstruction is called pre-
classification.

The question, whether pre- or post-classification is the correct way to apply a
transfer function is easily answered by looking at resulting images. Figure 4 com-
pares images obtained by pre- and postclassification. The left part of the figure
shows an unstructured 2D grid with data values mapped to a HSV color scale. With
pre-classification the image contains interpolation artifacts . The structure of the
underlying grid is clearly visible, which should not be the case if reconstruction is
done correctly. The right part shows a transparently rendered volume data set of the
inner ear. The pre-classification image shows strong visual artifacts which appear
rather disturbing to the observer.

How can these strong visual artifacts for pre-classification be explained? To find
the answer we must take into account the frequency spectrum of the transfer func-
tion itself. While the original signal s(x) might be band-limited with a Nyquist fre-
quency of F , this does not hold true for the modified signal T (s(x)). Applying a
transfer function changes the frequency spectrum of the signal. As a consequence,
the step size ∆x must be adapted to the new limit frequency. As can be seen in Equa-
tion 6, the modified signal is reconstructed with the original step size, and this finally
leads to the visual artifacts observed in the result images. The higher the frequen-
cies contained in the transfer function, the stronger these artifacts will become. With
post-classification the original signal is reconstructed at the pixel resolution before
transfer function assignment. It can be reconstructed even at sub-pixel accuracy if
required for anti-aliasing purposes.

As we see, a good piece of advice in general is to perform interpolation only in
the data domain, not in the target domain of visual properties. This statement will
become obvious, if we consider that both spaces may have different dimensions. For
scientific data, the data domain is a spacial domain, with well-known spatial rela-
tionships between samples. In contrast, linear interpolation of color values depends,
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Fig. 5 Left: Slice image of a CT angiography of the human brain. Right: 2D histogram of data
value and gradient magnitude for the same data set.

of course, on the color space. In other cases, such as the tensor glyphs shown in
Figure 1, interpolation is hard or even impossible to perform in the target domain.

3.2 Multidimensional Transfer Functions

For multivariate data sets, a variety of different variables are given for each grid
point. In weather simulation data sets, for example, those variables comprise veloc-
ities, temperature, pressure mixing ratios for cloud water, snow and ice and many
others. To account for such data, n-dimensional transfer functions may be used,
which take an input vector of data values s = (s0,s1, . . . sn)T to generate visual at-
tributes:

C(x) = T (s(x)). (7)

Kniss et al. [16] show that even for scalar data, multi-dimensional transfer func-
tions can be used if additional variables are computed from the scalar field, such
as the gradient magnitude or the magnitude of the second-order derivative. Other
variables, such as local curvature, can be used as well. The most frequently used 2D
transfer function domain is spanned by the data value and its gradient magnitude,
as shown in Figure 3.2. The sharp peeks at the bottom of the histogram are ho-
mogenous materials with low gradient magnitude. The transitions between different
materials are represented by the parabolic arcs. A respective bi-dimensional transfer
function is thus capable of differentiating structures based on homogeneity.

Bi-dimensional transfer functions (n = 1) can be realized as 2D lookup tables.
For transfer functions of higher dimensionality lookup tables will usually require
too much memory. They can, however, be implemented as analytic functions or de-
fined procedurally as a set of multi-dimensional primitives, such as Gaussians [17]
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or blobs [6]. While multi-dimensional transfer functions are more expensive both
in terms of computational load and memory requirements, the benefit of a more
accurate and flexible classification outweighs the drawbacks in most cases. For non-
expert users, however, even one-dimensional transfer functions often are difficult to
set up. In the following sections we are going to review strategies for automatic, or
at least semi-automatic generation of transfer functions.

4 Usability

The purpose of a visualization system is to support the user in finding answers to
very specific questions about the individual data set. A good visualization system
should be intuitively useable by the domain scientist. Ideally, it should be easy to
understand without detailed knowledge of the system internals, such as the render-
ing and mapping techniques. Transfer functions are integral parts at the core of each
visualization system. Without sophisticated tools and techniques, however, trans-
fer function design, is a tedious and time-consuming task. The reason for this is
twofold:

The general representation of a transfer function has a lot of degrees of freedom.
Managing the vast complexity of the transfer function, makes it difficult to handle
in practice. Many design techniques thus aim at reducing the complexity of the
transfer function by eliminating redundant low-level parameters. The first step in
most approaches is some type of dimensionality reduction technique.

The second and more important problem with transfer function design is the
lack of an appropriate mental model. According to the seminal work by Donald
Norman [24], the process of human computer interaction can be coarsely divided
into the user’s intension to do something, the resulting action and the control over
the execution of this action. The critical point for the user is to find an appropriate
action to achieve his original intension. As an example, a physician who utilizes a
volume rendering system to display his computed tomography data, would like to
render the soft tissue transparently in order to examine the underlying structures. In
most volume rendering systems, however, finding the appropriate action which leads
to the desired result is a trial-and-error process. According to Norman’s terminology
the lack of an appropriate mental model of the user interfaces leads to a gulf of
execution.

4.1 The Automation Problem

Many researchers have developed techniques to build an intelligent system, which
determines an appropriate transfer function automatically, or at least comes up with
an initial suggestion, which can be further edited and modified by the user. The use-
fulness of a transfer function, however, strongly depends on the underlying question
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the user wants to answer. Hence, the minority of automation techniques work fully
autonomously and very few techniques automatically consider domain knowledge
in the design process. Existing automatic and semi-automatic approaches can be
divided into image-driven and data-driven techniques.

4.1.1 Image-Driven Techniques

The purpose of a transfer function is to create meaningful images. It thus seems ob-
vious that we have to analyze images generated with different parameter settings in
order to derive an optimal set of parameters. Such image-driven techniques mainly
differ in the metric they use to evaluate the quality and significance of an image.
State-of-the-art methods can be divided into interactive evolution algorithms and
inverse design techniques.

Interactive evolution approaches are semi-automatic techniques which provide
guidance for the user while he is exploring the parameter space interactively. Suc-
cessful techniques are closely related to artificial intelligence systems. The most
straight-forward technique is thumbnail selection [19]. The system proposes a set of
rendered thumbnails images generated with a selection of different parameter set-
tings. The user selects one or more images that he finds most appropriate. Based
on the user’s selection, the system proposes a new set of thumbnails generated by
a genetic algorithm. In fact, many techniques originally developed as artificial evo-
lutionary art systems for design automation [18, 36, 38]) can be adopted to the
problem of transfer function design. One of the most general concepts for visual
parameters in computer graphics and animation is the Design Gallery [22] which
tries to build a distinctive set of visually distinguishable images.

Inverse Design techniques search for optimal parameter settings according to
an objective quality measure. He et al. [9] have developed a technique for semi-
automatic transfer function generation using stochastic search techniques. The
search algorithm is controlled by evaluating an objective metric such as entropy,

Fig. 6 Results of non-linear adaptation of predefined transfer function templates. Left: No adjust-
ment. Middle: Adjustment based on histogram matching. Right: Adjustment based on matching
the position functions.
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edge energy or histogram variance. Possible strategies for searching the huge para-
meter space most efficiently comprise genetic algorithms [11, 8], hill-climbing and
simulated annealing [15]. Inverse design strategies can as well be based on concepts
from artificial intelligence including sensor-actuator networks [25] and goal-based
rendering [12].

While image-based techniques work quite well in practice, a general draw-
back is their unavoidable dependency on image-related parameters such as view-
ing position and pixel resolution. As a possible solution to the problem of view-
dependence, image-driven techniques can be supplemented by approaches for au-
tomatic viewpoint selection. Many methods developed for image-based render-
ing [23, 10, 1, 32, 37] can be adopted for this purpose.

4.1.2 Data-Driven Techniques

Data-driven techniques analyze the volume data itself instead of the generated im-
ages. The process of transfer function design is thus decoupled from the influence of
the image-related parameters mentioned in the previous section. Early approaches,
such as the ones proposed by Fang et al. [7] and Sato et al. [34], derive optical
properties by applying 3D image processing operations directly to the data. Ba-
jaj et al. [3] propose a data-driven technique which generates a transfer function by
evaluating statistical information about surface area and gradient magnitude of all
the isosurfaces contained in the data.

The most prominent data-driven technique is a semi-automatic approach pre-
sented by Kindlmann and Durkin [14] in 1998. Their semi-automatic approach is
capable of determining material boundaries within a given data set by evaluating
statistical information about the first and second order directional derivatives. A ma-
terial boundary is assumed if a maximum of the first-order derivative coincides with
a zero-crossing of the second order derivative. The authors derive a position func-
tion p(s), which describes the average distance of a data sample with scalar value s
from an assumed boundary in the data set. Kindlmann and Durkin’s approach turns
out to be successful in determining material boundaries in unknown data sets.

Up to this point, all automatic or semi-automatic approaches to transfer function
design tried to build a transfer function from scratch for every new data set. What
was missing up until now are strategies for reusing existing transfer functions for
similar data sets. The position function approach was utilized by Rezk-Salama et
al. [28] to reliably adapt a pre-defined reference transfer function to individual data
by non-linear distortion of the parameter axis. As displayed in Figure 6, this work
demonstrates that matching the position function of different data sets leads to more
reliable results than matching the histograms only. Later, this adaptation approach
was expanded to 2D transfer functions by Vega et al. [40].

Most existing applications provide a graphical user interface for the assignment
of visual parameters. The histogram is one of the main means of orientation pro-
vided by the user interface for transfer function design. Among the very few ap-
proaches which incorporate domain knowledge into the classification process, is the
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work of Lundström et al. [20]. They introduce local histograms, which utilize a
priori knowledge about spatial relationships to automatically differentiate between
different tissue types. The classification is performed by a bi-dimensional transfer
function, where the certainty of a voxel belonging to a specified tissue type is used
as second parameter. The same group also introduced the α- histogram [21]. The
basic idea is to split the data domain into disjoint subsets, then calculate separate
histograms for these subsets. The values of the local histograms are raised to the
power of α > 1. The global histogram is finally calculated by summing the contri-
bution from the modified local histograms. The authors show that the applied local
exponentiation results in an amplification of homogenous regions of the data in the
histogram.

4.2 The Interface Problem

The most actively followed path in transfer function design in recent years is the
design of intelligent user interfaces. On the one hand, automatic approaches are of-
ten not flexible enough. They are difficult to adapt to a wide range of data sets. On
the other hand, they are often not specific enough to account for the precise task
the user wants to perform. In medical environments, fully automatic approaches are
often not widely accepted due to the considerable amount of uncertainty. If auto-
matic approaches fail to deliver satisfying results, non-expert users are often left
alone. In this section we review general concepts developed in recent years to create
goal-directed user interfaces.

Fig. 7 Dual domain interaction: The user can probe the scalar field with a virtual pen in 3D. The
respective data values are marked in the small window at the bottom which represents the transfer
function domain. Right: Clipping planes may be used to facilitate the probing. Image courtesy of
Joe M. Kniss [16]
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4.2.1 Geometric Primitives

In order to reduce the effort of editing single entries in a color table, many user inter-
faces compose the color mapping from multiple independent geometric primitives.
In practice, such component may comprise polylines, ramps and trapezoids [16],
paraboloids [41] or other primitive shapes. Compared to simple color tables, where
every entry can be edited separately, composition of primitives provide effective
solutions for reducing the complexity of transfer functions. Most visualization algo-
rithms, however, employ a given color table directly. Hence, primitive shapes must
be converted to a tabular representation before usage. Few publications give details
about the compositing of overlapping primitives. For opacity, the maximum is usu-
ally chosen and the color values are mixed according to their opacity ratio [29].

In practice, single functions are better suited for 1D classification of continu-
ous simulation data from natural science and engineering. Such data often do not
contain sharp structures which need to be separated from each other. For tomo-
graphic scans, a composition based on geometric primitives is advantageous, al-
lowing the individual treatment of different spatial structure. Anatomical structures
are often represented by geometric primitives in the transfer function domain. For
multi-dimensional transfer function domains, single functions are rarely used, re-
gardless of the scientific area, due to difficulties in providing appropriate user in-
terfaces for editing. Roettger et al.[33] have developed a concept called spatialized
transfer functions which generates primitives automatically by segmenting the 2D
transfer function domain into disjoint regions. The user may then specify optical
properties selectively for those regions.

Fig. 8 Neural network approach to multi-dimensional transfer function design. The user marks
regions of interest by roughly setting the boundaries. The system automatically derives a multi-
dimensional classification using a neural network. Image courtesy of Fan-Yin Tzeng [39] ( c©2003
IEEE)
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4.2.2 Domains of Interaction

Kniss et al. have introduced the concept of dual domain interaction [16] for volume
visualization. During their investigation on multi-dimensional transfer functions,
the authors notice that finding appropriate settings is time-consuming if the user is
not provided with some guidance. To this end they developed a dual user interface,
which allows the user to probe the scalar field with a virtual pen in 3D (see Figure 7).
The user can then decide to place a geometric primitive in the transfer function
window to mark the data in 3D. With this approach it is easy for the user to point
at interesting structures in the image domain, and assign visual attributes in the
parameter domain. The effect of changing visual parameters are immediately visible
in the 3D image.

The concept of interacting in different domains is not completely new. In the
field of information visualization such an interaction is called brushing. Brushing
represents an intuitive way for the user to visually select subsets of the data sam-
ples without the necessity to specify numerical ranges. Likewise, Pradhan et al.[26]
demonstrate a visualization system which utilizes concepts borrowed from informa-
tion visualization. They use parallel coordinates (see image 9, left) to select regions
in a multi-dimensional transfer function domain called the signature space including
intensity, gradient magnitude and higher-order statistical moments.

Inspired by the work of Kindlmann and Durkin [14], Sereda et al.[35] introduce
an new domain for interaction called the LH-histogram, or low-high-histogram (Fig-
ure 9, left). The LH-histogram can be viewed as a 2D map of the different tissue
spatial structues contained in the volume data set. Each spatial data sample with a
gradient magnitude larger than a given threshold is considered a boundary sample.
For each boundary sample a short pathline is traced along the gradient field in order
to determine the low and the high intensity values used as 2D index into the map.
While such an approach is highly efficient for expert user, it is not really intuitive to
use for non-experts.

Tzeng et al. [39] suggest an intelligent visualization system with interaction in
the spacial domain only, while hiding the transfer function domain completely. In
their system the user marks regions of interest by roughly painting the boundaries
on a few slice images. While he is painting, the marked regions are used to train an
artificial neural network for multi-dimensional classification. Figure 8 shows an ex-
ample slice image with the painted markings, the classified slice image and the final
rendered 3D image from an MRI data set. Del Rio et al. have adapt this approach to
specify transfer functions in an augmented reality environment for medical applica-
tions [31].

In practice, the applicability of such intelligent systems, which calculate the map-
ping during interaction strongly depends on the visual feedback provided to the user,
the speed at which the effect of a user action is displayed in the image. This again
depends on the computational complexity of specific visualization system, the size
of the data set and the available memory bandwidth.
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Fig. 9 Left: Example of an LH-histogram for the tooth data set. Image courtesy of Sereda et
al.[35]. ( c©2006 IEEE) Right: Parallel coordinates are used to select voxels with a given signature
in a multi-dimensional parameter space. Image courtesy of Pradhan et al [26]

4.2.3 Semantic Models

If we consider domain knowledge from the field of human computer interaction, we
will quickly notice that many graphical user interfaces are hardly goal-directed. For
the non-expert user it is hard to figure out which modification to the complex para-
meters are necessary to cause the action he needs to perform. While the approaches
described in the previous section still provide a data-centered view onto the visual-
ization problem, there are novel approaches which try to improve the mental model
of the application by providing clear semantics for the possible set of actions.

Rautek et al.[27] present a semantic framework for volume illustration and il-
lustrative visualization in general. The mapping between abstract data values and
visual properties is specified by rules based on fuzzy logic operations. The authors
concept of semantic layers replaces the traditional transfer function setup and allows
the user to specify the mapping from attributes to visual styles in natural language.
Their system supports semantics like, “if density is high and curvature is close to
zero, then color coding is red”. While fuzzy logic and the use of natural language
represents a significant improvement, this approach does not immediately resolve
the gulf of execution. If the non-expert user does not know, how to describe the
structures of interest in terms of density or curvature values, the semantics will not
help.

To this end Rezk-Salama et al. [29] suggest a general concept for tailoring the
user interface to the visualization task. They target very specific visualization sce-
narios, such as routine examinations in medical practice. In their approach a visual-
ization expert works together with a domain scientist to create a semantic model for
the visualization task. With such a model, the user may directly select structures by
name, such as brain tissue or blood vessels and directly adjust their visual parame-
ters, such as color, contrast, or visibility. In order to create such a semantic model,
a visualization task is performed several times on a collection of data sets which
are considered representative for a specific examination scenario. Throughout this
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training phase the system collects the parameter vectors and analyzes them using
principal component analysis.

Figure 10 shows a classified CT angiography data set with the separate anatomi-
cal structures brain, soft tissue and blood vessels. For this system, the authors have
conducted a small user study. Physicians were presented with a semantic user inter-
face without labels for the interaction elements (sliders and buttons). In most cases
the physicians were capable of determining the semantics of actions triggered by
the elements.

Fig. 10 Examples of a semantic model for CT angiography, with the anatomical structures, brain,
soft tissue bone and vasculature.

5 Conclusion

Transfer functions are at the heart of every visualization system. Transfer function
design techniques are still an area of active research and will probably be for a
very long time. The direction of research, however, has slightly changed in recent
years. Transfer function design clearly shifts towards more user-centered applica-
tions, such as intelligent exploratory interfaces. Systems which hide most of the
details of the underlying rendering algorithms are more intuitive to use by non-
experts. Up until now only very few publications exist about including semantics
into visualization systems. Especially for clinical systems, transfer function design
must become faster and easier to achieve to become widely accepted. Semantic ap-
proaches have a high potential to achieve these goals.

We have only just begun to incorporate knowledge from other fields into our
visualization systems to make them more flexible, more intuitive and more usable.
In the near future we may expect important impulses from related fields such as
computer animation and human computer interaction as well as influences from
areas such as cognitive sciences.

Fully automatic transfer function design techniques are not widely accepted due
to uncertainty in the data sets, which still needs to be resolved by the user. Scientific
data sets contain much more information than can be displayed in a static image.
The user must be provided with means of exploration, and this must include the
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transfer function as well. Fully automatic techniques are only applicable if structures
contained in the underlying data are well-understood, which might be the case for
simulation data, but usually not for measured data. For medical scans, and especially
for pathologic cases, fully automatic techniques often fail. Nevertheless, they may
be useful for generating good starting points for exploratory analysis.

Users of visualization systems increasingly ask for systems that are more usable
and more efficient in practice. Companies which produce commercial systems have
noticed that usability aspects are growing more important as a vital factor to se-
cure market shares. In consequence, implementing general concepts to improve the
usability and the acceptance of visualization systems is a research area of steadily
growing importance.

At research facilities, multidimensional transfer functions have already become
standard today. In commercial systems they are not yet widely used. The main rea-
son for this might be that many commercial products are based on special-purpose
hardware, which up until now only supports 1D lookup tables. The benefit of at
least bi-dimensional classification, however, is incontrovertible, so we expect this
will change in the near future.

6 Summary

There is a huge variety of different visual attributes that can be used to represent
abstract data, including shape, color, transparency, and more complex optical prop-
erties such as emission and absorption coefficients, or specular reflectivity. Care
must be taken to correctly reconstruct the original signal from discrete samples. We
have seen that the sequence of reconstruction and classification operations makes a
significant difference to the image quality and we have explained these differences
with respect to sampling theory.

Transfer functions can be stored as lookup tables or applied procedurally as an
explicit function. Multi-dimensional transfer functions are powerful and flexible,
yet quite expensive with respect to computational cost and memory consumption.
This chapter has given an overview of state-of-the-art techniques for automatic and
semi-automatic techniques for parameter assignment. Image-driven techniques are
based on interactive evolution or inverse design approaches. Data-driven algorithms
analyze the data to generate meaningful parameter assignments. State-of-the art user
interfaces for transfer function design are based on important strategies such as dual
domain interaction and semantic models.
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