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ABSTRACT

In this thesis, we work on correcting the multipath effect that occurs
in time-of-flight camera measurements.

A time-of-flight depth camera illuminates the scene with a modu-
lated light source and uses the phase shift of the incident light to com-
pute the distance for each pixel. However, the assumption, that the
light is only reflected once in the scene is not met in reality; many ob-
jects will also reflect light that comes from indirect paths. This causes
wave interference and can lead to significant errors in the depth esti-
mation.

The thesis focuses on the multipath correction method proposed by
Dorrington et al. It models the multipath effect as two interfering light
components and uses multiple modulation frequencies to obtain ad-
ditional information which are used to demodulate the components
and correct the multipath error.

We present a successful implementation and extension of this me-
thod. We motivate many implementation choices and demonstrate
how the results of Dorrington et al. can be reproduced. However, our
thorough analysis of the method also shows some limitations of the
approach, some of which are of a principal nature.

ZUSAMMENFASSUNG

Diese Masterarbeit beschiftigt sich mit der Korrektur des Multipath-
Effekts der bei Time-of-Flight-Kameramessungen auftritt.

Eine Time-of-Flight-Tiefenbildkamera beleuchtet die Szene mit ei-
ner modulierten Lichtquelle und verwendet the Phasenunterschied
des zuriickgestrahlten Lichts um die Entfernung fiir jeden Pixel zu
berechnen. Die Annahme, dass das Licht nur einmal reflektiert wird
ist in der Realitédt jedoch nicht erfiillt, da viele Objekte auch Licht tiber
einen indirekten Weg reflektieren. Dies verursacht Welleninterferenz
und kann zu signifikanten Fehlern in der Tiefenbestimmung fiihren.

Diese Arbeit ist fokussiert auf die Multipath-Korrekturmethode
die von Dorrington et al. veroffentlicht wurde. Sie modelliert den
Multipath-Effekt als zwei interferierende Lichtkomponenten und be-
nutzt mehrere Modulationsfrequenzen um zusitzliche Informationen
zu erhalten mit deren Hilfe die Komponenten demoduliert und der
Multipath-Fehler korrigiert werden kann.

Wir legen eine erfolgreiche Implementeirung und Erweiterung die-
ser Methode vor. Dabei motivieren wir viele Implementationsentschei-
dungen und demonstrieren wie die Ergebnisse von Dorrington et



al. reproduziert werden konnen. Allerdings zeigt unsere eingehen-
de Analyse auch einige Einschrankungen des Verfahrens, von denen
einige prinzipbedingt sind.

Vi
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FOREWORD

OVERVIEW

Time-of-flight depth cameras acquire full field depth maps that are
useful for many different tasks like robotics or gesture recognition.
They use a modulated light source to illuminate the scene and mea-
sure the phase shift of the light induced by traveling the distance from
the camera to the object and back again. This assumes, that only a
single light wave is measured which is not the case in reality.

If an object reflects not only the light coming directly from the cam-
era but also light reflected by other objects in the scene, this leads
to wave interference and the measured phase does not correspond to
the distance of the object anymore. This is known as multipath effect
and can significantly reduce the quality of resulting depth maps. The
topic of this thesis is the implementation and extension of the multi-
path correction method proposed by Dorrington et al. [DGC " 11].

Chapter 2 describes the principals of time-of-flight cameras. Dif-
ferent depth imaging techniques are presented and photonic-mixer-
device time-of-flight cameras are explained in detail. This includes
the formulas needed to reconstruct the wave of the incident light
and to extract its phase and amplitude. Furthermore, common error
sources of time-of-flight cameras are explained.

Chapter 3 explains the calibration process that we performed on
our camera and also contains an analysis of its noise behavior.

Chapter 4 describes the multipath effect in detail. Its different
sources are explained and a state-of-the-art section covers previous
correction attempts. Especially the method proposed by Dorrington
et al. is covered in detail as it is the foundation of this thesis.

Chapter 5 describes, how the multipath correction can be applied.
It contains evaluations of different approaches to the present opti-
mization problem including their optimal parameters.

Chapter 6 improves this approach by introducing a new minimiza-
tion function which halves the dimensionality of the search space.
The new method is compared to the old one and it is analyzed, how
noise affects the demodulation.

Chapter 7 applies the new method to camera data. The results of
Dorrington et al. are reproduced and an analysis of other scenarios
shows some limitations of the method.

ix
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TIME-OF-FLIGHT PRINCIPLES

A time-of-flight camera is a special kind of depth camera. Contrary to
common cameras which measure a color value per pixel, depth cam-
eras measure a distance for each pixel which results in a so called
depth image or depth map. Where color cameras are capable of cap-
turing material and lighting information of a scene, depth cameras
capture geometrical information. The depth image can easily be con-
verted into a point cloud which resembles the scene, but it will only
contain points that are in the field of view of the camera and not oc-
cluded by other objects. Figure 1 shows an example of a depth image
and its point cloud.

It should be noted, that the terms depth and distance will most of
the time be used synonymously throughout this thesis. Depth comes
from the idea, that a third dimension is added to the width and height
of an image and distance is what this third dimension represents. So
the choice of terms for a specific explanation depends only on the
current point of view.

Depth images are useful for many different applications, which
include robotics, automotive, gesture recognition and home security
[Sch11b, p. 1]. They can be used to find unoccupied areas or to de-
termine the position and orientation of objects in a scene (possibly in
combination with a color image). This makes depth imaging a useful
and widely used technique. One of the most widely known examples
is the Microsorr KINECT camera, which utilizes a depth camera for
gesture control of video games.

Figure 1: Example of a depth image. Left: The depth map, where darker
means nearer. Middle: A color picture taken with a normal camera
from the same position. Right: A Point cloud computed from the
depth map, shown from a different perspective.

depth cameras

depth vs. distance

areas of application



2 TIME-OF-FLIGHT PRINCIPLES

2.1 DEPTH IMAGING OVERVIEW

There are various techniques for depth measurement with different
advantages and disadvantages. Beside contact based approaches (which
are despite of their good accuracy not suitable for many applications
[Lin1o, p. 5]), the majority of these techniques can be categorized into
triangulation and time-of-flight [Lin1o, p. 5-7].

2.1.1  Triangulation

stereoscopy A natural approach (as we humans use it for our three dimensional
sight) is stereoscopy, where two cameras at different positions take a
picture of the scene. Due to the perspective projection, the observed
position of near objects differs more between the pictures than the
position of farther objects. To compute the depth, features of the first
picture must be brought into correspondence with features of the sec-
ond picture and the offset between them must me computed. With
this offset, the distance of the features to the camera can be deter-
mined. This process is very complex and demands fast computers or
dedicated hardware [Sch11b, p. 5].
structured light The structured light approach uses a light pattern that is projected
onto the scene. A camera at a different position then measures the de-
formation of the pattern and computes depth values from it [Sch11a,
p- 10]. This approach is very similar to the stereoscopy because the
light pattern can be thought of as features that have to be brought
into correspondence There is no need for a second camera here as
the light pattern itself acts as an image taken from the viewpoint of
the projector from which the light pattern will always be undisturbed.
Additionally the registration of features is simplified by the pattern
because its structure is known [Sch11a, p. 10].

2.1.2  Time-of-Flight

The time-of-flight approach uses the fact, that light has a finite speed.
The scene is illuminated by a light source and the sensor measures
the time, that it took the light to fly to an object in the scene and back
to the camera again. In a more general case, other signals like electro-
magnetic or acoustical waves can also be used [Lin1io, p. 7]. There
are two main categories for time-of-flight sensing, pulse-based systems
and continuous-wave systems.

pulse based Pulse-based systems emit discrete pulses of light and the sensor mea-
sures the time difference between sending and receiving the light
pulse [Sch11b, p. 14]. This is done by using an extremely fast shutter
in front of the image sensor, to integrate the intensity of the incident
light over short windows [Sch11b, p. 15]. The time difference is then



2.2 PHOTONIC-MIXER-DEVICE CAMERAS

Distance
LED Array

Sigout )

Reference Signal /
)—
SZg'r'cf

Phase Shift
) Image Sensor

Slgcom'

Object

Output

Figure 2: Basic principle of a time-of-flight camera. The phase shift of the
incoming signal due to the traveled distance is measured by corre-
lating it with a reference signal. Note that the LED array and the
image sensor are roughly at the same position in reality.

(The light bulb, the camera and the tree are public domain images
from http:/ /openclipart.org/.)

calculated from the mismatch between the integration window and
the incident light pulse.

Continuous-wave systems use a modulated light source and measure
the phase difference between the outgoing and incoming light wave
[Sch11b, p. 15]. They are explained in more detail in the next section,
by means of the Photonic-Mixer-Devices.

2.2 PHOTONIC-MIXER-DEVICE CAMERAS

A Photonic-Mixer-Device camera (or PMD camera) is a special contin-
uous-wave time-of-flight camera and consists of two main parts: An
active illumination unit and an image sensor.

The active illumination unit emits near infrared light (with a wave-
length of 78onm - 1400nm) modulated with a much longer wave-
length (in the magnitude of 10 meters). In practice, only the mod-
ulation frequency is important, the wavelength of the carrier signal
is mostly arbitrary, as long as it is significantly shorter than the mod-
ulation wavelength [Schi1a, p. 16]. Therefore the term wavelength
or frequency will in further explanations always relate to the mod-
ulation wavelength or modulation frequency, and not to the carrier
wavelength or carrier frequency.

Figure 2 shows the basic principle of the distance measurement.
The reference signal Sig,, ; (with the frequency fmoq) is used to mod-
ulate the LED array, which illuminates the scene. The light Sig_ ,
(which is equal to Sig,,() travels to the object and back to the image
sensor. This means that it has to travel twice the distance d (it is as-
sumed, that the light source and the image sensor are at the same lo-

continuous wave

light source

explanation of the
different signals
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TIME-OF-FLIGHT PRINCIPLES

cation) which leads to a phase shift ¢. The amplitude is also changed,
due to the distance attenuation and imperfect reflection on the object.
This means, that the incoming Sig; is a phase shifted and attenuated
version of Sig_ ..

The image sensor cannot measure the phase shift of Sig; directly,
it is limited to integration over time. However, the sensitivity of the
special image sensor of a PMD camera can be changed at a very high
frequency [Linio, p. 10]. By using Sig,; as the sensitivity, the sen-
sor effectively measures integrals of the correlation function Sig_ .. =
Sig;,, - Sig,,s, which can be used to compute the phase as shown in
section 2.3.

From the phase shift ¢, the speed of light ¢ and the angular fre-
quency w = 2 - 7T - fioq, the distance d can be computed:

i=2° (1)

:2-a)

It should be noted, that d is the distance between the camera and
the object, and not the distance, that the light traveled, which is twice
as high (this is were the 1/2 comes from) as the light has to go from
the camera to the object and back again.

As every pixel corresponds to a different part of the scene, the
phase shift and thus the distance can also be different for each pixel.
Therefore, it is necessary to do the whole process described above for
each pixel in parallel, which makes the PMD sensor more complex
compared to a normal image sensor.

On the hardware side, each PMD pixel consists of two tabs (also
called quantum wells), which measure the incoming light. Between
these two tabs an electrical switch in form of an electrical field con-
trols which tab collects the electrons generated by the incident pho-
tons. If the modulation frequency is used to control this switch, the
number of electrons collected in one tab is approximately the prod-
uct of the incoming light and the reference signal, that is a sample
of the correlation function As all other electrons will be collected by
the other tab, which equals a sample with a phase shift of 180°. In
this way, two samples of the correlation function are measured at the
same time [Sch11b, p. 18].

A major advantage of PMD sensors is, that the cross-correlation is
directly done in one semiconductor based circuit, which removes the
major sources of errors of conventional systems doing the detection of
the optical signal and its cross-correlaction separately [Scho8, p. 13].

Compared to traditional image sensors, PMD sensors have rather
big pixels for two reasons: Firstly, bigger pixels can detect more light
thus increasing the depth precision and secondly, the pixel electron-
ics are far more complex due to the cross-correlation functionality
[Sch11b, p. 21]. This results in a much lower resolution compared to
conventional cameras. For example, the PMD Digicam used in this
thesis has a resolution of 288 x 352 which is already unusually high.
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2.3 WAVE RECONSTRUCTION

This section describes, how the phase shift and amplitude of the inci-
dent light can be computed from the sample values of the correlation
function.

2.3.1  Correlation Function Sampling

Before deriving the computation of the phase shift and amplitude, it
is necessary to formalize the involved signals, which all depend on
the reference signal Sig,, (¢):

Sigy, (t) = Sig,f () (2)
Sig;, (t) = a-Sig,,, (t — ¢) (3)
Sig oy (1) = Sigy,f (t+1T) (4)
Sig,, (t) = Sig,,, (t) - Sig;, (f) (5)

This formulas model all the signals at a specific time t. It is important
to note, that Sig  , (t) is the light, that is leaving the camera at a spe-
cific time ¢ (thus it equals the reference signal Sig, ), and is different
from the incoming light Sig;, (t) at the same time t. Sig;, (f) is based
on an attenuated Sig,,, from the past, with a time difference of Z,
which results in formula 3. Sig,,,, is built from Sig,.s by applying a
phase shift of T (formula 4), and the measured signal Sig,, is simply
the product of Sig .. and Sig;, (formula 5).

From now on, we assume the simplification that Sig,, , is sinusoidal
(Sigm,f = sin (w - t)). Hence, all other signals are sinusoidal as well.
In reality, this assumption is not met. We discuss this issue in section
2.4. It is also possible to work with a rectangular signal but this is not
covered in this thesis. Instead, the resulting formulas can be found in
[Scho8, p. 19].

Figure 3 shows a plot of the resulting signals. It should be noted,
that Sig,  has a doubled frequency compared to the other signals and

sinusoidal vs.
rectangular
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Figure 4: Integral over Sig, . Note that in reality, the integration bounds
span several million periods and not just a few, as in this picture.

an additional offset. This can be explained by the following calcula-
tion:

Sig,, (1) = Sigeoy, (1) - Sig (1)
=sin(t+ 1) - sin (t — ¢)

1
:E(cos(t—f—’c—t—q))—Cos(t+T+t+(p))

1 1
:—Ecos(2t+r+(p)+§cos(r—go)

In the third line, the identity
sinx - siny = 1/2(cos (x —y) — cos (x +y))

is used.

As the second summand does not depend on ¢, we have a cosine
function with a doubled frequency (2 - t) and a constant offset (the
second summand).

2.3.1.1 Basic Sampling

We proceed to reconstruct the resulting wave by sampling it at dif-
ferent points. However, the sensor can only integrate over a nonzero
exposure time, which means that no specific value of Sig, can be
measured directly. This exposure time is also several orders of mag-
nitudes longer than a single period of the signal (typically the factor
is around 10°) which is shown in figure 4. In general, the integration
bounds are not bound to the period of the signal in any way, so the
measurement just starts at some point and ends at another point a bit
later.
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Figure 5: The correlation function of Sig,, ¢ and Sig;,, sampled at four points.
From the reconstruction of this wave, the phase difference to the
original wave can be computed.

When we normalize over the integration time, we get the following
formula:

1
t1 —to

[51 ty
/Sigm(t)dt: 1/—1cos (2t+r+g0)+1cos (T —@)dt
; t1—t0t 2 2

5]

1 1 1

:zcos(T—go)—I—tl_to/—zcos(Z-t—i-T—FgD)dt
to

= %cos(r—q)) for t; — oo

As the integral over a sinus function is periodic, the error converges
through the normalization to 0. And as the integration time is so
much bigger than the period duration, this means that the actual start
and end time are irrelevant, as long as the result is normalized. If we
do multiple measurements with different 7, we can sample the func-
tion %cos (T — ¢), which is the correlation function between Sigref
and Sig;, . This way we can measure sample points which we will
call D; by integrating over a longer period. In practice, we use four
sample points with a distance of 7/2, hence for i € {0,...,3}:

T = i- g (6)
D; = Zcos (1, — ¢) (7)

Figure 5 shows an example of such sample points. Once the corre-
lation function is known, the phase shift ¢ and the amplitude « can
computed from it as described in 2.3.2 and 2.3.3.

2.3.1.2 Considering the Amplitudes

The calculation in the previous section assumed an amplitude of one
for both sine functions, which means, that they are completely ig-
nored. If we add them, we get

Sig,, = aysin(t+7) - azsin (t — ¢)

sampling the
correlation function
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Which results just in a minor change of the integral:

t fy
1 . 1 1
P— /Slgm(t)dt o / (—20‘1042 cos (2t + T+ ¢)

to to

1
—I—Eoclaz cos (T — go)) dt

1
= 5142 €08 (T—¢) fort; — o

This means, that all the sample points D; will also be scaled by the
two amplitudes.

2.3.1.3 Background Illumination

In equation 3 we assumed that only the emitted light from the active
illumination unit will be measured by the image sensor. This is only
correct for an otherwise perfectly dark scene. In a normal scene, we
will always have background illumination of some kind.

We can assume, that this background illumination is constant over
the time of one acquisition, which means that all electrons generated
from background light will be evenly distributed among both tabs.
This happens because the integral over Sig_ .. equals 0, so no tab gets
more electrons than the other, as long as their frequency is not the
same as the modulation frequency. In this case, peaks in the incoming
light match up with intensity peaks for one tab, which means that the
other tab will receive less electrons or even none at all.

If we call the background illumination b in our formal notation,
this means, that Sig;, (t) = Sig,,, (t — ¢) + b, but Sig, # sin(t+71) -
(sin (t — @) + b), because b will not be multiplied by Sig_ .. We rather
get Sig, (t) = sin (t 4+ T) - sin (f — @) + b and thus by the same integral
calculation 1aja, cos (T — @) + b.

To get correct sample points anyway we can compute them with

D; = A;—B; 8)

where A; and B; are the values from the two tabs. This will eliminate
the background illumination, as shown in the following calculation.
Let A = A; + b be the sample value without background illumina-
tion. Since B; is the same as A; with an additional phase shift of 180°
and our signal is sinusoidal, we get that A} = —B!. Now we obtain

D; = A; — B,
= (Aj+b) — (Bj +b)
= (Aj+b) + (A; - D)
=2-A§

which means that we get the desired value scaled by a constant factor
(which can be ignored).
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This means, that we can remove all background illumination with
this computation. However, there remains a problem because too
high background illumination can lead to saturation of the tabs, in
which case the removal no longer works. This can especially hap-
pen in outdoor scenes with bright sunlight, but to overcome this,
some PMD cameras have special suppression of background illumi-
nation circuits, that adjust the charge level in the tabs and can instan-
taneously reduce background illumination [Lin1o, p. 10].

2.3.2 Phase Reconstruction

To compute the correlation function from the sample points, the arctanz
function is used. It takes the x and y component of a vector and re-
turns the angle (between —7 and 77) that this vector has in the polar
coordinate system. As the correlation function is a cosine, the sam-
ple point Dy is directly the x coordinate of the vector. Likewise the
sample point D; is directly the y component, because the phase shift
between them is 7/2, which is the same as the phase shift between
sine and cosine. This leads to ¢ = arctan2 (D;,Dyp). The sample
points are also scaled by the amplitudes, but as the length of the vec-
tor that we put in the arctan2 function does not matter, the whole
calculation stays the same.

To increase accuracy we use not only Dy and Dj, but use the fact
that D, should be the same as —Dy (and likewise for D;, D) as they
are phase shifted by 180°. So Dy — D, is in the ideal case the same
as 2 - Dy but if the values are slightly different, their difference will
interpolate between the values, which makes it more robust to noise.
So we get the final formula:

¢ = arctan2 (D7 — D3, Dy — D») )

2.3.3 Amplitude Reconstruction

To reconstruct the amplitude from the sample points D;, the following
formula is used:

K= \/(DQ — Dz)z + (Dl — D3)2 (10)

Figure 6 explains, why this formula is correct. As described in 2.3.2,
(Do — Dy) and (D; — D3) are just two sample values shifted by 90°.
As the wave is sinusoidal, they can also be thought of as points on
a circle, as in the figure. To compute the length of the vectors (and
therefore the radius of the circle which equals the amplitude of the
wave), we wood normally need an x and y coordinate, but the sam-
ple value gives us just the y (or x, depending on the point of view).
However, as the two vectors are rotated by 90°, the x coordinate of
the first one equals the y coordinate of the second one. So we can just
use Pythagoras to get the amplitude, as is done in formula 10.

increased accuracy
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Figure 6: Derivation of the amplitude reconstruction formula. The radius of
the circle can be computed with Pythagoras by using the two x or
y values.

2.4 ERROR SOURCES

There is a variety of error sources affecting the measurement of PMD
cameras. Some are based on model assumptions that are not met
and can be overcome by calibration while others like noise are more
random.

2.4.1 Incorrect Phase Shifts

The time-of-flight principle relies on the idea, that the distance to
an object can be determined by the phase shift of a wave traveling
from the camera to the object and back again. However, there are
a number of situations, where this phase shift does not correspond
to the distance, which leads to wrong results, even if the phase shift
could be measured perfectly.

One of these problem is, that the the light source is neither at the
exact same position as the camera, nor is it punctiform. Figure 7 for
instance shows a PMD camera with two big LED-Arrays which have
an offset of multiple centimeters from the image sensor. Furthermore,
as all LEDs have a slightly different distance to any given point in the
scene, it will not only reflect one wave with a wrong phase shift but
actually a mixture of different waves which all have wrong phase
shifts.

Another problem is, that the light is not necessarily reflected only
once in the scene. If a point not only reflects light directly from the
light source but also from other objects in the scene (which are illu-
minated by the same source), the waves will mix and result in a new
wave with wrong phase shift [DGC"11]. This is called the multipath
effect and its correction is the main topic of this thesis.

A similar problem arises, when multiple time-of-flight cameras are
used to measure a scene at the same time. A possible solution is
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to use different parameters such as different modulation frequencies
[Sch11b, p. 25].

Another problem occurs at the edges of objects. Because the pixels
have a non-zero spatial extent it can happen that light from the object
and its background falls on the same pixel. This can be seen in figure
42. Although these rays do not interfere in the scene itself, they are
still measured together and result in the same problems as inter scene
interference.

The lens system of the camera can also be a source of errors. It
will not only cause a geometric distortion of the picture but also alter
the optical path lengths of light rays through the different refractive
indexes of the lens material [Sch11b, p. 23, 25].

2.4.2  Wiggling Error

The above wave reconstruction assumes, that all signals are sinu-
soidal. In reality, this assumption is often not met, as on the one
hand sometimes rectangular signals are used and on the other hand
the precision of the signal generator is limited.

The result is a periodic depth error, which can also be seen in fig-
ure 12 [Schi1b, p. 22]. This error can be quite big if, for instance,
a sinusoidal signal is assumed (and the corresponding formulas are
used) when it is rectangular in reality, the error can be up to 29% of
the measured phase [Scho8, p. 23].

2.4.3 Intensity-Related Errors

For yet unknown reasons, the measured distance of a point depends
also on its reflectivity [Linio, p. 16, 44]. Black surfaces result in a
wrong depth measurement which means that for example the black
circles in the calibration pattern shown in figure 9 become clearly
visible in the depth map, although they do not stick out from the
wall in anyway.

The effect causes dark surfaces to be shifted towards the camera
and decreases with larger distances, which indicates that it is related
to the absolute amount of incoming light [Lin1o, p. 46]. As it is ad-
ditionally overlayed by the wiggling error, the separate correction is
difficult. Nonetheless, Lindner proposes two approaches to address
it.

2.4.4 Saturation

Time-of-flight cameras need to handle high dynamic ranges because
on the one hand the light intensity decreases quadratically with the
distance to the object (which means that the intensity is very high
for near objects but decreases rapidly when the distance is increased)
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and on the other hand interfering light from other sources is also
detected [Sch11b, p. 22]. Additionally, the reflectivity of objects in the
scene can be very different, which has a great impact on the measured
results [Lin1o, p. 11].

While underexposed pixels have a bad signal-to-noise ratio, overex-
posed pixels might not be able to provide any useful information at
all. Both can however at least be detected, especially if the raw values
and not only the derived phase and amplitude are examined [Lin1o,
p- 11]. If only some pixels are affected, they can also be corrected
with techniques like inpainting or simple interpolation; additionally
they can also be ignored for further processing [Scho8, p. 28].

2.4.5 Noise

A basic problem of all image sensors is, that the charge generation
by incident photons always introduces Poisson noise, which makes
statistical errors in the depth measurement inevitable [Sch11b, p. 20].
This cannot be suppressed and increases with the amount of incom-
ing photons. For large enough exposures times, it can be modeled by
a normal distribution [Lin1o, p. 12].

Other sources of noise are thermal noise, reset noise and dark cur-
rent shot noise which are all independent from the incoming light
but increase with the temperature, so cooling is an effective way to
reduce this kind of noise [Lin1o, p. 12].

Another kind of noise is the constant pixel error pattern. It does not
change over time but is different for each pixel on the sensor. Causes
are minimal inaccuracies in the production process, such as variations
in oxide thickness, size of gate area or doping concentrations [Lin1o,
p- 12]. Although the two common problems of conventional CCD
or CMOS sensors, the dark-response nonuniformity and photo-response
nonuniformity are canceled out in the phase and amplitude calcula-
tion, PMD sensors still suffer from these problems, caused by slightly
varying capacities and other hardware-design and -processing related
reasons [Scho8, p. 25]. But by measuring all pixels, these errors can
be detected and due to their constant nature also compensated.

2.4.6  Motion Artifacts

If objects in the scene or the camera itself are moved during the cap-
turing of a phase image, motion artifacts occur. They result either in a
mixture of foreground and background if the object is moved perpen-
dicular to the view direction of the camera, or in an additional phase
shift, if the object is moved along the view direction. Additionally, if
the reflectivity of the object texture changes this can also change the
measured distance, although the true distance might stay constant
[Lin1o, p. 16].



2.4 ERROR SOURCES

Many scenes are static but especially if the camera should be used
to recognize gestures, the prevention and correction of motion arti-
facts becomes an important problem.

2.4.7 Unambiguity Range

As the distance calculation is based on the phase shift, only distances
less than half the wavelength (as the light also has to travel back to
the camera) are unambiguous. If the distance to an object gets slightly
higher, the measured phase will just jump back to the beginning of
this unambiguity range. This means that it is not possible to deter-
mine the true distance purely based on the measured phase.

A solution for this problem is to also take the amplitude into ac-
count and analyze the depth map for sudden changes as proposed in
Droeschel et al. [DHB10].
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THE PMD DIGICAM

For this thesis a prototype of the new PMD DigiCam is used. Its
main features are the (compared to other depth cameras) very high
resolution of 352 x 288 pixel, the two bright LED-arrays (which are
useful for depth measurements in big rooms) and the low camera
noise. The camera is shown in figure 7.

Figure 7: The PMD Digicam prototype. Above and under the lens are two
powerful LED-arrays which illuminate the scene. The backside
consists mainly of the cooler.

3.1 POLAR COORDINATES

The pictures taken by this camera are in a polar coordinate system
rather than in a Cartesian. This means, that a straight wall will appear
as a curve in the depth image, because pixels measure the distance
between the camera position and the point in the scene. A Cartesian
coordinate system on the other hand would mean, that each pixel
contains the shortest distance between the image sensor plane and
the point in the scene.

Figure 8 shows the two different coordinate systems and how the
shape of a flat wall in a polar camera picture appears. If d is the
distance to the wall and x is the position on the wall, the length of
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Figure 8: Cartesian (upper left), polar (lower left) and polar values on a
Cartesian scale. The right image shows also the absolute value
function (gray dotted) and the Cartesian distance values (gray
line).

the arrows is v d? + x2. Because d is constant in this case, this function
converges to the absolute value function for large values of x (shown
as a gray dotted line in the right picture), but for small values, the
wall looks similar to a sphere.

If the focal length of the lens is known, the depth values can be
converted into the Cartesian coordinate system, where the wall looks
flat again. This can be done by performing the following steps:

1. Change the origin of the coordinate system. The pixel position
must be moved so that the center pixel of the sensor has the
coordinates (0,0). Note that the center pixel does not necessar-
ily have the coordinates (Xres/2, Yres/2), as the image sensor might
not be exactly aligned with the camera lens due to production
inaccuracies. Instead, the true center pixel has to be measured
in the calibration process.

2. Calculate the view direction of each pixel. The center pixel will
always have a view direction parallel to the camera alignment,
the view directions of the other pixels depend on their position
and the pixel size relative to the focal length of the lens. If the
z component is set to one, the x and y components can be com-
puted by simply multiplying the pixel position by appropriate
constants (which could be different for the x and y axis).

3. Multiply by the measured depth. If the view direction of each
pixel is multiplied by the depth measured by this pixel, the
resulting vector will end exactly at the point that was measured
by this pixel and the three components of this vector will be the
position of the point in a cartesian coordinate system.

The values in the polar coordinate system are not wrong, but their
intuitive interpretation is misleading. It depends on the current use
case, whether the values should be transformed, or not.
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3.2 CALIBRATION

As we use a prototype of the PMD DigiCam, no calibration data is
provided. This means, that we have to do everything by ourselves
and to make sure, that at least the assumptions described in section
2.3 are met. Although there are some quite advanced ways for cal-
ibrating cameras ([Schi1a], [Lin1o], [LNL"13]), we choose to use a
fairly simple approach due to time constraints and to ensure a focus
on multipath-effects.

The basic idea behind calibration is to find a function mapping mea-
sured values to accurate distance values This can be done by gener-
ating a huge amount of sample points for which ground truth values
are known. Than a best fitting function to approximate these samples
can be searched. The critical point of this method is, that the sample
points have to be representative. If sample points for a specific case
do not exist, the calibration has no chance to be correct in this case,
so the very first step is to decide, for which cases the camera should
be calibrated.

We do not want to change the lens of the camera and decide that
distances between 1 and 4 meters will be sufficient for our needs.
Furthermore, the modulation frequency and integration time of the
camera have to be chosen which results in our case in the three dif-
ferent frequencies 10Mhz, 20Mhz and 30Mhz and a fixed integration
time of 50oms. We find, that the lens distortion in the edges is too
high to get reliable information, and thus only pixels nearer to the
center are used. While the other pixels are still calibrated, one should
not rely on their correctness.

Another important decision is, on what level the camera should be
calibrated. Choices are the raw channel values, the phase and ampli-
tude or the final distance. For the calculations in 2.3, we need the raw
channel values, so the intuitive idea is to map raw values to calibrated
raw values. However it is nearly impossible to obtain ground truth
raw values because this would require some kind of ground truth
raw channel measurement device. Instead, our approach is to com-
pute a calibrated phase and amplitude, build a wave based on these
values and sample it. This ensures, that our raw channels match a
perfect sinusoid function, which is one of the requirements in later
calculations.

Normally, the input values should be the 4 raw channels, but as
functions with four dimensional arguments are far more complex, we
decided to use only the phase and amplitude, computed from these
values as input values, which turns out to lead to sufficient results.
It is however possible, that some information, that could lead to bet-
ter calibration results, is lost through this decision. Furthermore, it
would also be possible to use the pixel position as an input value. As
described in 2.4 it is likely that the sensor contains a fixed pixel er-
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Figure 9: Example pictures of the lens calibration. In total, 41 such pictures
are used for the calibration.

ror pattern and the lens distortion also depends on the pixel position,
which leads to a high optimization potential, but as described above,
we intend a fairly simple calibration model, so in the end we only use
the phase and amplitude derived from the raw channels to calculate
calibrated raw channels.

For this calibration, a set of scripts based on [Zhaoo] are used.

3.2.1 Lens Intrinsic Parameters

The first step in calibrating the camera is to measure the so called lens
intrinsic parameters. They include properties like the focal length, the
pixel size and distortion parameters of the lens. To get these param-
eters, a script is used to automatically extract them from a series of
calibration pictures.

The calibration pictures show a RIG calibration pattern from differ-
ent distances and angels, three of them are shown in figure 9. The
script has parameters for the size and distance of the dots and the
knowledge that the should resemble a regular quad, and searches for
them in the pictures. Based on the position of the points, the lens
intrinsic parameters can be determined.

The script works fully automated. It was only necessary to enhance
the contrast of some pictures so that the position of the dots could
be found. Results are better if more pictures are used. In total, 41
pictures are used for this calibration. It should be noted, that as in
this process only the lens parameters should be determined, the used
frequency and integration time do not matter at all.

3.2.2 Phase calibration

Once the lens intrinsic parameters are available, they can be used to
create ground truth information for the phase calculation.

Another script can use a picture of the same calibration pattern
along with the lens intrinsic parameters, to determine the relative
position and orientation of the plane, in which said pattern lies. If it
is pinned as tightly as possible to a wall, one can consider the plane
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Figure 10: Amplitude, selection mask and phase values (from left to right)
of a calibration picture.
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Figure 11: The phase calibration samples for 1oMhz (left) and 20Mhz (right).

of the wall the same as the calibration pattern plane and thus the
whole wall becomes a source of ground truth phase information.
Now another series of pictures is taken, using all the frequencies  calibration pixel
that we want to calibrate. In theory, we now already have a measured = selection
/ ground truth pair for each pixel of each picture, that we could use to
find a calibration function. In reality however, not all of these values
are good enough to be used for calibration. A known problem of
the PMD Digicam is, that the depth information becomes unreliable
for pixels with low amplitude. As the calibration pattern uses black
circles, all points inside a circle have a low amplitude and should not
be used for calibration. Furthermore, as the lens has a high distortion
in the corner, only center pixels are used for calibration.
Figure 10 shows the mask (center image) that is used to select pix-  pixel masking
els for the calibration data. Only pixels whose amplitudes are higher
than the average amplitude (marked as red) and who are in the cen-
ter of the picture (marked by the black rectangle, which is 1/4 of the
total image size) are used as calibration samples. In the phase im-
age (on the right), it is clearly visible, that the black circles of the
checkerboard influence the phase measurement, although their dis-
tance should be exactly the same, as in their surroundings. In a per-
fect measurement, the calibration pattern would not be visible at all
in the depth image (see also section 2.4 for further details).
Figure 11 shows the phase calibration samples for toMhz and 20Mhz.  calibration sample
They are generated from the same set of pictures (for each distance description
the pictures for the 3 frequencies are taken in parallel), but there are
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Figure 12: The phase calibration polynomials (red) for 1oMhz (left) and
20Mhz (right).

two major differences. First of all the ground truth phases for the
20Mhz case are twice as high as for the 10Mhz case, which is exactly
what has to be assumed (note that in formula 1 on page 4 the phase
is divided by the frequency to get the distance). Secondly, there is a
major gap in the 20Mhz data set which is due to a constant phase off-
set inside the camera for this frequency. As the phase values can only
be in the interval [0...27], higher values are projected back to valid
ones (which leads to the left part of the sample points). Although
it would of course be possible to find a function, that matches these
sample points, it is far easier, to first move all the values by a correc-
tion offset @, s so that they form a consecutive line like in the 10Mhz
case.

After applying this calibration phase offset, we fitted in a fifth de-
gree polynomial function using the least square fitting (tests show,
that a higher degree does not lead to a better approximation of the
function and would only lead to a harder computation).

This results in the calibration functions shown in table 1. Example
plots can be seen in figure 12. The general formula is:

5 .
calib (¢) = Zai . (q) + (ngf)5_Z
i=0

Figure 12 also shows a major problem with the calibration: As the
band that the sample points resemble is pretty broad at some parts,
it is clear that it is impossible to find a function which is close to all
sample points. So even if the same points that were used to build
the calibration function are calibrated with that function, some of
them will still have wrong values. It is important to remember this
inaccuracy if pictures are later considered to be calibrated.

3.2.3  Amplitude calibration

The calibration of the amplitude is far more difficult than the phase
calibration, as there is no direct way to get ground truth information
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10Mhz 20Mhz 30Mhz

ag —0.46861088 | —0.11776117 | —0.00451956
ai 8.63853605 0.88826474 0.05610486
ap —63.20817976 | —2.37231896 | —0.26067655
as 229.21818499 2.64900201 0.55224721
ay | —410.61616649 | —0.11113942 | 0.48622625
as 290.18364156 0.83142054 0.98368383

(Poff 0 —4 -5

Table 1: Coefficients of phase calibration polynomials for the 3 different fre-
quencies.

for the amplitude. While the distance, and therefore the phase shift,
can also be measured by a simple ruler, it is much harder to find a
device that can measure the amplitude of a modulated light wave
with a given frequency. It is also not clear, what exactly the calibrated
amplitude should be. The “phase shift corresponding to the actual
distance between an object and the camera” is a simplified model of
the phase measurement that can be used to generate ground truth
information for the phase, but a similar model is harder to define
for the amplitude. Should the amplitude be only dependent of the
light hitting the sensor, or should inaccuracies of the light emitting
unit also be considered? How should the sensitivity of the sensor be
handled? There is no single answer to such questions, so it is hard to
find a definite calibration model.

However, it turns out that we do not actually require a full am-
plitude calibration for our application. The demodulation model in
Chapter 4 only assumes, that the amplitude does not change, if the
modulation frequency changes. Furthermore, the amplitude is only
linear in all the formulas, which means, that a amplitude scaled by
a value s before the demodulation will result in demodulated values
scaled by the same value s after the demodulation. And as we are
only interested in correcting the distance measurement, the demodu-
lated amplitudes are far lower.

An easy solution would be to simply set the amplitude to one for
each measurement. This would satisfy the constraint, that the ampli-
tude does not change with the modulation frequency and as we are
only considering one pixel at a time in the demodulation process and
do not use the amplitude afterwards, we would not lose any impor-
tant information either.

There is however one important issue with the approach: The idea
of a constant amplitude for all frequencies is only valid in a non
multipath case. As discussed in section 4.4, the amplitude as well
as the calculated distance will change for different frequencies, if the
light is reflected multiple times. Setting the amplitude to a constant
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Figure 13: The amplitude calibration functions for 20Mhz (left) and 30Mhz
(right). Both try to map the amplitude values to the values that
would have been measured with 10Mhz (the reference value).

value would lead to a loss of an important part of the information
gained from the second measurement.

This means, that we need at least some simple amplitude calibra-
tion. As we only have to deal with the constraint, that the amplitude
normally does not change, if the frequency changes, we can just de-
fine the amplitude of one frequency as ground truth and compute a
function, that will adjust amplitudes measured with other frequen-
cies to this value. This means, that the same value of one frequency
will always be mapped to the same ground truth value and if the
amplitude changes differently than expected, it will also be mapped
to a different ground truth value. This way, we can can preserve the
information of the amplitude change and still do a calibration that
matches our constraint.

The process is similar to the phase calibration: A large number of
samples is taken from a series of measurements and then a best fitting
polynomial can be found for these samples. The generation of sample
points is even easier because we do not need to find good points like
in the phase measurement. Instead we select random points from
each image.

Figure 13 shows the resulting functions which are again a polyno-
mial of the fifth degree. This was mainly done to be consistent with
the phase calibration, a linear function would not have resulted in
a much worse approximation. This time, the breadth of the sample
values is also lower which should result in a better calibration. The
polynomial coefficients are shown in table 2

3.2.4 Results

Figure 14 shows the results of the camera phase calibration. The
ground truth picture contains the synthetic values of the wall plane
as extracted from the calibration pattern, which means, that the floor
in the lower right corner of the image (visible in the measured picture)
is not taken into account.



3.2 CALIBRATION

20Mhz 30Mhz

ap | —0.11776117 | —0.00451956
a1 | 0.88826474 | 0.05610486
ap | —2.37231896 | —0.26067655
as | 2.64900201 0.55224721
ay | —0.11113942 | 0.48622625
as | 0.83142054 | 0.98368383

Table 2: Coefficients of phase calibration polynomials for the 2 different fre-
quencies. As 10Mhz is the reference frequency, it needs no calibra-
tion function.

Ground Truth Measured

Calibrated

Figure 14: Results of the camera phase calibration. All values are given in
meters.
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Figure 15: Results of the amplitude calibration.

The difference picture shows, that the calibration works reasonably
well in the bright part of the picture, while darker areas show a higher
error. Especially the error for the black circles is quite high, but as the
phase values from the camera are already far too big, there is no
chance in calibrating this with a function that just takes one phase
and returns the other. Altogether the calibration leads to plausible
but not exact values.

The results for the amplitude calibration are shown in 15. After
applying the calibration function, the amplitude images for two dif-
ferent frequencies are very similar. Apart from some outliners, the
calibrated image is quite close to the original, most of the time the
error is less than 2%. On the one hand this means, that the amplitude
calibration works better than the phase calibration but on the other
hand, a somewhat simpler method was used, which can explain the
better results.

It should again be noted, that the calibration is only partial. We
calibrated the camera only for the frequencies 10Mhz, 20Mhz and
30Mhz at a fixed integration time of 500oms. Furthermore only the
center pixels are calibrated and only for a distance between one and
four meters.

3.3 NOISE MEASUREMENT

As described in section 2.4, a common error in all sensor data is noise.
Even though the exact same sample point is measured multiple times,
the results cannot be expected to be exactly the same each time. In-
stead they usually vary around the true value with a Gaussian distri-
bution. This noise can have different causes and cannot be calibrated
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Figure 16: Noise analysis for the phase computed from the raw values. The
upper part shows the individual samples (but only 500 for the
sake of visual clarity), with the computed expected value (red
line). The lower part shows the histogram of these samples with
the corresponding normal distribution (red line).

directly. Instead the usual way to deal with this problem, is to per-
form a series of measurements and average the results.

If the noise behavior of a specific device is known, it is easier to
compare it to other devices and it can also be possible to estimate,
how many measurements should be averaged to get a desired accu-
racy.

To measure the noise behavior of the PMD DigiCam, a series of
1000 images of the same blank white wall were taken. Although the
values for the different pixels are expected to vary (as the wall might
not be perfectly flat or white), a perfect camera should return the
same value for the same pixel position in each measurement.

3.3.1 Results

Figure 16 shows the resulting plot for the phase values calculated
directly from the raw data of the center pixel. It can be seen, that the
noise distribution matches approximately a normal distribution, as
expected. Plots for other values (namely the amplitude and the raw
channels) are not shown, as they look all very similar to the one of
the phase.

The exact noise parameters are shown in table 3. As described in
section 2.3.2, the value for Dy should be the negative value of D, and
likewise with D; and D3, which is especially in the case of D; and
D5 only partially fulfilled, but at least the deviations are comparable.
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Expected Value (1) Deviation (0)

Dy -9689 93.102

D1 -1290.2 91.264

D; 9203.4 91.583

D3 834.08 87.882

Phase 3.2536 0.0066336
Amplitude 19012 133.27

Table 3: Noise values for the raw channels, the amplitude and the noise of
the center pixel. All values are rounded to five significant digits.

The relative error of phase noise, i.e. the quotient of its standard
deviation and its expected value, is 0.2% which is quite good.

To see, how other pixels behave, we perform a full image noise
analysis. The same computations as for the center pixel are done
for all pixels, but instead of showing a histogram per pixel, all the
deviation for one value is shown in a single map in figure 17.

The main observation is, that the noise is the highest in the center
of the raw channel and amplitude plot, but the phase noise looks
inverse to this. This might be explained by the fact, that the center is
also the brightest area in the image and higher values usually mean
also higher noise. To analyze this, the images are normalized (again
by dividing the standard deviation by the expected value), the results
are shown in figure 18. D; and D3 look very noisy but apart from that
the noise tends to get lower towards the center of the image. This can
be explained by a higher brightness in the center which is generally
good for the measurement (as long as there is no oversaturation).

Altogether we end up with a phase noise of 0.2% — 0.3% for the
interesting part of the image, which is generally good.
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Figure 17: Noise of the camera raw channels, the phase and the amplitude.
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Figure 18: Normalized noise of the camera raw channels, the phase and the

amplitude.
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THE MULTIPATH EFFECT

The multipath effect occurs, whenever the image sensor measures a
superposition of interfering waves instead of a single wave. This can
cause significant errors in the distance calculation as the phase shift
of the incident light wave will be used, which will no longer correlate
to the correct distance in a multipath case.

As already sketched in 2.4 there are multiple causes for the multi-
path effect and the solutions proposed to correct it do also vary with
the different causes as not all can be addressed by all methods.

4.1 SOURCES OF MULTIPATH EFFECTS

This section characterizes the different sources of the multipath effect
in more detail. Various publications cover different subsets of them
mostly depending on the capabilities of the presented correction al-
gorithms or the general topic of the publication. The main sources of
this section are [DGC 11, KWB"13, KBC13, Fuciol.

As all diffuse materials reflect incoming light in all directions, a nor-
mal scene will contain indirect reflections everywhere and the camera
will not only measure the combination of two but actually of count-
less waves. The reason why measured data is still useful is, that most
of the time the indirect reflections are order of magnitudes weaker
than the direct reflections. Only in special situations, where the indi-
rect reflections are unusually high (compared to the direct reflections)
this effect becomes a problem.

A typical example is, that a highly reflective object in the scene re-
flects not only the light, that comes directly from the camera but also
light from other objects in the scene. This is illustrated in figure 19:
The camera sends out light to the wall and the cup. The wall reflects
this light (red ray) in all directions, a small portion of it reaches the
cup, which is also illuminated directly (green ray). Both of the in-
coming rays are reflected towards the camera (yellow ray), which can
only measure a mixture between the two rays. Although most scenes
do not contain objects like mirrors, many surfaces can become highly
reflective under a certain angle due to the Fresnel effect. This is espe-
cially problematic as their reflectivity might not be obvious and may
lead to surprising errors in the measurement.

Transparent (or semi transparent) objects have a similar behavior
although the involved materials have different properties. The light
from other objects is not necessarily reflected by transparent objects
but can rather pass through it with a little attenuation. This light in-

29

background
interference

highly reflective
objects

transparent objects



30

corners

camera intern

THE MULTIPATH EFFECT

Figure 19: Sketch of the multipath effect. The light returned by the cup
consists not only of direct illumination, but also of indirect illu-
mination from a nearby wall.

(The camera, the cup and the wall are public domain images from

http:/ /openclipart.org/.)

terferes with the light reflected by the transparent surface and causes
multipath errors.

An expansion of this scenario are diffuse objects like fog. Each
point can potentially scatter light then, which results in a superposi-
tion of an infinite amount of waves.

Another source for multipath effects are concave corners, which of-
ten appear rounded in time-of-flight images. This happens because
each point on the one wall will receive light reflected by any point of
the other wall and reflect parts of it towards the camera. Normally
indirect reflections a very weak and would not be significant, but in
corners there are enough reflecting points that are close enough to re-
sult in a significant amount of light that is reflected additionally to the
directly reflected light. Like in the diffuse object scenario, there will
be countless interfering waves, but in this case, the phase shifts are a
lot more similar as only close points can have a significant influence.

The interference of different waves must not necessarily happen
inside the scene. Like all cameras, time-of-flight cameras contain a
lens system to form the image on the sensor. Although camera lenses
are usually of a high quality, they can never refract all the incoming
light but will also scatter and reflect small parts of it. Additionally, the
other components inside the camera will also reflect small amounts
of light.

Under some circumstances this can be significant enough to pro-
duce multipath errors. A possible explanation of the intensity related
errors is that as the direct illumination is pretty weak, reflections in-
side the camera have more influence and disturb the measurement
this way [Schi1b, p. 25]. Another example are scenes, where a big
part of the camera frustum is occluded by a nearby object. As the
near object is very bright due to its short distance to the illumination
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unit, it causes strong reflections inside the camera resulting in much
smaller depth values for the unoccluded part of the scene compared
to the same scene without the occluding object.

An effect very similar to the multipath effect is the so called mixed
pixel or flying pixel effect. It happens not because of interfering waves
inside the scene or the camera, but because the pixels are too big
to measure only a single wave. Especially at the border of objects, a
pixel will often receive light from the background and the object itself.
Although they do not interfere anywhere, the result is the same as if
they would. As the symptoms are so similar, the mixed pixel effect
is often considered together with the multipath effect, although their
causes are different.

4.2 MATHEMATICAL DESCRIPTION

In a multipath situation with n components, the camera measures
the sum of n different waves. If we assume a sinusoid for each wave
(where wave means not the actual light wave, but its modulation; the
light wave itself is always a sinusoidal, the modulation can be arbi-
trary), this leads to:

n—1

Wy (1) = ) a;-sin (w - £+ @;)
i=0

= Uy - sin (w - t+ @)

Each component of the measured wave w, can have a unique am-
plitude «; (resembling the intensity of the component) and a unique
phase shift ¢; (resembling the distance of the component). As ex-
plained in A, the sum of sinusoidal functions with the same frequency
is again a sinusoidal function, which means that the formulas from
chapter 2.3 can be applied, which is exactly what happens, when the
multipath effect is completely ignored. But in general, none of the
distances in any component relates to the new phase shift ¢,;,, which
means that using it for distance calculation will lead to wrong values.

To get the correct depth information from the measurement, it is
necessary to determine the values ¢y,...,¢,-1. Normally, one of
these components will be chosen to be the correct one and the other
ones are discarded, but in some situations it can be useful to have
multiple depths for each pixel (e.g. for transparent or diffuse objects).

4.2.1  Two Component Multipath

In many cases, it is sufficient, to use only two components to model
the multipath effect. In this case, we have a primary component,
which represents the true distance and a secondary component which
represents the error due to interference. In figure 19 the green wave
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would be the primary component while the red wave would be the
secondary (both times including the yellow wave which is the super-
position of both).

Although all multipath affected measurements can in theory be
split into a primary and a secondary component (by subtracting the
error) it can in practice be hard to find this error, if more than two
waves interfere. The main reason to limit the model to two compo-
nents is, that some correction methods get tremendously more diffi-
cult with the number of components they have to decompose. Ad-
ditionally, many cases can still be modeled accurately with this ap-
proach [DGC"11]. Other cases are however very likely to fail in a
correction constrained in such a way.

We will call the primary component wy and the secondary compo-
nent wy. This results in the following formula:

wn (1) = wo (1) + w1 (1)
= -sin (w -t + ¢@o) +aq -sin(w -t + @1)

4.3 MULTIPATH RESOLVING

There have been many different attempts to solve the multipath prob-
lem, which are described in this section.

Fuchs proposed a method that addresses multipath errors in cor-
ners. He models all points in the scene as Lambertian emitters which
illuminate all the other points and calculates the effect, that each pixel
has on the scene. A few simplifications are needed to make this ap-
proach applicable such as using the measured (and slightly wrong)
distances and considering only points that are visible from the cam-
era. The algorithm cannot work in real time, it takes roughly ten
minutes (on not closer specified hardware) to correct an image, but
the results show a significant correction of the round corner problem.
[Fuc1o]

Jimenez et al. extends the approach of Fuchs by using an iterative
method. This was already suggested by Fuchs as it helps to overcome
the issue, that the computations are based on the distorted depth val-
ues of the measurement. This method also expands the model and
considers different albedo factor of surface areas. Furthermore, it
takes the normal vectors of the sampling points into account, which
need to be updated after each iteration step. Due to the complex
iteration steps, this method is also very costly (taking several min-
utes even for a small scene on not closer specified hardware), but the
results are better than the previous approach. [JPMP12]

Dorrington et al. proposed a new method that uses multiple mea-
surements with different modulation frequencies to gain additional
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information about the multipath interference. Using a numerical op-
timization they can directly determine the components of the mea-
sured wave. Although the method works with an arbitrary num-
ber of components, only two measurements are used to separate two
components because the optimization is already difficult and time de-
manding in this case. As the improvement of this method is the main
topic of this thesis, it is described in more detail in the next chapter.
[DGC*11]

Godbaz et al. proposed a new solution for the same approach,
which does not rely on a numerical optimization by presenting two
different closed form solutions for the overdetermined case. The first
models the reflectivity as a Cauchy distribution over range, while
the second one uses attenuation ratios. Instead of two measurements,
four measurements are required for both methods to separate the two
components. Both methods are able to improve the range measure-
ment in most cases, however there is a threshold depending on the
relative amplitudes of the components and the signal-to-noise ratio,
below which the components can no longer be separated. Addition-
ally the results are not as good as the ones from the numerical opti-
mization. The computation times were not compared but in general
closed form solutions are much faster than iterative optimizations.
[GCD12]

Kirmani et al. proposed a framework called SPUMIC (simultane-
ous phase unwrapping and multipath interference cancellation) that
addresses phase unwrapping and multipath correction at the same
time. At least five different modulation frequencies are used to mea-
sure the scene. As the maximum unambiguous distance depends
on the modulation frequencies, measuring with different frequencies
can increase it to the greatest common divisor of these frequencies.
Furthermore, the measurements are used to build a Hankel matrix
whose rank is used to test, whether the measurement is affected by
multipath errors. If this is the case, the total least square Prony’s
method is used to separate two multipath components. The biggest
drawback of this method is, that it requires a high number of mea-
surements but on the other hand it is implementable in real time due
to its low computational complexity. [KBC13]

Kadambi et al. use a custom built camera with a special modula-
tion. Instead of using a sinusoidal, a sharp peak is used. The resulting
correlation function is then also no longer a sinusoidal but contains
peaks for every interfering multipath component. This does not just
enable to correct the multipath effect, measure near-transparent ob-
jects correctly or see through diffuse objects, it is furthermore possi-
ble to compute a full time-profile movie that shows the propagation
of the light in the scene. The main limitation of this method is the
time resolution which is to low to distinguish components with simi-
lar phases that occur for instance in multipath affected corners. Also
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Figure 20: The measured waves (blue) of two pairs of interfering waves
(green) for two different frequencies (light and dark colors). The
red triangles mark the phase shift of the waves. The dotted wave
has the double phase shift of the dark blue one.

off-the-shelve cameras are not capable of this measurement, as long
as they do not have an FPGA that can be reprogrammed to use the
new modulation. [KWB13]

4.4 WAVE DEMODULATION UTILIZING DIFFERENT FREQUENCIES

We now describe the multipath correction approach proposed by Dor-
rington et al. whose main idea is to measure the scene with two
different modulation frequencies to gain more information about the
multipath interference. We also point out where this additional infor-
mation comes from and explain the process of function fitting in a bit
more detail.

Most off-the-shelve cameras today have the ability to change the
modulation frequency. This is done between the measurements and
will provide enough information to find wp and w;. The method
could be extended to separate more waves but the additional effort
for the measurement process (more frequencies would be needed)
and computation time must be weighted against the additional im-
provement (which might be small in many cases).

Figure 20 demonstrates, where this additional information comes
form: If the modulation frequency of the camera is doubled, it is ex-
pected, that the amplitude of the measured wave will not change but
that its phase shift will be doubled. This is however only true for
the non multipath case. The image shows the resulting waves, if two
waves interfere: The dark blue wave is the sum of the two dark green
waves. If the frequency is doubled, the phase shift of the green waves
is also doubled, but the amplitude stays the same (displayed as light
green waves). However, the phase shift of the resulting sum (the light
blue wave) is more than doubled and its amplitude is smaller. This
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wave is significantly different from the expected wave (which is dis-
played as a dotted line) and this difference is basically the additional
information from the second measurement.

The difference in the second wave can also be used as an indicator
of the multipath effect: If there is no additional information from the
second measurement, it means that there are no interfering waves.

We now have two measurements with two components each, which
means that we have a total of four different waves. To simplify the
model, it can be assumed, that the amplitude of a measurement stays
constant if the modulation frequency is changed. This can be assured
by the camera calibration that is described in 3.2.3. Furthermore, the
second modulation frequency can be described as a multiple of the
first one, which means that the phase shift for the second measure-
ment will change by the same factor (because the distance d stays
constant, the phase shift ¢ in equation 1 must change at the same
rate as the angular frequency w). Together this means, that although
we have four distinct waves, we only need two amplitudes and two
phase shifts to describe them (instead of four amplitudes and four
phase shifts).

In practice, the second frequency is twice as high as the first. This
leads to the following formulas for the measured correlation func-
tions (where the high indices denote the measurement and the low
indices denote the component):

o_1o

1 1
M= Sa - cos (goo) = 5% cos (o) + 51 cos (¢1) (11)

1 1 1
1_ 41, 1 o - : “ - .
m=sa - cos ((p ) 5% cos (2-¢9o0) + 51 cos (2-¢1)
Where the following substitutions were used:

DCSZDC() 04(1):040
octl):ocl 06%2061
Po=p0  P=2-¢o
R=p1 @1=2-¢

The notation that is used here differs a bit from the one used in
[DGC'11] where some indexes are different and all sinusoids are in
the exponential notation. This makes however no difference in the
following calculations.

The four variables a%,a!, (pO, (pl can directly be measured as de-
scribed in chapter 2. Based on them, the four variables for the in-
dividual components ag, a1, ¢o, ¢1 must be computed. So far, closed
form analytical solutions where only presented for the overdeter-
mined case of four different measurements [DGC" 11, GCD12], so
a numerical solver is used. It tries to find values for «g, a1, o, @1, sO
that a correlation function built from them matches the measured one
as closely as possible.

0
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To distinguish the measured correlation function from the correla-
tion function that results from inserting the estimated values in for-

mula 11, we name the measured correlation functions 7#° and .
This leads to the following minimization function:
. 012 112
arg min |m0—m0‘ + )ml—ml‘ (12)

(@o,21,90,91)

This function tries to find matching arguments so that the esti-
mated correlation function equals the measured one. By definition,
one function equals another function if their values equal each other
over the whole function domain. However, instead of matching an
infinite amount of samples (which would be impossible), only the
four sample values from the measurement process are used to match
the functions. As the functions that should be matched are sinusoids
with a known frequency and a zero offset, two points would already
be sufficient to define the functions and therefore also to match them,
but the four values are given anyway by the measurement and addi-
tional points might increase the stability of the optimization.

This results in the following error function

f (a0, a1, 9o, 1) =
2
) (wo (1) — <;1x0 -cos (o —T) + %(xl -cos (1 — T)))

teT
1 1 2
+ (w1 (7) — Eoco-cos(2-g00—r)+§a1-cos(2-q)1—r)

where T = {i- 5 |i € [0...3]} denotes the set of sample positions.
The publication of Dorrington et al. lacks information how this

minimization should be applied to multipath errors in practice. The

different choices that can be made are evaluated in the next chapter.
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Solving an equation system like the one described in 4.4 with a nu-
merical optimization approach leads to a number of problems. Con-
trary to an analytical solution, it is not directly clear, if a solution
exists (although this is given in our case [GCD12]) and how hard it
will be to find it. Furthermore, there are different algorithms avail-
able, all with different strengths and weaknesses, and not all of them
are suitable for finding a solution to every problem.

This means that it is not sufficient to implement a simple formula,
but rather a complete evaluation of algorithms and parameters is
needed. The results of this evaluation are described in this chapter.

5.1 SIMULATION OF THE MULTIPATH EFFECT

In order to evaluate the results of the optimization, it is important to
have a ground truth. A common way is to use a simulator to generate
test data whose optimal solution is then already known.

Simulating ToF images with effects like multiple reflections (which
are the source of the multipath effect) for a given scene is a complex
task, which can be compared to generating photo realistic images of a
scene. Meister et al. describes a method based on pathtracing, which
is capable of simulating complex scenes correctly, including flying
pixels, transparent or strongly reflecting materials and the multipath
effect [MNK]. However this method is quite complex and provides
more than required for our evaluation of the pure demodulation. This
is the reason why we are using a custom, simplified approach for the
simulation.

The model described in chapter 4 is quite simple, it basically con-
tains just two waves with different properties. Based on this, a very
simple yet functional algorithm was developed. Instead of simulat-
ing a whole scene, individual pixels are simulated and for each pixel
a situation similar to figure 19 is assumed: One wave that travels a
long distance and is reflected twice (the red one), and another wave
that travels a shorter distance and is reflected only once (the green
one). With given values for the albedo of the materials (which can in
practice be chosen quite freely) and the two distances, it is simple to
compute for both waves the resulting phase shift (based on the trav-
eled distance) and amplitude (attenuated by the reflections and the
distance) and also the sum of both waves, which is, what the image
sensor will measure.

A very handy way of using this simulation algorithm is the stochas-
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tic sampling. For a common test scenario, the user would decide,
which distances and reflectivities he wants to sample and would write
nested loops to go through the domains of each parameter. If the
number of tests should be changed, the step size in every loop must
also be adjusted. It should also be taken care, that the parameters
are sampled equally and that none is oversampled (which might in-
crease the calculation time needed for the same quality of the results).
Furthermore, a fixed step size might skip interesting values in the
domain completely.

Contrary to this, the stochastic sampling will choose random pa-
rameters each time the method is called. If a pseudo random number
generator with a fixed seed is used, this will produce the same re-
sults for each run of a test (similar to the common sampling), but it
is no longer needed to specify a step size and at the same time all
parameters are guaranteed to be sampled equally.

Therefore, the whole simulator consists only of a single function
that computes a random multipath point. The user first sets the ran-
dom number generator seed and then calls the function in every loop
cycle. The function will return the sample values for both of the
frequencies (which is what the real camera would provide) and addi-
tionally the ground truth values of the two waves that can be used to
evaluate the demodulation results.

The simulator uses the two modulation frequencies 10Mhz and
20Mhz which are also used later on for the acquisition of real camera
data.

5.2 GENERAL DEMODULATION LIMITATIONS

Apart from finding a good numerical optimization algorithm and de-
termining its optimal parameters, there exists also a more fundamen-
tal problem for the demodulation: There are quite different pairs of
waves that will result in nearly the same wave, if they are added. If
this wave is measured with only a limited accuracy, it becomes im-
possible to say, which of these wave pairs is the correct result.

Figure 21 shows an example of this, which was found by a failed
demodulation. The values for the lower frequency are:

‘ o P1
wy | ~0.618 = 0.852
w1 | = 0560 ~0.739

If the lower phase is both times considered to be the correct value,
this lead to distances of dy ~ 1.474m and d; ~ 1.336m, and a distance
difference of 13cm which is a significant error for a near field depth
measurement. The difference between the correlation functions (as
measured by formula 12 on page 36) is approximately 7 - 10~!!, which
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— Correlation Function
— WO
— W1

Figure 21: Two pairs of waves resulting in the same correlation function for
two different frequencies. The markers are placed at the maxi-
mum of each wave and correspond to the respective phase shift.

is extremely small (in figure 21 both correlation functions are actually
drawn, they are just far too similar to be distinguishable).

The main problem is not, that the numerical accuracy would not
be sufficient, but rather that the noise ratio of the camera is order of
magnitudes higher (the noise for values of this size is around 3 - 1073,
see 3.3.1) than the difference between these two correlation functions.
This means, that even if the optimization works perfectly (or a closed
analytical solution is found), it can be impossible to obtain the correct
result from the measurement, as there might be multiple candidates
within the noise ratio of the camera without a clear favorite.

5.3 RESULT METRIC AND POST PROCESSING

As seen in 5.2, the minimization error returned by the minimization
algorithm alone is not sufficient to evaluate the result, because even if
the error is very small, it cannot be guaranteed, that the result is near
the correct solution. Instead, a better metric is needed which takes
the actual phases and amplitudes into account.

The results of a demodulation are four values - two phases and
two amplitudes. These values can be regarded a a four dimensional
vector on which the usual vector norms can be applied. As some de-
modulation results show, this is however a too strict criteria because
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two vectors can look very different but still mean the same solution.
Examples of such ambiguities are:

¢ Phases can lie outside their usual range. A negative phase shift
or a phase shift greater than 2771 would be mathematically cor-
rect but not a desired solution.

e The waves could be in a different order. In formula 11, the order
of wy and w; does not matter, which means that the optimiza-
tion algorithm could return them in any order.

¢ The sign of the amplitude can be exchanged by an additional
phase shift. If the phase of a cosine is shifted by 7 it effectively
changes only the sign of the function. If both is done, the wave
does not change at all.

¢ The amplitudes are arbitrary for equal phases. If there is no
multipath interference, the correlation function can be demodu-
lated into two waves with the same phase but different ampli-
tudes which add up to the amplitude of the correlation function.
How the amplitude is divided is completely arbitrary.

e The phase can be less important than the amplitude. If one
of the waves has a very low amplitude (relative to the other
wave), it means, that its contribution to the correlation function
is small and even big differences in its phase don’t change the
correlation function strongly.

result normalization ~ These points make clear, that a traditional vector norm should not
be used to compare demodulation results. Instead they motivate a
normalization of the optimization results: The amplitude should al-
ways be positive, the phase shift should be in [0...27] and the wave
with the smaller phase shift should be the primary one (because the
true distance of an object is always the minimal one, thus interfering
waves can make it only longer).
result comparison This alone does not resolve all issues mentioned above so a vector
norm can still not be used. Instead a comparison function is used,
which performs an analysis of the normalized results. To make fur-
ther analysis easier, this function only returns a Boolean value de-
pending on whether two pairs of waves match or not. The following
series of tests are performed, as soon as one fails, the result is nega-
tive, if all pass, it is positive (again, low indices denote components
of a wave pair, while high indices denote different pairs):

1. Main phase match: |q08 - go(l)‘ <e€
2. Primary waves match: |a) —af| + @) — ¢}| <2-€

3. Secondary amplitude match: |a —aj| <€

0
4. Secondary phase match: z—é > % = ¢l -9l <e
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The threshold € can be chosen freely, but is typically chosen as 1555-
The second test is partially redundant, which comes from the idea,
that the tests are in a sense independent from each other and the
result is better, the more test are passed (however in our case we use
only a binary classification, so all tests must always be passed for a
positive result). As the extra costs are negligible the redundancy is
therefore kept.

The implication in the fourth test means, that the second phase
shift should only be considered if the amplitude is significant which
matches the point discussed above.

5.4 NUMERICAL MINIMIZATION

After these basic considerations, we can finally move on to the de-
modulation. In this section the evaluation of different algorithms and
their parameters is described.

5.4.1 Minimization Algorithm

This thesis uses the scipy.optimize package which offers a wide vari-
ety of different minimization algorithms in different categories (gen-
eral purpose, constrained, global, scalar function) [comog]. It also
comes with a good guide on these algorithms which can be used
to choose the preferred one for a given problem [Var]. In our case,
besides the classical Levenberg—-Marquardt algorithm (LevMar), both
the Broyden, Fletcher, Goldfarb and Shanno Algorithm (BFGS) and
Powell’s Method (Powell) are expected to work well, so these three
are further investigated. Additionally, a simple test for the other al-
gorithms is performed which executes them with their standard pa-
rameters on a fixed set of demodulation problems. The results were
significantly worse than those obtained with the main candidates, so
these algorithms are not considered further.

As BFGS and LevMar are Newton based optimizers, they rely on
the gradient of the error function. Although it can also be estimated
numerically, this increases the computation time significantly and de-
creases the quality of the results, so it is worth the effort to compute
it analytically. As this is very straight forward, only the resulting
formulas are given in A. Powell on the other hand is a gradient free
algorithm, which means that the gradient is not needed at all.

To get the best optimization results, the algorithm parameters must
be chosen carefully. Apparently, the values of the error function can
get extremely small, even for wrong solutions. Because numerical al-
gorithms cannot be expected to find the exact solution, they need a
termination criteria. For the BFGS implementation, this is the gradi-
ent norm, which must be below a threshold, for Powell and LevMar
it is the relative error in the error function. As the standard values
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are far too high for our case, they needed to be changed to avoid
early termination. The starting point is another critical choice, which
is discussed in the next section.

5.4.2 Starting Point

The starting point is one of the most important parameters in almost
every method. If it lies near the global minimum, it is easier to reach
[Var]. The problem is, that the position of the minimum is unknown
so the starting point has to be guessed.

We evaluate five different methods for guessing the starting point.
Each one has to return two amplitudes and two phases in a four di-
mensional vector. By convention, the amplitudes come first, so the
vector has the format (ap, &1, o, ¢1) where the indices denote the pri-
mary and secondary wave. The variables «,, and ¢;, in the following
description stand for the amplitude and phase shift of the measured
values.

1. (0,0,0,0): The null vector is an intuitive choice if little is known
about the parameters.

2. (@m, &m, Pm, ¢m): 1If the multipath effect is not too strong, both
of the waves could be similar to the measured one.

3. (#n/2,%n/2, 9,2 - ¢m): Two waves are added, so the amplitudes
of the components are probably smaller than the amplitude of
the sum. And if the multipath effect is caused by a reflective
surface, one phase shift might be similar to the measured one,
where the other is significantly higher.

4. (0,a,0,¢): If there is no multipath effect, this starting point
should be the minimum and no computation time is wasted to
demodulate a wave that was never modulated. This might be
a good choice for pictures where only small areas are expected
to have interfering waves, but although this is more of a perfor-
mance optimization, it still has to be checked if it yields good
results.

5. (a,b,c,d) where a,b, c,d are determined by a brute force search.
Finding the minimum with a brute force optimization is very
time-consuming but using a low resolution search to determine
a good starting point for a further optimization might be worth
the search time.

5.4.3 Constraints vs. Post Processing

Some algorithms support constraints for the solution, which can be
helpful to find the correct minimum. However, constraints like “the
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phase shift should be in the interval [0...27]” can also be achieved
by post processing the optimization result. Furthermore, a solution
violating such constraints would not be a wrong solution, it would
rather be an unwanted representation of the desired solution. Hence,
optimization constraints are not used at all for the demodulation and
only the post processing is applied.

5.4.4 Algorithm Comparison

The three selected algorithms are tested with all five starting point
methods. The simulator is used to generate a set of 1000 demodu-
lation problems, which are then used in each test to ensure equal
conditions for each test.

The results are show in the figures 22-24. They consist of a his-
togram that show the distribution of the minimization errors color
coded in three categories: Green means a full ground truth fit as de-
fined in section 5.3. Yellow means that only the primary phase shift
was correct. It is not directly apparent, why this is a truly weaker re-
quirement and although not so many results fall in this category, the
differentiation becomes more interesting if the values are affected by
noise, which is analyzed in section 6.5. The third category contains
all the results that failed completely and is shown in red.

The comparison plot shows the size of all three categories in per-
centages and visualizes which method performed best.

It is interesting that they are usually very small even if the correct
minimum was not found. Furthermore, a small minimization error
correlates with a ground truth fit, there are however also cases where
a minimum with a relatively big error is correct or where one with a
small error is incorrect.

The most important observation is, that the starting point has a
highly significant influence on the demodulation result. The default
initialization with zeros seems to work best for Powell, more sophis-
ticated guesses make the results only worse.

For BFGS however we get a completely different picture: While it
performs poorly for the default starting point, the results get tremen-
dously better with a more sophisticated one.

LevMar is similar to BFGS, but it tends to be a little better for most
of the starting point methods (with the fourth method as a notable
exception).

Altogether BFGS with starting point method 3 has the best results
(which works in over 9o% of the cases), followed by LevMar with
method 3 and Powell with method 1, so these staring point methods
will be used for further analysis.
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Figure 22: Starting points histograms and comparison for BFGS.
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Figure 23: Starting points histograms and comparison for Powell.
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Figure 24: Starting points histograms and comparison for LevMar.

5.4.5 Brute-Force Starting Point Analysis

As the starting point has such a tremendous effect on the minimiza-
tion result, it is interesting to search for even better starting points.

To investigate the behavior of the optimization further, we perform
a comprehensive analysis of starting points. The demodulation is per-
formed on a single problem with a huge number of different starting
points using BFGS.

A key problem of the minimization function is its four dimension-
ality. While a three dimensional data set is already difficult to plot in
a understandable manner, a four dimensional plot is nearly always in-
feasible. One approach could be a volume visualization that changes
with the time as a fourth dimension, but this is still very hard to un-
derstand. To simplify the visualization, only the two phases of the
starting point are varied whereas the amplitudes stay constant. This
approach simplifies the problem to two dimensions which makes it
easier to visualize.

One should notice, that the purpose of this test was not to find
the optimal solution by doing a brute force test of different starting
points. It is rather about showing how sensitive the optimization is to
the parameters that can be chosen. If chosen correctly, the results are
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Figure 25: The amplitudes and phases of the found clusters.
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Figure 26: The errors of the clusters. They are sorted descending in cluster
size and the colors are the same as in figure 25.

way better than in this test, but it is interesting to see, how important
this choice actually is.

In total, 200 different values are used for each phase which results
in 4000 different starting points in total. These 4000 minimums are
clustered and the 30 largest clusters are visualized. The other ones
are rejected because their size is insignificant and they are considered
to be outliers.

Figure 25, 26 and 27 show the result of this analysis. The biggest
cluster has the smallest error and is very close to the ground truth
value. The other clusters however have far higher errors and are
distributed all over the parameter range.

Figure 27 is particularly interesting as it shows, where the values
for the individual clusters come from. The image is symmetric, which
was expect as the minimization function and its gradient are also
symmetric. Apart from that, the pattern is very chaotic and it is hard
to say anything more useful about it.

It does not seem possible to find a generally good starting point
with this analysis approach. As a result, we stick to the starting point
methods from 5.4.4, which offers good results, at least in most cases.
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Figure 27: Each starting point is marked with the cluster to which it will
converge. White points mean, that none of the 30 big clusters
belong to this starting point.

The next chapter will describe the enhanced method for numerical
demodulation and contains also an analysis, how noise affects the
process and how fast the demodulation can be computed.
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IMPROVEMENT OF THE DEMODULATION

This chapter explains how the original minimization problem can be
reduced from four dimensions to two dimensions, which makes the
solution more robust and faster. It also compares the new method
with the old method in terms of runtime and sensitivity to noise.

6.1 A NEW APPROACH TO THE MINIMIZATION

We want to minimize the following function:
f (a0, 1, 9o, 1)
1 1 2
=) (wo (1) — (2110 -cos (po — T) + 501 cos (1 — T))>

One thing that can be noticed is, that the amplitudes are just scalar
values in this equation. This means, that they can be pulled out of the
parenthesis and that the whole equation can be written as the norm
of a sum of vectors. In order to do so, we first define some helper
variables to make the equation shorter and more readable:

A = _%(xo-cos(q)o—’fi)
Al = _%ao'cos(Z'(Po—Ti)
B; = —%061 -cos (@1 — T;)
B = —tm-cos(2- g1~ 7)
Ci = —w(T)

C/ = —w' (1)

With these variables, the function can be rewritten as

|T|
f (060,061,4)0, (Pl) = Z(—Ci +oag- A+ o - Bi)2—|- (—Cl{ + g - Ag + o B;)Z

1
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which can be rewritten as a 2-norm (from now on we use |T| = 4, but
the method would work with other sizes likewise):

2

Ag By Co

Ay By G

Az B, G

A B C
f=ao- S+ o - 5 - 3

Ay By G

A} B} C}

Ay By G

Ay By G/ Il

This in turn can be thought of as the error term of a least squares
problem ||A - x — b||; — min:

Ao Bo Co
A1 By G
Ay By G
Ay Bs | (a()) e
Ay B a1 (@)
Ay B G
Ay By G
A Bj G/,

Hence, we have shown that minimization with respect to ag, a7 is
equivalent to a least squares problem. We can solve it using the nor-
mal equationA” - A-x = AT - b. In our case, this leads to:

AT A.x=AT.p

Ao Bo Co

A1 B G

A, By G

(A0A1A2A3A6A’1A’2A’3> |45 Bs| (%) B <A0A1A2A3A6A;A’2Ag> e
BoBy B, B3B}B| B, B} Ay By| \a/ \ BoBiB,B3B}B, BB} c)
AL B c

A, B, c,

A, B, c,

& (AT-A)%.(AT.A).x: (AT~A)71~AT-b

x:(AT~A)71~AT-b (13)

This way we can compute the solution vector x which equals («g, a1) T
However, most of the helper variables still depend on the two phases,
which means, that we can only calculate the optimal amplitudes if
the phases are known. However, from an alternative point of view,
we can also formulate two functions ag (@o, ¢1) and a1 (@9, ¢1) taking
two phases and returning the optimal amplitudes for them. These
functions can be derived from equation 13 but the resulting formulas
are rather long. They are given in appendix A.



6.2 VISUALIZATION

With these functions, our original minimization problem can be
rewritten as

f2 (9o, 1) =

2
¥ (w0 (1)~ (G0 (o0, 91) -cos 0 =)+ 31 0, 91) -cos (91~ 7)) )

TeT
2
+ (w1 (1) (o0 (gnr ) <05 (290 = 7) 4 o1 (o) -cos (291 =) ) )

where the amplitudes have been replaced by the optimal amplitude
functions and only the two phases remain as parameters. It should
be noted that although the second row uses the doubled phase shifts
(due to the doubled frequency), the phase shifts are not doubled for
the amplitude functions (which would be ag (2 ¢o,2 - ¢1)). We only
replace the amplitudes as a given parameter by the optimal ampli-
tudes according to the other parameters, regardless where they occur
in the formula.

6.1.1 Demodulation with the New Function

The demodulation with the new function works analogous to the de-
modulation with the old function. With a given starting point, the
optimization of f; is performed. Then the resulting phases are used
to compute the associated optimal amplitudes with the functions ag
and «;. As a last step, the same post processing steps as before is
applied (see 5.3).

As many optimization algorithms require the gradient of f; it must
also be computed. On the one hand this is now easier, as the function
domain has only two dimensions, but on the other hand f, is far
complexer due to the functions computing the optimal amplitudes.
This makes the gradient formulas enormously long, they are given in
appendix A.

6.2 VISUALIZATION

As the optimization function is now only two-dimensional, it be-
comes easy to plot it. Figure 28 shows the function for two different
problem instances.

Due to the high complexity of f,, it is hard to say general things
about the function. As a compromise, we compare plots similar to
tigure 28 for a large number of problems. They all look similar to the
two examples in 28. Hence, we can conclude:

* The plots can be tiled perfectly. This was necessary as all phase
values outside the interval [0. .. 27| correspond to values inside
this interval.

* If both phases are equal, the function is undefined (which causes
the thin line in the images). In such a situation, any combina-
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Figure 28: The function f, (left side) and its derivative for ¢q (right side)
for two different optimization problems. The red dot shows the
ground truth optimum, the yellow dots the two phase shifts ex-
tracted from the two measurements and the green dot is a combi-
nation of both phases which is often near the optimum. The plots
show the logarithm of the respective value.

tion of amplitudes would result in an optimal value, so there is
no single optimal value. See 5.3 for details.

¢ There is a thin valley with a curve in which the minimum lies.
All values in this valley are very small but just one is minimal.

¢ The green dot derived from the two measured phases (by tak-
ing one phase for each axis) is often very close to the global
minimum shown as red dot.

63 EVALUATION OF ALGORITHMS AND PARAMETERS

To find the best minimization algorithm for the new approach, we re-
peat the evaluation performed in section 5.4. Due to our observations
in section 6.2, we choose the starting point to be (¢o, ¢1).

Figure 29 shows the results. For all three algorithms the results
got much better, especially for Powell. However, it still falls behind
BFGS and LevMar which now succeed in nearly all cases. LevMar
now actually outruns BFGS with a failure rate of only 0.2% instead of
0.9% of BFGS, making it the new favorite for demodulation.

In conclusion, the new approach is a major improvement compared
to the original one. All tested methods work better with the new
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Figure 29: Results for the new minimization function.

formula, although it is quite complex. Obviously, the reduction to
two parameters is more beneficial than a simpler functional.

6.4 RUN TIME

Besides the accuracy, the run time is also very important. If the multi-
path correction should be part of a real time post processing pipeline,
the computation of a single image must be possible in a fraction of a
second.

The current implementation is unsuitable for this. However, it is
still interesting to see, that the new method provides also a major im-
provements in terms of speed, which is shown in Figure 30. The BGFS
demodulation works twice as fast as before; the Powell demodulation
is even three times faster now (however still slower than BFGS). Lev-
Mar became only around 40% faster but is by far the fastest solution.
All computations were done on an Intel Core i7-2600 system with
8GB RAM and a 32bit Python environment on Windows 7 64bit.

It should be noted, that this implementation is not really optimized
for maximum speed. Although the scipy framework is quite efficient,
as it uses Fortran and C for many built-in functions, the error func-
tion and its gradient are still only implemented in Python and need
to be called many times during the optimization. Furthermore, no
parallelization is used and the computation runs purely on the CPU.
It would however not be trivial to utilize a GPU, as the optimization
algorithms are quite complex and would probably behave badly in
terms of coherent branches.

Altogether it would certainly be possible to improve the perfor-
mance and the new method is already a great help for this, but it
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Figure 30: Computation time for 1000 demodulations for the old (red) and
new (green) methods.

seams unrealistic, that a real time demodulation can be reached with-
out a notable improvement of the method itself.

6.5 NOISE ANALYSIS

Before the demodulation is applied to real camera data, it is impor-
tant to consider another point: While the simulator will produce per-
fect data (in a sense that it matches all our assumptions), camera data
is imperfect in many different ways (see 2.4). Most importantly, it
is affected by noise, which means that the measured values will vary
around the true values. We already analyzed the noise behavior of the
PMD DigiCam used in this thesis in section 3.3, so we know which
kind of noise we have to deal with. This section will analyze, how
this noise will affect the demodulation process.

The simulation of camera noise is straight forward. As expected
and confirmed in chapter 3, the noise is approximately normal dis-
tributed. This means, that after we have computed sample points for
a multipath situation, we can simply add normal distributed values
(provided by the numpy pseudo random number generator) to them.
By changing the variance of the generator, we can control our virtual
camera noise.

This noised, simulated data is then used for another test series. The
demodulation is again applied to a set of 1000 problems which are
now noised with variances ranging from 102 to 10~!!. Additionally,
one data set is completely unnoised to show the difference between
very small noise and no noise at all. The results are shown in figure
31.

As this is a long test series, the individual minimization error distri-
butions are not shown. Instead, only the values from the former pie
charts are shown as bars, which resemble the function of the noise af-
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new BFGS
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new Powell
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new LevMar
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drastically worse until the demodulation fails nearly always.

This means, that there is not much of a choice, how much noise is
tolerable. Until a variance of 10~® the noise affection should most of
the time be negligible, variances between 1077 and 10~® might still
be practical in some cases but anything worse will not be worth the
demodulation effort (especially because there is no practical way to

tell, if a result is correct or not).
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RESULTS ON REAL DATA

7.1 DEMODULATING CAMERA IMAGES

We now describe the basic workflow for the demodulation of the cam-
era images. The PMD DigiCam is connected to the PC via a USB
connection, a SDK provides the necessary drivers and a C interface,
which can control the camera and acquire images. The interface is
used by a C++ application called CameraServer® which can access the
different streams. These are images that contain either phase and am-
plitudes values or the unprocessed raw values. We use the latter one,
as we want full control over the calibration process. CameraServer
also provides a moving average filter, that can be combined with any
stream to reduce camera noise.

As all further computations are implemented in Python, Camera-
Server must somehow forward the recorded data. We choose to write
the streams as raw binary files, which can easily be read with the
Python struct package. This method has the additional advantage,
that both programs can run independently from each other which
means that the measurement process and the data processing is sep-
arated (which is useful as the processing takes some time).

CameraServer was also extended with some convenience features
to simplify the capturing process. As we need to measure the scene
with different frequencies from the same position, a feature was im-
plemented to perform the measurements for different frequencies di-
rectly after each other. Another mechanism ensures, that the moving
average contains only valid values, before an image is saved. Both is
bundled in a single command that collects and saves all data needed
for the further analysis.

We use 10Mhz and 20Mhz as the two frequencies for the demod-
ulation. Furthermore, the integration time of the camera is fixed to
500oms which provides enough light for most scenes while avoiding
oversaturation of objects in a reasonable distance at the same time.
Additionally, we averaged 50 frames for each image. Experiments
have shown that this reduces noise significantly but that averaging
more frames reduces it only slightly further while increasing the over-
all capturing time. As there are different sources for noise and not all
can be reduced by averaging (see 2.4), there is still some noise left in
our measurements, but there is no easy way to avoid this.

After capturing, the binary files are loaded by a Python script for all
further processing. As a first step, it applies the calibration described

1 written by the author as part of another project
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Figure 32: Undistortion of camera images. The left side shows the original
image, the right side the corrected one.

in 3.2. Then it iterates over the image pixel by pixel and invokes the
demodulation function.

To visualize the results, it is helpful to generate a three dimensional
point cloud. Although the changes by the multipath correction can
also be seen in a two dimensional image, it is difficult to get an in-
tuition for the depth values solely from color mapped images. In
contrast, a point cloud is a very intuitive representation and allows
even layman to judge the quality of the results. For the sake of vi-
sualization in this thesis we fix a single perspective to present point
clouds.

The PMD DigiCam has a quite high lens distortion that must be
corrected before the point cloud can be computed. The difference
between a distorted and an undistorded image is shown in figure 32.
In the distorted image, the table and the bar at the bottom appear
curved. After the undistortion, the table is straight, but the image is
cropped slightly. The undistortion is performed with a script based
on [Zhaoo], which uses the lens intrinsic parameters from the calibra-
tion process. It is not further discussed here but can be found in the
appendix.

After the undistortion, the original image is no longer rectangular,
which means that it will either contain invalid pixels (that do not
have any counterpart in the original image) or that the image has to
be cropped. The latter one was the default setting of the used undis-
tortion function and is also more useful in our case, as the camera
images tend to get blurry towards the edges and the values are only
calibrated for the center of the image.

Now the depth values must be mapped from polar to Cartesian co-
ordinates, which is done using the method described in 3.1. Once the
depth values are transformed, the pixel position can be used as x,y
coordinates and the depth value as z coordinate. Theses coordinates
are then written to a PLY file, which can be read by many different
tools. In this thesis we use CloudCompare[Mon], a tool that is not



7.2 TEST SETUP

Figure 33: Setup for the table test scene.

only a versatile point cloud viewer, but that also has some interesting
analysis functionality.

7.2 TEST SETUP

We used a test scene similar to the one used in [DGC " 11] as our main
test and evaluation scene. Results on some additional scenes, which
are prone to specific problems, are discussed in section 7.4.

A small table was put in front of a white wall as can be seen in
figure 33. The surface of the table is slightly specular, especially at low
angles, which makes it a very good candidate for multipath errors
(as the table will also reflect light coming from the wall behind it
in addition to its direct reflection). A tripod is used to mount the
camera at a position slightly above the table surface to provide an
optimal angle for the multipath effect to occur.

7.2.1  Ground Truth Data

A major drawback of real data in contrast to simulated data is, that
ground truth is hard to come by. This makes it harder to judge the
errors caused by the demodulation.

Although it is possible to create two point clouds of the original
and the corrected measurement and judge them by eye, this attempt
is very subjective and more error-prone than a real ground truth com-
parison.

To create at least near ground truth values, it is possible to measure
the scene very precisely and create a virtual model based on the hand
measured values. Then the distance from each point in the scene to
the camera can be computed and used as ground truth depth infor-
mation. However, this is a very elaborate task and it still might suffer
from inaccuracies, as measuring all objects in the scene by hand is
also error-prone.

Instead, we came up with a simple, yet efficient way to reduce the
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multipath errors to a minimum: A big black sheet was held in front of
the wall so that it will reflect only a minimum of light. This way, the
reflections on the table are eliminated and only the primary reflection
remains, which is than used to compute a near ground truth distance.
These distances are not as accurate as the ground truth data from a
simulated scene, but they can still be used for a comparison and can
be acquired very easily.

It is important to notice, that this will only produce ground truth
data for the table surface. As low intensity areas are known to cause
wrong depth measurements, the rest of the image should not be used.

7.2.2  Absolute and Relative Pixel Improvement

To visualize the improvements achieved by our technique, we use the
following formula (where O is the original measurement, C is the
demodulated value and G the ground truth value):

C-G
Urelzl_' ’

O0-G

Uy can be interpreted in the following way: One means, that the op-
timization is perfect and the ground truth value is directly matched.
Zero means that there is no correction at all, negative values mean,
that the error is increased. The advantage of taking the absolute value
is, that a too strong correction that is still closer to the original value
is still counted as a positive result. Therefore, if the value is directly
flipped to the other side of the ground truth value, it is still consid-
ered as unchanged in terms of a correction relative to the ground
truth.

In some cases however, not only the relative but also the absolute
correction can be interesting. This is particularly true when the mea-
sured value is already close to the ground truth but the process of
correction introduces some noise. The formula to describe the abso-
lute correction is:

Uaps = |O — G| — |C — G|

Uaps tells us how many centimeters the new value is nearer to the old
one. Positive values mean an improvement, whereas negative values
mean, that the new value is worse.

7.3 BASIC DEMODULATION RESULTS

Figure 34 shows the components returned by the demodulation of
our test scene. Inspired by the results of chapter 6, LevMar with the
new error function was used for the demodulation process.
Although the demodulation results of the wall look strange and
seem to be wrong (when ¢q is considered to be the corrected wave
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Figure 34: Demodulation results of the table scene. The demodulated
phases and amplitude compared to the original measurement are
shown.

and ¢; is the phase shift of the interfering wave), they can be ex-
plained by the assumptions made in 5.3. As the lower phase resulting
from the demodulation is considered as the primary component, ¢g
will not be the corrected value if the interfering wave has a smaller
phase shift than the corrected wave. In the ideal case, this is im-
possible (as the ground truth distance is per definition the minimal
distance), but inaccuracies in the values can lead to such errors (the
interfering wave could also be outside the unambiguous distance, but
the modulation frequencies and dimensions of the test scene where
chosen to avoid this).

Especially in the visualization of the amplitude it becomes visible,
that the expected values are just oddly distributed on the two compo-
nents, depending on whether the interfering component has a smaller
or higher phase than the main component. To get better values, the
main component can be determined by the amplitude rather than the
phase shift, so that the component with the higher amplitude is al-
ways the main component. However, this still resulted in a distortion
of the points on the wall where no multipath is expected because
the demodulation wrongly assumes an interfering wave in the still
slightly noisy values.

7.3.1  Multipath Detection

If a specific point is not affected by multipath errors, there is no need
to pick one of two wrong components as correction. Instead, the
original measured value can be used, which is always free of any
errors introduced by a failed correction. This motivates the idea to
find a detection method for multipath errors, that can be used to
decide, whether a point should be changed or not.
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Figure 35: Multipath detection by analyzing the amplitude and phase differ-
ence between different modulation frequencies.

The error value returned by the optimization algorithm is a candi-
date for this purpose, but it performs poorly because the optimization
errors (seen in figure 45) are also small in areas without multipath
effects (which means that the demodulation found a wrong pair of
components which still add up to the measured values pretty well).
The smaller amplitude found by the demodulation is another candi-
date for a detection method (in figure 34 it has only a significant value
on the surface of the table), but it could also be misleading and there
is also a third way which should be more robust and can additionally
be used even before the demodulation.

As described in 4.4, the multipath effect changes the measured
phase and amplitude based on the used modulation frequency. If
the (correctly calibrated) amplitude or the phase divided by the fre-
quency changes between different frequencies this is a good indicator
for multipath errors.

Figure 35 shows the relative difference in amplitude and phase
between the measurements (showing g—(l) and %). Each highlights
slightly different parts of the image and combining them by calculat-
ing
_ 2%

1
leads to a good masking of multipath affected regions (pixels near the
border are ignored because they are considered to be uncalibrated,
see 3.2.4).

X0
1— =
X1

+|o

-

7.3.2  Multipath Correction

We now correct the multipath errors by applying a threshold to the
multipath masking to decide whether the original phase or the de-
modulated phase should be used. Figure 36 shows the measurement
compared to our ground truth values and the correction. The black



7.3 BASIC DEMODULATION RESULTS

Measured Ground Truth Corrected
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Measured - Corrected Ground Truth - Measured Ground Truth - Corrected
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0.15
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Figure 36: Multipath correction compared the the original measurement and
the ground truth values. The absolute scale of the top row and
the relative scale of the bottom row are both in radians.

Relative Correction Absolute Correction
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o 0.8
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0.4 0.06
0.2 0.03
0.0 0.00
-0.2 —0.03
-0.4

AN -0.6 006

t 4 _08 -0.09

i -1.0 -0.12

Figure 37: Relative and absolute correction computed with the formulas
from section 7.2.2.

sheet used to measure ground truth values on the table is clearly visi-
ble, the ground truth values should only be used for the table surface.

The difference images show how much the table is affected by mul-
tipath errors, how much the values changed and how close it is to the
ground truth values after the correction. Only small part of the back
of the table was not corrected.

Figure 37 shows some more details about the correction. Some
points on the front side of the table are worse than before but the
majority of points is now very close to the ground truth value. The
front part of the table surface suffers from less multipath errors (due
to the different viewing angle) is also only slightly changed by the
correction.
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Figure 38: Point cloud of the original and corrected table scene. The color
of the points represents the measured amplitude.

Figure 38 shows the results visualized as point clouds which gives
a better insight in some details. The correction moved the table closer
to the camera (visible by the higher distance to the wall), however
some points at the end of the table failed to correct.

The results presented so far are very similar to the ones presented
in [DGC"11]. In the rest of this chapter, we address some more mul-
tipath problems that were not documented in the original paper.

7-4 SPECIAL PURPOSE TEST SCENES

We also applied the multipath correction to other types of scenes, to
see how they are handled.

7.4.1  Partially Occluded View Frustums

As explained in 4.1, the rest of the image changes, if a part of the view
frustum is occluded. To test, if this can be corrected, the camera was
moved closer to the table and a cardboard piece was put on top of
it, around 20 centimeters in front of the camera, occluding half of its
frustum. At this distance it was fully illuminated by the LED arrays
which caused significant distortion in the rest of the scene.

Figure 39 shows the results of applying the correction. Although
the correction suffers from many artifacts, the wall is represented far
more accurate.

7.4.2 Rounded Corners

To test how the correction performs on the rounded corner problem,
the table was put directly in front of a wooden wall closet.

Figure 40 shows the result of the correction. In the original mea-
surement the corner clearly is not a sharp edge and the surface of the
table seems to bend down. The latter artifact is however not due to
light scattered in the corner, it rather results from directly reflected
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Figure 39: Results of correcting a partially occluded scene. As the colors rep-
resents the measured amplitude, the brightly illuminated card-
board appears red while the rest of the scene is mostly blue.

Figure 40: Results of the corner scene viewed from the side.

light on the surface of the table and has therefore the same cause as
the errors in the first scene.

The bending was mostly corrected by the multipath correction, al-
though it introduced some noise. The corner however remains round.
Figure 41 shows, that the multipath detection does not mask the cor-
ner but only a part of the table surface. Furthermore the calculated
phases for the corner are not an improvement, which means that the
correction would not have been better, if the failed multipath detec-
tion was ignored.

The failure for this scene is not surprising. Our multipath model
assumes that we have only two components that interfere, but in the
corners there is an infinite number of components. Furthermore, their
phases lie in a small but continuous interval which makes it practi-
cally impossible to extract individual components.

The round corner problem is therefore much better modeled by the
approach presented in [JPMP12] which can also successfully correct
it.

7.4.3 Low Intensity Areas and Flying Pixel

Distance errors due to low intensity areas and flying pixels on object
edges occurred in a combined test scene. A board with a checker-
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Amplitude Phase Correction Factor
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Figure 41: Multipath detection in the corner scene.

Figure 42: Flying pixels at the edge of the board. The black areas on the
board have far to high depth values due to the low intensity of
the reflected light.

board pattern was positioned around half a meter away from the
wall. Figure 42 shows, that the sharp edges of the board produced
flying pixels and the low intensity areas of the checkerboard have a
significantly higher distance compared to the rest of the board.

The multipath detection shown in figure 43 works well for the low
intensity areas, but for the flying pixels, no clear line around the
board is visible.

The multipath correction shown in figure 44 fails however. The
algorithm is unable to find correct phases for the low intensity areas
and the demodulated phases contain so much noise that even if some
flying pixels were corrected, they could not be distinguished from the
rest of the noise which makes a correction impossible.

The results presented for this scene are representative for other
tested flying pixel and low intensity scenes. While the algorithm
performed well for correcting reflective surfaces it fails in these two
task.

While the exact cause for the errors in low intensity areas is still
not fully understood, the correction should at least work for flying
pixels, as they match the model of exactly two different components
perfectly.
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Amplitude Phase Correction Factor

i

098 1.00 1.02 1.04 106 1.08 110 112 0.99 1.00 1.01 1.02 103 1.04 105 1.06 0.02 0.04 0.06 0.08 010 0.12 0.14 016 0.18

Figure 43: Multipath detection for the flying pixels scene. The dark areas
are masked correctly but there is no detection of the flying pixels
visible.

Figure 44: Demodulation results of the flying pixel scene. It contains very
much noise and neither the dark areas nor the flying pixels could
be corrected.

67



68

early termination

RESULTS ON REAL DATA

new function old function
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Figure 45: Minimization errors of the new and old error function in a loga-
rithmic scale.

7.5 COMPARISON BETWEEN THE OLD AND NEW METHOD

To evaluate how the new minimization function developed in chapter
6 performs on real data, the table scene was demodulated using the
new and the old function with LevMar and BFGS. Powell was not
further considered, as it already had too bad results on simulated
and data without noise.

Apart from minimal differences, the demodulation results of all
four methods are equal and no method is superior. The minimization
errors are also comparable, they are completely equal for LevMar and
BFGS and have only small differences between the new and the old
methods that are shown in 45. The new method has slightly smaller
errors, but in practice this is negligible.

The following table shows the run times of the algorithms:

BFGS LevMar

new method | 302,50s 303,38s

old method | 270,255 271,13s

The table shows the results for the table scene but is representative
for other scenes. The times are similar, especially it does not matter,
whether BFGS or LevMar is used. The old minimization function is
however faster than the new one.

7.5.1 Interpretation

The result of the comparison is somewhat surprising as it differs from
the values calculated in 6. Normally, the new minimization function
should be clearly faster and the choice of the optimization algorithm
should also have a greater impact on the computation speed.

A possible explanation for this is, that the optimization ends earlier,
if no good demodulation can be found. If the data are affected by
noise too much, there might not even be a good minimum that can be
found and the optimization returns just a local minimum. This was
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also the case in some previous experiments with other optimization
algorithms, which failed to find a solution even in the simulated data
but had a far lower computation time compared to the algorithms
that succeeded.

As shown in section 3.2 the calibration of the camera is far from
being perfect. Additionally, the optimization is very noise sensitive
as shown in 6.5. Together this makes the minimization very hard and
error-prone. As it was not possible to get better camera data, it could
not be tested, how the multipath correction would have worked with
them.

The computation time is also not only affected by the big parts
of the scene, that do not suffer from the multipath effect and thus
make the demodulation there senseless. If only the pixels that contain
multipath errors are demodulated, the computation time behaves the
same.

This means, that the quality of the measured data is simply not
high enough, to benefit from theoretical advantages in applications
with real data.
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CONCLUSION FUTURE WORK

8.1 CONCLUSION

Our implementation of the multipath correction approach described
in Dorrington et al. can reproduce the results presented in the origi-
nal paper. The depth information of surfaces reflecting light of other
parts of the scene can be significantly enhanced and the corrected val-
ues are very close to the ground truth. We also tested the approach
in a number of other scenarios but the results where mixed. While
stray light errors inside the camera caused by close and brightly il-
luminated objects could be corrected, flying pixels and low intensity
areas could not be enhanced. Multipath errors occurring in corners
could also not be corrected but as their cause does not match our
model, this cannot be considered to be a failure.

Problems like these are not addressed in the original publication
directly, but it states that the correction fails in some scenes and only
makes the measurement worse. It is therefore likely that they suffer
from the same problems as we do.

The result of our thorough analysis of the demodulation shows,
that it can produce wrong results even for precisely measured val-
ues which gives us a theoretical limit for the correction potential that
cannot be overcome by more advanced optimization approaches or
even closed form solutions. The method is able to correct multipath
errors, but it has to be used with care as it is likely to introduce more
errors than it corrects. It can be used for a manual enhancement of
images, but it is too unstable to be a default post processing step in
the capturing process.

The new minimization function that we introduced to enhance the
numerical optimization has proven its potential when it is applied on
simulated data. All evaluated minimization algorithms work signifi-
cantly faster with the new function and the probability of finding the
correct minimum increases likewise. However this cannot be carried
on to the real data, as their accuracy is not high enough.

8.2 FUTURE WORK

There are various approaches that could help to improve the multi-
path correction. As the demodulation is very sensitive to inaccurate
values, a better camera calibration would most likely improve the re-
sults, but as there is a theoretical limit, there is no chance to improve
the captured data so far that a correct demodulation can be guaran-

71



72

CONCLUSION FUTURE WORK

teed in all cases. The only way to improve the robustness would be, to
measure the scene with a higher number of frequencies. This would
make the optimization more difficult, but would certainly increase its
stability. The newly proposed minimization function could also be
extended to work with more components.

However, using more frequencies makes the image acquisition more
complex and time demanding. Furthermore, there are also other
multi-frequency methods that use four or five measurements and are
either faster to compute or lead to better results. This raises the ques-
tion, whether the method implemented in this thesis would benefit
enough from more frequencies to surpass the other methods.



APPENDIX

SUM OF TWO SINUS FUNCTIONS

wy (t) = agsin (t — ¢o)
w1 (i’) = K sin (t — (Pl)
Wy (1) = agsin (f — @o) + a1 sin (t — ¢1)

= \/oc% + a2 + 2agaq cos (go — @1) - sin (t + 0)

with § = atant2 (ag sin @g + a1 sin @1, &g cos @ + a1 €os @1)

DEVIATION OF THE MINIMIZATION FUNCTION

The error function for numerical minimization is:

2
f(ag, a1, 0, 11) = Z <w (¢) — (%zxo -cos (10 — @) + %ocl -cos (1 — (p)>)

peP
1 1 2
+ (w’(qo)— (imo-cos(Z-To—go)aLszl~cos(2~71 —q))))

with the 8 constants (w (¢o),...,w (¢3), w' (¢o),...,w (¢3).
The derivation of this function is:

f(“o/“l/TOITl) = Z Tg +T12
pelP

1 1
To=w(p)— (5“0 ~cos (9 — @) + 51 - cos (1 — <P))

1 1
T =w (¢) — (an-cos(2~rofgo)+§a1~cos(2-717(p))

of _ y 2 (—%cos(To—fP)'To) +2 (—%COS(ZTo—fP)'Tl)

%o pelP

=) —cos(rp—¢)-To—cos (29— ¢) - Ty
gelP

of _ Yy 2 <*%COS(T1 *fP)'To) +2 (*%COSQTl *‘P)'T1)

! pelP

=) —cos(t—¢) -Tg—cos (21 —¢)- Ty
pelP
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o _ ) 2(—%a0~—sin(ro—(p)-To> —|—2(—%zxo-—sin(ZTo—gv)Q-Tl)

T gl

= Z ag - sin (19 — @) - To + 29 - sin (279 — @) - Ty
pelP

o _ ) 2(—%&1-—Sin(rl—(p)-To) +2(—%le-—sin(ZTl—q))-ZTl)

T pelP

=Y ap-sin(n — @) To+2a-sin(2 — ¢) - Ty
pelP

OPTIMAL AMPLITUDE FUNCTIONS

Unfortunately the optimal amplitude functions are far to long as that
they could be printed in the normal mathematical notation; instead

we show the Python code for the functions.

) (To, Tl)

def a@Fun(p0d, pl, wo, wl):
tau@, taul = po, pl
w0, wol, w2, wO3 = wo
wl0, wll, wl2, wl3 = wl

a=sin(tau0)
b=sin(taul)
c=sin(2x*tau0)
d=sin(2xtaul)

e=cos(tau0)
f=cos(taul)
g=cos (2xtau0)
h=cos(2xtaul)

return - (((gxh+axb+exf)x*d-cxh*x2-c)*wl3+
(cxhxd+g*xh**2+(axb+exf)xh-2xg)xwl2+
((-g*xh-axb-exf)xd+cxh*x2+c)*wll+
(-cxhxd-gxh**2+(-axb-exf)xh+2xg)+wl0+
(cxbxd+g*bxh+axbxx2+exfxb-2xa)+w03+
cxfxd+g*fxh-exbxx2+axfxb-e)*xwd2+
cxbxd-g*bxh-axbxx2-exfxb+2xa)+wO1l+
cxfxd-gxfxh+exbx*x2-axfxb+e)*w00) /(
2xgxCxh+2*axCxb+2xexCxT) xd+(2xg**2-1) xh*x2+

(
(
(
(
(

2xaxgxb+2xexgxf) xh+(2xa*x*2-1) xb*x*x2+2xexaxfxb-g+*x2-a*x*2-2)

X1 (TO/ Tl)

def alFun(p0, pl, wO, wl):
tau@, taul = po, pl
wo0, wol, w02, w3 = w0
wl0, wll, wl2, wl3 = wl
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a=sin(tau0)
b=sin(taul)
c=sin(2xtau0)
d=sin(2xtaul)

e=cos(tau0)
f=cos(taul)
g=cos (2xtau0)
h=cos(2xtaul)

return (((gx*x2+1)*d-g*xcxh-axcxb-excxf)+wl3+
(-gxcxd+(2-g**2)xh-axgxb-exg+f)*xwl2+
((-g**2-1)*xd+g*cxh+axcxb+exc*f)*xwll+
(g*xcxd+(g**2-2)xh+axgxb+exg*f)*xwl0+
(-axcxd-axgxh+(2-a*x*2)xb-exaxf)*xwO3+
(-excxd-exgxh-exaxb+(ax*x2+1) *f) w02+
(axcxd+axgxh+(a*x*2-2) xb+exaxf)xwO1l+
(excxd+exgxh+exaxb+(-ax*2-1)*f)*w00)/(
(2xgxcxh+2*xaxcxb+2xexcxf)xd+ (2xgx*x2-1) xh**x2+
(2xaxgxb+2xexg*f)xh+(2xax*2-1) xb*xx2+2xexaxfxb-gx*x2-ax*x2-2)

DERIVATION OF THE ERROR FUNCTION

Calculating the derivations of f; is in one way easier, as we now have
only two dimensions, but on the other hand we need the derivations
of &g and &1, which are again only given as Python code.

an,
T

def a@tau@Fun(p0®, pl, wo, wl):
tau@, taul = po, pl
w0, wol, w02, wO3
wle, wll, wl2, wl3

wo
wl

a=sin(tau0)
b=sin(taul)
c=sin(2xtau0)
d=sin(2xtaul)

e=cos(tau0)
f=cos(taul)
g=cos (2*tau0)
h=cos(2xtaul)

return (((-4xcx*2xh+4xg*x2xh+2xexcxb+4xaxgxb-2xaxcxf+4xexg*f)x*
d-8xgxCxh*x2+( -4xaxcxb+2xexgxb-4xexcxf-2xaxg*T)xh+4x
exaxbx*x2-2xaxx2xfxb+2xex*x2xFxb+4xgxC-2xexa)*(
( (gxh+axb+exf)*d-cxh**2-c)*wl3+
(cxhxd+gxh*x2+ (axb+exf)xh-2xg)*xwl2+
(-gxh-axb-exf)*xd+cxh**x2+c)*xwll+
-cxhxd-g*xh*x2+(-axb-exf)xh+2xg) *wl0O+
cxbxd+g*bxh+axbxx2+exfxb-2xa)+w03+
cxfxd+g*fxh-exbxx2+axfxb-e)*xwd2+

(
(
(
(
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(-cxbxd-gxbxh-axbx*2-exfxb+2*a)*wOl+
(-cxfxd-gxfxh+exbx*x2-axfxb+e)*xw00) )/ ((
(2xg*xcxh+2xaxcxb+2xexcxf)xd+ (2xgx*x2-1) xh**x2+
(2xaxgxb+2xexgxf)xh+(2xax*2-1)xb**x2+2xexaxfxb-g**x2-a*x*2-2)
*x%(2)) - (
((-2*xcxh+exb-axf)*d-2xgxh**2-2xg)*wl3+
(2xgxh*d-2xcxh**2+(exb-axf)xh+4xc)*xwl2+
((2*xcxh-exb+axf)xd+2xgxh*x2+2xg) *wll+
(-2xgxh*d+2xcxh*x2+(a*f-exb)xh-4%c)*wl0+
2xg*bxd-2xcxbxh+exbxx2-axfxb-2xe)xwO3+
2xg*fxd-2xcxfxh+axbxx2+exfxb+a) xw02+
-2xgxbxd+2*cxbxh-exbxx2+a*xfxb+2xe) xwO1l+
-2xgxfxd+2xcxfxh-axbxx2-exfxb-a)*w00) / (
2xgkCxh+2xa*xCckb+2xexCxf) xd+(2+g**2-1) xh**x2+
2xaxgxb+2xexgxT) xh+(2xa*x*2-1) xb**x2+2xexaxTxb-gx*x2-a*x*x2-2)

—_ e~ o~~~ ~

aﬂéo
5!

def abtaulFun(p0, pl, w0, wl):
tau0, taul = pO, pl

wo0, wol, w02, w03
wl0, wll, wl2, wl3

w0
wl

a=sin(tau0)
b=sin(taul)
c=sin(2xtau0)
d=sin(2xtaul)

e=cos(tau0)
f=cos(taul)
g=cos (2xtau0)
h=cos(2*taul)

return ((dx(-4xg+cxd-2xexcxb+2*axcxf) -4 (2xg**2-1)*xh*d-2x*

(2xaxgxb+2xexg*f)xd+2xh* (2xg*xCxh+2*xaxcxb+2xexcxf)+
(2xaxg*f-2xexgxb)xh-2xexaxb*xx2+2x (2xa*x*2-1) *xfxb+2xexaxfx*x2 ) (
( (g*xh+axb+exf)*d-cxh*x*2-c)*wl3+
(cxhxd+gxh**2+ (axb+exf)xh-2xg)*xwl2+
((-g*xh-axb-exf)xd+cxhxx2+c)*wll+
(-cxhxd-gxh**x2+(-axb-exf)*xh+2xg)*xwl0+
(cxbxd+gxbxh+axb*x2+exfxb-2xa)*w03+
(cxfxd+gxfxh-exbxx2+axfxb-e)*w02+
(-cxb*xd-g*xbxh-axbx*2-exfxb+2*a)*wOl+
(-cxfxd-gxfxh+exbx*x2-axfxb+e)*xw00) )/ ((
(2xg*xcxh+2xaxcxb+2xexcxf)xd+ (2xgx*x2-1) xh**x2+
(2xaxgxb+2xexgxf)xh+(2xax*2-1)xb**x2+2xexaxfxb-g**x2-a*x*2-2)
*%(2)) - (
(d* (-2xg*d-exb+axf)+4xcxhxd+2xh* (gxh+axb+exf) ) *xwl3+
(-2*xc*xd**2-4xgxh*xd-2x (axb+exf)xd+2xcxh*x*2+(axf-exb)xh)*wl2+
(d* (2xgxd+exb-a*f) -4xcxhxd+2xh*(-g*h-axb-exf))»wll+
(2xcxd*x*2+4xgxh*d-2x (-axb-exf)*d-2*xcxh*x*x2+(exb-a*xf)*xh)*wlo+
(-2xgxb*xd+cxfxd+2xcxbxh+gxfxh-exbxx2+2xaxfxb+ex
fxx2)*wWO3+ (- Cxbxd-2xg*fxd-gxbxh+2xcxfxh-axb**2-2xexfx
b+axf**2)xw02+ (2xgxb*d- cxfxd-2+xCcxbxh-gxfxh+exbxx2-2x
axfxb-exf+x2)*xwOl+ (cxbxd+2xgxfxd+gxbxh-2xcxfxh+ax
bxx2+2xexfxb-a*xfxx2)*w00) / ( (2*¥gxcxh+2xaxcxb+2xexc*f)xd+
(2xg**x2-1) xh*x*x2+ (2xaxg*xb+2xexg*f)xh+(2*xax*2-1) xbxx2+2xexaxfxb
-gkk2-akx*2
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-2)
dag.
T
def altau@Fun(p®, pl, w0, wl):
tau@, taul = p0O, pl
w0, wol, w2, w03 = wo
wl0, wll, wl2, wl3 = wl
a=sin(tau0)
b=sin(taul)
c=sin(2xtau0)
d=sin(2x*taul)
e=cos(tau0)
f=cos(taul)
g=cos (2xtau0)
h=cos(2xtaul)
return ((-4xgxcxd+2*xC**2xh-2*xg**x2xh-excxb-2*xaxgxb+axcxf-2x
ex@kf ) *wl3+ (2xCx*2xd- 2+ gk *2xd+4*xg*Cxh+2*xa*Cxb-exgxb+2xex
cxf+axg*f)xwl2+ (4xgxC*xd-2xCx*x2xh+2xg**x2xh+e*xCxb+2*xa*xg*
b-axcxf+2xexg*f)xWll+ (-2xCkx*x2%d+2*xg**2xd-4*g*Cxh-2*axCx*
b+exgxb-2xexcxf-axg*f)*wl0+(-excxd-2+xaxgxd+2*ax
cxh-exgxh-2xexaxb+ax*2+f-exx2+f)*xwO3+ (axcxd-2xexgx*
d+2xexcxh+axgxh+a*x*x2xb-e*x*x2xb+2xexaxf) *w02+ (excxd+2x*
axgxd-2*xa*xcxh+exgxh+2xexaxb-a*x*x2xf+e*x*x2xf)*xwOl+(-ax
cxd+2xexgxd-2xexcxh-axgxh-a*x*x2xb+ex*x2xb-2xexaxf)*
w00) / ((2xgxCxh+2xaxcxb+2xexc*f)xd+ (2xg*x*x2-1) xh**x2+
(2xaxgxb+2xexg*f)xh+(2+xax*2-1) xbx*x2+2xexaxfxb-gx*x2-axx2-2) - ((
(-4xCx*x2xh+4xg**2xh+2xexCxb+4*xaxgxb-2xaxcxf+4xexgxf)xd-8x*
g*Cxh*xx2+ (-4xaxcxb+2xexgxb-4xexcxf-2xaxgxf)xh+4xexa
*bxx2 - 2xaxx2x Fxb+2xexx2x Fxb+4xg*xC-2xexa) * (
((g**2+1)*xd-g*cxh-axcxb-excxf)xwl3+
(-gxcxd+(2-g**2)xh-axgxb-exg*f)*wl2+
((-g**2-1)*d+g*cxh+axcxb+exc*f)»wll+
(gxcxd+(gx*2-2) xh+axg*b+exg*f)xwl0O+
(-axcxd-axgxh+(2-a*x*2)xb-exaxf)*wO3+
(-excxd-exgxh-exaxb+(ax*2+1)*f)+w02+
(axcxd+axgxh+(a*xx2-2) xb+exaxf)+wO1l+
(excxd+exgxh+exaxb+(-a*x*x2-1)*f)*w00) )/ ((
(2xgxCxh+2xaxCxb+2xexcxf)xd+ (2xgx*x2-1) xh**x2+
(2xaxgxb+2xexg*f)xh+(2+ax*2-1) xbxx2+2xexaxfxb-gx*x2-axx2-2)
*%2)
dag.
T
def altaulFun(p@, pl, w0, wl):
tau0, taul = p0O, pl
w0, wol, w02, w3 = wo
wle, wll, wl2, wl3 = wl
a=sin(tau0)
b=sin(taul)
c=sin(2xtaud)
d=sin(2x*taul)
e=cos(tau0)
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12 f=cos(taul)

13 g=cos(2*tau0)

14 h=cos(2xtaul)

15

16

17 return ((2xgxcxd+2* (g**2+1)*xh+excxb-a*xcxf)*wl3+

18 (-2%(2-g**2)*d-2xg*xcxh+exgxb-axg*xf)*wl2+

19 (-2*gxC*d+2x (-g**2-1) xh-excxb+axcxf)xwll+

20 (-2%(g**2-2)*xd+2xg*cxh-exgxb+axg+f)*wlO+

21 (2xaxg*d-2xaxcxh+exakxb+(2-a*x*2)*f)*xwd3+

22 (2xexg*xd-2xexCcxh- (ax*2+1)xb-exaxf) w02+

23 (-2*axg*d+2xaxcxh-exaxb+(ax*2-2)*f)+wO1l+

24 (-2*xexg*d+2xexcxh- (-a**x2-1)xb+exaxf)*w00)/(

25 (2xgxCxh+2xaxcxb+2xexC*f)xd+ (2xgx*x2-1) xh**x2+

26 (2xaxgxb+2xexg*f)xh+(2xa*xx2-1) xbxx2+2xexaxfxb-gx*x2-axx2-2) - ((
d*

27 (-4xgxcxd-2xexcxb+2xaxc*f) -4x (2xg**x2-1)xh*xd-2*

28 (2xaxgxb+2xexg*f)xd+2xh* (2xg*xcxh+2*xaxcxb+2xexcxf)+

29 (2xaxg*f-2xexgxb)xh-2xexaxb**x2+2x (2xax*2-1) xFxb+2xexaxf**x2)*(

30 ((g**2+1)*d-g*cxh-axcxb-excxf)*wl3+

31 (-g*xcxd+(2-g*x2)xh-axgxb-exgxf)*xwl2+

32 ((-g**2-1)*d+gxcxh+axcxb+excxf)*xwll+

33 (g*xcxd+(g**2-2)xh+axgxb+exg*f)»wlO+

34 (-axcxd-axgxh+(2-a**2)*xb-exaxf)*wd3+

35 (-excxd-exgxh-exaxb+(ax*2+1)xf)*xw02+

36 (axcxd+axgxh+(ax*2-2)xb+exaxf)*xwOl+

37 (excxd+exgxh+exaxb+(-a*x*2-1)*f)*w00) )/ ((

38 (2xgxCxh+2xaxCxb+2xexC*f)xd+ (2xgx*x2-1) xh**x2+

39 (2xaxgxb+2xexg*f)xh+(2*ax*x2-1) xbxx2+2xexaxfxb-gx*x2-axx2-2)
*%2)

With that, we get the Jacobi matrix for our error function with:

fo(on)=Y To+1;
pel

To =w (¢) — (%ao (t0,7) - cos (9 — @) + %Dél (19, 7) - cos (11 — go))

1 1
T =w' () - (5060 (0,71) o8 (2- 7 — @) + 51 (70, 71) - cos (27 — 4’))

9f(0,1) _ Y To- < ( TO’Tl)diO).Cos(rl—(p)—<oc0(ro,r1)%).cos(To—gD))

T pelP
+ To - (a (10, 71) - 8in (T — @)
+ T (— (le (t0,71) %) ccos (2.1 — @) — (zxo (0,71) diro) ~cos(2-19— qo))

+T1- (2 a9 (t0,7)-sin (27 — @)

M ZTo( ( To,mdi).cos(fl_@_(ao(m,n)%).Cosm—sv))

pelP
+ To - (a1 (10, 1) - sin (71 — @)

11 (= (w (mm) 51 ) -cos@om =) = (0 (0m) 7 ) -cos(2: 10— )

+T1-(2 -1 (10,11) -sin(2-19 — 9))
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UNDISTORTION FUNCTION

#compute distorted coordinate
def DistordCoordinates(u, v):

aNU AW N R

O 3

10
11
12

13

14

15
16

17
18

19

# lens intrinsics measured by us

CenterPixel=[1.6582831268049244e+002, 1.3244300024849093e+002]

Focal=[3.4774794698371841e+002, 3.4774794698371841e+002]

Distortion=[ -4.6859880979773544e-001, 2.0101237961910157e-001, 0.,
0., 0.1

x=(u-CenterPixel[0])/Focall[0]
y=(v-CenterPixel[1])/Focal[1l]

r2=(X**2+y**2)

rad_final=1l + r2«Distortion[0] + r2*x*2xDistortion[1]

xUnd=x*xrad_final + Distortion[2]x*(2*x*y) + Distortion[3]*(r2 + 2xx
*%*2)

yUnd=y*xrad_final + Distortion[3]*(2xxxy) + Distortion[2]*(r2 + 2xy
*%2)

uUnd=xUnd * Focal[@]+CenterPixel[0]
vUnd=yUnd * Focal[l]+CenterPixel[1]

return uUnd, vUnd

SCRIPTS AND MATERIALS

The demodulation and analysis scripts that were written for this the-
sis are available on the homepage of the Institute for Vision and
Graphics. The package also includes the camera data that can be
used to reproduce the result that are shown in this thesis.
http://www.cg.informatik.uni-siegen.de/en/publications
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