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Applications in computer graphics and geometric modeling generally require the integration
of a variety of curve and surface types into a single system. Object-oriented design offers
the opportunity to use the inherent hierarchical structure of curves and surfaces to solve
this problem. This paper presents a top down approach to the design of an object-oriented
framework for curves and surfaces together with its C++ implementation. We start from an
abstract class of general differentiable curves and surfaces and in turn refine this design
to various parametric representations of curves and surfaces. This design includes all of the
standard curve and surface types and provides a powerful and uniform interface for applications.
Examples from differential geometry, blending, and scattered data interpolation illustrate the
approach.

1 Introduction

In this paper we present a top down approach to the design of an object-oriented frame-
work for curves and surfaces together with its C++ implementation. We start from an
abstract class of general differentiable curves and surfaces and in turn refine this design
to various parametric representations of curves and surfaces [19, 25]. This design includes
all of the standard curve and surface types, and provides a powerful and uniform interface
for applications.

In Section 2 we present our approach to order the types of curves and surfaces into a
hierarchical structure and review implementation features and selected curve and surface
classes.

The main issue is to extract the operations that identify a certain class of curve and
surface representations and set them apart from objects of other classes. This hierarchical
structure serves as a reference for the derivation of a set of C++ classes implementing
this hierarchy.

To an application programmer, this derived class hierarchy offers a unified view onto
the various types of curves and surfaces representations. One only needs to know about
the methods offered by the abstract classes and not about their internal implementation
in derived classes.

Even more important in a research environment is our design decision to already supply
most functionality at the abstract level by resorting to numerical techniques. As a result,
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a new curve or surface representation only requires to implement a method for point
evaluation, and all other functionality is provided through numerical approximations in
the abstract classes. Another benefit is the reuse of code in the class hierarchy, since similar
functionality of certain curve and surface representations is already provided through
common base classes (e.g. management of control points, operations on the parameter
region, etc.).

The presented object-oriented framework is supposed to support a wide range of appli-
cations. Some examples are given in Section 3 which illustrate the power of this approach.
These examples include visualization of differential geometry properties, the design of
blending surfaces, and scattered data interpolation. In Section 4 the experience with this
object-oriented approach is summarized and extensions and further research areas are
discussed.

2 Design

We start with a general overview of curves and surfaces and explain how they can be
grouped into a hierarchical scheme. We use this scheme as a guideline for the implemen-
tation of a set of abstract C++ classes. These abstract classes are used to derive the
classes for concrete curve and surface types like a B-spline curve or a specific tensor-
product patch.

2.1 Overview

An overview of our class hierarchy is shown in Figure 1. The important abstract classes
together with some classes of special curve or surface types are given. Some less important
classes have been removed from this figure to clarify the approach. Solid arrows mark
derivations from super class to subclass. Dotted arrows mark classes that take a references
to other classes, which either implement certain parts of this object (e.g. ParameterRegion
for a surface) or which specify the class of objects that this class can operate on (e.g.
CompositeCurve has ParamCurves as sub-curves).

The whole framework is implemented in C++ [5, 24], which enables an efficient and
easy translation of our theoretical results to program code. At this point C++ is used
almost exclusively for all projects within our group.

In the following subsections we present the more important classes of the hierarchical
structure for curves and surfaces. For each class we describe the concepts implemented
by this class and the set of methods providing this functionality.

Additionally, we identify those basic methods which must be implemented by all derived
classes and those which may be implemented in the base class using the provided numerical
methods.

2.2 Parameterized Curves

A parameterized curve C is a mapping of an interval I to R®. This type of curve is so
common in computer graphics that a class is certainly required. In our framework this
class is called ParamCurve. The most fundamental methods for this type of curves are to
obtain the parameter range I and to evaluate the curve at a given parameter ¢t € [ to
derive a point C(t) on the curve.

Applications in Computer Aided Geometric Design (CAGD) and other areas often
require methods to obtain the derivatives C”(t), curvature, torsion, arc length or the Frenét
Frame at a given parameter value ¢t. These methods can be implemented numerically, using
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Figure 1: Schematic view of the class hierarchy. Ovals indicate abstract classes,
rectangles actual implementations, solid arrows derivation in the class hierarchy,
and dotted arrows references between related classes.

only the point evaluation method of the curve.

To offer all this functionality for any curve that at least knows how to evaluate a point
C(t), we have chosen to implement this functionality in the abstract class ParamCurve.
At this level the methods use numerical approximation techniques, to obtain results for
a general differentiable curve. If a subclass of a curve provides more accurate or faster
algorithms to obtain these results, then the methods can always be overridden.

This implementation on the abstract level frees the programmer of a new curve class
from the burden to implement all these probably difficult algorithms and instead rely on
numerical approximation. Other algorithms can then be substituted at a later stage of
the design process.

Since we want to visualize the curve, we need a way to output the curve to a graphics
display. We have therefore implemented a method to generate a piecewise linear approxi-
mation. The accuracy, that should be met by the approximation, is specified by the user
or the application program. This accuracy description is a separate class, with methods to
query for criteria like flatness’, number of segments, etc., whichever is more appropriate
for the given curve or surface type. Again a default implementation is provided by the
ParamCurve class.

2.3 Vertex Curves

In CAGD many of the standard curve schemes are based on geometric control points.
The shape of the curve is then derived from these control points by approximation or
interpolation techniques. This common property of many curve types motivates another
abstract class derived from ParamCurve, called VertexCurve.

This class handles methods like management and user interaction of the control points
already on the abstract level. Thus instantiations like Bézier- or Lagrange curves do not
need to handle those operations explicitly. Of course, if there are special needs which
are not covered by the abstract methods, they can be met by overriding the appropriate
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methods. Only the specific algorithm to calculate a point on the curve using the control
points needs to be implemented for these derived classes.

The set of control points is implemented as an object of a separate class, which is then
referenced in the curve classes. Many curves also need a set of knot values (e.g. B-spline-,
Lagrange curves), which is implemented in the same way. Because the class of control
vertices or knot values is itself derived from ParamCurve, it shares all its functionality.
This includes output, user interaction, and subdivision.

The method to obtain a linear approximation of a curve is overridden for many vertex
curves. Instead of using the point evaluation method to obtain enough points on the curve
for an approximation, we use the more efficient (recursive) subdivision schemes, which are
available for many types of vertex curves.

2.4 Meta Objects

The application programmer who wants to use this framework often has many additional
methods which he would like to implement for all surfaces. Changing the abstract classes
in the framework might not be the best way to do this, due to a probable inflation of
methods. Instead we have chosen to implement this functionality using classes of meta
object (not to be confused with other definitions associated with the term “meta” in
object-oriented languages). Instead of having their own representation of geometry, they
derive their geometry from objects of other classes.

There is a large set of classes for meta objects, which reference other curves or surfaces
and visualize their properties. For instance the class CurvaturePlot is a planar curve
that plots the curvature of another curve over its arc length. Since CurvaturePlot is itself
derived from ParamCurve any method of this class also works on it. Thus a CurvaturePlot
applied to a CurvaturePlot is easy.

Another example for meta objects is the following: We could have implemented a
method that returns the derivative of the curve A over the whole parameter range as
another curve object. Instead, we have used a meta object: A new meta object B (of
class Hodograph in this case) is instantiated with a reference to the curve A. Whenever a
point of this curve B is queried, it queries curve A for the derivative and returns it. Thus
hodographs [7, 10] are available for any curve type. Other functionality like offset curves
are implemented using the same technique.

An alternative design to meta objects would have been the use of action tables [23]. This
design allows a more general extension of arbitrary classes. Since this is not required in
our case, we found that our concept of meta objects provides so much flexibility and func-
tionality — while being simple and quick to implement — that we have used it throughout
the framework.

2.5 Parameterized Surfaces

Parameterized surfaces are a bit more difficult and interesting. They are mappings from
a subset D C R? to R3. They are implemented in the class ParamSurface. All methods
relying on evaluating the surface at a single point are nearly identical to the curve methods,
except that we now have to calculate partial derivatives, etc.. Problems arise when a non-
local method needs to be applied to a surface (e.g. triangulation), since the method needs
knowledge about the whole parameter region over which the surface is defined. This is
more difficult than in the one dimensional case.

Again the most fundamental method is to obtain a point on the surface correspond-
ing to a parameter value u € D. As in the curve class all the other local methods are
implemented at the abstract level in the class hierarchy as numerical approximations us-
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ing point evaluation. These methods include calculation of partial derivatives and cross
derivatives, normal vectors, Gaussian-, minimal and maximal curvatures, and the Funda-
mental Forms [4, 8] of the surface. This functionality is offered for any derived class, but
can again be overridden, if better algorithms are available for a specific type of surface.

2.6 Vertex Surface

Similar to curves, a large group of surface types use geometric control points to specify
the geometry of a surface, which is adequately reflected as a separate abstract class called
VertexSurface. But as for the parameter region, management of control points is more
difficult for surfaces than for curves, due to the non-linear arrangement of the control ver-
tices. Common arrangements form regular rectangular or triangular meshes, but arbitrary
triangulations are also available.

Our implementation of this concept in an abstract class offers only linear access to the
set of control vertices. This normally suffices to implement user interaction and other
general operations, as we can access any set of control points regardless of their topology.
The classes for the other topologies are derived from this class and offer different access
methods and storage implementations to efficiently implement special arrangements.

Special instantiations of these surface types are tensor-product surfaces, triangular
Bézier patches [6], and multivariate B-splines [9]. Again, we benefit from our hierarchical
class structure, since for a new derived class only the point evaluation method must be
implemented. All other functionality is already provided by the base classes.

2.7 Parameter Region

Non-local operations require knowledge about the domain of the surface. The problem is
that the domain region is not a one-dimensional interval, but a region in two dimensions
that could be non-connected and bounded by free-form curves. This is often the case for
trimmed free-form surface.

In order to solve this problem, the concept of a parameter region is implemented in an
abstract class ParamRegion. This class can be queried for such information as point in
region, the border as a set of bounding curves, a 2D-bounding box, etc..

The region can also return a tessellation of itself. The tessellation can either be a
simpler representation (bounded by piecewise linear curves) or a set of triangles. This
offers support for many standard algorithms. Note, that this tessellation method does
not know about the surface but only operates on the parameter region. Similar meshing
methods are implemented for surfaces, which then have access to the surface properties
to obtain an adaptive tessellation, e.g. based on the surface curvature.

In this section we have outlined our framework for curves and surfaces, its most impor-
tant concepts, and their implementation as C++ classes. From these many other classes
have been derived which either implement special curve and surface representations or
which - as meta objects - operate on other geometric objects. Several advanced algorithms
for tesselating parameter regions and surfaces have also been implemented.

3 Applications

In this section we illustrate the benefits of this object-oriented framework for three dif-
ferent applications:

For the visualization of concepts from differential geometry we have implemented several
classes of meta objects. They allow the calculation of curvature and torsion for a curve
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as well as mean and Gaussian curvature for a surface. This enables the user to create
curvature plots, lines of curvature, etc., thus supplying tools for quality control of curves
and surfaces.

The second application is the construction of blend-surfaces through variational design.
In this case we use the framework to obtain informations about the boundary conditions
for a new blending surface. Given the position and cross derivatives at the boundary, we
generate a smooth blending surface. The tools developed for the first application can be
used for visualizing the smoothness of the resulting surface and thus determine its quality.

The last application illustrates how the framework can help designing new surface
schemes for scattered data interpolation. The problem is to find a smooth surface inter-
polating a given set of unorganized points. Again, the visualization of the smoothness of
the interpolating surface is vital for the development of good algorithms.

The hierarchical structure of curve and surface representations in our framework allows
us to apply nearly all operations of these applications to any curve or surface. As a result
implementing the applications was greatly simplified, because the algorithms need not
deal with many special cases, as they were already handled in the specific methods of the
framework (e.g. derivatives near the boundary of a surface).

Figure 2: Visualizing differential geometry: A helix with a curvature circle, a Frenét
frame, and a section of the torsion cylinder

3.1 Application 1: Visualizing Differential Geometry

Some properties of curves and surfaces can be visualized through appropriate geometric
primitives. For instance, the curvature x of a curve at a given point can be visualized
by displaying a curvature circle, also called the osculating circle. This circle lies in the
osculating plane spanned by the tangent ¢ and the main normal n and has the radius %

In an similar way we visualize the torsion 7 of a curve by a cylinder through the point
on the surface and with axis parallel to the binormal and having radius 1 (Figure 2).
Animating the curvature circle, the torsion cylinder, and the Frenét frame along the
curve results in a method for displaying their variation.

A simple and convenient method for displaying the variation of the scalar curvature
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and torsion values is by means of a color-coded map. Another method for displaying the
curvature is through curvature plots. The curvature plot is a two dimensional graph which
plots the curvature as a function of the arc length of the curve. For surfaces, sectional
curvature may again be visualized through curvature circles.

The variation of the scalar-valued Gaussian- and mean curvature, as well as minimal
and maximal curvature over the surface can be visualized by means of a color-coded map
(Figure 3). There are several other elaborated techniques which produce good results
12, 8].

i
N4 \\

A

~.

Figure 3: A B-spline surface with imposed color-coded Gauss-curvature

An informative method for analyzing the variation of the principal directions across
the surface is to incorporate a family of lines of curvature [2] into the display. A line of
curvature is a curve on the surface whose tangent direction at each point coincides with
one of the principal directions (Figure 4).

The framework has proven to support this kind of application very well, because it is
very simple to create various kinds of meta objects for visualizing different aspects of any
of the supported surface representations.

3.2 Application 2: Constructing Blending Surfaces

Another application that uses this framework is the construction and visualization of
blending surfaces. Given two primary surfaces the problem is to construct a smooth
transitional surface. Such a surface is called a blend surface. Our method [14, 15, 16] is
based on a variational principle or an optimization problem. These methods have become
quite popular in recent years in different areas in computer graphics [21, 22, 26]. The main
idea to construct the blend surface is as follows:

e [t gives a smooth transition to the primary surface at the boundaries, and
e a fairing functional, which somehow measures total mean curvature, is minimized.

The boundary curves and the derivatives along those curves are given by special curve
objects, which live on each of the primary surfaces. They describe the geometry of the
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Figure 4: A Bézier surface with curvature lines visualizing the direction of minimum
and maximum curvature at each point along the curve

problem completely and together with the functional ensure a unique solution to the
blending problem.

So far this method has been implemented for tensor product B-spline surfaces (TPS).
For two primary TPS and specified boundaries (which are B-spline curves), a TPS is
constructed such that it meets the primary surfaces at the boundaries. In addition, the
cross-boundary derivatives of blend surface and a primary surface coincide at the boundary
where they meet. The fairing functional J which will be minimized is of the form [17]

0*S; aﬁSi
J(F) = /Q Z wiaﬁW(av)g

iaf

where « and § are multi-indices of order < 2 , and S; (i = 1,2,3), denote z- y- and
z component of the surface S. The weight functions w;,s depend on the geometry of
the region to be blended and are chosen via a parameter transformation between the
parameter space of the TPS (rectangle) and a more natural parameter space. This has the
effect, that the fairing functional .J is a good approximation for the total mean curvature
(in mean square sense). The details are given in [15].

The implementation of the blending operation relies on a set of classes that describe
the boundary curves and the derivatives along those curves.

The boundary curves all lie on the blended surfaces. So they are implemented using
curves that map a parameter interval to the two dimensional parameter region of the
surface. This is the same technique which is used for trimming curves of parametric
surfaces. This class SurfaceCurve for curves on surfaces offers additional methods to
calculate derivatives of the surface along the curve. A SurfaceCurve object can be queried
for a derivative and will return a new object of a class derived from SurfaceCurve called
SurfaceDeriv. Evaluating a point on this curve results is the requested derivative.

Encapsulating the derivatives in another object allows us to trade accuracy for speed
without changing any other algorithm in the framework: The class SurfaceDeriv can
query the surface for derivatives at a few points and can then use interpolation to obtain
intermediate results, which can result in large speedups. All this is invisible to the blending
algorithm using this object.
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Figure 5: Two blend surfaces and their curvature plots

An example of a blending surface and its curvature distribution is given in (Figure 5).
On the upper left side two primary surfaces (green) and the blend surface(red). On the
upper right side the same setting with a curvature plot for Gaussian curvature for the
blend surface. Below another setting of two primary and one blend surface. In this case
the upper primary surface is an elliptical cylinder.

3.3 Application 3: Minimal Norm Network Interpolants

In various areas of research one is confronted with the problem of scattered data inter-
polation (to reconstruct a scalar valued function F' : Q —R, Q CR? in two variables
knowing its values only at a finite number of points u; € €2, where the points u; do not
have any regular structure). It is generally difficult to ensure a priori that an interpola-
tion scheme produces a surfaces with good overall shape. Therefore curvature plots are
an indispensable tool for judging the overall quality of the resulting shape [18].

One approach to solve this problem is the so-called Minimal Norm Network method
(MNN). This method has several advantages: it can be used on non-convex domains €2
and the shape of the interpolant can be controlled in a predictable manner.

The MNN method for constructing an interpolating function consists of three steps (for
more details see [12, 20]):

1. The data points are used to construct a triangulation of the domain €). Since thin
triangles are not desired for numerical reasons, we usually take the well known
Delaunay triangulation [11].

2. A curve network whose domain is the union of all edges of the triangulation is
uniquely defined as follows: The single curves must meet with a certain degree of
continuity. Furthermore, we choose among all these network functions those whose
norm with respect to a given functional is minimal. The functionals are usually of
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where the triangulation 7" is defined as a set of edges {e}.

3. The network is extended to the interior of each triangle by means of a triangular
interpolant. For each vertex in the considered triangle, one patch is defined by in-
terpolating the function values and derivatives in this vertex and along its opposite
edge. The final triangular interpolant is obtained by a convex combination of these
three patches.

A first preliminary implementation of this scheme showed quite good results as far as
mean and maximum errors were concerned. However, after the scheme was introduced
into this framework and analyzed using the tools for visualizing the curvature of the
interpolating surfaces, the quality of curvature plots turned out to be quite poor. Thus,
the visualization of curvature inspired us to do further investigation. This finally led to an
improved MNN-interpolation scheme [20] with significantly better curvature distribution
(Figure 6).
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Figure 6: A curvature plot the original surface, the curve network, the MNN inter-
polant, and its curvature plot
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4 Conclusion and Further Work

We have presented a top-down approach to the design of an object-oriented framework
for parametric curves and surfaces. Only the most fundamental method, point evaluation,
must be supplied in order to integrate a new type of curve or surface into the scheme. All
other methods are already implemented in abstract base classes. Thus the programmer
is free to experiment without worrying about details such as implementing derivatives or
similar operations, but still has the ability to use better methods as they become available.

A complete set of methods for curve and surface design and analysis with support for
blending, scattered data interpolation, differential geometry, tessellation, and display is
provided.

The support for surface manipulation based on differential geometry or other local
operations which do not directly work on control vertices but on the surface itself, have
not been studied [13]. This is certainly a very interesting research area, but it is yet unclear
if and how these operators can be applied to arbitrary abstract surface classes.
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