An Object-Oriented Framework

for Curves and Surfaces
with Applications

Philipp Slusallek, Reinhard Klein, Andreas Kolb, and Gunther Greiner

Abstract. In computer graphics and geometric modeling one gen-
erally faces the problem to integrate a variety of curve and surface
types into a single program. Object-oriented design offers the oppor-
tunity to use the inherent hierarchical structure of curves and sur-
faces to solve this problem. This paper presents an object-oriented
framework together with its C++ implementation that starts from
an abstract class of general differentiable curves and surfaces and
in turn refines this design to various parametric representations of
curves and surfaces. This design includes all of the standard curve
and surface types and provides a powerful and uniform interface for
applications. Examples from differential geometry, and blending il-
lustrate the approach.

§1. Introduction

In this paper we present an object-oriented framework together with its C++
implementation that starts from an abstract class of general differentiable
curves and surfaces and in turn refines this design to various parametric rep-
resentations of curves and surfaces [19, 26]. This design includes all of the
standard curve and surface types and provides a powerful and uniform inter-
face for applications.

In Section 2 after a short introduction into object-oriented design and
classes we present our approach to order the types of curves and surfaces
into a hierarchical structure and review implementation features and selected
curve and surface classes.

Curves and Surfaces II 1
P. J. Laurent, A. Le Méhauté, and L. L. Schumaker (eds.), pp. 1-4.
Copyright 0 1991 by AKPeters, Boston.

ISBN 0-12-XXXX.

All rights of reproduction in any form reserved.

2 Ph. Slusallek, R. Klein, A. Kolb, and G. Greiner

The main issue will be to extract the operations that identify a certain
class of objects and set them apart from objects of other classes. The hierar-
chical structure will serve as a reference for the derivation of the set of C++
classes, which implement this hierarchy. Here, we assume that the reader is
familiar with object-oriented design and C++ in general.

The presented object-oriented framework is supposed to support a wide
range of application programs. Some examples are given in Section 3 which
illustrates the power of this approach. These examples include visualization
of differential geometry properties and the design of blending surfaces.

Section 4 summarizes the achievements of this object-oriented approach
and discusses extensions and further research areas.

§2. Design

We start with a general overview of curves and surfaces and how they can
be grouped into a hierarchical scheme. We will use this scheme to derive an
implementation as a set of abstract C++ classes. These abstract classes are
used to derive the classes of actual curve and surface types like B-spline curve
or a specific tensor-product-patch.

In this paper we restrict ourselves to curves and surfaces in R3, although
most of the presented design also applies to higher dimensions.

Object-Oriented Design and Classes

In object-oriented design the main issue is to identify the operations that can
be applied to a certain class of objects. These operations, often called meth-
ods, describe objects of a class completely, when seen from its environment
— the internal structure is hidden from the user of an object (encapsulation).
A class can be derived from another class, by which it inherits all the meth-
ods from its superclass (inheritance, code sharing). An object of a derived
class can be substituted for one of its super classes and respond to the same
set of methods. In this case derived classes can use a different algorithm to
implement the same method (polymorphism, virtual methods in C++).

The following section describes our approach to apply these design meth-
ods to curves and surfaces. We start with a coarse description of the main
curve classes. The description for curves then easily carries over to surfaces.

Overview

An overview of our class hierarchy is shown in Figure 1. The important
abstract classes together with some classes of special curve or surface types
are given. Some less important classes have been removed from this figure
to clarify the approach. Solid arrows mark derivations from superclass to
subclass. Dotted arrows mark classes that take a references to other classes,
which either implement certain parts of this object (e.g. ParameterRegion
for a surface) or which specify the class of objects that this class can operate
on (e.g. CompositeCurve has ParamCurves as sub curves).

An Object-Oriented Framework for Curves and Surfaces 3

Figure 1. Schematic view of the class hierarchy.

The whole framework is implemented in C++ [5, 25], which enables an
efficient and simple translation of the theoretical results to program code. At
this point C++ is used almost exclusively for all projects within our group.

Parameterized Curves

A parameterized curve is a mapping of an interval I to R3. This type of curves
is so common that a class is certainly required, which we called ParamCurve.
The most fundamental methods for this type of curves are to obtain the
parameter range [and to evaluate the curve at a given parameter t € I to
derive a point C(t) on the curve.

Applications in Computer Aided Geometric Design (CAGD) and other
areas often require methods to obtain the derivatives C"(t), curvature, torsion,
arc length or the Frenét Frame at a given parameter value t. These methods
can be implemented numerically using the point evaluation method of the
curve.

To offer all this functionality for any curve that at least knows how to
evaluate a point C(t), we have chosen to implement this functionality for the
abstract class ParamCurve. At this level the methods use numerical approx-
imation techniques, to obtain results for a general differentiable curve. If a
subclass of a curve provides better or faster algorithms to obtain these results,

4 Ph. Slusallek, R. Klein, A. Kolb, and G. Greiner

then these methods can always be overwritten.

This implementation on the abstract level frees the implementor of a
new curve class from the burden to implement all these probably difficult
algorithms and instead rely on numerical approximation. Other algorithms
could then be substituted at a later stage of the design process.

Since we also want to visualize the curve, we need a way to output the
curve to a graphics display. We have therefore implemented a method to
generate a piecewise linear approximation. The accuracy, that should be met
by the approximation, is specified by the user or the application program. This
accuracy description is a separate class, with methods to query for criteria
like ’flatness’, number of segments, etc., whichever is more appropriate for
the given curve or surface type.

Vertex Curves

In CAGD many of the standard curve schemes are based on geometric control
vertices. The shape of the curve is then derived from these control points by
approximation or interpolation techniques. This common property of many
curve types motivates another abstract class derived from ParamCurve, called
VertexCurve.

This class handles methods like management and user interaction of the
control points already on the abstract level. Thus instantiations like Bézier- or
Lagrange curves do not need to handle those operations explicitly, but could
still do so by overwriting certain methods, if they have special needs that are
not covered by the abstract methods. Only the specific algorithm to calculate
a point on the curve using the control points needs to be implemented for
these derived classes.

Meta Classes

The application programmer that will use this framework often has many
additional methods that he would like to implement for all surfaces. Changing
the framework might not be the best way to do this, due to a probable inflation
of methods. Instead we have chosen to implement this functionality using
meta classes, which operate on objects of other classes.

There is a large set of meta classes, which do not define any actual curves
or surfaces by themselves, but reference other curves or surfaces and visualize
their properties. For instance the class CurvaturePlot is a planar curve
that plots the curvature of the associated curve over its arc length. Since
CurvaturePlot is itself a ParamCurve any method of this class also works on
it. Thus a CurvaturePlot applied to a CurvaturePlot is simple.

We found that this concept of meta classes provides so much flexibility
and functionality — while being simple and quick to implement — that we have
used it throughout the framework.

Parameterized Surfaces

An Object-Oriented Framework for Curves and Surfaces 5

Parameterized surfaces are a bit more difficult and interesting. They are a
mapping of a subset D C R? to R?® and are implemented in a class called
ParamSurface. All methods that evaluate the surface at a single point, or
near a single point for a numerical approximation, are nearly identical to the
curve methods, except that we now have to calculate partial derivatives, etc..
Problems arise when a non-local method needs to be applied to a surface, since
the method needs knowledge about the whole parameter region over which
the surface is defined. This is more difficult than in the one dimensional case.

Again the most fundamental method is to obtain a point on the surface
given its parameter v € D. As in the curve class all the other local methods
are implemented at the abstract level in the class hierarchy as numerical
approximations using point evaluation. These methods include calculation of
partial derivatives and cross derivatives, normal vectors, Gaussian-, minimal
and maximal curvatures, and the Fundamental Forms [4, 8] of the surface.
This functionality is offered for any derived class, but can again be overwritten,
if better algorithms are available for a specific derived class.

Vertex Surface

Again a large set of surface types use geometric control points to specify the
geometry of a surface, which is adequately reflected as a separate abstract
class called VertexSurface. But as with the parameter region, this is more
difficult for surfaces than for curves, due to the non-linear topology of these
control vertices. Common topologies are rectangular, triangular, or regular
triangulations.

Our implementation of this abstract class offers only linear access to the
set of control vertices. This normally suffices to implement user interaction
and other general operations, and we can access any set of control points
regardless of their topology. The classes for the other topologies are derived
from this class and offer other access methods and storage implementations
to efficiently implement special arrangements.

Special instantiations of these surface types are tensor-product surfaces,
triangular Bézier patches [6], and multivariate B-splines [10].

Parameter Region

Non-local operations require knowledge about the domain of the surface. The
problem is that the domain region is not a one-dimensional interval, but a
region in two dimensions that could even be non-connected as is often the
case for a trimmed surface. To make matters worse the region is often quite
complicated and bounded by free-form curves.

In order to solve this problem, we have developed an abstract description
of the parameter region of a surface. This class can be queried for such
information as point in region, the border as a set of bounding curves, a
2D-bounding box, etc..

The region can also return a tessellation of itself. The tessellation can
either be a simpler representation (bounded by piecewise linear curves) or

6 Ph. Slusallek, R. Klein, A. Kolb, and G. Greiner

the region can be tessellated into a set of triangles which offers support for
many standard algorithms. Note that this tessellation does not operate on
the surface but only on the parameter region. Similarly meshing methods are
implemented for surfaces, which then have access to the surface properties to
obtain an adaptive tessellation e.g. based on the surface curvature.

64. Applications

In this section we illustrate the benefits of the above object-oriented approach
by applying our framework to the visualization of differential geometry and
to the construction of blend-surfaces.

Application 1: Visualizing Differential Geometry

The above framework and the available methods to obtain derivatives can be
used to visualize differential geometry properties of curves and surfaces.

The curvature of a curve at a given point can be visualized by displaying
the curvature circle, also called the osculating circle. This circle lies in the
osculating plane spanned by the tangent ¢ and the main normal n and has the
radius % In an analog way we visualize the torsion 7 of a curve by a cylinder
through the point on the surface and with axis parallel to the binormal and
having radius % Animating the curvature circle, the torsion cylinder or the
Frenét frame along the curve results in a method for displaying their variation.

A simple and convenient method for displaying the variation of the scalar
curvature and torsion values is by means of a color-coded map. Another
method for displaying the curvature is through curvature plots. The curvature
plot is a two dimensional graph which plots the curvature over the arc length.

For surfaces, sectional curvature is visualized through curvature circles.
In order to visualize the variation of the curvature as a function of direction
we can also animate these circles.

The variation of the scalar-valued Gaussian- and mean curvature, as well
as minimal and maximal curvature over the surface can again be visualized by
means of a color-coded map. There are several other elaborated techniques
which produce good results [2, 8|.

An informative method for analyzing the variation of the principal di-
rections across the surface is to incorporate a family of lines of curvature [2]
into the display. A line of curvature is a curve on the surface whose tangent
direction at each point coincides with one of the principal directions.

Application 2: Constructing Blending Surfaces

Another application that uses this framework is the construction and visu-
alization of blending surfaces. Given two primary surfaces the problem is
to construct a smooth transitional surface. Such a surface is called a blend
surface. Our method [15, 16, 17] is based on a variational principle or an
optimization problem. These methods have become quite popular in recent
years in different areas in computer graphics [22, 23, 27]. The main idea to
construct the blend surface is as follows:

An Object-Oriented Framework for Curves and Surfaces 7

1. Tt gives a smooth transition to the primary surface at the boundaries,
2. a fairing functional, which somehow measures total mean curvature, is
minimized.

The boundary curves and the derivatives along those curves are given by
special curve objects, that live on each of the blended surfaces. They describe
the geometry of the problem completely and together with the functional
ensure a unique solution to the blending problem.

So far this method has been implemented for tensor product B-spline
surfaces (TPS). For two primary TPS and specified boundaries (which are B-
spline curves), a TPS is constructed such that it meets the primary surfaces at
the boundaries. In addition, the cross-boundary derivatives of blend surface
and a primary surface coincide at the boundary where they meet. The fairing
functional J which will be minimized is of the form

/Z 8 S 9P S,
Wﬁ 31))

where « and (3 are multi-indices of order < 2 , and S; (i = 1,2,3), denote
x- y- and z component of the surface S. The weight functions w;,s depend
on the geometry of the region to be blended and are chosen via a parameter
transformation between the parameter space of the TPS (rectangle) and a
more natural parameter space. This has the effect, that the fairing functional
J is a good approximation for the total mean curvature (in mean square
sense). The details are given in [17].

Since the fairing functional is quadratic, the problem reduces to a least
square problem for the (inner) control points of the blend surface. Thus the
control points of the blend surface are obtained as the solution of a linear
system. An example of a blending surface and its curvature distribution is
given in Figure 2.

The implementation of the blending operation relies on a set of classes
that describe the boundary curves and the derivatives along those curves.

The boundary curves all lie on the blended surfaces. So they are imple-
mented using curves that map a parameter interval to the two dimensional
parameter region of the surface. This is the same technique that is used for
trimming curves of parametric surfaces. This class SurfaceCurve of curves on
surfaces has additional methods to calculate derivatives of the surface along
the curve. A SurfaceCurve object can be queried for a derivative and will re-
turn a new object of a class derived from SurfaceCurve called SurfaceDeriv.
Evaluating a point on this curve results is the requested derivative.

Encapsulating the derivatives in another object allows us to trade accu-
racy for speed without changing any other algorithm in the framework. The
class SurfaceDeriv can query the surface for derivatives at a few points and
can then use interpolation to obtain intermediate results, which can result in
large speedups. But all this is invisible to the blending algorithm using this
object.

8 Ph. Slusallek, R. Klein, A. Kolb, and G. Greiner

Figure 2. A blending surface and its curvature plot

§5. Conclusion and Further Work

We have presented an object-oriented framework for applications that work on
parametric curves and surfaces. Only the most fundamental method, point
evaluation, must be supplied in order to integrate a general new curve or
surface into the scheme. All the other methods are already implemented
in abstract base classes. Thus the programmer is free to experiment without
worrying about details such as implementing derivatives or similar operations,
but still has the ability to use better methods as they become available.

A complete set of methods for curve and surface analysis with support
for blending of arbitrary surfaces, differential geometry, scattered data inter-
polation, tessellation, display, and user interaction is provided.

The support for surface manipulation based on differential geometry or
other local operations that do not directly work on control vertices but on
the surface itself, have not been studied. This is certainly a very interesting
research area, but it is yet unclear if and how these operators can be applied
to arbitrary abstract surface classes.

References

1. Bartels, R. H., J. C. Beatty, and B. A. Barsky, An Introduction to Splines
for Use in Computer Graphics and Geometric Modelling, Morgan Kauf-
man Publisher, 1987.

2. Beck, J., R. Farouki, and J. Hinds, Surface analysis methods, Computer
Graphics & Applications 12 (1986), 18-38.

3. Bloomenthal, J., Polygonization for implicit surfaces, Computer Aided
Geometric Design 5 (1988), 341-355.

4. do Carmo, M. P., Differential Geometry of Curves and Surfaces, Prentice
Hall, Englewood Cliffs, N.J., 1976.

5. Ellis M. A., and B. Stroustrup, The Annotated C++ Reference Manual,
Addison Wesley, 1990.

6. Farin, G. E., Triangular Bernstein—Bézier patches, Computer Aided Ge-
ometric Design 3 (1986), 83-127.

7. Farin, G. E., Curves and Surfaces for Computer Aided Geometric Design,
Academic Press, New York, 2. edition, 1990.

8. Farouki, R. T., Graphical methods for surface differential geometry, in
The Mathematics of Surfaces II, Martin, R. R. (ed.), Oxford Science
Publications, Oxford, 1987, 363—-385.

9. A. Forrest. Interactive interpolation and approximation by Bézier poly-
nomials, Computer Journal 15 (1972), 71-79.

10. Fong, Ph., and H.-P. Seidel, An implementation of triangular B-spline
surfaces over arbitrary triangulations Computer Aided Geometric Design
10 (1993), 267-275.

An Object-Oriented Framework for Curves and Surfaces 9

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Fortune, S., Voronoi Diagrams and Delaunay triangulations, in Comput-
ing in Euclidean Geometry, D. Z. Du, F.Hwang (eds.), World Scientific
Publ., 1992, 193-223.

Franke, R., and G. Nielson, Scattered data interpolation: A tutorial and
survey, in Geometric Modelling: Methods and Applications, H. Hagen,
D. Roller (eds.), Springer Verlag, New York, 1991, 131-160.

Georgiades, P. N., and D. P. Greenberg, Locally manipulating the ge-
ometry of curved surfaces. Computer Graphics & Applications 1 (1992),
54-64.

Gregory, J., Smooth interpolation without twist constraints, Computer
Aided Geometric Design, R. Barnhill and W. Riesenfeld (eds.), Academic
Press, New York, 1974.

Greiner, G., Blending Techniques based on variational principles, in Cur-
ves and Surfaces in Computer Vision and Graphics 111, J. Warren (ed.),
Proc. SPIE 1830, 1992, 174-184.

Greiner, G, and H.-P. Seidel, Curvature continuous blend surfaces, in
Modeling in Computer Graphics, B. Falcidieno, T. L. Kunii (eds.), Sprin-
ger Verlag, 1993, 309-317.

Greiner, G., Surface constructions based on variational principles, sub-
mitted to Curves and Surfaces II P.-J. Laurent, A. Le Méhauté, and L.
L. Schumaker (eds.), Chamonix, 1993.

Kallay, M., Constrained optimization in surface design, in Modeling in
Computer Graphics, B. Falcidieno, T. L. Kunii (eds.), Springer Verlag,
1993, 85-94.

Klein, R., Ph. Slusallek, An Object-Oriented Framework for Curves and
Surfaces, in Curves and Surfaces in Computer Vision and Graphics III,
J. Warren (ed.), Proc. SPIE 1830, 1992, 284-295.

Klass, R., Correction of local surface irregularities using reflection lines.
Computer Aided Design 2 (1980), 73-76.

Kolb, A., Interpolating scattered data with C? surfaces, preprint, Uni-
versitat Erlangen, 1993.

Lounsbery, M., S. Mann, S. and T. deRose, Parametric Surface Interpo-
lation, Computer Graphics & Applications 9, 1992, 97-115.

Moreton, H. P., and C. H. Séquin, Functional optimization for fair surface
design, in Computer Graphics, E. E. Catmull (ed.), ACM Siggraph, ACM
Press, 1992, 167-176.

Schumaker, L. L., Triangulation in CAGD, Computer Graphics & Appli-
cations 13, 1993, 47-52.

Stroustrup, B., The C++ Programming Language, Addison Wesley, 2.
edition, 1991.

Vermeulen A. H., and R. H. Bartels, C4++ spline classes for prototyping,
in Curves and Surfaces in Computer Graphics II, J. D. Warren (ed.),
Proc. SPIE 1830, 1991, 121-131.

Welch, W., and A. Witkin, Variational surface modeling, in Computer
Graphics, E. E Catmull (ed.), ACM Siggraph, ACM Press, 1992, 157-
166.

10

Ph. Slusallek, R. Klein, A. Kolb, and G. Greiner

Philipp Slusallek

Andreas Kolb

Giinther Greiner

Universiat Erlangen

IMMD IX- Graphische Datenverarbeitung

Am Weichselgarten 9

D-91058 Erlangen, Germany

email: slusallek,kolb,greiner@informatik.uni-erlangen.de

Reinhard Klein

Universitat Tibingen, WSI/GRIS

Auf der Morgenstelle 10, C9

D-72076 Tibingen, Germany

email: reinhard@gris.informatik.uni-tuebingen.de

