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Abstract

A method is presented for interpolating bivariate scattered data based upon a
minimum norm network. This new method is related to G. M. Nielson’s minimum
norm network and to H. Pottmann’s generalization of that method. The shape of the
resulting C? interpolant is controlled parametrically. Examples are given showing how
the surface responds to changes in the control parameter. To illustrate the results,
curvature plots as well as shaded images of the interpolants are given.

Introduction

The problem of interpolating scattered data has been investigated by many authors in recent
years (for an overview: cf. [1], [3], [5] and [8]). In 1983, Nielson introduced a method for
solving this problem based on variational principles, which leads to the minimum norm
network (MNN) (cf. [14]). This approach was later extended using splines under tension
(instead of cubic splines) as basis functions on the edges of a given domain triangulation (cf.
[15]). Both methods yield a C! interpolant. Pottmann developed a method for interpolating
scattered data with C" surfaces (arbitrary r) using a variational principle. The solution gives
not only the function values of the network, but also values of cross-boundary derivatives

(cf. [17)).

Assuming that data points V; = (x;,4;) € Q@ C R?, i € {1,...,n}, and reals z;, i =
1,...,n are given, all of the methods mentioned above consist of three steps:

Step 1: The data points are used to construct a triangulation of the domain 2.

Step 2: A specific variational problem is introduced, whose solution is an interpo-
lating curve network defined over the edges of the triangulation.

Step 3: The network is extended to the interior of the triangles by means of a
triangular interpolant.

In general, it is desirable to have a surface with continuity more than C' and a means of
controlling the geometric properties of that surface. Another point of interest is the quality
of the interpolating surface, e.g. we desire a surface with uniform curvature distribution,
upon which the patch structure of the surface has no disturbing effects. The new variational
principle used in this paper has been chosen with this in mind.



Variational Principles and Minimum Norm Networks

Consider a set of non-collinear vertices V; € Q C R?, ¢ = 1,...,n. We do not deal with
the question of how to triangulate the domain 2. Rather we will take as input a given
triangulation (for methods to construct a triangulation see e.g. [4], [6], [7] and [18]).

In the given triangulation T, we let e;; be the edge between V; and V;. We refer to the
corresponding vector of unit length by e;; , i.e., e; = (V; — Vi)/ |les||, where |le;;]| =
|V; = Vi||. The set E = {ij : e;; is an edge of T, i < j} contains one double index for each
edge. Furthermore, let E; = {j : e;; is an edge of T}. The domain of the curve network is

the union of all edges

In addition, for a vector v € R? of unit length we denote the k-th directional derivative of
- . . . . . k
a bivariate function F' in direction of v by %Tf.

The approach used by Nielson and Franke (cf. [15]) is to minimize

o(F)= 3 /e] {<%>2+0¢?j (gj)Q} de;; (1)
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where de;; is the element of arc length along e;;. The unique solution to this minimization
problem is a piecewise spline under tension, or a piecewise cubic polynomial, in case of
a;; # 0 or oy; = 0, respectively. The parameters «;; are called tension parameters on the
edge e;;. Increasing o;; results in gradual linearization of the network over the corresponding
edge e;;.

Pottmann’s generalized minimum norm network (cf. [17]) is obtain by minimizing
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for some 7. Here n,;; denotes a vector of unit length that is normal to ¢;;. Introducing
cross boundary derivatives into the functional gives information about the form of the
cross boundary derivatives of the unique minimizer along edges. The solution is piecewise
polynomial of degree 2r + 1 with k-th order normal derivatives of degree 2(r — k) + 1. The
parameters 3 control the relation between the different derivatives of the same order. Their
geometric effects on the network are difficult to predict. Note that when r = 1, the network

can not be put under tension, because first order directional derivatives are not considered
in (2).

To formulate the new variational principle, we first define an appropriate set of univariate
functions over an interval I:

H(I) = {f : f" absolutely continuous, f& € L,(I)},

and the corresponding set of network functions

H(E) = {F : F =G| where G € C?(Q), F
£

€H (ez‘j)} : (3)
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We now consider the functional
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€ij €ij

ijeE

We will see that the solution to the corresponding minimization problem can be represented
locally in the form
s(u) = a + bu + cu® + du® + [ + pe ™. (5)

This type of function is known as a generalized spline under tension (for more information
about this type of spline, see [16]). For a given curve network F' € H*(£), we define the
univariate function f;; over the edge e;; to be

Before we can state our main result, we introduce local coordinate systems for each vertex
Vi, i =1,...,n. Since we will have to deal with first and second order directional derivatives,
we have to distinguish between two kinds of vertices. If we find at least three pairwise
linearly independent vectors e;; for j € Ej, we use ordinary Cartesian coordinates (we say,
V; satisfies the three-edge condltlon) Due to F' € H* (£), there exist uniquely determined
first and second order partial derivatives at these vertices. In case we find just two pairwise
linear independent vectors, second order partial derivatives are not unique. In this situation
we choose two linear independent vectors of unit length e;;,, €;,, Jji,J2 € E; as base for
the coordinate system at V;. We use the following notations: Awu;; and Av;; denote the
coordinates of V; — V; with respect to the local coordinate system at V;. F,(V;), F,,(V;) are
partial derivatives of F' at V; also with respect to the local base {u,v} at V;.

Theorem 1. Assume that V;, i < k for some k < n satisfy the three-edge condition,
whereas Vi, i > k do not. Then there exists a unique minimizer S of o* in H*(E) subject to
F(V;) = z;. S is a piecewise generalized spline under tension network, i.e.,

SZ](U) — a'z'j + bUU + C”U, + dz]u + lije’YuHeu”u + ,U/ije 'y”||e”||u’

and satisfies the properties
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(Note: if V; does not satisfy the three-edge condition, either Au;; =0 or Av;; =0Vj € E;.)

Proof. Since we use standard arguments for minimum norm network theorems, we will not
go into many details here (more detailed proofs can be found in [14] and [15]).

First, let us define the inner product for F,G € H*(€) associated with o*

(F|G) 2/6
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We now assume that there exists a piecewise generalized spline under tension network sat-
isfying the interpolation condition and the linear system (6).

For any H € H*(E) subject to H(V;) = Z;,i = 1,...,n, we have 0*(H)—0*(S) = o*(H-S)+
2( S| H—S'). Thus, the minimum property can be established by proving ( S | H—S ) = 0.

By introducing s;; and h;; and using integration by parts, the 1nterpolat10n conditions and
the fact that s;; satisfies the integral equation y® — (v [le;;[)* y™® = 0, we get

(s11-5) = 35 =0 (150 - 500) (7)

= (s llesD” s550) = s 0)) (hiy(0) = ,0)) },

(k) — (k) . -
(note that s;;’ (t) = (—1)*s;;”(1 — t)). Replacing hj;(0) — s};(0) and hf;(0) — s7;(0) with
the first and second order partial derivatives of H — S (with respect to the local coordinate
system) and rearranging (7) appropriately, we find the coefficients of (H—S)y, ..., (H—95)w
to be the left sides of (6). We conclude ( S | H— S ) = 0. Thus, if S exists, it has the

minimum property.

To prove the existence and uniqueness of S, we have to examine the linear system (6). Using
Hermite functions to express the generalized splines under tension s;; and introducing partial
derivatives (with respect to the local bases) yields a (4n+k) x (4n+k) system with the partial
derivatives as unknowns. At vertices V;, 7 > k, we have to determine only two first and two
second order directional derivatives. Assuming that this system is not regular, we can find
a nontrivial solution for the corresponding homogeneous system (i.e., z; =0, i =1,...,n).
Let S denote the uniquely determined generalized spline under tension network associated
with this solution. H = 0 satisfies the interpolating conditions in the homogeneous case.
Thus, we have (S | S) = 0*(S) = 0. This implies that S is piecewise linear (7;; # 0) and
since z; = 0, we conclude S = 0. At vertices Vj;, ¢ < k the two first and three second order
partial derivatives vanish. For ¢ > k£ we consider only directional derivatives along edges,
thus S, (V;) = ... = Spu(V;) = 0,4 = 1,...,n. Since this contradicts the non-triviality of
the solution of the linear system assumed above, S exists and is unique.

If we take a closer look at the functional (1) for the case a;; = 0, Vij € E, we find the
following relationship between the solutions of the minimization problems related to the
functionals o (1) and o* (4).

Corollary 2 Let S, denote the unique solution of the minimization problem connected with



(4), where v = v;;, Vij € € is a global parameter. Then

s, =% s,
uniformly, where S is the unique minimum of o subject to the interpolation problem for
a;; =0, Vij € E (see (1)).
Proof.  Let o} be the functional (4) with the global parameter 7. Since S, uniquely
minimizes o7, we have o(S,) < 7%0;(5’7) < 7%01‘;(5).

We define ( . | . ) to be the inner product related with o. Similarly to the proof of Theorem 1
it can be shown that ( S | Sy —.S ) = 0. Using the minimum property of S for the functional
o, we can state that

o(Sy=5) = a(8)) —a(S) +2(5|5-5;)

1 35\
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Let us define univariate functions fi;,(u) = (S, —S5) ((1 —uw)V; +uVj). Then (8) implies

7 ijeE ¥ €
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Iy ( 1’57(u)) du — 0, if vy = 00. fj, can be expressed as

1
fijn(u) = (1 =) fij1(0) + ufij (1) +/0 K(u,t) f; (1) dt,

where
K (u,t) = { u(t—1), t€lul]

Together with the interpolation properties f;;,(0) = fij,(1) = 0 and the Schwarz inequality
for all u € [0,1] we get

bl < ([ w0 @) ([ ()" )" o)

Since K (u,t) is continuous, there exists a real M such that [} (K (u,t))* dt < M, Yu € [0,1].
This establishes the uniform convergence S, — S. |

Remark 1 The (4n+ k) x (4n+ k) linear system implicitly given by (6) can be solved with
the successive overrelazation-method (SOR). This method is based on the iterative Gauss-
Seidel-algorithm. In any case, our situation requires the use of a block matrix version of
either method, involving explicit inversion of a series of block matrices (5 x 5,7 =1,...,k
and 4 x 4,7 =k +1,...,n). The number of iteration steps can be reduced significantly in
comparison with the ordinary Gauss-Seidel method (cf. [19]).

Remark 2 In Theorem 1 we prove the existence and uniqueness of the interpolating network
in the case that the domain £ of our network is the union of the edges of a given triangulation
in the parameter space 2 C R?. However it can be shown that we get the same results in
the much more general situation

e V,eERY, i=1,...,n,forafixd €N,
e EC{ij:4,j€{1,,...,n},i<j}and E; ={j:ij or jiisin E}, with |F;| > 0 and
e & the union of all edges U{e;; : Vij € E}.



Extension of the Network

Since we want not only to extend the network, but also to transfer the geometric properties
from the network to the resulting surface, we use side-vertex-interpolants on triangles (cf.
[13]). These interpolants are based on univariate Hermite functions.

The usage of these interpolants requires complete information about first and second order
partial derivatives over all three edges of the considered triangle. Since at vertices V;, 1 > k,
we have only two second order directional derivatives, the second partial derivatives are not
uniquely determined. We assume that the two given directions are conjugate directions,
which gives us a full characterization of the curvature and thus of the second partial deriva-

tive in these vertices (cf. [2]). To determine the cross boundary derivative 22, we use the
n;;
unique cubic polynomial that interpolates 2 an and o, ge = a? ( a‘ZS ) at the vertices V;
=i

and Vj. By linearly interpolating the second dlrectlonal derlvates 6—; we obtain complete
n?;

information about all derivatives along the edge e;;.

Consider the nondegenerate triangle T" with vertices Vi, Vs, V5. Every point P € R? can
be uniquely expressed in barycentric coordinates by, by, b3 with respect to Vi, Vo, Vs (i.e.,
P =0b1V1+bVa+b3V3, b1 +bo+b3 =1). Let {s,7,k} ={1,2,3}. It P € T\{V1, V3, V3}, we
denote the point of intersection between e;; and the line through P and Vj, by Si(P). Let
hio, hi1 € span{1,t,1* 13, e, e%"} be Hermite functions so that

) =hB0)y =0 , r¥0)=r" 1) =64 i ke {0,1,2}.

For the vertex Vi, we define the patch
2

Dy[S](P) =Y _{dio(P)hip (1 = b1) + di 1 (P)hiy (1 = b1)},

where A = [|S1(P) — V4[|, v = (S1(P) — V1)/A and:
doo(P) =S (V1) , doa(P) =S (5:(P)),
ho(P)= 8- T2(0) L dia(P) = A S2(5,(P))
bolP) = 8- S5 W) daa(P) = 47 T2 (51(P))

If we choose 6 = 0(P) = (bay12 + bsy13) / (b2 + b3), the patch D;[S] interpolates function
values over all three edges, first and second order partial derivatives over e;; as well as the
first and second order directional derivatives at V; of the network S.

The patches D,[S] and D3[S] are defined analogously. The final patch is obtained by a
convex combination of these three patches:

where w; are weight functions
b3 by,
T B+ b?b2 + 07b3

This patch combines the interpolating properties of D;[S], Dy[S] and Dj3[S].



Examples

The presented scheme was designed for the construction of C? surfaces where the shape can
be controlled parametrically and where the resulting surface has a uniform appearance, i.e.,
the use of triangular patches has no negative effects on the curvature distribution of the
surface as a whole.

We will not deal with the problem of approximating test functions here. However, it should
be pointed out that in various tests the approximation properties of the above described
scheme turn out better than those produced by the MNN method (cf. [10]).

1 (c) 1 (d)

Figure 1(a): Nielson’s MNN for o = 0.
Figure 1(b)-(d): Interpolating C? surfaces for v = 0.1,1.0,10.0

In our first example we use a Delaunay triangulation of the data points taken from ([15], p
210) and data values corresponding to these data points. Here we want to demonstrate the
effect that the parameter 7 has on the shape of the interpolant. Figure 1(a) shows the MNN
interpolant for a = 0, whereas Figures 1(b)-(c) show the C? surface with parameters v =



0.1,1.0 and 10.0. As we know from Corollary 2, the network converges to a piecewise cubic
network as we increase . Due to the choice of our triangular interpolant, the whole surface
behaves in the same way. This gives a shape for large parameters that is approximately the
C! surface resulting from the MNN but is still a C? surface.

For our next example we take a rectangular grid of 6 x 6 data points. The data values are
sampled from the test function f (taken from [9]):

f(u,v) = (1—%)6 (1—%)6+1000(1—u)3u3(1—v)3v3+v6 (1_g)6+u6 (1_%)6_

2 (c)

Figure 2(a): Curvature plots of the test function.
Figure 2(b),(c): Curvature plots of the preliminary implementation (2(b)) and of the
improved implementation as described in this paper (2(c)).

To illustrate the curvature distribution, we use color curvature plots to display mazrimum
curvature. Here areas of strong positive curvature are blue, whereas green indicates regions
of strong negative curvature. The color shifts from blue through magenta, red and yellow
corresponding to curvature changes from positive to negative.



Figure 2(a) shows a curvature plot of the test function.

In a first implementation of the scheme, a somewhat different method of extending normal
derivatives to the boundaries of the triangles was used. Although the resulting surface had
a pleasing shape, curvature plots showed a quite non-uniform distribution of curvature (see
figure 2(b)). Here the patch structure is clearly visible. The improved scheme, as presented
in this paper, turn out to have a much more uniform curvature distribution, and, above all,
the patch structure is almost invisible in the resulting curvature plots (see figure 2(c)).

Finally, we want to state explicitly that the visual appearance and the curvature distribution
of the resulting surface is also smooth around vertices which do not satisfy the three-edge
condition.

Future Investigations

In this paper we discussed the case of functional surfaces. There are ways to extend Nielson’s
MNN to the case of parametric interpolation (cf. e.g. [8]). Since Nielson’s method yields a
C"! surface, methods derived from that lead to G* surfaces. However, Lounsbery, Mann and
DeRose [8] observed that the resulting surface tends to have a very non-uniform curvature
distribution. They conclude that the use of convex combination schemes for the extension
of the network is not advisable. Moreton and Séquin use methods similar to Nielson’s MNN
to construct a G? network in the parametric interpolation case. However, they use Bézier
patches to extend the network to a (approximately) G' surface (cf. [11] and [12]). It is
hoped that the extension to the parametric case of the C? scheme presented in this paper
will lead to a local G? scheme with improved curvature distribution.
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