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Abstract. In this paper we present a method for surface reconstruction
using an extension of the Minimum Norm Network (MNN) designed for
interpolating (functional) scattered data to the parametric case. Given
a polyhedron with triangular faces, we obtain a smooth surface interpo-
lating the vertices of the polyhedron and preserving its topology. As for
functional MNN, a curve network is constructed satisfying certain condi-
tions at the vertices from where the curves emanate, and having minimal

norm with respect to a certain functional. The G'-MNN can then be
extended to a smooth surface using, for example, methods described by
Shirman/Séquin, Peters and Mann. Additionally we give a construction

for a G2 MNN and describe its extension to a smooth surface.

§1. Introduction

In this paper we address the problem of fitting a smooth surface to a given
polyhedron with triangular faces. The resulting surface has to interpolate
the vertices of the polyhedron and preserve its topology. This problem is
well known and it has been studied by many authors within recent years (see
1,3,8,9,10,11,13,15,16,18]). Applications from the automotive industry and
other CAD/CAM based technologies that relate to this problem are numer-
ous. Methods that are capable of solving the following problem are of great
practical interest:

Problem: Given a polyhedron in 3-space with vertices
Vi, i=1,..., N, edges E;; and triangular faces. The goal
is to find a smooth surface that interpolates the V;’s, pre-
serves the topology of the polyhedron! and consists of tri-
angular (polynomial or rational) Bézier patches.

We prefer to use polynomial Bézier patches since they are widely used in
CAD systems.
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This is especially relevant when digitized models have to be converted
into a CAD format or when known CAD models are locally deformed (e.g. at
the points of a regular grid). The basic approach of our method is often used
and consists of the following two steps:

1. For each edge E;;, one space curve C;; is defined such that curves with a
common end point have the same tangent plane (or, additionally, agree
with a second fundamental form; see [6]).

2. The constructed curve network is filled with triangular Bézier patches
interpolating the network of curves, such that neighboring patches meet
smoothly.

§2. Previous Work

In the following we give an overview of some of the existing methods using
the same construction steps. For a more complete survey see [9,10,15].

Some of the methods we present in this section use more than just the
polyhedral data as input. Often there is a pre-processing step required in
order to estimate the surface normal and/or the second fundamental form
at the vertices. The normal is estimated by computing the weighted sum of
the polygon normals of all polygons meeting at the considered vertex. The
weights are either the sizes of the polygons (or their reciprocal values) or their
angles at the vertex. The algorithm in [13] as well as the algorithm presented
in this paper may modify these normals during the process of optimization of
the curve network. In [11], Moreton and Séquin present an estimator for the
second fundamental form using only position data.

2.1. Curve Network Construction

Shirman and Séquin [18]: A surface normal is estimated for each vertex.
The curves are defined as Hermite interpolants, where the tangents are calcu-
lated by projecting the related edge onto the tangent plane and scaling these
by the length of the edge, i.e. by ||E;;]|.

DeBoor, Héllig and Sabin [2]: In a first step surface normals and second
fundamental forms are estimated for each vertex. The curves of the curve
network are then constructed trying to interpolate position, tangent and cur-
vature information at both end points of a curve C;; with a cubic polynomial.
De Rose and Mann [3] use this method for the construction of a curve network.

Moreton and Séquin [11]: Moreton and Séquin determine the curve net-
work in the following manner: Each curve C;; leaving the vertex V; has to
comply with a, yet unknown, surface normal and second fundamental form.
These two surface parameters plus any leftover curve parameters not deter-
mined by these constraints, are optimized using a functional describing the

more precisely: the final surface can be obtained from the input polyhedron by applying a
continuous distortion
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variation of curvature of the curves C;;. This optimization process is non-
linear and computationally very expensive.

Minimum Norm Network [12]: The MNN method is designed to solve
the problem in the functional situation, i.e., there exists a plane such that the
parallel projection of the polyhedron onto this plane is bijective. The resulting
triangulation in the plane is used as global parameterization of the surface.
Using this parameterization yields a representation of the curve network by
means of the (unknown) partial derivatives of the surface at the vertices.
The representation is linearly dependent on these unknowns, thus applying a
quadratic functional leads to a linear optimization.

Our intension is to expand the MNN-method to the general problem as
described above. We especially want to define a method for linear optimization
of curve networks.

2.2. Surface Construction

Shirman and Séquin [18]: For each triangular hole of the defined cubic
G' network, three total-degree quartic are used to interpolate both the net-
work curves and a cross-boundary vector field computed by the method of
Chiyokura and Kimura ([1]). The internal boundaries are constructed by
Farin’s method in order to guarantee G joints ([4]).

Peters [16]: Peters studies the problem of fitting one Bézier patch to one
(triangular or quadrilateral) hole of a given cubic G* curve network. The input
curves have to be admissible, i.e., the well-known Verter Enclosure Problem
(VEP) (see [16]) has to be solvable for each vertex. Careful analysis of Peters’
method reveals that the chosen degrees of the scalar weight-polynomials for
the smooth surface-surface joints are not high enough to decouple the VEP.
Thus, either the weight-polynomials have to be degree-reduced, which results
in a surface that is not G, or a global linear system has to be solved. In [8],
Liu and Sun present a way to overcome this problem in the case of a regular,
i.e., a tensor-product like, curve network.

Moreton and Séquin [11]: Based on the above described curve network
construction surfaces are fitted to this curve network by optimizing both the
variation of curvature of the surface patch and a fairness functional describing
the error of smoothness for the surface-surface joints. This optimization is
again non-linear. However, the results of these methods are in general very
appealing.

DeRose and Mann [3]: This method was originally designed for the ap-
proximation of known surfaces, taking the position, surface normal and second
fundamental form as input. The curve network is then constructed using the
DeBoor, Hollig and Sabin scheme. A cubic triangular Bézier patch is fitted
to each hole of the curve network interpolating the curvature at all three
related vertices. The resulting surface is, in general, not G'. DeRose and
Mann describe a refinement method to reduce the maximum error of the G*
surface-surface match.
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§3. Optimized Cubic G' Network

Converting the principles of MNN construction to the parametric case imme-
diately identifies a major problem of not having a global parameterization. In
[13], Nielson suggests a method using local coordinate frames for each vertex.
Nielson’s representation of the curve network yields 6 unknowns at each ver-
tex for the optimization. Our representation of the curve network makes use
of the fact that each regular surface S can be locally represented in a frame
of three orthonormal vectors F = {i1,v,w} with help of a bivariate scalar
valued function s defined as (see Figure 1)

S(u,v) = ut + vV + s(u, v)W.

This results in a representation of the curve network having only 2 un-
known parameter at each vertex. An additional benefit is that this represen-
tation can be extended to curve networks of higher order.

Let us examine the representation of a curve C on S in this local frame
F. Locally we can always find a function ¢ : [—d,d] — R?, d > 0 with
#(0) = (0,0) and C(t) = So ¢(t) in a neighborhood of t = 0. Thus C(0) =V
and with ¢'(0) = (a,b) we obtain:

C'(0) = ait + b9 + (as4(0,0) + bsy (0, 0)) W. 2)

In our situation, the surface S is not known. But since the topology of
our resulting surface is given by the polyhedron, we can set up local frames
F; at each vertex V; simply by estimating the vector w; as described at the
beginning of section 2. We shall refer to the plane defined by w; as the local
parameter plane.

Fig. 1. A local coordinate frame and a curve in this frame.

We now define the cubic curves C;; of our G' curve network as being the
Hermite interpolants to the constraints

Ci;(0)=V; and  Cj;(0) = ts; + (as;(5i)u + bij(5:)v) Wi,

where the vector t;; = a;;4; + b;;V; is a local curve parameter. Analogous
constraints are set up for t = 1. After determining the local curve parameters
Eij and Eji, the curve C;; depends linearly on the surface data (s;)uy, ..., (5j)v-
Thus, this representation of the curve network is again suitable for linear
optimization using a quadratic functional.
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3.1.

Determination of the Local Curve Parameter

—

We still have to answer the question of how the local curve parameters t;;
must be set. Obviously the setting of these parameters has a great influence
on the resulting curve network. The determination of the parameters is split

into

two steps: first we determine the direction of ﬂj, then we set the length

of the vector.

D1.

D2.

L1.
L2.

L3.

To compute the direction of Eij we use one of the following methods:
Normal Projection: Projection of the edge E;; onto the plane defined
by VAVZ
Plane Curves: We define a plane containing the edge E;; and intersect
this plane with the local parameter plane at V; (see Figure 2).

To set the length of Eij methods can be used as follows:

Chord Length: ‘ Eij

= B0l

Circle Segment: The positions V;, V; and the direction fij define a
DeBoor-Hoéllig-Sabin: Using w; as normal and estimating the curvature

with the Moreton-Séquin estimator (see [11]) a cubic curve C is fitted
to the position, tangent-direction and curvature at the end points; we

(é'(o)H.

= arc(s) (see Figure 2).

unique circular segment s; we set )

set ‘ Eij

Fig. 2. Curve in a plane and circle segment.

Thus, all local parameter can be determined by any combination of the

above described methods.

In the test we made the methods D2 and L2 generally gave the best

results.

3.2.

Optimizing the Network

As already stated, we want to have a linear optimization for our network, thus
only quadratic functionals can be used. Let us first consider a single curve C.
A widely used functional is defined as

o(C) = / I @) d.
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We refer to this functional as a simple functional. The second functional we
use is based on the Laplace Beltrami operator (see [6])

c_(clopc
(ColCh)  (ChlCh)?

Ac, (C) =

This operator describes the second derivative of the curve C with respect to
the arc-length of the reference curve Cy. It can be shown that, for Cy = C,
the curvature vector k of the curve C can be expressed as k = Ag, (C). Thus
for Cy ~ C the functional

o(C) = / lAc, ()| ds,

where ds denotes integration by arc-length, is a good approximation of the
integral over the squared curvature of the curve C. Greiner [5] gives a good
overview and more details on the use of quadratic functionals in the area of
surface fairing.

Due to the representation of the curve network, applying a quadratic
functional has rather the effect of equally distributing the curvature of the
curve network than changing the total curvature. Thus the results of applying
the simple and the Laplace-Beltrami functional do not, in general, differ very
much. In our examples we always use the simple functional.

The functional used to optimize the network is simply the summation of
the functionals for each curve. Optimization is then performed by solving a
2N x 2N linear system for the unknown derivatives (8;)y, (8;)v, ¢ = 0,...,n.
This process can be iterated by using the normals calculated in the optimiza-
tion as the input normals for the next iteration step. Practice shows that this
iteration converges within a small number of iterations.

§4. Filling the G' Network

In this section we discuss briefly the methods used to fill the constructed G*
network with triangular Bézier patches.

One would prefer to have one polynomial patch per facet, but as already
mentioned in section 2, a G network can not, in general, be extended to a
overall G! surface due to the VEP. Thus if a G! surface is required, we have
to use split schemes. However, for many applications a small error in the G*
surface-surface joint is acceptable.

We use either Peters’ method or the Shirman-Séquin split scheme to fill
our G network (see section 2). Peters’ method yields one quintic Bézier patch
per facet with, in general, some error in the G surface-surface match.

Additionally, we use a modification of the Shirman-Sequin scheme. This
scheme fits three total degree quartics to each hole of the curve network. Con-
sidering the vertex V, the first control point S; of the inner cubic boundary
curve is initially set to the centroid of S; and the corresponding control points
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Fig. 3. Setting of the first inner control point.

B; and C; of the curve network (see Figure 3). This setting works fine in
situations where the curve network imposes a nearly plane surface. In cases
of strongly bending curves the resulting surface tends to be flat in the center.
We correct this in the following way: Let M denote the mid-point of the tri-
angle edge and F the curve of the network which are both opposite to vertex
V;. We scale the vector S; — V; by the fraction ||s|| /||{||, where [ is the line
connecting V; and M and s is the circular segment defined by the positional
data V;, F(0.5) and the direction S; — V.

§5. Optimized Quintic G?> Network

For functional MNN there are extensions that construct C? networks (see
[7], [17]). These C? networks and the resulting interpolants exhibit good
quality. Furthermore, Pottmann [17] introduces cross-boundary derivatives
into the optimization of the network which leads to a more surface-like network
description. This, plus the fact that a G2 curve network can always be filled
with one triangular Bézier patch per facet in order to obtain an overall G*
surface, motivates the investigations of G? networks in the parametric case.

The basic idea of the extension of a G network to a G? network is very
much the same as for the construction of the G' network. Similarly to the
case of the first derivative of the curve C, we derive a description for the
second derivative by means of the local coordinate frame F:

C"(0) = ct + dv + (csu +dsy + (a, b) (3"“ 3““) <Z)> W,

S’U/U S’U’U

where ¢”(0) = (¢, d) and ¢'(0) = (a,b). As was the case for the G network,
the local curve parameter t = aii + b¥ can be determined using the method
of section 3.1. The additional curve parameter § = cu + dv for the second
derivative can either be set to 0, or is computed in parallel with t when using
the method L3 or L4. In the case of (L4) we also vary the direction of §.
Note that in the case of ¢ = d = 0, W lies in the osculating plane of the curve
at t = 0. This implies that, for s, = s, = 0, C is locally geodetic, i.e., the
resulting surface normal lies in the osculating plane of C.

To introduce a cross-boundary vector field, we observe that, for a tangent

vector h = @i + bv + (Esu + Esv) w at V, the w-component of the derivative
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of a cross-boundary vector-field d(¢) with d(0) = h in direction of t is given

by
(Geo 1) =@ (22 (5).

if the @t and v components of 8d/8t(0) are set to 0.

We fix h either orthogonal to t or as the intersection between the local
parameter plane and the plane perpendlcular to the corresponding edge E.
The cross-boundary vector-field ¢ d is now defined as cubic Hermite interpolant
to the end constraints h to Bd/at at this vertex and to the analogous set
of data at the opposite vertex of edge E. This description is again linearly
dependent on the surface data s, ..., Sye.

The resulting network is optimized using the quadratic functionals de-
scribed in section 3.2. As a result of this representation, the optimization can
again be realized in a reasonable amount of time by solving a 5N x 5N linear
system in the unknown first and second derivatives at the vertices.

§6. Filling the G? Network

In this situation not only the curve network is given but also the optimized
cross-boundary vector field which we must interpolate. One of the following
methods may be employed:

Modified Shirman-Séquin: This simple variation of the Shirman-Séquin
method uses three degree six triangular Bézier patches per facet. The cu-
bic cross-boundary vector field is interpolated with a method similar to the
Chiyokura-Kimura scheme (see [1]).

Single Patch: As was mentioned before, a G? curve network can always be
extended to an overall G surface using one Bézier patch per facet. The degree
of a patch interpolating the curve network and the cross-boundary vector field
has to be seven. We remark that this single patch approach may fail in certain
extreme situations, i.e., the resulting patch may have singular points at the
boundary. In such a situation we use the modified Shirman-Séquin method
to guarantee the regularity of the resulting surface.

§7. Examples and Applications
We give two simple examples and two applications based on realistic problems.

The Shifted Octahedron: A frequently used example is the reconstruction
of a sphere from a regular octahedron. We tighten this example by moving
one vertex out of position but preserve its radial distance from the origin (see
Figure 4).

The Boundary Problem: For a simple curve network construction scheme,
the normal estimation is the crucial point. All normal estimation techniques
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exhibit problems at the boundaries of open polyhedrons, where only few poly-
gon normals contribute to the normal estimation (see Figure 5).

The Car Part: This first application is based on the following problem: A
part of a car is designed with a commercial CAD system. The part is further
processed by using a local deformation. This deformation is simulated on a
regular grid of points. To make the result of the simulation again available
for the CAD system, we use some data reduction to get rid of redundancies
and reconstruct the surface (see Figure 6).

The Machinery Part: Here we use our methods for design purposes. In this
case, the input data consists of a set of curves that should be approximated
by a surface. A simple pre-processing step is used to digitize the curves and
build a set of polygonal meshes in order to define a polyhedron. In the curve
network construction we add the constraint that all curves connecting the
points of one input curve should result in a overall G! curve interpolating
these points (see Figure 7a and 7b).

To illustrate the quality of the surfaces that are produced by the different
surface reconstruction schemes, we use color curvature plots to display the
Gaussian curvature (see [6]).

The color at a surface point is obtained by linearly mapping a predefined
interval of curvature values to a range of colors going from red (minimal
curvature) to blue (maximal curvature).

Fig. 4. The Shifted Octahedron: Surface reconstruction using the Shirman-

Séquin method (left) and using the G1-MNN based approach (right); the local
parameters are set using methods D2 and L2 and the network is filled using the
modified Shirman-Séquin split scheme.
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Fig. 5. The Boundary Problem: The curve network constructed using
the Shirman-Séquin method (left) and the G MNN scheme using methods D2, L2

(right); in both cases Peters’ method is used to fill the network with G' continuity,
since the VEP is solvable at the inner vertex.

Fig. 6. The Car Part: The input polyhedron (upper left), the surface re-
constructed using Shirman-Séquin’s method (upper right) and using the G and the
G? MNN schemes (lower left and lower right, respectively); in both cases the D2,

L2 methods are used to construct the MNN; the G' and G? curve networks are
extended using the modified Shirman-Séquin method and the single patch scheme,
respectively.
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Fig. 7Ta. The Machinery Part: The machinery part designed using the
Shirman-Séquin method (left) and using the G MNN based surface reconstruction

scheme using the D2, L2 methods to set the local curve parameters (right); the G?
MNN is filled using the modified Shirman-Séquin split scheme.

Fig. 7b. The Machinery Part: The machinery part designed using the G2
MNN scheme and the D2, L2 method; the network is filled using the single patch
scheme.

Even though we significantly improve the overall surface of the machinery
part, the sequence of curvature plots reveals that an approach based on curve
networks is not appropriate for this kind of problem.
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