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Abstract

For the planning of minimal invasive brain
surgery detailed knowledge of the individual
anatomical structures is necessary. Therefore
in medical practice high-resolution MR image
data is recorded preoperatively. Due to tissue
resection and cerebrospinal fluid leakage both
shape and position of the brain change dur-
ing the intervention (brain—shift). Therefore
intraoperative data is used in addition, pro-
viding exact anatomical information. In or-
der to accommodate the deformations of tis-
sue for computer assisted surgery, nonlinear
registration of the voxel data must be per-
formed. In this context we propose a new
voxel-based approach based on maximization
of mutual information. For fast evaluation the
nonlinear deformation is modeled by adap-
tively subdividing the data set into piecewise
linear patches. The parameters of this multi-
dimensional transformation are optimized us-
ing Powell’s direction set method. Since 3D—
texture hardware is exploited to evaluate tri-
linear interpolations, the registration process
is significantly accelerated, which is of vital
importance for the application in medical con-
text.

1 Introduction

Computer assisted surgery aims at an im-
proved instrument guidance based on tomo-

graphic image data. During surgical treat-
ment of tumors or epilepsy, movement of the
brain, tissue resection and leakage of cere-
brospinal fluid lead to increasing discrepan-
cies, that limit the use of preoperative data.
Intraoperative MRI provides additional infor-
mation to enhance orientation and resection
control, being able to reveal significant tu-
mor remnants. However, the image capabil-
ity of intraoperative MRI is limited compared
to conventional diagnostic MRI. For computer
assisted analysis of the above mentioned tis-
sue deformation (brain-shift), it is necessary
to compare the preoperatively recorded image
data to the actual situation during the inter-
vention. Therefore a fusion of the two data
sets is computed in order to analyze the non-
linear distortion.

Section 2 gives an overview of registration
techniques for medical image data. The aim
of all approaches is to adjust the free param-
eter of a selected transformation that maps
one data set onto the other. Computation of
the best fit according to a specified similar-
ity metric results in an optimization problem
of considerable complexity, depending on the
chosen transformation type and the number
of free parameters. With regard to the appli-
cation in medical practice fast evaluation, sta-
bility and simplicity of the selected transfor-
mation is desirable. As described in section 3
the soft tissue deformation is modeled using
piecewise linear patches. Section 4 comments
on the optimization strategy used to maximize



mutual information. The following two sec-
tions describe acceleration techniques. Adap-
tive subdivision is used to minimize the over-
all number of free parameter for optimization
as explained in section 5. Section 6 presents
the application of 3D—-texture mapping hard-
ware for trilinear interpolation to accelerate
histogram computation. Section 7 sums up
the results of the presented approach and sec-
tion 8 gives a brief outline of the contents of
this paper.

2 Registration

Recent registration approaches are basically
divided into three categories [3, 9, 8] according
to the data features that are used as input for
the alignment procedure.

1. landmark—based approaches use exter-
nal fiducial markers or internal anatom-
ical point landmarks to optimize a usu-
ally over-determined system of equations.
These methods are mostly used to find
rigid or affine transformations.

2. segmentation—based approaches use ex-
tracted anatomical features (points, lines,
surfaces) inside the data, which are
rigidly or elastically transformed for op-
timal alignment.

3. voxel-based approaches work directly on
the voxel grey values. There is a variety
of approaches using different similarity
metrics for optimization. Since no pre-
processing of the data is required, they
are the most interesting methods of cur-
rent, research.

For accurate registration results, voxel—
based similarity measures proved superior,
since they are applicable to both mono—
and multimodal data and no expensive pre—
processing or segmentation is required. High
accuracy is achieved by taking into account all
the information that is inherent in the data.
However, the use of voxel-based methods for
volumetric data has yet been limited by the
high computational cost.

3 Piecewise Linear
Transformations

Transformations for registration of medical
image data can be either linear (rigid, affine
or projective) or non-linear. Although linear
transformations are fast and simple to eval-
uate, due to their limited flexibility they are
inadequate for modeling the complex defor-
mation of soft tissue that is related to the
brain—shift. Contrary to this, approaches us-
ing non-linear transformations are the meth-
ods of choice to accommodate tissue resection
and deformation.

Non-linear registration was first introduced
by Bajcsy et al. [1], who used an elastic de-
formable template model and a correlation—
based similarity measure. Non-linear regis-
tration based on a viscous fluid model instead
of elasticity was introduced by Christensen et
al. [4]. This approach was significantly ac-
celerated by Bro-Nielsen [2] using convolu-
tion with filter kernels. Thirion [12] proposed
a similar method based on determination of
force fields, that deform the image. Although
these approaches are theoretically applicable
to volumetric data, the computational effort
for 3D registration is still immense.

With regard to clinical application, our aim
was to find a transformation that is easy to
evaluate with hardware acceleration. Further-
more, local optimization proved to be indis-
pensable to apply for tissue resection such
as excision of a tumorous region. Aiming at
an efficient exploitation of graphics hardware,
the idea was to use piecewise linear transfor-
mation of the floating data set to compute
its 3D deformation for optimal alignment with
the reference data set.

Throughout our experiments with piece-
wise curved transformations, software imple-
mentations of polynomial and Bezier tensor
product patches turned out to be extremely
time-consuming. On the other hand hard-
ware implementations were restricted by the
high complexity of polynomial patches and by
limited hardware support for Bezier splines.
In contrast to this we will show that fast and



efficient solutions are possible with piecewise
linear transformation.

o freevertices for optimization

Figure 1: Piecewise linear patches are used to
model non-linear deformation of the volume
data (some patches were removed to reveal the
interior).

At first the floating data set is divided into
an initially fixed number of linear patches as
displayed in Fig. 1. For simplification we as-
sume the positions of boundary vertices to be
fixed. Subsequently, the transformation of ev-
ery inner vertex is computed for optimal align-
ment with the reference data set using multi-
dimensional optimization to maximize mutual
information (see section 4).

To decrease the number of free parameter
for optimization, adaptive subdivision is im-
plemented in a straight—forward way as de-
scribed in section 5. Since linear patches
can be efficiently sliced into planar polygons,
which are primitive objects for graphics hard-
ware, the implementation can be significantly
accelerated using the 3D-texture mapping ca-
pabilities of modern high—end graphics com-
puters (see section 6).

4 Optimization

Selecting an appropriate optimization strat-
egy in general comprises two major decisions.
At first, an appropriate similarity metric must
be chosen in order to evaluate the quality of a
specific transformation. Furthermore, a nu-
merical algorithm is needed to find an im-
proved transformation if the quality of the
previous one is unacceptable. According to
this, the registration procedure consists of it-

erative optimization and evaluation steps un-
til the desired accuracy is achieved.

Mutual information was introduced as sim-
ilarity metric for medical data by Collignon
et al. [5] and Viola et al. [13] and proved
superior to optimize rigid transformations of
both mono- and multimodal registration [7].
Mutual information is a measure of relative
entropy with its origin in information theory.
Describing the statistical dependence of two
random variables, mutual information is suit-
able to determine the amount of redundant
information contained in both variables.

Let F be the floating data set repre-
sented by m samples {fo, f1,... fm_1} with
a marginal probability distribution pg(f).
Analogously, the reference data set R consists
of n samples {rg,r1,...7,_1} with a marginal
probability distribution pg(r). After apply-
ing the transformation 7" to the floating data
set F', the joint probability distribution of R
and F' at corresponding locations x is denoted
pre(r(x), f(T'(x))). For convenience, we will
use r and f(T') instead of r(x) and f(7(z)
respectively.

In case that both data sets R and the trans-
formed F' are identical, their joint probability
distribution satisfies

pre(r, f(T)) = pr(r) = pr(f(T)). (1)

In contrast to this, if both signals are statis-
tically independent, the joint probability dis-
tribution amounts to

pre(r f(T)) = pr(r) - pe(f(T)). (2)

In the intermediate case the distances be-
tween the actual joint probability distribu-
tion prp(r, f(T')) and the ideal distribution
pr(r) - pr(f(T)) in case of independence are
summed over all pairs of samples (r, f(7T)).
This results in the definition of mutual infor-
mation

p(r, f(T)) ) 3)

T= 3 plr f)og (L

(r,f(T))

Note that equation 3 reaches its maximum,
if both signals R and F' coincide. The optimal



transformation 75, is thus denoted
Topt = argmaz[I(r, f(T))]. (4)

Since no assumptions are made about the
two data sets, mutual information is not
restricted to any specific modality and no
pre—processing or feature extraction is re-
quired. The joint probability distribution
pre(r, f(T)) can be graphically displayed as
2D compound histogram. Fig. 2 shows such
a histogram in the case of multimodal data
(CT and MR). The optimal transformation
is found, if the dispersion of significant clus-
ters in the histogram is minimized, which co-
incides with mutual information reaching its
maximum.

Figure 2: 2D compound histogram of multi-
modal data (CT and MR)

The second decision to be made is the selec-
tion of an appropriate numerical algorithm for
multidimensional minimization. Direction set
approaches are the methods of choice when
explicit evaluation of derivatives should be
avoided. Starting at an initial point in mul-
tidimensional space, the optimization process
is split into a sequence of line minimizations.
There are multiple strategies, that differ in the
set of direction vectors they use. We chose
Powell’s original algorithm, which generates a
set of mutually conjugate directions [11].

For registration of medical image data
the computational effort for optimization is
clearly dominated by the cost of evaluating

the transformation and the similarity mea-
sure. In this context acceleration techniques
as described in the following sections are of
great importance.

5 Adaptive Subdivision

In case of static subdivision the volume data
set must be divided into a large number of
piecewise linear patches in order to achieve
registration results of high accuracy. To avoid
the resulting huge amount of free vertices
for optimization, a straight—forward approach
is to use adaptive subdivision which gener-
ates a hierarchical structure of piecewise lin-
ear patches. Fig. 3 explains the 2D case of
adaptive subdivision according to a specified
refinement criterion. In the first step the op-
timal position of the inner vertices are com-
puted. Subsequently the refinement criterion
is evaluated for each optimized patch. We
assume that the patterned regions in Fig. 3
are patches, that need to be further refined.
Subdivision is then performed for the selected
patches, introducing new free vertices. This
procedure also results in new constrained ver-
tices that are located at the boundary be-
tween patches with varying refinement levels.
These are vertices, whose positions are not
completely fixed but constrained to the posi-
tion of neighboring free vertices. In the follow-
ing optimization step new positions for all free
vertices are computed and the locations of the
constrained vertices are updated. This pro-
cess is iteratively repeated several times until
the desired accuracy is reached or no further
improvement is achieved.

subdivision

initial patch optimization

» »

o fixed vertices o freevertices e constrained vertices

Figure 3: Adaptive subdivision generates a hi-
erarchical structure of piecewise linear patches



To determine whether a selected patch
should be further subdivided or not, an appro-
priate local refinement criterion is required.
For mutual information an upper limit can be
specified in terms of relative entropy

Irp < min(H(R), H(F)) ()

with H(R) and H(F') being the entropy of the
random variables R and F', which amount to

H(R) = = pr(r)logpr(r) (6)
and

H(F) ==Y pr(Hlogpr(f).  (7)

For every linear patch g; its contribution /; to
mutual information

B p
L= ) p(r’f)log(p(r)p(f))) (8)

(T’f)egz

and the upper limit

is computed respectively, which results in an
appropriate criterion for refinement

L(R,F)

00 —— "1~ 7
= Hpin(Ri, F)

<9 <1.0. (10)
The user—defined threshold value ¥ can be
used to control the subdivision process and
is heuristically set to 0.7 — 0.8. Note that for
very small patches, the evaluation of this re-
finement criterion becomes less accurate, due
to the limited number of samples that are
used. This problem can be solved in an ef-
ficient way by the use of hardware accelerated
interpolation as described in the following sec-
tion.

6 Hardware Acceleration

High—end graphics workstations allow the ap-
plication of 3D—-texture mapping with hard-
ware accelerated trilinear interpolation. This
hardware feature, which is usually exploited

for interactive direct volume rendering, can
be efficiently used to speed up the registra-
tion process.

At first, the floating data set is loaded into
the 3D-texture memory. For each slice of the
reference data set the corresponding deformed
slice of the floating data set is reconstructed
(see Fig. 4). This is achieved by linear interpo-
lation between the free vertices of the trans-
formation. This results in a deformed slice
consisting of non—planar quadrangles, repre-
sented by the large grey dots in Fig. 4. Sub-
sequently, the slice is explicitly triangulated
(see below) and the resulting vertices are di-
rectly used as 3D-texture coordinates. The
original untransformed polygon slice is then
drawn into the frame buffer, textured with the
corresponding grey value information directly
obtained from 3D-texture memory by trilin-
ear interpolation. The contents of the frame

O vertices computed from transformation
* additional vertices for explicit triangulation

Figure 4: For hardware acceleration deformed
slices of the volume are rendered

buffer is read out and the corresponding slice
of the reference data set is then used to com-
pute the 2D compound histogram which is re-
quired for mutual information. This proce-
dure is repeated for all slices of the reference
data set. Since hardware interpolation is used,
the histogram evaluation is significantly accel-
erated compared to pure software solutions.



Explicit triangulation of the non-planar
quadrangles is necessary on one hand to gen-
erate planar polygons. On the other hand
additional vertices (the small black dots in
Fig. 4) must be inserted to correctly render
the non-linear deformation. Fig. 5 shows
a non—planar quadrangle which results from
movement of a single vertex (a). Triangu-
lation without inserting an additional ver-
tex will result in an incorrect deformation
(b), since the patterned triangle remains unaf-
fected by the vertex movement. Inserting an
additional vertex (c), whose position is an av-
erage of the four corner vertices, renders the
correct deformation of the whole quadrangle.

Figure 5: For explicit triangulation additional
vertices have to be inserted to ensure correct
deformation

To evaluate the refinement criterion as ex-
plained in section 5, the 2D histogram of a
single patch must be computed. As men-
tioned above, accuracy is limited by the num-
ber of sample points used for evaluating mu-
tual information. Using the texture mapping
hardware this can be avoided by zooming the
respective polygons to an appropriate view-
port size, when drawing into the frame buffer.
Thus an increased number of pixel will be used
to compute mutual information with little loss
in performance. This way, the size of the view-
port can be used to trade accuracy for speed.

7 Results

The presented approach was evaluated for
both 2D and 3D registration. Throughout
our experiments we used pre— and intraoper-
ative T1-weighted MRI data with a matrix
of 256 x 256 and 80 — 128 slices. The data
sets were pre—registered rigidly using anatom-
ical landmarks. The non-linear registration
procedure was performed on a SGI Onyx2
(R10000, 195MHz) with BaseReality graphics
hardware providing 64 MB of texture mem-
ory.

2D PIECEWISE LINEAR TRANSFORMATION

intraoperative

intra @ pre
before registration

after registration

Figure 6: 2D registration of preoperative data
(a) and intraoperative data (b). To accom-
modate the non-linear tissue deformation (c),
piecewise linear transformation of the preop-
erative data set is performed (d)

For comparison, registration of 2D image
data was computed with hardware accelera-
tion as well as with a pure software imple-
mentation. Fig. 6 shows the results of 2D
image registration with an initial 3 x 3 sub-
division and a maximum refinement level of
2. Performance information for both proce-
dures are displayed in table 1, which shows



that exploiting 3D-texture hardware is about
two orders of magnitude faster than the pure
software solution.

performance for 2D image registration
software implementation

dimension resolution registration
in voxels in mm time in sec
256 x 256 0.9 x 0.9 1.1-103

performance for 2D image registration
hardware implementation

dimension resolution registration
in voxels in mm time in sec
256 x 256 0.9 x 0.9 22

Table 1: Performance of 2D registration

In case of 3D non-linear registration our
method is able to model tissue deformation
with high accuracy. The results in Fig. 7
were obtained using an initial subdivision into
3 x 3 x 3 patches and a maximum refinement
level of 3. The resulting data sets were visu-
alized and validated using direct volume ren-
dering. Fig. 8 shows the fusion of pre— and
intraoperative data, which is examined using
clipping planes.

performance for 3D registration
hardware implementation

resolution
In mm

dimension
in voxels

2562 x 128 0.9% x 1.3

registration
time in sec

1.34-10°

Table 2: Performance of 3D registration

The results of performance measurement
for 3D registration are displayed in table 2.
Additional acceleration techniques of the pre-
sented approach, like fast histogram compu-
tation using the OpenGL histogram hardware
extension [6], are topics of our future research.

RIGID

PIECEWISE LINEAR

Figure 7: 3D registration: In order to analyse
the brain—shift (top), non-linear deformation
of intraoperative data is modelled using piece-
wise linear patches (bottom).

8 Conclusion

In this paper we proposed a new approach for
non-linear voxel-based registration of multi-
modal medical volume data, aiming at high
performance. Piecewise linear patches with
adaptive subdivision are used to model the
non-linear tissue deformation that is related
to the brain—shift. The parameters of the mul-
tidimensional transformation are optimized
using Powell’s direction set method to max-
imize mutual information. Additionally the
3D—texture mapping hardware of modern
high—end graphics workstations is efficiently
exploited to significantly speed up the opti-
mization procedure.



RIGID TRANSFORMATION

PIECEWISE LINEAR TRANSFORMATION

Figure 8: Direct volume rendering of pre—
and intraoperative data after rigid registra-
tion (top) and piecewise linear transformation
of the intraoperative dataset (bottom).
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