
Interactive Repositioning of bone fracture segments

Michael Scheuering1;2 , Christof Rezk-Salama1,
Christian Eckstein2, Kai Hormann1,

Günther Greiner1

1University of Erlangen-Nuremberg, Computer Graphics Group
Am Weichselgarten 9, D-91058 Erlangen, Germany

Email: scheuering@informatik.uni-erlangen.de

2Siemens Medical Solutions
Henkestr. 127, D-91054 Erlangen, Germany

Abstract

This paper presents an application for semi-
automatic repositioning of bone fractures that al-
lows the merging of several fragments. This ap-
plication has been developed with regard to or-
thopaedic surgeons who want to simulate the po-
sition and orientation of bone fragments preopera-
tively.

The interactive algorithm includes volumetric
collision detection for intuitive navigation and
coarse manual positioning. Additionally, an opti-
mization process for the mathematically exact repo-
sitioning of the bone fragments is implemented.

In order to accelerate the volumetric collision de-
tection, octree structures are used that are efficiently
implemented as an hierarchy of oriented bounding
boxes (OBB). The collision test uses the separating
axis theorem for a fast traversal of the octree.

To improve the manual part of the repositioning
process, the principal axes of each fragment are pre-
calculated initially. Subsequently, the fragments are
pre-justified by the user. Finally, an optimization
process is performed based on Powell’s algorithm
for multidimensional minimization. The optimal
position of the bone fragments is determined by the
use of a voxel-based metric, that exploits the same
bounding box hierarchy.

1 Introduction

The surgical treatment of bone fractures is a typical
problem in medical practise. For complicated frac-
tures, however, the repositioning of several bone
fragments during a surgical intervention is a com-

plex task, which has extremely negative influence
on the duration of the intervention as well as on the
patient’s convalescence. In order to circumvent this,
the idea is to simulate the surgery in a purely virtual
environment based on tomographic data, which is
individually acquired for each patient.

Taking into account the possibilities of virtual re-
ality applications, one can assist the surgeon pre-
operatively by the use of a semi-automatic reposi-
tioning system that allows to glue together single
fragments. This problem is very similar to 3D puz-
zle applications as presented in [13]. Here, the au-
thors describe to semi-automatically assemble the
Parthenon at the Acropolis of Athens by the use of
scanned stone fragments.

In Section 2, we give an overview of the pro-
cess of the repositioning of bone fragments. This
includes the segmentation of the fragments (Sec-
tion 3) and their visualization techniques (Sec-
tion 4). In Section 5 we describe the interaction
of volumetric datasets by the use of collision de-
tection techniques. Afterwards, the whole process
of repositioning of the fragments is automatized by
introducing Powell’s algorithm (Section 6). At the
end, we present the results (Section 7) and conclude
in Section 8.

2 Repositioning of Bone Fragments

The repositioning procedure can be described as
a three tier approach. As an initial step a semi-
automatic segmentation of the data must be per-
formed in order to classify individual bone frag-
ments. This segmentation is the basis for a man-
ual repositioning by the physicist. This requires

VMV 2001 Stuttgart, Germany, November 21–23, 2001



a method for interactive visualization of the vol-
ume data, that allows to pick and move individ-
ual sub-volumes. A fast and robust algorithm for
collision detection is necessary for intuitive navi-
gation within 3D space. After manual reposition-
ing an optimization process is performed that effi-
ciently computes the optimal position. In the fol-
lowing each step of this procedure will be explained
in detail.

3 Segmentation

Manual repositioning requires the ability to inde-
pendently move several bone fragments. This im-
plies the necessity to divide the original CT data
set into sub-volumes, that can be transformed sepa-
rately. In addition to this coarse subdivision an ex-
plicit voxel-based segmentation is required in order
to efficiently perform collision detection (see Sec-
tion 5.2). Since bone fragments are easily classified
from CT data by applying a simple threshold to the
Hounsfield scale, an inexpensive volume growing
technique was chosen. This allows a separation of
the bone structure from surrounding tissue. How-
ever, the results obtained by this semi-automatic ap-
proach must again be controlled and corrected man-
ually.

4 Visualization

A variety of efficient algorithms for direct vol-
ume rendering have been developed in recent years.
These solutions range from pure software ap-
proaches [10] to the development of special purpose
hardware [14, 12], and to methods which exploit the
steadily evolving features of general purpose graph-
ics hardware [2, 1, 18, 11, 16].

The high computational cost for volume render-
ing is on one hand caused by the huge number of
spatial interpolation operations. On the other hand,
for large volume data the limited memory band-
width soon becomes the bottleneck. As a conse-
quence, several efficient algorithms developed in
recent years store the volume data in local video
memory and exploit general purpose texturing hard-
ware for fast interpolation.

Although these texture-based methods are the
most promising implementations on low cost hard-
ware, these approaches are less applicable to dis-
play multiple independent volumes, which inter-

penetrate each other. Displaying multiple data sets
by blending a stack of texture slices back-to-front
requires a complex depth sorting algorithm and also
makes an efficient texture memory management ex-
tremely difficult.

As an alternative, the commercially available vol-
ume rendering library VGL provided by Volume
Graphics can efficiently handle arbitrary intersect-
ing volumes. Due to the applied pure software
ray-casting approach, the image quality and the
achieved frame rate represent a tradeoff compared
to state-of-the-art texture based approaches. How-
ever, VGL supports different rendering modes (ray-
casting with local illumination, isosurface display,
maximum intensity projection) and is available on a
variety of platforms (Win32, Linux, Solaris, IRIX)
including multiprocessors.

5 Interaction and Collision detection

To guarantee encouraging results, techniques that
detect overlaps of the fragments during navigation
are necessary. Thus, the key issue for repositioning
of bone fragments is collision detection, which is a
fundamental problem in 3D interactive applications.

In this context, most of the previous works fo-
cus on the interaction of polygonal objects, such as
polygon meshes, polyhedra or splines (e.g. [13, 3,
6]). Unfortunately, those approaches suffer from
the fact, that explicit surfaces are required, which
can lead to unprecise results. A more natural ap-
proach for collision detection would be a solution
for volumetric objects, since the containing voxels
can describe different interaction behaviors of the
included structures. A few papers for volumetric
collision detection have been published in recent
years [7, 9, 8, 5]. Those approaches try to solve
the problem by introducing hierarchical structures
such as octrees or sphere trees. The bounding vol-
umes mostly include axis-aligned bounding boxes
(AABB) or oriented bounding boxes (OBB) includ-
ing different interaction methods of the voxels.

In this paper, some ideas for solving the volumet-
ric collision detection problem are adopted from He
et al. [8]. Here, the authors present a work based on
octree and sphere-tree hierarchies with OBBs. Ad-
ditionally, for the interaction of voxels of two vol-
umetric objects a probability model of each object
is defined using a predefined probability map. Thus,
each point inside a volume is assigned a value in the

666



Figure 1: Different levels of the hierarchy of a cow foot bone: hierarchy depth 1 (left) and depth 3 (right).

range [0; 1], that can be seen as the probability that a
surface crossing that point exists. A possible inter-
pretation for the probability map, mentioned in [8],
is to use opacities in the context of volume render-
ing. In general, the collision probability can then be
calculated by the multiplication of the surface prob-
abilities of two object at that certain point.

5.1 Building the hierarchy

In order to create the hierarchy for accelerated col-
lision detection, an octree of oriented bounding
volumes is used, since the basic primitives in our
datasets are the rectilinear voxels.

For constructing the hierarchy, a two-stage algo-
rithm is used as described in [8]. Firstly, the algo-
rithm starts bottom-up from the leafs and merges
the eight neighbouring nodes. Since this approach
also includes nodes that do not contain any relevant
information (e.g. empty voxels), a second step is
added to reduce the overhead of collision detection
by pruning the tree top-down.

Thus, each node Ni in the hierarchy is assigned
a value interval [N i

� min; N
i
� max], that represents

the minimum and maximum collision probabilities
of that node. Additionally, the user specifies a solid
threshold �max and an empty threshold �min, that
shorten the tree. In the second stage, which is re-
cursively defined, the algorithm starts at the root
node whereas breadth-first traversal is used. By tak-

ing N i as the current node, the following decisions
have to be taken [8]:

� If N i
� max < �min, delete both N i and all its

childs.
� If N i

� min > �max, delete all the childs of N i.
� For a direct child N i

1 of N i, if N i
1 has only

one child N i
2, then delete N i

1 and make Ni
2 to

be the child of Ni.

Using this second stage of the algorithm reduces the
tree to those nodes, that contain only voxels with
�min < � < �max. Changing the values of �min

or �max by the user increases or decreases the com-
plexity of the hierarchy. Figure 1 shows the results
of a cow foot bone, which presents different levels
of the hierarchy.

5.2 Collision Detection

In the previous section, we described how to realize
a reduced hierarchy of the volumetric objects. Thus,
we now have to use efficient algorithms for interfer-
ence detection of the bounding boxes. In [17] the
authors give a cost function for two large models
and their hierarchical representation when the ob-
jects’ interference has to be detected:

T = Nv � Cv +Np � Cp (1)

T describes the total cost function for interference
detection, Nv is the number of bounding volume

666



Figure 4: Two colliding bones showing the depth-first traversal. After interference, the bones are torn apart,
so that the traversal is visible.

pair overlap tests, Cv are the costs of testing a pair
of bounding volumes for overlap, Np is the number
of primitive pairs tested for interference and Cp are
the costs of testing a pair of primitives for interfer-
ence. Using this formula, Gottschalk et al. [7] im-
plemented an approach, called the separating axis
theorem, for rapid interference detection, taking (1)
into account. Given two OBBs, A and B, with
B placed relative to A by rotation and translation
(cf. Figure 2). Additionally, given rA and rB as the
radii of A’s and B’s interval, the following inequa-

B

A

B

Ar

a1 1

a2 2

rB

b2 2

1 1b

L

T

LT

A
A

B

Figure 2: L is a separating axis of OBBs A and B
because A and B become disjoint intervals under
projection onto L.

tion has to be fulfilled for disjoint intervals [7]:

jT � Lj >
X

i

jaiA
i � Lj+

X

i

jbiB
i � Lj: (2)

In [7], further simplifications are given for the col-
lision test in (2).

Using the hierarchy defined in Section 5.1 and
the collision test presented above, the algorithm for
interference detection using depth-first traversal is
described in Figure 3. As an alternative, breadth-
first traversal is also possible as presented in [4].

Using depth-first traversal, the results can be seen
in Figure 4. Here, two bone segments interfere and
the hierarchy is traversed. Afterwards, the bone
fragments are torn apart so that the traversed cells
become visible.

bool collision(N n1, N n2)
f
if :testCollision(n1,n2)

return false
if n1.isLeaf() ^ n2.isLeaf()

return true
for i=1,..,n1.getChildCount()

if collision(n1.getChild(i),n2)
return true

for i=1,..,n2.getChildCount()
if collision(n1,n2.getChild(i))

return true
return false
g

Figure 3: Pseudo code for depth-first traversal.

666



(a) (b)

Figure 5: Finding a suitable initial position for the optimization process: first the principal axes of both
bone fragments are aligned (a), then the left data set is moved along and rotated around the common axis
as close to the other fragment as possible (b).

6 Optimization Process

Based on the constellation of bone fragments ob-
tained by manual repositioning, we can now apply
an automatic fitting procedure for optimally align-
ing each pair of sub-volumes representing frag-
ments which had once been adjoint. The general
idea is to fix one of the two fragments and move the
other one by translations and rotations until a cri-
terion that measures the gap between the two frag-
ments becomes minimal.

Considering the criterion as a scalar function that
depends on the translation and rotation parameters
of the second fragment’s movement, this approach
can be understood as a 6-dimensional optimization
problem. Among the many numerical methods that
exist for solving such problems we chose Powell’s
method [15] which performed well as long as a good
starting value could be provided. In order to find
such a suitable initial position we took the following
approach.

Firstly, we compute the principal axes of both
sub volumes. The principal axisA(~n) = f�~n : � 2
IRg of a segmented volume data set with n voxels
represented by their centers ri 2 IR3, i = 1; : : : ; n,
is the one that minimizes the average `2 distance

D(~n) =
1

n

nX

i=1

dist(ri; A)2:

It is defined by the normalized eigenvector ~n be-
longing to the greatest eigenvalue of the 3 � 3

matrix

Q =

nX

i=1

(ri � c)(ri � c)t;

where c = 1

n

Pn

i=1
ri is the volume’s centroid.

Secondly, we rotate the second fragment such that
the principal axes of both volumes align. Thirdly,
the second data set is translated along and rotated
around this common axis until a reasonable starting
position for the numerical optimization process is
found (cf. Figure 5).

Now that both fragments are already close to-
gether we circumscribe the region of the bone frac-
ture with a box called the Volume of Interest (VOI)
(cf. Figure 6). Counting the number of voxels
within the VOI that

Figure 6: Volume of Interest of two bone fragments.

666



a) belong to the first fragment,
b) belong to the second fragment,
c) belong to both fragments, i.e. both data sets

overlap in these voxels,

yields the numbers n1, n2, and nI . The objective
function measures the remaining gap between the
two fragments by computing

2nI � n1 � n2

nVOI
;

where nVOI is the total number of voxels in the
VOI. Note that since the first fragment is fixed n1
is constant. Minimizing this quantity is equivalent
to placing the second data set such that the VOI is
maximally dense while penalizing overlapping re-
gions.

7 Results and Discussion

The presented approach was implemented as pro-
totype application. Throughout our experiments
datasets of a tibia fracture, a broken cow foot and
several hand bones are used. In order to evaluate the
presented approach, we measured the time, both for
the creation of the hierarchies and for the optimiza-
tion process. According to the hierarchy, we evalu-
ated three datasets, taken with CT or C-arm modal-
ities. The datasets were segmented as presented in
Section 3. Tabular 1 shows the time for the calcula-
tion of the hierarchical octrees for the tibia fracture,
the cow foot and the hand bones.

According to the collision detection, nearly in-
teractive framerates can be achieved depending on
the level of detail for the raycasting. When navi-
gating volumes of size 2003 , the average time for

Table 1: Calculation time of hierarchy in seconds.

dataset dimension time

tibia- 190 � 232 � 191 132:6
fracture 191 � 213 � 80 69:7

83� 83� 152 16:8

cow- 208 � 157 � 204 106:5
foot 159 � 118 � 143 41:9

hand 92 � 60� 192 20:1
75� 57� 110 7:9
40 � 48� 30 1:0

Table 2: Calculation time of the repositioning of the
cow foot in seconds.

number of iterations time

220 101.2
312 127.1
330 151.7

1102 502.4

interference test was 200 msecs. The memory re-
quired to build the hierarchy amounts 45 bytes per
node. Therefore, we implemented a memory man-
ager that minimized the memory page swapping.

In Table 2 several timings for the optimization
process can be seen. Here, some calculations for the
broken cow foot are presented using breadth-first
traversal, whereas the number of iterations strongly
depends on the quality of the manual adjustment.
If the pre-justification is disadvantageous in very
few cases the optimization process terminated be-
fore finding the optimal solution.

A drawback of the presented optimization pro-
cess is, that it only calculates the mathematically
optimum of the repositioning. We have to keep
in mind, that this proceeding can only be an addi-
tional help for physicians, since the medical solu-
tion mostly differs from the mathematical one. The
reason is, when fractures are glued together in re-
ality, the objects are pressed on each other very
strongly which insures proper union of the frac-
ture. To allow for this the optimization presented
here would have to be adapted using the probability
model. Additionally, segmentation errors can influ-
ence the results.

8 Conclusion

In this paper, we presented an algorithm for in-
teractive repositioning of bone fractures as an aid
for orthopaedists. The datasets were created us-
ing standard CT or C-arm devices and were seg-
mented semi-automatically using volume growing
approaches. In order to visualize the volumes,
a commercial ray-casting library VGL was used,
that allows the rendering of independent volumes.
Since collision detection algorithms are necessary
for the navigation of the bone fragments, an effi-
cient method is presented using OBBs and an oc-

666



tree hierarchy. The interference test is accelerated
by the separating axis theorem and the created hier-
archy. In order to semi-automatically reposition the
fractures, the volumes are pre-justified by the user.
Afterwards, the automatic optimization process is
started using Powell’s algorithm.

References

[1] M. Brady, K. Jung, Nguyen HT, and
T. Nguyen. Two-Phase Perspective Ray Cast-
ing for Interactive Volume Navigation. In Vi-
sualization ’97, 1997.

[2] B. Cabral, N. Cam, and J. Foran. Acceler-
ated volume rendering and tomographic re-
construction using texture mapping hardware.
In Proceedings of 1994 Symposium on Volume
Visualization, pages 91–98, 1994.

[3] J. Cohen, M. Lin, D. Manchoma, and
M. Pongami. I-collide: An interactive and ex-
act collision detection system for large-scale
environments. In 1995 Symposium on Inter-
active 3D Graphics, pages 198–196, 1995.

[4] C. Eckstein. Interaktive Relokalisierung von
Knochenfraktur-Segmenten. Master’s thesis,
University of Erlangen-Nuremberg, Septem-
ber 2000.

[5] N. Gagvani and D. Silver. Shape-based vol-
umetric collision detection. In Proc. of IEEE
Visualization, 2000.

[6] N. Garica-Alonso, N. Serrano, and J. Fla-
quer. Solving the collision detection problem.
IEEE Computer Graphics and Applications,
13(3):36–43, May 1994.

[7] S. Gottschalk, M. Lin, and D. Manocha. Obb-
tree: A hierarchical structure for rapid in-
terference detection. In Proc. of ACM SIG-
GRAPH, 1996.

[8] T. He and A. Kaufman. Collision detection
for volumetric objects. In Proc. of IEEE Visu-
alization, pages 27–34, 1997.

[9] P. M. Hubbard. Interactive collision detec-
tion. In Proc. of IEEE Symposium on Research
Frontiers in Virtual Reality, 1993.

[10] P. Lacroute and M. Levoy. Fast volume ren-
dering using a shear-warp factorization of the
viewing transformation. In Proceedings of
SIGGRAPH ’94, pages 451–458, 1994.

[11] M. Meißner, U. Hoffmann, and W. Straßer.
Enabling Classification and Shading for 3D

Texture Based Volume Rendering Using
OpenGL and Extensions. In Visualization ’99,
1999.

[12] M. Meißner, U. Kanus, and W. Straßer.
VIZARD II: A PCI-Card for Real-
Time Volume Rendering. In Proc. SIG-
GRAPH/Eurographics Workshop on Graphics
Hardware, 1998.

[13] G. Papaionnou, E. Karabassi, and T. Theo-
haris. Virtual archaelogist: Assembling the
past. IEEE Computer Graphics and Applica-
tions, pages 53–59, March/April 2001.

[14] H. Pfister, J. Hardenbergh, J. Knittel,
H. Lauer, and L.Seiler. The VolumePro
Real-time Ray-Casting System. In Proc.
SIGGRAPH, 1999.

[15] W. H. Press, S. A. Teukolsky, W. T. Vetter-
ling, and B. P. Flannery. Numerical Recipes in
C. Cambridge University Press, 2nd edition,
1992.

[16] C. Rezk-Salama, K. Engel, M. Bauer,
G. Greiner, and T. Ertl. Interactive volume
rendering on standard PC graphics hardware
using multi-textures and multi-stage rasteri-
zation. In Proc. SIGGRAPH/Eurographics
Workshop on Graphics Hardware, 2000.

[17] H. Weghorst, G. Hooper, and D. Greenberg.
Improved computational methods for ray trac-
ing. ACM Transactions on Graphics, pages
52–69, 1984.

[18] R. Westermann and T. Ertl. Efficiently us-
ing graphics hardware in volume rendering
applications. In Proc. of SIGGRAPH, Comp.
Graph. Conf. Series, 1998.

666


