Har dware Accelerated Visualization of Curvilinear Vector Fields

Frank Reck, Christof Rezk-Salama, Roberto Grosso and Giinther Greiner.

University of Erlangen, Department of Computer Science
Computer Graphics Group
Am Weichselgarten 9, 91054 Erlangen, Germany
Email: fkreck@immd9.informatik.uni-erlangen.de

Abstract

We present a novel method for hardware-
accelerated texture advection of 3D velocity
fields defined on curvilinear grids. For uniform
rectilinear grids, texture advection can be effi-
ciently performed within the rasterization unit by
existing approaches. In a pre-processing step, the
vector field is transformed from the curvilinear grid
(P-Space) to a uniform rectilinear grid (C-Space).
Hardware accelerated texture advection is per-
formed via per-pixel operations in C-Space. The
resulting 3D volume data is displayed by direct vol-
ume rendering via 3D textures. The decomposition
of the volume object into viewport-aligned slices
is performed in P-Space and the resulting polygons
are textured with the image information calculated
in C-Space.

1 Introduction

3D vector data sets, as they arise from measure-
ment or numerical simulation, are frequently used
in fluid mechanics, hydrodynamics, electric engi-
neering and computational science. In recent years
a number of different techniques for the visualiza-
tion of 3D-flow phenomena have been developed.

Traditionally, geometric techniques are used,
which represent the vector quantities by some kind
of geometric primitives, such as arrows, icons [7] or
glyphs [3]. More advanced geometric approaches
numerically integrate particle paths, which result in
stream lines, streak lines and stream surfaces [5].
The main difficulty with such approaches in prac-
tice is their restriction to a rather coarse spatial res-
olution. Displaying a high number of pathlines can
easily lead to cluttered images.

As an alternative, texture-based approaches have
gained increasing attention. The introduction of

texture advection and line integral convolution
(LIC) [2] significantly improved the visualization
of vector fields for the 2D case. LIC is an effi-
cient technique to depict flow information in an in-
tuitive way by transforming the vector field into a
scalar field. In the 3D case however, difficulties
arise in the visualization of the intricate structures
inside the resulting volume data set. Lisa Fors-
sell [4] presented an extension that allows the map-
ping of LIC images onto curvilinear surfaces in 3D.
Victoria Interrante [6] has developed techniques to
visualize 3D LIC by the use of fuzzy clipping ob-
jects and sparse noise textures with additional depth
cues. Animation techniques for 3D LIC textures
have been presented by Rezk-Salama et al [9].

More recently, Weiskopf et al. [1] presented an
interesting method to perform texture advection via
programmable per-pixel operations. We will have a
closer look at their approach in Section 2. A disad-
vantage of this method however is its restriction to
vector fields on uniform rectilinear grids.

In computational science and engineering struc-
tured curvilinear grids based on hexahedral cells
are often preferred with respect to numerical sim-
ulation. Curvilinear hexahedral grids are able to
perfectly fill out the space around CAD surfaces
while maintaining topological properties which are
advantageous for numerical solver algorithms. To
these ends we present an extension of the origi-
nal texture advection algorithm which adapts the
method to curvilinear grid structures. The basic
idea of our novel approach is a transformation of
the vector field from its physical space (P-Space)
into a rectilinear grid in computational space (C-
Space) [10]. Texture advection is solved within
the C-Space and the resulting texture is transformed
back to P-Space. In order to display the resulting
textures in P-Space, we adapt texture-based volume
rendering to curvilinear hexahedral cells.

VMV 2002

Erlangen, Germany, November 20-22, 2002

The remainder of the paper is structured as
follows. Section 2 is a short flashback which
outlines the original implementation of hardware-
accelerated texture advection. In Section 3 we de-
scribe how the transformation of the curvilinear grid
from P-Space to C-Space is achieved. Section 4
presents our adaptation of the slice decomposition
algorithm for 3D texture based volume rendering to
allow for curvilinear cell structures. In Section 6
we evaluate the results of our approach and discuss
possibilities to further improve the performance. In
Section 7 the contributions of our paper are summed

up.

2 Texture Advection in Hardware

The path of a mass-less particle in a given vector
field ¥(Z) is determined by numerical integration.
Starting at given initial position %o, the calculation
of the particle trace requires the solution of an ordi-
nary differential equation (ODE)

)] (1)
Traditionally, numerical integration methods such
as Euler, Heun or Runge-Kutta methods are used
to solved the ODE. These methods mainly differ in
their numerical accuracy and in the number of vec-
tor interpolations which are required for one inte-
gration step.

Weiskopf et al. [1] have demonstrated how a
large number of Euler steps can be computed simul-
taneously using the capabilities of modern rasteri-
zation hardware. Depending on the input texture,
which represents the initial state of the algorithm,
single particle traces can be computed as well as
dense structures of stream lines similar to line inte-
gral convolution.

The key features that allow hardware acceler-
ated texture advection are dependent textures or
pixel textures. Dependent textures are build upon
the multi-texturing capabilities of modern graphics
hardware. Multi-texturing refers to a rasterization
unit which allows one polygon to be textured with
two or more independent texture maps. With depen-
dent textures the texture coordinates for the second
texture are extracted from the first texture. This con-
cept allows the specification of texture coordinates
on a per-fragment basis.

The idea of texture advection via per-pixel opera-
tions is to encode the x-, y- and z-components of the

vector field in the RGB color components of a de-
pendent texture. The input texture is rendered into
the frame buffer with the texture coordinates speci-
fied by the dependent texture. As a result, the frame
buffer contains the original color values of the in-
put texture shifted to its new positions after one Eu-
ler step. The contents of the frame buffer is copied
back into an output texture, which is again used as
input texture for the next integration step. The se-
quence of operations is illustrated in Figure 1.

texture
holding
vector field

swap buffers
after renderin
all slices

rendered
with
dependend
texture
look up

LIC frame
texture . copy buffer
holding
time
step i+l

frame buffer

Figure 1: Hardware-accelerated texture advection
is performed by rendering the input texture with a
dependent texture that stores the shifted positions
according to the vector field. The frame buffer is
copied to an output texture. For the next integration
step input and output textures are swapped.

The main benefit of this approach is the speed-up,
which relies on the fast rasterization capabilities of
modern graphics cards. This, however, restricts the
original application to uniform rectilinear grids.

Our adaptation of the described algorithm to
curvilinear grids requires two steps. In the C-
Space the hardware-accelerated texture advection
algorithm can be used as usually. However, we first
have to accurately transform the vector field from its
(curvilinear) P-Space to the (rectilinear) C-Space.
After the texture advection the results must be dis-
played in P-Space, which requires the resulting tex-
ture to be transformed back. Additionally, the vol-
ume rendering algorithm must be adapted to curvi-
linear structures, which will be described in Sec-
tion 4.

3 Transformation

As outlined in Figure 2, transformations of a given
vector field from P-Space to C-Space and back do

/’_\\ (0,4) (1,4) (2,4

(0,3) (1,3) (2,3)

(0,2) (1,2) (2,2)

(0,1) (1,1) (2,1)

_/(0'0) .0 |0

Figure 2: Linear approximations of the transforma-
tions of a given data set from the physical space (P-
Space) to the computational space (C-Space) and
back are represented by the Jacobian matrix and its
inverse.

not change the topological structure of the grid. The
neighborhood relations of cells and vertices are pre-
served. Solely the positions of the grid points are
modified. After performing the transformation to
C-Space the hexahedral cells become axis-aligned
cubes.

The exact transformation ® from P-Space to C-
Space is known only at the grid nodes (i, 7, k). In
order to transform the velocity field, we do not need
& but its Jacobian Je [10]. For the inverse trans-
formation ®~*, which maps the results back to P-
Space, the Jacobian J; 1 is replaced by the inverse
matrix (Jo) ™'

The Jacobian Js is computed using central dif-
ferences on the discrete data. Since the transfor-
mation from P- to C-Space is performed only once
in an initial pre-processing step, the time consumed
for estimating the directional derivatives is not rele-
vant.

Every velocity vector of the given flow field is
then transformed with the inverse Jacobian, accord-
ing to

i=Jp)" "7 2

The hardware based texture advection requires a
texture field with a dimension which is a power of
two in each direction. Thus, the velocity field is
resampled in C-Space using trilinear interpolation.
Aliasing effects can be avoided by oversampling the

data, e.g. a data set with dimensions 40 x 30 x 30
is resampled to 64 x 32 x 32. The x-, y- and z-
components of the resulting velocity vectors in C-
Space are stored in the RGB components of a 3D
texture. This texture is used for hardware acceler-
ated texture advection as described in the approach
by Weiskopf et al [1]. After the Euler iteration is
performed by the rasterization hardware, the origi-
nal algorithm displays the resulting 3D texture us-
ing normal texture-based volume rendering. In our
case, however, the user wants to examine the results
in the physical space. This requires a modification
of the original texture based volume rendering algo-
rithm as it is described in the next section.

4 Volume Rendering on Curvilinear
Grids

In traditional volume rendering applications, the
scalar data value is mapped to physical quantities,
that describe the amount of light which is emitted
and absorbed at each point. These physical quan-
tities are then used to synthesize virtual images.
Therefore the emitted and absorbed light intensi-
ties are integrated along rays of sight. The image
generation requires a high number of interpolation
operations which result from this resampling of the
volume data set at discrete positions along the rays.

The texture units of modern graphics hardware
are capable of computing a high number of interpo-
lation operations per second. In order to use the ras-
terization hardware for volume rendering, the volu-
metric object must be decomposed into a proxy ge-
ometry, which consists of geometric primitives that
are understood by the underlying hardware.

The volume data set is decomposed into a stack
of viewport-aligned slices by calculating the in-
tersection polygons between the volume’s bound-
ing box and a stack of planes parallel to the im-
age plane. The numerical integration of the emit-
ted and absorbed light is approximated by blend-
ing of successive slices from back to front with re-
spect to the viewing direction. Very efficient proce-
dures for calculating intersection polygons between
an axis-aligned box and a set of parallel planes exist
[13, 8, 11].

In case of a curvilinear grid, there is no sim-
ple bounding box that can be used for the intersec-
tion computation. We have experimented with dif-
ferent strategies to compute the intersection poly-

gons. Intersection calculation must be performed at
least with every outer boundary edge of the data set.
In order to accurately model the non-linear inverse
transformation from C-Space to P-Space, which is
applied during texture application, it is not suffi-
cient to specify texture coordinates only at the ver-
tices of the intersection polygons.

The first straight-forward idea was to determine
the cross sections of every cell with the current slic-
ing plane. This results in a high number of small
triangles, but the texture transformation is modeled
accurately. Optimizing the intersection calculation
e.g. by computing the edge intersection points for
successive slice planes iteratively will significantly
reduce the computational cost. In the following sec-
tion we will discuss acceleration techniques to trade
accuracy for speed.

5 Acceleration Techniques

There are two different strategies for performing the
slice decomposition for direct volume rendering,
both of which allow the gradual trading of visual
accuracy for rendering speed. The first approach
initially calculates a coarse approximation to the
original slice polygon which is improved step-wise.
The second approach constructs slice polygons for
a given level of detail in one step.

In our basic implementation we have computed
intersection polygons with every grid cell. In our
first approach to remove the high number of inter-
section calculations, we only intersect every outer
boundary edge of the polygon and construct one
large polygon from the resulting intersection points.
If we render this polygon as it is, the nonlinear tex-
ture transformation from C-Space to P-Space will
be exact only at the vertices and very inaccurate in
the interior of the polygon. More accurate approxi-
mations can be generated gradually by inserting ad-
ditional vertices with correct texture coordinates in
the interior of the polygon. The first vertex is in-
serted in the middle of the polygon and connected
to every boundary vertex. Additional vertices are
inserted in the middle of every inner edge, which
splits every triangle into four new triangles. The re-
finement process is stopped if a subdivision depth is
reached which is defined with respect to a specified
accuracy. A similar approach has been applied for
non-linear volume deformation [12].

The second alternative to trade accuracy for

speed is to merge a specified number of hexahedra
together and treat the result as one large hexahedron
for intersection calculation. As an example a clus-
ter of eight hexahedra, which share a common ver-
tex are joined together to form one single hexahe-
dron. The approximation error that is introduced by
this clustering strongly depends on the structure of
the curvilinear grid. In Fig. 5(a) the intersection ar-
eas of the viewport-aligned slices with a cluster are
shown. In Fig. 5(b) the resulting textured polygons
are depicted. In the typical case of a cylindrical data
grid, the clustering technique reduced the hexahe-
dra to be rendered from 4096 to only 16 without a
noticeable loss in accuracy.

6 Resultsand Discussion

The methods that we have described in this paper
have been applied and tested on several 3D vector
fields on curvilinear grids. We remark, that the pre-
sented approach is well applicable for 2D flow fields
defined on curvilinear grids.

The described algorithms strongly depend on the
capabilities of the underlying hardware architec-
ture. Up until now, there are only very few PC
graphics boards that support dependent 3D textures,
such as the ATI Radeon 8500 graphics boards and
NVidia GeForce 4 Ti family boards. Our experi-
ments were performed on an SGI Octane 2 with
VPro graphics subsystem. A dependent texturing
mechanism is available on this architecture in the
form of pixel textures. Since this architecture does
not support multi-textures, the first texture must be
written to the frame buffer and the dependent tex-
ture lookup is performed by a copy step, which
reads the pixels from the frame buffer and re-inserts
them into the pixel pipeline. We are currently
working on an implementation using native depen-
dent textures for the above mentioned PC graphics
boards.

The first test data set was a synthetically gener-
ated vector field of dimensions 16 x 16 x 16 and rep-
resents a cylinder. The dimension is a power of two
such that the vector advection could be performed
without any further processing step. The velocity
field is circular, thus a particle trace would be a cir-
cle. The second data set is the result of a compu-
tational fluid dynamics simulation around the wing
of an airplane. The dimensions of this data set are
100 x 78 x 38. In C-Space, the vector field was re-

sampled onto a grid of dimensions 128 x 64 x 32.
Finally, we have carried out measurements with the
blunt fin data set, which describes an airflow over
a flat plate with a blunt fin rising from the plate.
The data set has dimensions 40 x 32 x 32, and in
C-Space was resampled onto a grid of dimensions
64 x 32 x 32.

In Figure 3(a) and 3(b) the hardware based tex-
ture advection for the cylindrical test data set is
shown. The texture advection represents a straight
line in C-Space and a circle in P-Space which
clearly corresponds to the input velocity field. An
attenuation or wakening of the intensity in the tex-
ture is simulated such that the user can recognize
the flow direction, as the dark region is the starting
location of the particles. The rendering times for
P-Space are given in Table 1. The Table gives the
times obtained without and with the clustering strat-
egy. Using clustering an interactive frame rate can
be achieved.

The results obtained for the airplane wing data set
are shown in Fig. 4. The lower Figure was obtained
using the clustering acceleration. The upper Figure
was obtained using the high resolution method by
slicing all volume cells. The clustering technique
improves the performance by a factor of 81, where
the size of one cluster is 1 x 1 x 38 of an original
cell. Clearly, the accelerated technique produces ac-
ceptable results as it can be appreciated in Fig. 4.

The time measurements for the blunt fin data set
are given in Table 1. A corresponding flow visual-
ization obtained with the clustering method is given
n in Fig. 5(c) which shows a row of injected par-
ticles placed near the sharp bend of the tube. For
this data set we obtain one frame each two seconds
which clearly shows the efficiency of our method.

Dataset | Time | Time with clustering
blunt fin 59 2

wing 491 6
synthetic 7 0.2

Table 1: Time in seconds needed for rendering
curvilinear grids with and without clustering

7 Conclusion and Future Work

The most time consuming step of the algorithm
is the rendering of the textured polygons in P-

Space. The usage of bounding hexahedra or bound-
ing spheres could speed up the intersection tests,
since the intersection point calculations are consid-
erably reduced. A further possibility is to introduce
an edge based data structure, such that each edge
intersection is computed only once.

The image quality can be improved by subdivid-
ing the polygons into triangles. The texture values
at the new vertices are then directly computed from
the C-Space texture, thus obtaining a better approx-
imation to the texture in P-Space.

The definition of the initial texture in C-Space is
a difficult task. It may require some tests before one
obtains the desired texture distribution. In order to
make the system more user friendly, a correspon-
dence between the initial texture distribution in C-
Space and in P-Space have to be defined.

8 Acknowledgments

The research was supported by the German Sci-
ence Foundation DFG, which funds the Sonder-
forschungsbereich 603 Modellbasierte Analyse und
Visualisierung komplexer Szenen und Sensordaten,
Teilprojekt C7 Adaptive Verfahren zur Berechnung
und Visualisierung von mechatronischen Sensoren
und Aktoren. Many thanks to Matthias Hopf and
Daniel Weiskopf from the Visualization and Inter-
active Systems Group, University of Stuttgart, the
group of Stuttgart for supporting me with the code
and some advice.

References

[1] Hardware-accelerated visualization of time-
varying 2d and 3d vector fields by texture
advection via programmable per-pixel opera-
tions. In T. Ertl, B. Girod, G. Greiner, H. Nie-
mann, and H.-P. Seidel, editors, VMV 2001,
Stuttgart.

[2] B. Cabral and L. Leedom. Imaging Vector
Fields Using Line Integral Convolution. In
Proc. SIGGRAPH, 1993.

[3] W. C. de Leeuw and J. J. van Wijk. A Probe
for Local Flow Field Visualization. In Visual-
ization "93, San Jose, California. IEEE Com-
puter Society.

[4] L. Forssell. Visualizing Flow Over Curvilin-
ear Grid Surfaces Using Line Integral Convo-

(a) Texture advection for the synthetic data set in C-Space.
The particle traces are straight lines.

(5]

(6]

[7]

(8]

(9]

(b) The results of the texture advection in C-Space are ren-
dered in P-Space. Clearly, the flow is circular. The texture
attenuation indicates the flow direction.

Figure 3: Hardware based texture advection in C-Space and in P-Space for our test data set.

lution. In Proc. IEEE Visualization, Washing-
ton, 1994.

J. Hultquist. Interactive numerical flow visu-
alization using stream surfaces. In Comput-
ing Systems in Engineering, pages 349-353,
1990.

V. Interrante and C. Grosch. Visualizing 3D
Flow. IEEE Computer Graphics and Applica-
tions, 18(4):47-53, 1998.

F. J. Post, Theo van Walsum, F. Post, and
D. Silver. Iconic Techniques for Feature Vi-
sualization. In G. M. Nielson and D. Silver,
editors, Visualization *95, pages 288-295, At-
lanta, Georgia, 1995. IEEE Computer Society,
IEEE Computer Society Press.

C. Rezk-Salama, K. Engel, M. Bauer,
G. Greiner, and T. Ertl. Interactive Vol-
ume Rendering on Standard PC Graph-
ics Hardware Using Multi-Textures and
Multi-Stage Rasterization. In Proc. SIG-
GRAPH/Eurographics Workshop on Graphics
Hardware, 2000.

C. Rezk-Salama, P. Hastreiter, C. Teitzel, and
T. Ertl. Interactive exploration of volume line
integral convolution based on 3d-texture map-
ping. In Proc. IEEE Visualization, 1999.

[10]

[11]

[12]

[13]

A. Sadarjoen, T. van Walsum, A. J. S. Hin, and
F. H. Post. Particle Tracing Algorithms for
3D Curvilinear Grids. In Fifth Eurographics
Workshop on Visualization in Scientific Com-
puting, 1994.

R. Westermann and T. Ertl. Efficiently Using
Graphics Hardware in Volume Rendering Ap-
plications. In Proc. SIGGRAPH, 1998.

R. Westermann and C. Rezk-Salama. Real-
Time Volume Deformation. In Computer
Graphics Forum (Eurographics 2001), 2001.
O. Wilson, A. Van Gelder, and J. Wilhelms.
Direct Volume Rendering via 3D-textures.
Technical Report UCSC-CRL-94-19, Univ. of
California, Santa Cruz, 1994.

Figure 4: In this picture the flow around the airplane wing is shown. The texture advection with clustering
is shown in the lower picture. The upper picture shows the same configuration but without clustering. In
both cases the same initial texture was used.

(a) Every cluster has to be sliced
separately in P-Space. This pic-
ture shows the intersection of the
viewport-aligned slices with a clus-
ter.

(b) The intersection areas are filled
up using the texture values in C-
Space.

(c) This Figure shows a ribbon over the ground
for the blunt fin data set.

Figure 5: Hardware accelerated texture advection

