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Abstract

Interpolation of scattered data has many applications in different areas. Recently, this
problem has gained a lot of interest for CAD applications, in combination with the process
of “reverse engineering”, i.e. the construction of CAD models for existing objects.

Up until now, no method for Scattered Data Interpolation with a bivariate function
produces surface formats that can be directly integrated into a CAD system. Additionally
many of the existing interpolation schemes exhibit undesirable curvature distribution of
the reconstructed surface.

In this paper we present a method for Scattered Data Interpolation producing tensor-
product B-splines with high quality curvature distribution. This method first determines
the knot vectors in a way that guarantees the existence of an interpolating B-spline. In
a second step the degrees of freedom not specified by the interpolation constraints are
automatically set using a data dependent optimization technique.

Examples demonstrate the quality of the resulting interpolants w.r.t. curvature distri-
bution and approximation of known surfaces.

1 Introduction

Interpolation of discrete data by a curve (univariate problem) or a surface (bivariate prob-
lem), often called Scattered Data Interpolation, has many applications in different areas. This
interpolation problem has been investigated for years and many methods have been devel-
oped dealing with this question. Recently, the problem of “reverse engineering” gained a lot
of interest. The problem can briefly be stated as follows: A physical object (e.g. tool part,
clay model) is digitized by some mechanical measuring device or a 3D laser scanner. Based on
this discrete information a CAD model of the object has to be constructed. Scattered Data
Interpolation (SDI) methods, i.e. the interpolation of scalar data specified over randomly
scattered data points in the parameter plane, have the capacity to handle this reconstruction
problem since they generate a continuous surface having a set of discrete points as input.

In the univariate case of the data interpolation problem a well developed theory and several
very efficient methods are available. For example, cubic B-spline interpolation is very efficient
and the approximation error is well-known (see [18]). In the bivariate case the situation is
quite different. There exist many methods for SDI, (Shepard, Radial Basis Functions (both



described in [10]), Nielson’s Minimum Norm Network [15], the Oslo Mask Method! [1]). But
in contrast to the univariate case, none of these methods has proven to be superior to the
others. Moreover, none of these approaches constructs the interpolating function in a format
that allows direct integration in a standard CAD/CAM systems. Other drawbacks (of some)
of these methods are poor quality of the surface even for smooth data, bad approximation
behavior and the restriction to relatively small data sets.

In this paper we introduce a SDI method which uses tensor product B-splines (TP B-splines)
for data interpolation. The resulting surfaces show a good curvature distribution, for smooth
data the quality of approximation is at least as good as for the classical methods. In the
procedure, the most time consuming step is the solution to a sparse linear system whose size
is proportional to the number of data points. This indicates, that the time complexity depends
quadratically on the number of data points.

For functional surface reconstruction based upon SDI, the following problem is addressed:

Given: A finite set of data points u;, i = 1,... , N in R?. Furthermore, for each data point
u; we have a data value f; € R.

Goal: A fair TP B-spline function F' that interpolates the given data values at all data
points, i.e.:

F(w;) = f;.

In case of univariate interpolation with B-spline curves there exists a unique characterization
of the solvability of the interpolation problem based on the location of the data points w.r.t.
the knots (the Schoenberg-Whitney Theorem; see [4]).

In the bivariate case no such unique characterization exists. There are sufficient characteriza-
tions which severely restrict the positions of the data points and thus are not comprehensive
in the general situation. Trying to find appropriate knot vectors for the parameter space in
order to fulfill uniquely the interpolation constraints is therefore a very difficult task and is
most likely to fail.

We choose the knot vectors in a way, that only the ezistence of a interpolating TP-B-splines
is guaranteed. This can always be achieved by using a sufficiently fine knot spacing. The
degrees of freedom (DOFs) not set by the interpolation constraints are determined using an
optimization technique:

Given a cost (or fairness) functional J measuring certain geometric properties of
a surface (e.g. total curvature), we are looking for a surface Fj that interpolates
the data and which has optimal behavior w.r.t. this properties:

J(Fy) < J(F) for all F satisfying : F(w;) = fi;, 1 =1,... ,N. (1.1)

With help of this variational approach the remaining DOFs of the TP-B-spline surface are
determined automatically.

The usage of functionals for surface fairing and design is very popular (see [2, 3, 11, 19]). In
[17] a similar approach is used to handle a SDI problem based upon piecewise triangular Bézier
patches using the so-called simplified Thin Plate Energy functional as fairness functional (see
Section 2).

Our approach has quite a few advantages compared with the other interpolation techniques:

!The scheme presented by Arge, Daehlen und Tveito does only construct an exact interpolant unless all
data points coincide with points of the regular grid of the discrete function space used in the method.



e The resulting surface is given in a CAD-compatible format (TP B-spline).
o There are no restriction on the size or the structure of the data set.

e Carefully choosing the cost functional J will guarantee a good curvature distribution of
the interpolating surfaces.

e The interpolation scheme can be extended to the case of interpolation of 3D point
clouds.

The choice of the fairness functional has a great impact on the method. The quality of the
resulting surfaces (harmonic curvature distribution), as well as the efficiency of the procedure
will heavily depend on J. A trade-off between these two extremes is necessary in each specific
application context.

This paper is organized as follows: In the following section the design of fairness functionals
is discussed. The algorithm to solve the SDI problem based on the optimization technique is
presented in Section 3. In Section 4 some examples are given demonstrating the quality of
the presented scheme. Conclusions and outlines to future work are presented in Section 5.

2 Design of fairness functionals

In this section we describe fairness functionals that have been widely used in the context of
surface fairing. Furthermore we discuss the concept of data dependent functionals. In partic-
ular, we introduce a new type of functional: the data dependent Thin-Plate-Energy.

As mentioned above, the variational approach to surface design problems based on fairness
functionals has become very popular. This is due to the fact that it offers the opportunity to
handle automatically DOF's not set by the user, i.e. not uniquely determined by the constraints
that have been specified in order to obtain a certain geometric configuration.

Not surprisingly, there is a tradeoff between quality and time: Using the fairness functional
which measures the total curvature exactly?:

Jezact(F) = / m% + K,% dwr, (2.2)
Q

the process of finding an optimal solution to (1.1) involves very time-consuming numerical
algorithms, even for small data sets. This is due to the fact that Jegyqc+ is a highly nonlinear
functional. However, concerning the quality of the resulting surface this functional performs
very well (see [14]).

Quite opposite is the situation when simple quadratic functionals are used. In fact, minimizing
quadratic functionals is a relatively easy task, one (only) has to set up the normal equations
and then solve this linear system. Thus surface design methods based on the widely used
simplified Thin-Plate-Energy

Jsimple(F) = / (Fuu)2 +2 (Fuv)2 + (Fvv)2 dudv. (2.3)
Q

are very efficient. For small data sets results can be obtained in real time. The disadvantage of

this functional is that it does not represent a geometric quantity. Only for nearly flat surfaces

it is a good approximation t0 Jegzect(F) . As a consequence, for flat surfaces it produces good

results, but for highly curved shapes optimizing this functional may not lead to fair surfaces.

21,2 denote the principal curvatures of the surface defined by F; dwr denotes the area element of F .
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Figure 2.1: A simple functional defined over a reference surface leads to a data dependent
functional on the plane parameter space of the reference surface

A very successful combination of good approximation and performance are the so-called data
dependent functionals. In [8, 9] data dependent approximations to the functional measuring
the square of the mean curvature have been used for the construction of blend surfaces and for
surface fairing. The basic idea of this concept is the following (see Figure 2.1): Use a reference
surface S as non-plane parameter space. Consider functions/surfaces to be parameterized over
S and define the simple quadratic functionals on the non-plane parameter space. In order to be
able to solve the minimization problem numerically, the problem is transformed by standard
methods (change of variables) to the parameter domain of the reference surface. Thus leading
to a quadratic functional, whose coefficients depend on the geometry of the reference surface
S. If the reference surface is carefully chosen, the resulting functional is a good approximation
to an exact curvature functional.

In the following, we develop a data dependent Thin-Plate-Energy functional (briefly TPE
functional) which we will use as cost functional in our algorithm to determine an interpolant.

Consider the simple TPE functional (2.3). This functional can be expressed with help of the
Hessian Hess of F or alternatively using the gradient grad (F) and the differential D(t) of a
vector field t(u,v) = (t1(u,v), to(u,v)):

(Fuu)? 4 2 (Fuy)? + (Fup)? = tr (Hess F)? = tr (D (grad F))2. (2.4)
Here tr (M) denotes the trace of a square matrix M = (m;), tr (M) = ), my;.

The following definition gives the generalizations for the gradient and the derivative of a
vector field for functions resp. vector fields defined on the reference surface S (see [12]).

Definition 2.1 Let S : Q — R3?, (Q C R?) denote a surface with first fundamental form
Is = (gij). We assume that S is regular, i.e. det(Is) = gi11g922 — g5 # 0, hence the inverse

Is t o (gij) exists.

(i) The gradient grads(h) of a scalar-valued function h : Q@ — R on the surface S is defined



as
grad s(h) = (hy, hy)Is ™.

(i) The (covariant) derivative of the tangential vector field t(u,v) = (t1(u,v), ta(u,v)) is

defined as*:
e (tl)u (tl)v> (I‘h F%Q) (F% F%z)
Vs(t) = +1 +t .
s(t) ((t2)u (t2)o "\ry, ri 2\r3, 1%

Here Ffj, 1,5,k = 1,2 denote the Christoffel symbols. They represent the coordinates
of the normal-projections of the second derivatives of S onto the tangent plane in the
{Su, Sy }-basis, e.g.

Suu =T8Sy + TS, + ( Suu | N)N. (2.5)
In the following remark we give some more details for the Christoffel symbols (see [12, 13]).

Remark 2.2 (i) The Christoffel symbols for a surface S are given by
=1 i ! here w1 =u, us = v).
(Fzzj S < Suiuj | Suz > ( ! 2 )
(i) The Christoffel symbols can be calculated in terms of the first fundamental form and its

first order derivatives and thus they depend only on the inner geometry of the surface S
(see [12, Proposition 3.8.1]).

(15i) The Christoffel symbols are invariant under isometric transformations.

Combining these generalizations for the gradient and for the derivative of a vector field, we
can define the Hessian Hess g for a function A on the surface S via the relation®

Hesss(h)(d,b) = ( Vs (grad s(h))d | b )y, V&b e R (2.6)

S

Considering Hess g(h) as linear mapping in the tangent space we obtain the following repre-
sentation as 2 X 2-matrix

huu h rt, Tl r2, r?
_ 7.1 uy wv | 11 12) _ 11 12

Analogously as for the simple thin plate energy functional, the data dependent thin plate
energy functional for the surface F : Q — R3 is defined using the generalized Hessian w.r.t.
the reference surface S:

3
Js(F) = /Q S tr (Hess s(Fi))? dos. (2.8)

In our situation, the surface F is functional, i.e. F(u,v) = (u,v, F(u,v)). Thus Jg(F) =
Js(F) = [otr (Hess s(F))? dws + const where the constant only depends on S.

In case this approach might look somehow arbitrary, the following theorem gives a justification
for the above choice of Jg.

3The value h(u,v) is identified with the value of h at S(u,v).
4To the surface point S(u,v) the tangent vector 1S, + t2S, is assigned.
5¢-1- )1g denotes the inner product induced by the Riemannian metric.
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Theorem 2.3 For a two times differentiable parameterized surface S, the functional Jg de-
fined in (2.8) has the following properties.

a) Js is a quadratic functional.

b) Js is a positive semi-definite functional with a null space having dimension < 9. For a
non-developable reference surface S, the null space has dimension 3.

c) Js(S) = Jezact(S).

d) Js does not depend on the specific parameterization of the surface S.

Proof: a) From (2.7) it follows that for fixed S Hess g(F;) linearly depends on the first and
second order partial derivatives of F;. Thus (Hess S(Fi))2 quadratically depends on these
derivatives and so does its trace.

b) Semi-definiteness is clear from the definition of Jg (note that the trace of the square of a
symmetric matrix A is always > 0.) Moreover, assuming that Jg(F) = 0, then Hess g(F;) = 0.
This means that the covariant derivative of the vector field grad g(F;) vanishes. Therefore the
vector field grads(F;) is composed by parallel displacements (see [12, 13]) of a unique tangent
vector on S. Such a vector can be specified by two coordinates. Finally, when integrating the
gradient grad g(F;) to obtain F;, there is an additional constant, the value of F; at a single
point. Thus for each component F; we have three degrees of freedom. The additional statement
follows from the fact that non-zero parallel vector fields can exist only on developable surfaces
(see [13]).

c) We make use of the Einstein summation convention which says that in an expression we
sum over all indices which appear twice.

By (2.7) we have Hessg(S;) = (gkl((Si)ujul — (Si)upfﬁl)>k.6. Using (2.5) we can replace
J

(Si)uju, and obtain
Hess 5(S;) = (9’“(% (Si)up +( Sujuy | N) Ni—(Si)u, I?l))kj - (ka hlei)kj B (gkl hﬂ)jk.Ni '
where (hj;) = ( Sy, | N ) is the second fundamental form Ilg of S.
Now gF hj; = g¥! hy; is the (K, j)-th entry of the product of the matrices Is™' = (¢¥/);; and
Ils = (h;j)i;j. Therefore we have

Hess 5(S;) = I~ Mg - N; . (2.9)
W = Ig 'Hg is the Weingarten map, whose eigenvalues are the principal curvatures k1, ko
(see [12, Proposition 3.5.2]. W? has eigenvalues x? and 3, hence tr (W?2) = k2 + k2.

Since Zz(ﬁl)2 = 1, we conclude x7 + k3 = tr (W?2) = Y. (tr (W - ﬁ,)2) and the assertion
follows from (2.2) and (2.8).

d) Both, the gradient and the covariant derivative are geometric invariants (see [12,
Lemma 4.1.5]), that is, they do not depend on a specific parameterization of S. Since our
construction only uses these notions, Jg is independent of the parameterization of S as well.
|

5By Einstein’s summation convention (gkl((Si)uju, — (Si)upl—‘fl)) =, (gk’((Sq;)u].ul — EP(SZ-)UPI‘;’I))



Discussion and consequences of the theorem.

o At a first glance Jg looks quite complicated. However, since it is quadratic (by assertion
a)) it can be minimized very easily, much faster than Jeyqq. In fact, the minimum of
such a functional can be obtained as the solution of a linear system.

e A consequence to b) is that only few constraints are necessary in order to guarantee
a unique solution to a constraint optimization problem for Jg. In general, specifying 3
(vector) constraints, will lead to a positive definite problem. For example, it is enough,
to specify for one parameter value the position and two directional derivatives. Alterna-
tively, specifying the position at at least three different parameter values will also lead
to a unique minimum. When a non-developable surface is used as reference surface, only
one interpolation condition is enough to ensure a unique solution.

e Assertion c¢) implies that Jg is (locally) a good approximation to Jegzqct, thus guarantee-
ing that the minimization process really leads to surfaces of fair shape. The argument
is as follows. The functional Jg depends in a continuous way on the reference surface.
This means that when F is close to S (in the appropriate Sobolev space), then Js =~ Jg,
hence we have Jegqct(F) = Jp(F) = Js(F).

e Finally assertion d) is important as well. When designing a surface, usually the designer
a priori knows how the surface will approximately look like. Thus he can specify (the
geometry of) a reference surface S. However, it is not clear, how one has to parameterize
this reference surface. In view of assertion d) this is not a problem. No matter how S is
parameterized, Jg will not depend on the parameterization, but solely on its geometry.

3 The Algorithm

In this section we describe the algorithm that is used to determine an interpolating bicubic
TP-B-spline surface Fy having minimal value w.r.t the given fairness functional Jg, i.e.:

Js(F()) < Js(F) for all £ : F(u,) = fi, 1= 1,... ,N.
Js is the data dependent TPE functional introduced in the previous section (see 2.8). For S
being the identity, i.e. S(u,v) = (u,v,0) we obtain the simplified TPE (2.3) as a special case.

We introduce the following notation for bicubic TP B-spline basis functions defined over the
knot vectors U = {u_g,... ,upt2} and V = {v_o,... ,vpio}:

B; j denotes the bicubic B-spline basis function corresponding to the knot indices
i,J; Bjj is supposed to have it’s support symmetric to (u;,v;), i.e. supp(B; ;) =
[wi—2; tiye] X [vj—2,vj12]-

The algorithm consists of the following four steps (see Figure 3.2):

Step 1: Define the parameter area of the TP-B-spline surface as the bounding box
[%min, Umaz] X [Vmin, Umaz) Of all data points u;, i =1,... ,N.

Step 2: Determine uniform knot vectors U and V with knot spacing h, = ;11 — u; and
hy = vj41 —v; in u- and v-direction respectively.

The knot vectors have to be chosen in a way such that there exists an interpolating
TP-B-spline surface over the corresponding rectangular grid (see Section 3.1).



Step 3: If a data dependent functional is used, an appropriate reference surface has to be
determined (see Section 3.2).

Step 4: Find among all interpolating TP-B-spline defined over the knot grid U x V the one
which minimizes the fairness functional Jg (see Section 3.3).
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Figure 3.2: Overview of the algorithm: The data points are boxed and an adequate knot grid
is generated. Uniform knot vectors for n = m = 15 have been chosen and the index sets
have been set to {0,3,7,11,15} for both directions (see Equation (3.10)). The resulting local
interpolation problems I P,ij’f are solvable (see Equation (3.12).

Step 1 needs no further explanation. In the following sections we describe the details of Steps
2, 3 and 4.

3.1 Knot Vectors (Step 2)

In this section we describe a way to construct appropriate knot vectors U and V, i.e. knot
vectors for which a TP-B-spline surface exists that interpolates the given data.

First of all we define the grid such that all data points u; lie in the inner region [u1,un—1] X
[v1,Vm—1] of the parameter region, i.e.:

Umin = U1y  Umaz = Un—1; Umin = U1y Umazr = Um—1-
The B; ;’s (0 <i<n,0<j < m) defined over the knot grid U x V form a basis of the
space of TP-surfaces generated by C? piecewise polynomials over the rectangle [tmin, Umaz] X

['Umina 'Uma:c] .



We state that there always exist knot vectors for which the corresponding space of TP-B-
spline surfaces contains a surface F satisfying F'(u;) = f;, 2 = 1,... , N. This result is obvious
since we always can define a knot grid such that each support supp(B; ;) contains at most
one data point u;. However, this approach yields a number of knots that is far to large for
practical use.

In the following we give a generalization of this simple result which is much more appropriate
in our situation. This generalization is based on local interpolation problems. Therefore we
consider sets of increasing indices”:

{i0,.. ,ip} where 0 =ip < i1 < ... <ip1 <ip=n (3.10)
{Joy--+ 1Jq} where 0 = jo < j1 < ... < jg—1 < jg=m (3.11)

The local interpolation problem I P,i"’f is now formulated as follows:

Find the B-spline surface:

I

Fif (u,v) = Z bi,jBi,j, (3.12)
ip<i<ipyq
J31<i<dpgr

satisfying F,i"f(ui) = fi, Vi € Iy ;, where I} ; contains the indices of all data points

lying within the support of F,é?lc, ie.

Iy = {ug, ... ,un} N [ug, 2, ui 1] X [v5,-2,v,,,+1].

The following theorem motivates the introduction of the local interpolation problems I P,é‘:f.

Theorem 3.1 If all local interpolation problems IP,é‘,’f are solvable, then there exists a TP-
B-spline surface F satisfying F(u;) = f;,i=1,...,N.

Proof: But assumption I Pé’ooc is solvable. For I Pll’ooc we consider the data values:

fl’o . 0 ifie I0,0
’ f; otherwise

Thus F{% and F§% + F| satisfies the interpolation constraints for the data points u; € I§’
and u; € I(lfg Ulr {‘,’g respectively.

Proceeding this way, the resulting control points b; ; after solving the local interpolation
problem [ Pil]ffl,jl_l define an interpolating TP-B-spline surface F'. |
To check the solvability of the local interpolation problems I P,é‘,’f, we investigate the system
of linear equations:

bik:jl
(Bikajl(ui) T Bik+1—1,jl+1—1(ui))ie[k,l = (fi)iEIk,l : (3'13)
:Zk’l bik+1*1,jz+1*1

"This partition of the knot vectors is arbitrary but fix.



If Lj; has full rank the local interpolation problem I P,i"’f has a solution for arbitrary data
values f;.

In our implementation we always use a fixed block-size of 4 x 4 neighboring control points.
Thus we have to assure that the number of control points in u- and v-direction is a multiple
of 4.

In order to define a knot grid we start with initial values for n and m satisfying: (n +
1)/4, (m + 1)/4 € N. This initial knot grid is refined until all local interpolation problems
1 P,i‘,’f are solvable. The step of refinement simply sets

hay, h

hu<—-?? and hv<—-7§.

We found that |I;;| < 7 is a good precondition in order to guarantee the solvability of I P,ﬁ"’f.
Thus we first refine the knot grid until |1 ;| < 7 is met for all local interpolation problems.
After that we check the rank of matrix Ly ;. Only in few cases we have to further refine the
knot grid.

3.2 Reference surface (Step 3)

If we use a data dependent functional, we have to provide a reference surface S whose first
fundamental form is used to define the functional. In our situation it is very natural to define
S as functional surface, i.e., S(u,v) = (u,v, S(u,v)) using the functional reference surface S.

The reference surface has to be chosen under the following considerations:

e S should have roughly the same shape as the resulting interpolating surface,
e S should be fair,

o efficient algorithms for the generation as well as for the evaluation the first fundamental
form of S are required.

We decide to use a TP-B-spline surface applying a least-squares-fit to the given interpolation
data. The knot grid U’ x V' with U' = {u 5,... ;u, o} and V' = {v/ 5,... v}, o} of S'is
chosen such that the inner region coincides with the bounding box of the data points u;:8

S: Z ci,sz{,j-

0<i<n!

0<j<m!
Least-squares fitted TP-B-spline surfaces tend to oscillate near the boundary if the data
implies a rather non-uniform distribution of curvature. Therefore we use a weighted least-
squares-fit instead of an ordinary one where more weight is put on the data points u; that
are close to the boundary:

N
! .
E Wi E ¢ijB; j(ug) — fx|| — min.
k=1 0<i<n/

0<j<m!

In our implementation we set wyp to be the inverse distance of uy to the boundary of the
parameter space of the B-spline surface.

®Note that the B-spline basis functions B} ; are defined over a different grid for F and S.
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We found that n' = m' = y/N/2 results in least-squares fitted surfaces that are well balanced
considering smoothness and “shape-approximation”.

3.3 Variational Statement (Step 4)

For a given knot grid U x V and functional Jg, the problem of finding the optimal TP-B-spline
surface w.r.t. Jg is handled with the method of Lagrangian multipliers:

Minimize Js | Y bi;Bi; | wrt. Y biBij(w) = fr,k = 1,...,N, is

0<ikn 0<i<n
0<j<m 0<i<m

equivalent to solving
A PY\ (b 0
(r o) (a)- () 02

where for F = Z b jBn,m

0<i<n
0<j<m
oJs(F
e F(u)
Ab = : and Pb = : =f.
oJs(F
8ls)i(,j : F(uN)

b,f denote the vector-notation for all b; ; and f. The entries of d are the La-
grangian multipliers.

The number of unknown control points b; ; and multipliers d; can be relatively large. Thus
using direct methods to solve equation (3.14) is very time-consuming. The usage of standard
iterative methods like Gauss-Seidel or SOR is not possible due to the 0’s in the lower-left
block of the matrix.

We handle this problem by rearranging the equations and the unknowns such that a block-
Gauss-Seidel or block-SOR, can be used to solve (3.14). We use again the 4 x 4-blocks of
neighboring B-spline basis functions of Step 2 and associate each data point u; with exactly
one of those blocks by decomposing the parameter space in regions

— [a,. h . h . h . h
Rk,l = [ulk - (Tu)aulk-u - TM[X[UJI — 95 V5, — 71)[
Thus each data point u; lies within exactly one region Ry ;.

Now we consider the following local optimization problem OP OP,é,Of that relates to the local
interpolation problems P,iof:

Find among all B-spline surfaces

Fif(u,w) = > bijBij(u,v),

iksi<’ik+1
[IASASIEN]

satisfying Fj;(u;) = fi,Vu; € Ry, the one with minimal value w.r.t. the fairness
functional Js.

11



The local optimization problems OP,i"’f can also be handled with the method of Lagrangian

multipliers by solving
’ ’ T = . 3.156
(Pk,l 0 /) \dk, £ (3.15)
—_——

=Cp,

When calculating the derivatives of Jg(F), the unconsidered B;; with B; j(u,) # 0 for any
u, € Ry, appear on the right hand side.

The quantities A, Py, by, di,; and fi; correspond to the same matrices and vectors as for
the global Lagrange system (3.14). Furthermore we realize that proper rearrangement gets
an equivalent expression of the global system (3.14) of the form:

C(),O * ree *
£ Cuo - .
) X =T. (3.16)
* Crn+1 +1
“ToLE

The advantage of this rearrangement is that the local optimization problem OP,i‘,’f can easily
be solved since the number of unknowns is relatively small and thus direct methods to solve
such a local optimization problem can be used. Additionally, solving a local optimization
problem is equivalent to one step of a block-Gauss-Seidel or block SOR method applied to
system (3.16).

In order for the block Gauss-Seidel or block SOR method to converge to the solution of the
linear system (3.16), we have to guarantee that

(i) the functional is positive definite on the space of all interpolating TP-B-spline surfaces,
(ii) each local optimization problem OP,i"’f has a solution and that

(iii) there exists an interpolating TP-B-spline surface.
The existence of an interpolating TP-B-spline surface is guaranteed by Step 2. The solvability
of OP,é"lC results from the following fact: Iy; O (Ryg;N{u;:4=1,... ,N}), i.e., the matrix

Py ; representing the interpolation constraints for OP,iOf consists of a subset of the equations

from matrix Ly ; representing I P,é"f and has therefore full rank. Finally, by Thm. 2.3(b) the
functional is positive definite (if more than two data points have to be interpolated).

4 Results

In this section we give some examples and present the results of comparing our algorithm
with other known methods for solving the SDI problem.

In order to compare known methods to the algorithm described in this paper we use the
following procedure, which is widely used in the area of SDI:

(i) choose a test function Fieq; and a set of data points in the domain of Fig;.

(ii) sample Fj.s at the data points and compute the interpolating function to this data.
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(iii) compare the interpolating function which the test function on a finr regular grid: usu-
ally the discrete l1-, I3- or [o-norm is used to evaluate the approximation error of the
interpolating function.

Since our method is mostly designed to construct interpolants with well-distributed curvature,
we additionally use color-coded curvature plots to demonstrate the quality of the interpolant
constructed with our algorithm. These curvature plots display mean curvature. Areas of high
positive curvature are blue whereas red indicates regions of high negative curvature. The color
shifts from red to yellow, green and cyan corresponding to curvature changes from positive
to negative.

As test functions we use the functions presented by Franke and Ritchie (see [7])
_o)2 o2 2
Fues(,0) = § exp (02 O02) 4 G exp (L0050 4 o551 )
+ %exp (_W) + %exp (_(gu _ 4)2 _ (9’0 . 7)2) ’

and Ritchie (see [16])

1 ifv—21u+012>3
Frou(u,0) 20 —21u+0.1) f0<v—-21lu+01<3
u,v) =
test\U, cos(47r1"gu,v))+1 ifr(u,v) Si

0 otherwise,

where r(u,v) = v/(2.1u — 1.6)2 + (v — 0.5)2.

Two sets of data points defined over the unit-square [0,1]? consisting of 100 and 200 data
points are used.

We compare our algorithm with the RBF method based on Duchon’s Thin-Plate-Splines
(TPS) [5] and with the Oslo Mask-Method (OMM) presented by Arge-Dzehlen-Tveito [1].

Table 4.1 shows the number of 4 x4 blocks of control points used to construct the interpolating
TP B-spline surface and the number of control points for the reference surface.

4 x 4 blocks control points
of control points | for reference surface
100 data points 10/10 77
200 data points 12/12 11/11

Table 4.1: Number of 4 x 4 blocks of control points for interpolating TP B-spline surface and
number of control points for reference surface.

In Tables 4.2-4.5 we present the different results obtained by the TPS-, the OMM-method
and our algorithm for the four interpolation setups. The discrete l1-, lo- and [, -norms are
obtained using a regular 75 x 75 grid over the bounding-box of the data points. Additionally
to the approximation quality we give the computing time for the interpolant.

In case of Franke’s function, which is curvature continuous having regions with strongly
varying curvature, we find that our method has better approximation properties compared
to the TPS- and the OMM-method. Ritchie’s function, on the other hand, is not curvature
continuous. The shaded image of Ritchie’s test function are shown in Figure 4. For this
function we find, that our algorithm based on 200 data points constructs an interpolating TP
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B-spline surface having slightly higher approximation error than both, the TPS method (see
Table 4.5). But observing Figures 4.3 and 4.4 one can clearly see that the interpolant based
on the data dependent functional exhibits much smoother distribution of curvature.

Comparing the run-time behavior we find that the data dependent optimization needs more
computing time than the data independent optimization and the TPS- and OMM-method?.
This is not a surprising result since for the data dependent functional the value of the related
inner product of the basis functions (B; ;| By ;) depends on the reference surface and must be
determined using numerical integration. However, depending on the specific application, the
better quality of the resulting surface will justify the higher costs.

‘ ‘ TPS ‘ OMM ‘ simple TPE ‘ data depend. TPE ‘
lo 0.17186 0.173079 | 0.153844 0.116442
I 0.0101117 | 0.0184403 | 0.010426 0.00715282
Iy 0.0223111 | 0.0349568 | 0.0217872 0.015922
time | 21.47 115.26 21.34 226.17

Table 4.2: Interpolation of 100 data values sampled from Franke’s test function.

‘ ‘ TPS ‘ OMM ‘ simple TPE ‘ data depend. TPE ‘
loo 0.030172 0.131664 0.0313066 0.0325615
I 0.00236577 | 0.00583201 | 0.00249948 | 0.00202109
lo 0.00464141 | 0.0143146 | 0.00499386 | 0.00484371
time | 192.47 101.26 27.34 341.17

Table 4.3: Interpolation of 200 data values sampled from Franke’s test function.

\ | TPS | OMM | simple TPE | data depend. TPE |
loo | 0.464249 | 0.496428 | 0.474206 0.509238
A 0.0277653 | 0.0327752 | 0.0293525 | 0.0248366
Iy 0.059029 | 0.0673014 | 0.0609666 | 0.0636782
time | 21.67 108.96 18.78 262.62

Table 4.4: Interpolation of 100 data values sampled from Ritchie’s test function.

\ | TPS | OMM | simple TPE | data depend. TPE |
lo ]0.226727 |0.27666 | 0.215077 0.324951
A 0.0136 0.0174471 | 0.0138894 | 0.0120837
Iy 0.0289624 | 0.038039 | 0.0287011 | 0.0306399
time | 192.67 80.96 22.78 403.62

Table 4.5: Interpolation of 200 data values sampled from Ritchie’s test function.

®For the OMM scheme the computation time decreases slightly with the number of data points since each
data point determines one function values of the grid function.
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Figure 4.3: Shaded images (upper left) of Ritchie’s test functions, the Oslo Mask Method

(upper right) and the RBF-function based on Duchon’s Thin-Plate-Splines as shaded image
and curvature plot (lower left and lower right resp.)



Figure 4.4: The interpolants based on functional optimization: Shaded images (left) and color

curvature plots (right) for the simple TPE (top) and the data dependent TPE functional
(bottom).

5 Conclusions and Future Work

In this paper we first gave on overview on the different functionals that are used in the area
of surface optimization. We developed the data dependent TPE functional with is a good
approximation of the exact TPE functional. Based on this functional we developed a new
approach to solve the problem of interpolating scattered data. This new method generates
interpolating TP B-spline functions. The degrees-of-freedom (DOF) not set by the interpola-
tion constraints are determined using an optimization technique based upon (data dependent)



fairness functionals. The main advantages of this method are: the resulting surface is given in
a CAD compatible format and the interpolant exhibits very uniform distribution of curvature.
Moreover, there is no limitation to the number of data points that can be interpolated by this
approach.

At this moment, our algorithm constructs equidistant knot vectors. In cases where the data
points are clustered, this may lead to a large number of DOF's for relatively small data points
sets. The use of hierarchical B-splines (see [6]) should be investigated to handle this problem.
As already pointed out, our algorithm can be extended to the so-called parametric case, i.e.,
to the interpolation of 3D point clouds. The main difference is that in the general situation
no 2D data points (parameter values) for the 3D data points are known. This problem of
assigning appropriate parameter values to the 3D data points has to be solved first. Once this
is done, one can construct interpolating surfaces in nearly the same way as described above.
Details will be given in a forthcoming paper.
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