Efficient Empty Space Skipping for Per-Pixel Displacement Mapping

Andreas Kolb, Christof Rezk-Salama

Computer Graphics Group, University of Siegen, Germany
Email: {andreas.kolb, christof.rezk}@uni-siegen.de

Abstract

Displacement mapping is widely recognized as
a very useful technique for adding visual detail
to low-resolution geometry using simple texture
maps. Major investigations have been made to ap-
ply displacement maps in real-time rendering. Re-
cently, different approaches using ray-casting on
programmable graphics processing units (GPUs)
have been proposed.

This paper introduces a new technique for speed-
ing up per-pixel displacement mapping for high
frequency displacement maps. The technique only
needs additional 2D-textures to store minimum and
maximum-filtered versions of the displacement map
specifying a safety zone above or below the dis-
placement surface. These zones are used for empty
space skipping to find valid ray section containing
all ray surface intersections.

Results show, that for relatively high sample-
rates, which are needed for high quality rendering or
displacement maps with high frequencies, the new
algorithm increases the rendering frame-rate up to
100%.

1 Introduction

Adding visual detail to low-resolution geometry is
a major approach to modeling and image synthesis
for decades. Using bitmaps to store the visual de-
tails became very popular with the introduction of
bump-mapping by Blinn [1] and later with the pro-
posal of rendering and scene description languages
and architectures like Cook’s Shade Trees [2] and
REYES [3]. The basic concept in any case is to ex-
ploit the high resolution color representation (fex-
ture maps) over flat polygons to store additional ge-
ometric information like normals (normal maps) or
displacement values (displacement maps).
Displacement mapping can be seen as a tech-
nique which dramatically reduces the complexity of

a geometry by storing 3D data w.r.t. few reference
polygons in a simple 2D-texture. The major chal-
lenge, however, is the usage of this kind of geome-
try representation in real-time image synthesis.

In early approaches the displacement map repre-
sentation has been converted to explicit polygonal
geometry before rendering, thus reversing the ge-
ometric complexity reduction to a certain extend.
Cook et.al.’s REYES-architecture [3] uses micro-
polygons for offline rendering of displacement
maps having one polygon for each displacement
pixel. Adaptive approaches like Lee et.al.’s [12] dis-
placed subdivision surfaces attempt to control the
polygonal refinement level using geometric errors.
Additionally, the viewer position can be incorpo-
rated in the polygonal refinement step (e.g. Doggett
and Hirche [4]). The approach taken by Moule and
McCool [13] uses upper and lower bounds of dis-
placement maps over specific regions to control the
screen space error. Their technique which has some
relation to the safety-zones proposed in this paper
(see Section 3.2).

Another major direction of research for render-
ing displacement mapped geometries is based on
rasterization of the displaced geometry in screen
space. First approaches adaptively insert vertices in
the base polygon mesh [5, 7]. Wang et.al. [17] intro-
duce a rendering technique based on several view
dependent displacement maps.

Another proposed technique is the per-pixel ras-
terization of displacement maps using ray-casting
techniques in combination with programmable
graphics processing units (GPUs). Hirche et.al. [9]
generate one ray per pixel when rasterizing the
bounding prisms of the displaced geometry over a
base triangle. The point of intersection of the ray
with the surface is detected using a regular sampling
scheme along the rays and lighting is performed at
the approximate point of intersection. Donelly [6]
describes an acceleration using 3D distance maps.
Policarpo et.al. [15] introduce a GPU-based im-

VMYV 2005

Erlangen, Germany, November 16-18, 2005

plementation of the so-called relief mapping [14].
One core element of this algorithm is the computa-
tion of intersections between viewing rays and dis-
crete height-fields. Policarpo et.al. [15] additionally
incorporated a binary search into the intersection
computation. Kaneko et.al. [10] introduce the so-
called parallax mapping, which tries to estimate the
correction of the displacement map texture coordi-
nate for non-perpendicular view angles.

This paper proposes a new technique for the ef-
ficient computation of intersections between rays in
viewing direction and displacement maps for high
frequency data. These kind of images need a rather
high sampling rate along the rays (see Figure 1).
The key element of the proposed technique is an
empty-space skipping approach which significantly
speeds up the intersection calculation. Especially.
for nearly view-aligned base polygons the intersec-
tion calculation needs only a few search steps. For
silhouette regions the speed-up depends on the dis-
tance of the closest to the furthest intersection of
the ray with the displacement surface. Compared to
Donelly’s technique [6] this approach only needs
to two additional 2D-texture maps to store maxi-
mum and minimum filtered displacement maps. The
empty space representation yields a more accurate
surface approximation than the 3D distance func-
tion proposed by Donelly [6].

Figure 1: Example of a too low and an appropriate
sampling rate.

The reminder of this paper is structured as fol-
lows. Section 2 givens an overview on related work,
especially on Hirche et.al. [9] per-pixel displace-
ment mapping technique also used in our renderer.
The new technique for efficient intersection compu-
tation using empty space skipping is presented in
Section 3. Some implementation issues are handled
in Section 4 and Section 5 states results using vari-
ous sample data sets. Final conclusions are given in
Section 6.

666

2 Related Work

This section gives a brief description of major tech-
niques that have been introduced in the context of
per-pixel displacement mapping. In Section 2.1 the
basic approach of GPU-based per-pixel displace-
ment mapping based on Hirche et.al. [9] is ex-
plained. The key ideas of finding ray-surface inter-
sections used up until now are given in Section 2.2.

2.1 Per-pixel Displacement Mapping

In the following, a triangular base mesh con-
sisting of vertices {V;} with corresponding nor-
mal vectors 1; and triangles {Ax}; Ak
A(V;,V;, V) is given. The displacement surface
over the base mesh is defined using a displacement
map (or displacement texture) M : [0,1]* — [0, 1]
and texture coordinates S; for each vertex V;

F(P) = P+ M(S(P)) - i(P)

where 1i(P) and S(P) are the linearly interpolated
normal and texture coordinate for P € Ajjy, re-
spectively.

The basic idea of per-pixel displacement map-
ping is to render the bounding prism defined by the
base triangle and the “lid” given by V; +1i;, V; +
n;, Vi + 1. For each rendered pixel, the entry
point E and exit point X is computed. The major
task is to find the intersection of ray EX with the
displacement surface (see Figure 2).

Figure 2: Bounding prism over base triangle and cut
through displacement surface along ray in view di-
rection.

In general, the bounding prism’s faces are non-
planar, making the computation of E and X a very
difficult task. Therefore Hirche et.al. [9] use a split-
ting technique to decompose a prism into three

tetrahedra, where the splitting takes care of consis-
tency for neighboring base triangles.

The rendering of the resulting prisms is done us-
ing Shirley and Tuchman’s [16] projective tetrahe-
dra algorithm. This approach guarantees a proper
computation of E and X utilizing the projective in-
terpolation performed during rasterization. There-
fore, first the orientation of the tetrahedron from the
viewer’s position is classified. Each tetrahedron is
decomposed into triangles, where attributes repre-
senting the entry and the exit points are assigned to
triangle vertices, such that interpolation yields the
proper per-pixel values for E and X.

2.2 Ray-Surface Intersection

The intersection calculation takes place in a frag-
ment program. All necessary quantities have been
perspectively interpolated and the entry and exit
points are present as varying data in the program.

Hirche et.al. [9] use four samples along the ray
EX. They use a rather fine tessellated base mesh
in order to get a more dense spacial sampling to
handle high frequency data properly. If a ray misses
the surface the corresponding pixel is discarded in
the fragment program. Policarpo et.al. [15] use ad-
ditional binary search steps to refine the intersec-
tion point for their relief mapping technique. They
use up to 32 uniform steps and about 6 binary steps
by successively evaluating the mid-point between to
samples. Donelly [6] uses a 3D-texture D to store
the minimal distance for any 3D-point within the
bounding prism to the displacement surface. For
each current sample point P the sphere with radius
D(P) can be skipped without hitting the surface
(see Figure 3).

Pz, Py

Figure 3: Adaptive
after Donelly [6].

sampling using distance maps

From the point of texture-caching, the usage

666

of 3D-textures is critical. Using large 3D textures
might lead to inefficient texture caching, e.g. to
stop-and-wait problems. Additionally, the distance
map is quite conservative since it sets the step-size
independent from the ray direction.

3 Intersection Computation using
Empty Space Skipping

This section describes the new approach for de-
termining intersections between rays and displace-
ment surfaces. First, Section 3.1 gives an overview
on the intersection calculation. The key idea of the
algorithm is an empty space (safety zone) skipping
technique using maximum and minimum filtered dis-
placement maps, i.e. dilations and erosions, respec-
tively (Section 3.2). Section 3.3 gives the details on
how to determine minimal ray segments containing
all ray-surface intersections utilizing safety zones.
Finally, a parallel version of the empty space skip-
ping technique using up to four different box-sizes
for the dilation and erosion is introduced in Sec-
tion 3.4.

3.1 Overview of the Algorithm

During rasterization, for each rasterized pixel the
entry and the exit point, E and X, respectively, are
computed. The ray in viewing direction is given as'
P(a)=E+ar, t = ﬁ, a €0, ||X — E|]
To describe the current ray segment, the minimal
and maximal parameter o1 and a2 are stored. From
an abstract point of view, the processing for a single
fragment in the fragment program is composed of
the following steps:

1. if entry point E below surface: discard pixel

2. perform empty space skips

2.1. forward step: update cv; w.r.t. the dilation
map at position P(a1)

2.2. backward step: update as w.r.t. the di-
lation or erosion map, if point P(az) is
above or below surface

2.3. if a1 > a: discard pixel

3. perform regular sampling within [, az2] to

find first intersection
if no intersection found: discard pixel
4. perform binary search steps

'# denotes a unit vector

5. light intersection point
The first step simply performs a culling of back-
faces.

In contrast to Policarpo et.al. [15], the binary
search technique exploits the current vertical dis-
tances d between a point> P on the ray and the
displacement surface with map M: d(P) = p. —
M (p, py). For the current interval [a, ci] with

d(P(a1)) > 0,d(P(az2)) < 0 a bisection step is
performed as follows:
o _ d(P(a1))
P=P h =
(@, W = B ar)) ~ d(P(a)
E = ﬁz - M(ﬁzvﬁy)

Depending on the sign of d, the interval a1, a2] is
updated, i.e. if sgn(d) > 0, then oy «— @, else
2 — Q.

Final lighting is done with the Blinn-Phong al-
gorithm using the surface normal which is stored
together with the displacement values in a single
RGBA-texture.

3.2 Safety Zones Based on Filtered Dis-
placement Maps

The empty space skipping approach is based upon
the dilation M3, and the erosion M., of the dis-
placement map M:

M;‘u(S)—
max{M(S') : [s—s'| <o A |t—t'| <6}
MSTD(S):
min{M (S |5—s{<6/\|t—t|<5}

where S = (s,t) and 0 > 0 is the size of the region
in s and ¢ direction. Figure 4 shows two different
sample dilations.

Figure 4: Two different dilations with §; < &2 for a

given displacement map.

2coordinate notation: P = (P Pys Pz)T

666

Based on a dilation map M, 3“ a safety zone Rfm
can be defined, where no portion of the displace-
ment surfaces intersects. Rgq;; is described in local
prism coordinates, i.e. in displacement texture coor-
dinates, and varies over the location S on the base

triangle.
s —
t—

Here ||-|| ., is the infinity norm, i.e. ||(z,y)
max{|z|, |y|}. Figure 5 illustrates the safety zone
for one specific dilation at texture coordinate S.

Ry (S) =

{Q 1z > Mgil(s) A

G
<9
qy)”oo J

“ll

x“‘\l‘%gil (s

Figure 5: Safety zone RJ;;(S).

The concept of defining safety zones applies to
erosions in a similar way. Here the region Rﬁm lies
below the displacement surface.

Gzl <o

The following section will explain, how safety
zones below and above the displacement surface are
used to exclude ray segments that contain no ray-
surface intersections.

R,,(S) =

{Q:¢< Mdzl

3.3 Minimal Intersection Ray Segments

During rasterization of the bounding prism, the en-
try and the exit point, E and X, respectively, are
computed, describing the ray through the prism in
viewing direction. Additionally, a dilation and an
erosion map of displacement map is given. It is as-
sumed, that E lies above the displacement surface,
otherwise the pixel is discarded yielding a culling
of back-faces.

For now, it is premised that t* is “pointing down-
ward”, i.e. 7, < 0 in prism coordinates. Let P =
P(au1) denote an arbitrary point on the ray that lies

within it’s corresponding safety zone RS, (pz, py)
above the surface. Proceeding along the ray, the
safety zone is left, when the ray hits the lower bound
of the region or the horizontal distance exceeds the
ltracrll
[rar)]
lcracrll
[
that the dilation and the erosion are build using the
oo-norm and the ray length is measured as euclidian
distance in displacement texture coordinates.
Simple calculus yield the relative a-parameter
for the intersection of the ray with the safety zone
boundary related to the current position P(a1)

dilation value ¢ - , whatever occurs first.

The fraction compensates for the fact,

0

Nz, ry)ll oo

Mgil(pmvpy) — Pz
Tz

aS(P) = min{

yielding the intersection point P(a; + af (P)).

Figure 6: Calculating the intersection of the ray with
the boundary of the safety zone.

In a similar way, o is computed, if the ray points
upwards within the prism, i.e. 7. > 0. Here, the
intersection with the upper boundary defined by
z = 1 has to be checked, yielding

Since a minimal ray segment is desired, not only
the maximum for a1, starting from the entry point
E, but also the minimum parameter a2 going back-
wards from the exit point X needs to be determined.

In order to find the relative parameter al, the
following situations for the end point X are distin-
guished.

1.0 — p,
Tz

0

e,)l

S (P) = min{

X above surface: In this case, again the dilation
map is used computing the backward intersection

}

666

with the safety zone boundary. Again, the computa-
tion for an arbitrary point P above the surface de-
pends upon the sign of r:

ifr, <0: (check upper boundary)

(P) = min { L0=p: =0

rz (e ry)ll
ifr, >0: (check lower boundary)
(P)= min{

5
(%]

}

—0

Tz my) oo

Mgil(pzvpy) — D=
Tz

5
(5]

X below surface: Here, the erosion map is used.
For an arbitrary point P below the surface the fol-
lowing conditions are deduced

ifr, <0: (check upper boundary)
5 J— J—
ag (P) = min { Mero(Pz, py) = p: > d
r. [[(re, 7)o

ifr, >0: (check lower boundary)

5 . _pz _6
as(P) = min { , 7}

’ 2 l(re, my)ll oo

Both cases assume, that the exit point X lies
within the corresponding safety zone for the dilation
or the erosion map. In various situation, the result is
an empty ray segment, i.e. a1 > a2, indicating, that
there is no intersection at all.

3.4 Parallel Multi-Channel Computation

Depending on the ray direction, one would like to
have different box-sizes ¢ for the dilation and ero-
sion. For “steep” rays a small § allows larger steps
along the ray, whereas “flat” rays need larger val-
ues of § to exclude significant ray portions. Since
the computation derived in Section 3.3 is done in
a fragment program, it can be easily extended han-
dling up to four different box-sizes at no additional
costs, since each J-filtered map is stored in one tex-
ture component.

Using several texture components at once, the ef-

fective safety zone is the union of all safety zones
for individual § (see Figure 3.4).

j

}

Figure 7: Effective safety zone for four dilations in
comparison with a distance sphere.

Figure 8 shows a sample four-channel dilation
texture for the angel displacement map.

N

Figure 8: Displacement map (left) and four channel
dilation (right) for the angel data set.

4 Implementation

The displacement renderer has been implemented
in OpenGL using Cg version 1.3 for GPU program-
ming and an NVIDIA GeForce 6800 GT graphics
card with 256 MB video memory.

The following Cg-code excerpt for one forward
dilation step shows the details of the parallel com-
putation for multi-channel maps. This code gets the
following input data: entry, aMin, ray, the
entry point E, the initial value for o1 and the ray di-
rection as unit vector. Additionally, the global four-
component dilation di1Map with box-size delta
as 4-vector are given.

float3 P_1 = entry + aMin*ray;
float maxNorm = max(ray.x, ray.y);
float4 dilval = tex2D(dilMap,P_1l.xy);
float4d a4 = 10000. .xxxx;

// which channels are valid?
float4 valid = (P_l.zzzz>dilVval);

// 1: check ceiling
if ((ray.z > 0.001))

a4 = (1..xxxx-P_1l.zzzz)/ray.z;
// 2: check floor

else if ((ray.z < -0.001))

a4 = (dilval-P_l.zzzz)/ray.zzzz;
// 3: check box-wall
a4 = min(a4,valid*delta/maxNorm) ;

// find maximum
float2 a2 = max(ad4.xy, ad.zw);
aMin = aMin+max(a2.x,a2.y);

The variable valid stores the per-channel infor-
mation, whether the current sample point P_1 is in
the corresponding safety zone or not. If the point is
outside, the resulting relative parameter o is 0.

5 Results

For testing purposes, a fix image resolution of
512% pixels is used. The fraction of the image
covered by a displacement surface depends on the
viewers position and significantly influences the
frame-rates, since only those pixels are processed
by the fragment program. All the renderings have
been done with a simple base mesh consisting of
two triangles only.

Figure 9: The data sets used for testing the proposed
approach; simple map (left), spikes (center) and an-
gel (right).

The test data sets are shown in Figure
9. In the following the filter box-sizes w.r.t.
the displacement map resolution are set to
(3.125%, 6.25%, 12.5%, 25%).

First, the results are given in case of viewing the
different displacement surfaces perpendicular and
in nearly tangential direction w.r.t. the base poly-
gon. The empty space skipping speeds up the ren-
dering 30 — 100% for viewing direction perpendic-
ular to the base polygon. In the tangential situation,
the costs for the empty space skipping and it’s ben-
efit for the regular sampling cancels out (see Table

D).

Data & 0 Skips 1Skip 2 Skips
Constellation

Simple (perp.) 15.0 20.0 20.0
Simple (tang.) 57.0 59.0 55.0
Angel (perp.) 14.9 20.0 20.0
Angel (tang.) 29.9 30.0 30.0
Spikes (perp.) 10.0 20.0 15.0
Spikes (tang.) 30.0 30.0 30.0

Table 1: Frame-rates for 75 samples depending on
the number of empty space skips for various data
sets for perpendicular and tangential view on the
displacement surface.

Investigating this in more detail w.r.t. the viewing
angle, it can be found, that this cancellation effect
actuates at angels above 60 — 70° (see Table 2).

Skips 0° 15° 30° 45° 60° 75°
0 15 15 15 15 20 30
1 20 20 20 20 30 30
2 20 20 20 20 30 30

Table 2: Frame-rates for 75 samples depending on
the viewing angle and the number of empty space
skips for the angel dataset.

Test with close-up views of the angel dataset ex-
pose the visual quality of the resulting rendering.
The visual quality only depends on the sampling
rate and the number of binary search steps (see
Figure 10). The performance gain using the empty
space skipping is about 20 — 50%. The correspond-
ing performance values are given in Table 3.

6 Conclusions

Based on the per-pixel displacement mapping tech-
nique from Hirche et.al. [9] a new technique for
efficient empty space skipping has been intro-
duced. The technique needs only two additional 2D-
textures to describe safety zones based on minimum
(erosion) and maximum (dilation) filtered versions
of the displacement map. These zones lie above and
below the surface for dilation and erosion, respec-
tively. A ray in viewing direction can pass these
zones without hitting the displacement surface. The
technique uses a multi-channel approach to handle

666

Sample-Rate # Bisections # Skips FPS
10 0 0 30.0
10 2 0 30.0
40 2 0 15.0
40 2 1 19.6
40 2 2 19.9
75 2 0 10.0
75 2 1 12.0
75 2 2 15.0

Table 3: Frame-rates for different combinations of
sample-rate, number of binary search steps and
empty space skips for the close-up of the angle
dataset.

four different filtered versions to adjust for various
viewing angles. Different test scenarios are given
demonstrating the speedup performed by the new
technique, which is more significant for nearly per-
pendicular viewing directions.

Acknowledgments

The authors wishes to thank Friedrich Seydel, who
did major part of the implementation work.

References

[1] J. Blinn. Simulation of wrinkled surfaces.
In ACM Proceedings SIGGRAPH, pages 286—
292, 1978.

[2] R. Cook. Shade trees. In ACM Proceedings
SIGGRAPH, pages 223-231, 1984.

[3] R. Cook, L. Carpenter, and E. Catmull. The

REYES image rendering architecture. In

ACM Proceedings SIGGRAPH, pages 95—

102, 1987.

M. Doggett and J. Hirche. Adaptive view

dependent tessellation of displacement maps.

In Proc. Graphics Hardware, pages 59-66,

2000.

M. Doggett, A. Kugler, and W. Strafer. Dis-

placement mapping using scan conversion

hardware architectures. Computer Graphics

Forum, 20(1):13-26, 2001.

W. Donnelly. GPU Gems 2, chapter Per-Pixel

Displacement Mapping With Distance Func-

tions, pages 123-136. Addison Wesley, 2005.

(4]

(5]

(6]

Figure 10: Rendering a close-up of the angel dataset using 10, 10, 40 and 75 samples per unit length and 0,
2,2 and 2 binary search steps (from left to right).

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

S. Gumhold and T. Hiittner. Multiresolu-
tion rendering with displacement mapping.
In Proc. Graphics Hardware, pages 55-66,
1999.

W. Heidrich and H.-P. Seidel. Ray-tracing
procedural displacement shaders. In Proc.
Graphics Interface, pages 8—16, 1998.

J. Hirche, A. Ehlert, S. Guthe, and M. Doggett.
Hardware accelerated per-pixel displacement
mapping. In Proc. Graphics Interface, pages
153-158, 2004.

T. Kaneko, M. Inami, N. Kawakami,
Y. Yanagida, T. Maeda, T. Takahei, and
S. Tachi. Detailed shape representation with
parallax mapping. In Proc. ICAT, pages
205-208, 2001.

J. Kautz and H.-P. Seidel. Hardware accel-
erated displacement mapping for image based
rendering. In Proc. Graphics Interface, pages
61-70, 2001.

A. Lee, H. Moreton, and H. Hoppe. Displaced
subdivision surfaces. In ACM Proceedings
SIGGRAPH, pages 85-94, 2000.

K. Moule and M. McCool. Efficient bounded
adaptive tesselation of displacement maps.
In Proc. Graphics Interface, pages 171-180,
2003.

M. Oliveira, G. Bishop, and D. McAllister.
Relief texture mapping. In ACM Proceedings
SIGGRAPH, pages 359-368, 2000.

F. Policarpo, M. Oliveira, and J. Comba. Real-
time relief mapping on arbitrary polygonal
surfaces. In Proc. Symp. on Interactive 3D
Graphics, pages 155-162, 2005.

P. Shirley and A. Tuchman. A polygonal ap-
proximation to direct scalar volume rendering.
In Proc. Workshop on Volume Visualization,
pages 63-70, 1990.

666

[17] L. Wang, X. Wang, X. Tong, S. Lin, S. Hu,

B. Guo, and H.-Y. Shum. View-dependent
displacement mapping. ACM Trans. Graph.,
22(3):334-339, 2003.

Figure 11: Displacement map (left), four channel dilation (center) and four channel erosion (right) for the
angel data set.

Figure 12: Rendering the spikes dataset with high frequency using 10, 10 and 75 samples per unit length
and 0, 2 and 2 binary search steps (from left to right).

Figure 13: Rendering a close-up of the angel dataset using 10, 10, 40 and 75 samples per unit length and 0,
2,2 and 2 binary search steps (from left to right).

666

