
A Vertex Program for Efficient Box-Plane Intersection

Christof Rezk Salama and Andreas Kolb

Computer Graphics and Multimedia Systems Group
University of Siegen, Germany

Email: {rezk,kolb}@fb12.uni-siegen.de

Abstract

Object-order texture-based volume rendering de-
composes the volume data set into stacks of tex-
tured polygons. The performance of such hardware-
based volume rendering techniques is clearly dom-
inated by the fill-rate and the memory bandwidth,
while only very little workload is assigned to the
vertex processor. In this paper we discuss a vertex
program which efficiently computes the slicing for
texture-based volume rendering. This novel tech-
nique enables us to balance the workload between
vertex processor, fragment processor and memory
bus. As a result we demonstrate that the perfor-
mance of texture-based volume rendering can be
efficiently enhanced by trading an increased vertex
load for a reduced fragment count. As an applica-
tion we suggest a novel approach for empty space
skipping for object-order volume rendering.

1 Introduction

In computer graphics, algorithms for the synthesis
of virtual images can be categorized into object-
order or image-order approaches. Image-order ap-
proaches, such as raytracing, decompose the tar-
get image into elements (usually pixels1) and tra-
verse the virtual scene to compute its contribution
to the final color of each element. Object-order ap-
proaches, such as rasterization, on the other hand
split the virtual scene (the source) into geometric
primitives (points, lines, triangles) and then com-
pute how these primitives contribute to the final im-
age, e.g. by ”splatting” the primitive onto multiple
pixels in screen space at once.

Direct volume rendering can be performed with
both approaches, efficiently accelerated by mod-
ern graphics processing units (GPUs). The tradi-

1elements smaller than pixels may be used to account for sub-
pixel accuracy and anti-aliasing

tional texture-based volume rendering algorithm is
an object-order approach. It decomposes the vol-
ume data into one or more stacks of polygonal slices
which are usually composited in back-to-front or-
der onto the image plane. Modern graphics hard-
ware also allows direct volume rendering to be im-
plemented as an image-order approach, basically by
performing ray-casting within a large loop that sam-
ples the volume successively along the viewing ray
in the fragment shader.

If we compare both implementations, we find
that slice-based volume rendering might be consid-
ered the “brute-force”- approach, that relies solely
on the fill-rate and the high fragment throughput of
the rasterization unit. Ray-casting on the other hand
employs optimization techniques such as empty-
space skipping and early-ray termination. At the
bottom line, however, the brute-force approach is
still advantageous in terms of performance, while
GPU-based ray-casting has several clear advantages
when rendering iso-surfaces or sparse volumes.

The performance limit for both approaches, how-
ever, is the same. It is either the fill-rate or the
memory bandwidth. Neither of these approaches
is geometry-limited. The major work is done in the
fragment processor and only a negligible computa-
tional load is assigned to the vertex processor. In
this paper, we demonstrate that the performance of
object-order volume rendering can be improved by
moving the necessary slice decomposition, which is
usually done on the CPU, onto the vertex proces-
sor. This gives us the flexibility which is neces-
sary to load-balance the rendering process for max-
imum performance. We demonstrate that this is ef-
fective for optimizing bandwidth and texture cache
coherency. Finally, we introduce an implementa-
tion of empty-space skipping for slice-based vol-
ume rendering using an octree-decomposition of the
volume data.

In the following section, we will point the reader

VMV 2005 Erlangen, Germany, November 16–18, 2005



to important related work in the field of real-time
volume graphics. Section 3 describes the original
3D-texture based approach to volume rendering and
examines its limitations. In Section 4 our algorithm
for plane-box intersection is explained. Section 5
describes the implementation of this algorithm in a
vertex program. This implementation is the basis
of our straight-forward object-order algorithm for
empty-space skipping using an octree decomposi-
tion. This is described in Section 6. The results
of our implementation are analyzed in Section 7.
Eventually, Section 8 concludes our work.

2 Related Work

Real-time volume graphics has a long history in
computer graphics, starting with the first straight-
forward CPU-based image-order approaches in
1984 [?]. Maybe the most important purely CPU-
based method was the shear-warp-algorithm intro-
duced by Lacroute and Levoy in 1994 [?]. This ap-
proach is also the basis for efficient GPU-based im-
plementations, such as 2D-multitexture based vol-
ume rendering [?]. With the increasing availability
of hardware accelerated 3D textures, many volume
rendering techniques have utilized this feature for
different purposes. For an overview of state-of-the-
art object- and image-order volume rendering tech-
niques, we suggest reading the SIGGRAPH 2004
course notes on Real-Time Volume Graphics [?],
which include many implementation details that are
usually omitted from scientific papers. The idea
of slicing simplices has been examined in different
contexts before by Reck et al. [?] for tetrahedra and
by Lensch et al. [?] for prisms.

GPU-based image-order techniques have been
developed only recently with the introduction
of graphics boards that support true conditional
branches and loops of variable length in the frag-
ment processor. Raycasting has been implemented
both in a combined CPU/GPU solution [?] and a
purely GPU-based solution [?]. Another important
GPU-based raycasting algorithm for isosurface ren-
dering has been introduced recently by Hadwiger et
al [?]. It includes many advanced concepts such as
empty space skipping, and non-photorealistic draw-
styles in a unified framework.

Although, the raycasting technique seems to be
a more straight-forward way of implementing vol-
ume graphics on a GPU, such approaches still suf-

fer from a of series of problems, most of them aris-
ing from the fact, that graphics hardware has not
been designed for image-order approaches in the
first place. However, it is very likely that these lim-
itations will be overcome in the near future.

Nevertheless, also object-order approaches still
suffer from several limitations in practise. If 3D
textures are used, one popular problem is the lim-
ited amount of graphics memory which often forces
the programmer to split the volume data set into
several smaller chunks (usually called bricks), each
of which fitting entirely into local video memory.
The 3D texture based approach and its current lim-
itations will be explained in detail in the following
section.

3 3D Texture-Based Volume Graphics

Current graphics hardware does not support truly
three-dimensional rendering primitives. If you want
to leverage such hardware for direct volume ren-
dering, your volumetric object must be decomposed
into polygonal primitives. However, most graphics
boards do have support for three-dimensional tex-
ture objects, which allows you to “cut” the texture
image out of a 3D texture block using trilinear fil-
tering.

With 3D textures, the volume is usually split into
viewport aligned slices. These slices are computed
by intersecting the bounding box of the volume with
a stack of planes parallel to the current viewport.
In consequence, viewport-aligned slices must be re-
computed whenever the camera position changes.
Figure 1 illustrates the rendering procedure. Dur-
ing rasterization, the transformed polygons are tex-

Figure 1: Polygons are computed by intersection
the bounding box with a stack of planes parallel to
the viewport. The textured polygons are blended in
back-to-front order into screen space to create the
final rendering.

666



tured with the image data obtained from a solid tex-
ture block by trilinear interpolation. During frag-
ment processing the resulting polygon fragments
are blended semi-transparently into the frame buffer
and finally displayed on screen.

The intersection calculation for generating the
slice polygons is done on the CPU and the resulting
polygons are transferred to the graphics processor
for each frame. In this case, the vertex processor is
only used to transform each incoming vertex with
one affine matrix, which comprises the modeling-,
viewing-, and perspective transformation. If the
volume data set is small enough to fit into lo-
cal video memory, the overall rendering process is
clearly fill-rate limited. This means that the major
workload is performed by the fragment processor
which splits each polygon into fragments and ob-
tains the trilinearly filtered texel values from local
video memory. If the arithmetic computation in the
fragment program is not too complex, the fill-rate
is mainly determined by texture cache coherency
and the memory bandwidth between the fragment
processor and local video memory.

3.1 Bricking

Difficulties arise when the volume data set does
not fit entirely into local video memory. The tex-
ture block must be divided into smaller bricks, each
of which is rendered separately. In this case the
rendering process is limited by the memory band-
width between the GPU and the host memory, while
the GPU is stalled until the required texture data is
fetched from host memory. To make matters worse,
bricking increases the overall memory for storing
the volume data set. This is because correct inter-
polation across brick boundaries requires one plane
of voxels to be duplicated at the boundary between
any two bricks [?].

The size of the bricks has significant influence on
the overall performance. In order to optimize cache
coherency, the bricks should be kept small enough
to fit into the texture cache. On the other side, how-
ever, the bricks should not be too small, otherwise
the duplicated voxels at the brick boundaries would
significantly increase the memory required for stor-
ing the volume. To make matters worse, a large
number of bricks result in a higher number of inter-
section calculations for the CPU, a higher number
of vertices which must be transferred to the GPU

Figure 2: Intersecting a box with a plane. The re-
sulting polygon has between 3 and 6 vertices. Sym-
metric cases are omitted.

for each frame and thus a deterioration of the band-
width problem.

To these ends we present a vertex program which
shifts all the intersection calculation between the
bounding box of the volume and a stack of slice
planes in the vertex processor. We will see that such
a vertex program minimizes the amount of data that
must be transferred from host memory to the GPU.
This allows us to render significantly smaller bricks
and thus increases overall performance.

4 Cube-Slice Intersection

The intersection between a box and a plane results
in a polygon with 3 to 6 vertices (assuming that
the plane actually intersects the box). The differ-
ent cases are illustrated in Figure 2. Our approach
is to compute such intersection polygons directly in
the vertex processor. A vertex program, however,
can only modify existing vertices. It can neither in-
sert new vertices into the stream nor remove ver-
tices from the stream. As a consequence, we design
a vertex program that always receives 6 vertices
and outputs 6 vertices. If the intersection polygon
consists of less than 6 vertices, the vertex program
will generate one or more duplicate vertices (i.e two
identical vertices with an edge of length zero inbe-
tween).

Intersecting an edge of the box with the slice
plane is easy, if the plane is given in Hessian nor-
mal form,

〈~nP ◦ ~x〉 = d (1)

with ~nP denoting the normal vector of the plane and
d the distance to the origin. For viewport-aligned

666



slicing the normal vector ~nP is simply the viewing
direction. An edge between two vertices Vi and Vj

of the bounding box can be described as

Ei→j : X(λ) = Vi + λ (Vj − Vi) (2)

= Vi + λ~ei→j with λ ∈ [0, 1]

Note that the vector ~ei→j does not have unit length
in general. The intersection between the plane and
the straight line spanned by Ei→j is simply calcu-
lated by

λ =
d− 〈~nP ◦ Vi〉
〈~nP ◦ ~ei→j〉 . (3)

The denominator becomes zero only if the edge is
coplanar with the plane. In this case, we simply
ignore the intersection. We have found a valid in-
tersection only if λ is in the range [0, 1], otherwise
the plane does not intersect the edge.

The main difficulty in performing the intersection
calculation in the vertex processor is to maintain a
valid ordering of the intersection points, so that the
result forms a valid polygon. To understand the slic-
ing algorithm, let us assume for now, that we have
one vertex V0 that is closer to the camera than all
other vertices, as displayed in Figure 3 (left) Ver-
tex V7 is then identified as the vertex lying on the
opposite corner across the cube’s diagonal. In the
following we will refer to the vertex indices given
in Figure 3 (left).

If V0 is the front vertex and V7 is the back ver-
tex, there are exactly three independent paths from
V0 to V7 as marked in Figure 3 (left) by the solid
lines in different shades of gray. In this context,
independent means that these paths do not share

V4

V0

V5

V6

V1

V2

V7

V3

V4

V0

V5

V1

V2

V4

V0

V5

V1

V2

P0

P1

P2

P0

P1

P2

Figure 3: Left: The vertices are numbered sequen-
tially. There always exist three independent paths
from the front vertex V0 to the back vertex V7 as
marked by the solid lines. Right: The intersection
point of the dotted line must be inserted between the
intersection points from the solid lines.

any vertices other than the start and the end ver-
tex. Each path consists of a sequence of three edges
{E1, E2, E3}, e.g. E1 = E0→1, E2 = E1→4 and
E3 = E4→7 for the light gray path. For a given
front vertex, we can construct these three paths
uniquely by forcing that the vectors corresponding
to E1, E2 and E3 for each path form a right handed
system.

Now imagine we are sweeping a viewport-
parallel plane from front to back through the box
in Figure 3 (left). The first vertex that the plane
touches is V0. Before this happens, we do not have
any valid intersection with the box. The last vertex
that the plane touches, if we proceed from front to
back, is vertex V7. After that, we will not have any
valid intersection anymore. As a consequence, any
viewport-aligned plane that intersects the box will
have exactly one unique intersection point along
each of the three paths, respectively. In the case
that our intersection polygon has only three ver-
tices, they will be exactly those intersection points
with the three paths. As a result, we can compute
three of the possible six intersection points Pi by
checking intersections with a sequences of edges,
respectively.

P0 = Intersection with E0→1 or E1→4 or E4→7

P2 = Intersection with E0→2 or E2→5 or E5→7

P4 = Intersection with E0→3 or E3→6 or E6→7

Now, let us consider where the remaining inter-
section points must lie if our polygon has more than
three vertices. We will first examine the light gray
dotted edge E1→5 in Figure 3. If there exists a valid
intersection with this edge, then it must be inserted
between the intersection points with the light gray
path and the medium gray path as can be easily seen
in Figure 3 (right). If an intersection with the dotted
edge does not exist, we simply set the point equal
to P0, which is the intersection point with the light
gray path. The other dotted edges can be treated
analogously, resulting in the remaining three inter-
section points:

P1 = Intersection with E1→5, otherwise P0

P3 = Intersection with E2→6, otherwise P2

P5 = Intersection with E3→4, otherwise P4

We have now determined all six intersection
points of the plane with the box in a sequence that
forms a valid polygon. Now it is easy to check, that

666



01 void main(
02 int2 Vin : POSITION,
03
04 // updated per cube
05 uniform float3 vecTranslate,
06 uniform float dPlaneStart,
07
08 // updated per frame
09 uniform float4x4 matModelViewProj,
10 uniform float3 vecView,
11 uniform int frontIndex,
12
13 // const: never updated
14 uniform float dPlaneIncr,
15 uniform int nSequence[64],
16 uniform float3 vecVertices[8],
17 uniform int v1[24],
18 uniform int v2[24],
19
20 // output variables
21 out float4 VertexOut : POSITION,
22 out half3 TexCoordOut : TEXCOORD0
23 )
24 {
25
26 float dPlaneDist = dPlaneStart + Vin.y * dPlaneIncr;
27
28 float3 Position;
29
30 for(int e = 0; e < 4; ++e) {
31
32 int vidx1 = nSequence[int(frontIndex * 8 + v1[Vin.x*4+e])];
33 int vidx2 = nSequence[int(frontIndex * 8 + v2[Vin.x*4+e])];
34
35 float3 vecV1 = vecVertices[vidx1];
36 float3 vecV2 = vecVertices[vidx2];
37
38 float3 vecStart = vecV1+vecTranslate;
39 float3 vecDir = vecV2-vecV1;
40
41 float denom = dot(vecDir,vecView);
42 float lambda =
43 (denom!=0.0)? (dPlaneDist-dot(vecStart,vecView))/denom:-1.0;
44
45 if((lambda >= 0.0) && (lambda <= 1.0)) {
46 Position = vecStart + lambda * vecDir;
47 break;
48 } // if(...
49
50 } // for(...
51
52 VertexOut = mul(matModelViewProj, float4(Position,1.0));
53 TexCoordOut = 0.5 * (Position) + 0.5.xxx;
54 return;
55 }

Listing 1: Cg vertex program for box-plane intersection.

666



the same sequence works fine if the front edge or
the front face of the box is coplanar with the view-
ing plane. We simply select one of the front vertices
as V0 and set V7 to the opposite corner. Remember
that we ignore any intersections with an edge that is
coplanar with the plane.

5 Implementation

The algorithm for computing the correct sequence
of intersection points as described in the previous
section has been implemented as a vertex program.
The Cg code for the program is given in Listing 1.
The program has been designed for slicing a high
number of equally-sized and equally-oriented boxes
with a stack of equidistant planes. Care has been
taken to minimize the number of state changes and
the amount of data transferred to the graphics board
for each frame.

The input stream of vertices to calculate one in-
tersection polygon is specified in Listing 2. The x-
coordinate of the vertex is an index that specifies
which of the six possible intersection points should
be computed. The y-coordinate of the vertex is the
index of the plane that is used for intersection. As
the plane index is constant for one polygon, it could
alternatively be specified as a separate parameter
in the vertex stream (e.g. as texture coordinate).
However, current hardware implementations do not
support vertices that have only one coordinate, so
I decided to incorporate the plane index into the y-
coordinate of the vertex.

In this implementation we assume that all the
boxes have the same size and orientation, although
simple modifications to the program will allow ar-
bitrary size and orientation at the cost of a slightly

glBegin(GL POLYGON);
glVertex2i(0,nPlaneIndex);
glVertex2i(1,nPlaneIndex);
glVertex2i(2,nPlaneIndex);
glVertex2i(3,nPlaneIndex);
glVertex2i(4,nPlaneIndex);
glVertex2i(5,nPlaneIndex);

glEnd();

Listing 2: OpenGL example vertex stream for cal-
culating one intersection polygon simply stores the
index of the intersection point to be calculated and
the index of the plane.

larger number of state changes. In our case each
box consists of the same set of vertices and a trans-
lation vector vecTranslate (line 05 in Listing 1)
which is specified once for each box to be rendered.
The vertices of one box are kept in a constant uni-
form vector array vecVertices[8] (line 16) and
will not be changed at all.

Besides the usual modelview-projection-matrix
(line 08), we specify for each frame the index of
the front vertex with respect to the viewing direc-
tion in the uniform parameter frontIndex (line
10). Since all our boxes are equally oriented, the
front index will not change during one frame. Ad-
ditionally, we set the uniform parameters vecView
(line 09) to the normal vector ~nP of the plane and
dPlaneIncr (line 14) to the distance between two
adjacent planes. In line 26, the correct distance d
for the plane equation is computed.

The constant uniform index array nSequence

(line 15) stores the permutation of vertex indices
with respect to the given index of the front vertex
frontIndex (see lines 32 and 33). As described in
the previous section, several edges must be checked
for intersection in sequence, according to the index
of the intersection point.

In order to calculate the intersection points P1,
P3 and P5, we must first check for an intersection
with the dotted edge, and if this intersection does
not exist we must check for intersection with the
corresponding path (solid line, Figure 3). Hence,
the maximum number of edges that must be tested
for intersection is four. This is done within the for-
loop that starts in line 30. For the intersection points
P0, P2 or P4, we have to check only three edges.
In this case the program breaks out of the for-loop
when the intersection point is found after a maxi-
mum of three iterations.

The two constant index arrays v1 and v2 store the
indices of start and end vertices of the edges that
must be tested successively for intersection. They
are indexed by the intersection index Vin.x from
the vertex stream in combination with the current
iteration count e (line 32 and 33).

Line 32 and 33 compute the correct vertex in-
dices of the edge that must be tested for intersec-
tion. The vertices are fetched from the constant uni-
form array vecVertices in lines 35 and 36. Lines
38 and 39 compute the correct start point and the
edge vector for the current edge, taking into account
the local translation of the box. Line 41 calculates

666



the denominator for Equation 2. If the denomina-
tor is unequal zero (which means that the edge is
not coplanar with the plane), the λ value for the
edge is computed as in Equation 2. Line 45 tests
if we have a valid intersection. If this is true, the
program breaks out of the for loop. Finally, line
52 transforms the resulting intersection point into
screen space and line 53 calculates the texture co-
ordinate for the vertex. The texture coordinates in
this example are obtained by simply scaling the ver-
tex position to the range [0, 1]. Alternatively texture
coordinates could be specified by another uniform
parameter similar to vecVertices.

This admittedly intricate implementation allows
one box to be intersected with several parallel
planes using one single function call that feeds a
predefined vertex buffer into the graphics pipeline.

6 Empty-Space-Skipping

As an application of the described vertex program,
we have implemented an empty space skipping ap-
proach based on an octree decomposition of the vol-
ume data, similar to the one proposed in [?] for iso-
surface extraction. At each level, the volume block
is subdivided into eight equally sized sub-blocks.
Each node of the octree stores the minimum and the
maximum scalar value contained in its sub-block.
Typical transfer functions for volume visualization
map a significant portion of the scalar data range to
complete transparency. The octree structure allows
us to completely skip sub-blocks that do not con-
tribute to the final image, because all of its voxel
values are being transparent. This is the well-known
idea of empty-space-skipping borrowed from ray-
casting approaches.

During rendering the octree is traversed top-
down by the CPU. Depth sorting of the sub-blocks
is necessary to ensure correct back-to-front order-
ing. This is efficiently achieved during the octree
traversal. Each octree nodes traverses its eight chil-
dren in the correct sequence with respect to the cur-
rent viewing direction. Before a subblock is tra-
versed, our implementation uses the precomputed
minimum and maximum scalar values to check
whether the sub-block will contribute to the final
image or not. Additionally, we can decide at each
node of the octree, whether we store the 3D texture
data for this level or store one separate 3D-textures
for each sub-level, to optimize the size of 3D tex-

tures for texture cache coherency.

7 Results

The presented approach for empty space skipping
has been implemented on an NVidia Geforce6
board with 256 MB of local video memory. The
dataset used for performance measurement was a
16 bit CTA2 data set of size 512× 512× 96 show-
ing blood vessels in the human brain. In medical
practise, 3D angiography data sets are usually visu-
alized by setting the soft tissue to completely trans-
parent. Angiography data is thus ideal for evalu-
ating empty space skipping techniques. Example
images are given in Figure 6.

The vertex program described in the paper was
supplemented by two different fragment programs:

1. a simple shader for direct volume rendering
using dependent texture lookups for postclas-
sification (2 texture lookups per fragment)

2. a fragment shader for direct volume render-
ing with postclassification and Phong shading.
This fragment shader estimates the gradient
vector on-the-fly using central differences and
multiple texture lookups per fragment (8 tex-
ture lookups per fragment).

We have tested different levels of subdivision and
measured the overall performance. In order to ob-
tain optimal image quality, a high number of slice
images has been used to render the volume. Fig-
ure 4 shows the performance using the first frag-
ment shader (direct rendering without shading) for
different levels of subdivision. We have tested each
configuration with two different transfer functions,
one which sets all voxels below one third of the

2CTA = computed tomography angiography

Direct Volume Rendering

200 5 10 15

4 x 4 x 2 bricks

no subdivision

8 x 8 x 4 bricks

16 x 16 x 4 bricks

32 x 32 x 8 bricks

64 x 64 x 8 bricks

64 x 64 x 16 bricks

2 x 2 x 1 bricks

Figure 4: Performance in frames per second for
direct volume rendering with postclassification via
dependent texture lookup. The white and gray bars
show results for different transfer functions.

666



0 2 3 41

4 x 4 x 2 bricks

no subdivision

8 x 8 x 4 bricks

16 x 16 x 4 bricks

32 x 32 x 8 bricks

64 x 64 x 8 bricks

64 x 64 x 16 bricks

2 x 2 x 1 bricks

Volume Shading and Gradient Estimation

Figure 5: Performance in frames per second for di-
rect volume rendering with on-the-fly gradient esti-
mation and Phong shading. The white and gray bars
show results for different transfer functions.

scalar range to completely transparent (the gray bar)
and another which sets all voxels below one half of
the scalar range to zero (the white bar). The second
transfer function allows a higher number of blocks
to be skipped. Such transfer functions are typically
chosen for visualizing angiography data.

As displayed in Figure 4, our empty-space-
skipping technique does not improve the perfor-
mance for low subdivision levels. Due to the large
size of the blocks, it is not likely that one block can
be completely skipped during traversal. If we in-
crease the depth of the octree, we reach optimum
performance by subdividing into 32×32×8 bricks.
For higher subdivision levels, the rendering process
is dominated by the increasing load on the vertex
processor, which does not outweigh the reduced
number of fragments to be processed. In the worst
case, where we have a fully opaque volume, empty
space skipping is not applicable at all and the in-
creased vertex load of our algorithm could signif-
icantly degrade the performance. However, since
we are using an octree decomposition which is in-
dependent of the texture storage, we can stop the
octree traversal at any time and generate the slice
images for the current level.

The second fragment shader significantly in-
creases the load on the fragment processor by com-
puting gradient vectors on the fly using central dif-
ferences and 8 texture samples per fragment (one
for the scalar value, six for the central differences
and one for the transfer function). In this case the
performance gain of our empty space skipping ap-
proach is very high as displayed in Figure 5. We
have measured a performance gain of about 150%
for the 16×16×8 and the 32×32×8 configuration
compared to not applying empty space skipping.

8 Conclusion

We have presented a vertex program which effi-
ciently calculates intersections between a box and
a stack of equidistant parallel planes. The ap-
proach has been used to implement empty-space-
skipping for object-order texture-based volume ren-
dering. We have demonstrated that applying our
empty-space-skipping techniques significantly in-
creases the performance by balancing the workload
between the vertex and the fragment processor.

666



Figure 6: Resulting images and octree decomposition (32 × 32 × 8) of the example angiography data set
for different transfer function settings.

666


