
Game Development as Part of the Computer
Science Education

C. Rezk-Salama, S. Todt, L. Brückbauer, T. Horz, T. Knoche, B. Labitzke,
M. Leidl, J. Orthmann, H. Payer, M. Piotraschke, T. Schmiade, and A. Kolb

Computer Graphics Group, University of Siegen, Germany.

Abstract. We report on our experience with a game project that was
developed from scratch at the Computer Graphics Group at the Univer-
sity of Siegen, Germany. We will discuss the benefits and difficulties that
arise from such a project for both the educator and the students. The
aim of this paper is to clarify the aspects that must be considered to
achieve game development at university level.

1 Introduction

Computer games have a large and continuously expanding world-wide market.
Interactive digital media, games and entertainment applications are an impor-
tant economical factor that cannot be easily neglected. From the point of view
of a business manager, however, the development of computer games is charac-
terized by relatively long development times and the necessary burden of con-
siderable pre-financing with a hardly predictable outcome. These aspects put
cumbersome constraints on the experimental nature of game development.

For an educator who teaches software development on the other hand, com-
puter games are ideal examples to demonstrate the pure benefit of education.
Many small game companies in countries with only weak economy have proven
that almost everybody can develop successful computer games, provided that the
necessary skills and the knowledge is available.

Another important characterization of game development nowadays is that
there are little educational facilities which instruct students with the specific
skills required for game development. In Germany, the above mentioned obser-
vations have given rise to facilities called game academies, which focus on specific
education for game developers. If we thoroughly observe the current game mar-
ket, however, we notice that computer games are driven to a large extent by
technological innovation, such as efficient rendering algorithms and new features
of modern graphics hardware. While we believe that game academies are im-
portant to provide basic skills and entry points for students focussing on game
development, they cannot take over the full responsibility to convey the profound
knowledge which is necessary to push forward technological innovation. We argue
that such innovations are only possible with the knowledge and skills provided
by high-level educational facilities, which are concerned with both research and
education.



In this paper we will report on our experience with a game project that was
developed from scratch at the Computer Graphics Group at the University of
Siegen, Germany. We provide and discuss solutions to overcome typical difficul-
ties that are specific to educational environments.

2 Why Game Development at the University?

Developing computer games at a university has several benefits and drawbacks.
Maybe the most important benefit is that game programming offers a playful
approach to software development from a didactic point of view. The effect is
high motivation among the students, promoting their own initiative to improve
their skills.

Game development is, unlike many other application areas, ideal for students
to acquire soft skills, such as creativity and the ability to communicate their ideas
with controversial discussion. We believe that this aspect originates especially
from the fact, that there is no correct or incorrect solution to game play, in
contrast to many other application areas.

From the technical point of view, computer games comprise a huge variety of
important engineering techniques such as modular software design, efficient data
structures, and interaction. Practical knowledge in such areas is important for
every computer scientist, regardless of his application area. Giving students the
opportunity to develop computer games as part of their education allows them to
create new ideas and concepts without the danger of commercial unacceptance.

There are, however, a couple of difficulties and dangers. Apart from the above
mentioned general programming techniques, there are many aspects involved in
game development that are unique to computer games. One of those aspects is
content creation. A university has the responsibility to convey general knowledge
to maximize future career opportunities for the students. Shifting the focus too
much towards one specific application area, such as content creation, is hardly
justifiable.

If we neglect content creation and artwork design, however, the resulting
games will soon become boring and unattractive. The main challenge for game
development at the university is to find ways of realizing attractive games with-
out focussing too much on content creation.

Besides these problems, there are many other difficulties, which all game
designers have to cope with. The development of a game engine with all technical
aspects can easily become very complex. However, we see such difficulties more
as a challenge for software engineers, and it is the task of the educators to guide
their students to meet this challenge.

3 A Case Study

We have started a project group to find out if game development works as
educational part at university level. The project group consisted of nine students



and the development time was fixed at two semesters (1 year). At the beginning
of the project the educators made a list of requirements that the project must
fulfill.

– The software design for the game engine should be built from scratch. The
students were allowed to use available APIs and libraries such as OpenGL,
or DirectX, but should not use existing code for the engine.

– To keep the students from focussing too much on content creation, time-
consuming modelling of scene geometry should be replaced by procedural
geometry design.

– The game should support at least two interaction devices (gamepad, joy-
stick).

– The game should support 3D sound.
– The project should include either artificial intelligence or multi-player capa-

bilities.

Based on this list, we came up with the idea of a multi-player racing game
with futuristic vehicles and procedural landscapes. All object motion will be
controlled by physical laws such as gravitation and collision. The system will
support multiplayer network games instead of an artificial intelligence subsystem.

The task of the educator in the design process is to evaluate and comment
the decisions of the students, point them to possible pitfalls and sensitize them
to implementation issues. The following list comprises important aspects that
students are usually not aware of.

Memory management: Managing the available memory is crucial. Simply
calling new and delete at runtime has two drawbacks. First, objects are
shared between different modules and a resource manager must take care
that objects are deleted if they are no longer used. The second problem
is memory fragmentation. In a computer game, a huge variety of different
objects, which have only a short life time, must be created on the fly. Con-
tinuously allocating and deleting small portions of memory is inefficient and
will slow down the performance due to fragmentation of the memory heap.
Possible solutions comprise handle-based resources [1], reference counters,
smart pointers and reusable objects [2].

Debugging: Debugging a computer game is one of the most complicated tasks.
If a multiplayer game crashes due to an error, it is impossible to restart the
program and reproduce exactly the same actions that caused the error. Stan-
dard debuggers are not very helpful here, since they only provide the current
function call stack. An error, however, might have happened in a completely
different place and time. To be able to find errors, logging all events from
the start of the game to the point when the error occurs is mandatory. Ex-
ample implementations of efficient event logging and journaling systems can
be found in [3] and [4].

Profiling: If the overall performance is not satisfactory, students must have a
means to find out how much time is consumed for the execution of every part
of the source code. Otherwise they will end up spending time for optimizing



code that is only executed very infrequently. If flexible and configurable
frame-based profiling is required, you can implement your own profiling tool
as described in [5].

Scripting: A considerable amount of data is required to configure each sub-
system of the game. Configuration data must be tweaked frequently to ad-
just the behavior of each subsystem. If data is managed outside the code,
modification can be applied without the necessity to recompile the game en-
gine. The students were advised to use configuration scripts for this purpose.
Available libraries such as XML-parsers or parsers based on Lex/Yacc [6] can
be used.

In the design phase, after the students have familiarized themselves with the
available APIs, we developed a uniform framework, which divides the complex
game into separate, manageable subsystems. The functionality of each subsystem
should be independent of each other as much as possible. Different subsystems
communicate by exchanging events.

4 Implementation

In the design phase we have identified the following independent modules that
our game engine should consist of. The students created UML diagrams to vi-
sualize and document the interaction between different modules before starting
to write the code. Effective strategies for testing the different subsystems inde-
pendently were developed.

In the beginning of the implementation, the basic framework was created
including a profiler, an event manager and an object manager, as described
below. Afterwards the students started the implementation of the individual
subsystems.

Graphics: The graphics subsystem performs the 3D rendering of the entire
scene graph including geometry management, frustum culling and shaders.

Physics: The physics module is responsible for computing the motion of every
object based on input events and collision.

Sound: The sound module implements the playback of music, ambient sounds
as well as dynamic 3D sounds caused by events.

Network: The network module is required for client-server communication. Dif-
ferent tasks must be performed during startup and runtime of the game.

Input: The input module translates user input from the game controllers to
events used by the game engine.

The communication between the different modules is performed by sending
events. An event can be the input from an interaction device, the collision be-
tween different objects and the like. If necessary, events must also be propagated
via network to other clients.

The task of the event manager is to receive events sent by the different
subsystems, maintain a log file and distribute them to other subsystems [7].



Object Manager

Event Manager

Game
Object

Game
Object

Game
Object

SoundGraphics Physics Network Input

Fig. 1. Left: The basic architecture of our game engine. Right: The procedure that
generates the race track for a given terrain is based on a uniform, rectilinear grid.

Events are triggered whenever a module requires other subsystems to react on
state changes. The event manager supports an extensible set of event types.

The event manager maintains an event queue for each subsystem that needs
to send or receive events. It is implemented as a singleton class [8]. The event
manager must work properly in conjunction with the network subsystem, which
runs in a separate thread. This requires synchronization using semaphores and
critical sections to protect the event queues from concurrent access. The event
manager is able to record all events with time stamps and write them to a file.
This is important for debugging in order to reproduce the exact sequence of
operations that lead to an invalid internal game state.

The object manager represents the run-time resource manager for the main
memory. The life time of all game objects that require storage allocation is
controlled by the object manager. The individual subsystems will receive notifi-
cations whenever the object manager decides to create a new game object.

All subsystems work on the same objects data. The object manager also
informs other subsystems when a game object is about to be destroyed. Life
time of a game object is controlled by a reference counting mechanism, which
causes the object to destroy itself when the last reference is dropped. This is
useful if one subsystem still requires access to the data of an object after it has
been removed from the game.

4.1 Procedural Terrain

The basic terrain geometry was created by the use of Fractal Brownian Motion
(FBM). FBM performs a spectral synthesis with noise functions of different
frequencies and amplitudes. The geometry of the terrain is modelled as a height
field obtained as a sum of 2D noise functions with a fractal power spectrum,
which means that the frequency of each function is inversely proportional to its
amplitude. After the generation of the basic height field, the race track is added
in a separate procedure.

The terrain is overlaid by a rectilinear grid as displayed in Figure 1, right. The
size of cells can be adjusted to control the granularity of the race track. A maze



algorithm is used to roughly determine the course of the race track, ensuring
that the track does not intersect itself. The algorithm starts at a specified cell
and chooses the next cell using the Mersenne Twister pseudo random number
generator [9]. The exact course of the race track is generated by randomly placing
control points for Bezier splines in the grid cells.

The final terrain geometry is created by removing the high frequencies from
the height field if a vertex lies inside the track and by raising vertices below the
water level. The resulting terrain is split into manageable rectangular tiles. The
graphics subsystem decides at runtime which tiles must be resident in graphics
memory using a simple frustum culling technique. If new tiles must be swapped
in, vertex buffer data (position, normal and texture coordinates) is transferred
asynchronously by the DMA controller from host memory to local video memory.
In the meantime the CPU can perform physics calculations.

For texturing, a fragment shader was used to interpolate between different
texture images according to the height value of the surface, resembling a natural
environment, for example with green plains and snow-covered mountain tops.
Texture images with different scales were applied as tiles. Due to the height field
interpolation, the repetitive tiling is not noticeable from the perspective of the
player. The texture images we used were obtained from free texture libraries in
the internet.

Each landscape can optionally be decorated with a water surface on a spec-
ified level relative to the maximum and minimum height of the landscape. This
surface is slightly moved up and down to resemble a subtle tide at the coastlines.
The water surface is textured with a semitransparent decal texture. Texture co-
ordinates are perturbed in the vertex program over time to imitate natural water
movement.

4.2 Vehicle Models

The vehicle models were the only part of the geometry that had to be created
manually using Alias Maya. For each geometric model different texture sets were
created to provide a varying set of vehicles based on the same vertex-mesh as
displayed in Figure 2.

The models were designed as subdivision surfaces in Maya and tessellated to
polygonal meshes. The meshes were exported and converted to a binary vertex
buffer format, that can directly be uploaded to GPU memory.

Fig. 2. A typical vehicle model (3750 vertices, 7232 triangles) used in our game. Each
geometry is used with different texture sets.



Collisions of the vehicles with other objects should cause visible deformation
of the geometry, depending on collision area and energy. The basis for this re-
altime deformation is a special data-format for the vehicle objects. This format
provides two positions for each vertex of the vehicle: one for the undeformed
default position, and one for the maximum deformation. To reduce computa-
tional load, the vehicles are subdivided into designated regions as displayed in
Figure 3. As soon as a collision on one of the regions is detected, a vertex shader
interpolates between the two positions of the involved vertices. The energy of the
collision is taken into account as an interpolation weight. Additionally the visual
appearance of the deformed regions is modified by reducing the specular term
of the local illumination model according to the amount of the deformation.

4.3 Physics and Collision Detection

Collision detection required for our game can be divided into collisions between
individual objects and collisions between objects and the terrain. Object-object
collision is detected with the help of a bounding volume hierarchy, divided into
three stages. A first estimate is realized by a simple bounding sphere test. The
second part of the collision detection uses an oriented bounding box hierarchy. If
necessary, collision detection can be performed for single triangles. We decided
to base our algorithm on the OBBTree by Gottschalk et al. [10]. Since the vehicle
geometry is pre-modelled, the bounding volume hierarchies can be created in a
preprocess and loaded at runtime.

The intersection between the object and the procedurally generated terrain
has been an additional challenge, since information about the terrain surface
could not be pre-computed. We calculated a rectangle which lies directly under
the vehicle during pre-computation of the bounding volume hierarchy. At run-
time, we calculate intersection tests between the rectangle and the four nearest
triangles of the landscape. This requires a maximum of eight tests per frame. In
practice, we found that the precision of this simple rectangle test already suffices
for good collision detection with the terrain.

All game objects are modelled and animated as rigid bodies according to the
physical laws of motion. Every object has a set of physical properties, consisting
of constants such as its mass, the moments of inertia, friction coefficients as well
as variables such as position, orientation, velocity and acceleration.

back

front

right

left

original

Fig. 3. Every model has predefined deformations for different regions. At runtime the
differently deformed shapes are blended together in a vertex program.



The vehicles are moved by propulsion turbines, each of which apply a certain
force to a vehicle. By controlling the driving power of the turbines individually,
the vehicle can be moved forwards and backwards, and also be turned around.
Additional forces are caused by collisions. All forces on the vehicle are summed in
order to calculate the current linear and angular acceleration. Finally, Newton’s
laws of motion specify the influence on the current velocity (linear and angular)
as well as the current position and angular displacement.

The first tests of this model showed that a world following simple laws of
kinematics was hardly playable without frictional forces. The resulting motion
was similar to billiard balls rotating around its centers and flying in straight
lines. The first countermeasure was to account for atmospheric drag. We also
restricted the motion along the vehicle major axis and up to 15 degrees from it.
This improved the handling enormously. A second modification was necessary,
since the vehicles can freely rotate along all axes and they will, if they happen
to collide with anything. For the player it was almost impossible to stop his
vehicle from rotating with only two propulsion turbines. We solved this problem
by adding a damping force which slows down the rotation if no further force
or steering influences are applied. The damping force also rotates back to an
upright position if angular velocity is small. Last improvements were made only
by tweaking the physical parameters. The result was an intuitively steerable
vehicle without feeling unrealistic. The control of the vehicles is sensitive enough
to push opponents off the track, if the player decides to do so.

4.4 Input and Network

Modern racing games support many different input devices, such as joysticks,
gamepads, racing wheels, mouses, and the keyboard. DirectX provides methods
for initialization and usage of all those devices with the DirectInput part. During
each frame, the current state of all relevant input devices is polled once, the data
is interpreted and game engine events are generated accordingly. Furthermore,
we take advantage of the DirectInput-API when accessing its force feedback in-
terface and functionality. Since the design and usage of force feedback is complex,
we only used a very basic effect for demonstration purposes.

The multiplayer functionality of our game engine is based on a client-server
architecture. The server is a separate executable, which can be started by the
client who initiates the multiplayer game. Network communication is performed
via TCP/IP using the deprecated DirectPlay 8.0 layer.

The server process maintains a list of all players that are currently connected
and assigns unique identifiers to each client. The server stores the configuration
settings such as the player’s names and the selected vehicle geometry as well as
the seed points for the procedural map and the race track.

At startup the client process enumerates all available servers in the local area
network. The user can enter the address or DNS name of the server to participate
in the game. At runtime, the main task of the server is to synchronize the start of
the race and to deliver incoming event packages to the client. The server program
has a simple GUI, which displays status messages for debugging purposes.



Fig. 4. Screenshots from the game. The left image shows the water surface and the
lens flare effect. The right image shows parts of the procedurally generated terrain with
the race track

The task of the client network subsystem is to pack all necessary events
and send it to the server as well as to unpack received network packages and
propagate the event to the event manager. If a player connects to the server,
notification events are used for initializing the map and for creating the necessary
game objects for the new player.

4.5 Sound

Sounds being used in computer games can be separated into three different
groups: Music being played for entertainment purposes mainly, static sounds
providing acoustical information and dynamic 3D sounds.

Static sound elements such as menu sounds (e.g. an audible click when press-
ing a button), network event sounds (a ”pling” when a connection between hosts
has been established successfully) or in-game event sounds (an audible notion
when a player picks up a power-up) do not need to be adjusted dynamically with
the game flow. They sound the same whenever they are played and can thus be
associated with a certain event. Further static sounds are ambient ones being
played during game play to enhance the game atmosphere.

Dynamic 3D-sounds are the most important sound elements within a game.
They contribute to the realism of the sound rendering to a great extent. To ex-
ploit the benefits of dynamic 3D sound rendering the sound render engine has
to be compliant to the Interactive 3D Audio Rendering Guideline (I3DL2)[11].
With DirectSound, a sound programming interface fully embodying I3DL2, a
minimum of 32 sounds can be played simultaneously taking into account the
listener’s and sound object’s position, orientation and velocity as well as the
sound’s radiation pattern. Further effects applied to the sounds like reverbera-
tion, attenuation or Doppler effect are dynamically adjusted.

A very difficult part in 3D sound programming is debugging. At this stage,
students will need a silent room with a surround sound system, and a lot of time



for testing. Concentration and patience is required to determine whether the
visual and acoustic impressions are corresponding or not. Evaluating variances
is even harder due to the fact that the minimal audible discrepancy is as low as
two to ten degrees in the horizontal plane and nine to 22 degrees in the vertical
plane [12].

The situation gets even worse if the graphics of the game cannot be used for
debugging yet. For this reason it is strongly recommended that students develop
an easy to handle test program at an early stage of the project. It should include
a correct visual representation of sound sources and be independent of the rest
of the game. This can save a lot of time and effort.

Audio content creation for games, let alone composing music, is demanding
but essential. Sound and music have a great impact on games, unfortunately
this is only recognized when a game lacks good music and sound. Although in
a university project this aspect seems to be less important than in commercial
projects, it should neither be neglected nor underrated. Students who take over
the sound part of a game project should know that the content creation takes at
least the same time as the programming. It is difficult to find good and suitable
sound files for effects, collisions or propulsion sounds. As a result, some of the
game sounds in our game were produced by recording the sound of a vacuum
cleaner and alienating it until it sounded like rocket propulsion. Though that
might be the same approach as that of professional sound artists, it is extremely
time-consuming if students have no experience in professional sound production
and the usage of professional sound equipment.

4.6 Special Effects

After the different modules have been implemented and the complete system has
been assembled and tested, there was time left to enhance the visual appearance
of the game by including visual effects and additional features.

Particle systems are an integral components of recent games. Several visual
effects such as smoke, fire, rain, snow, and explosions, can be realized by the
use of particle systems. We implemented a stateless particle engine as an inde-
pendent subsystem that runs entirely on the graphics board. It offers the basic
functionality for a variety of visual effects like the above mentioned. The system
renders individual particles as point sprites. The texture of the point sprites,
coloring, direction and size of the particle system can be adapted to the required
needs to realize different effects.

The particle movement is implemented as a vertex shader on the graphics
processor, which calculates the motion of each particle as a function of its initial
position and velocity and the current time. The graphics processor calculates
the animation of a large amount of particles without affecting the frame rate
significantly.

A lens flare effect is an image artifact caused by the lenses of a camera when
facing a bright light (Figure 4, left). We produced the lens flare effect by using
a set of semi-transparent texture images which were applied to screen-aligned
billboards. The billboards were arranged on a vector from the position of the



light source to the middle of the image plane. To determine whether or not the
player is looking into the light, the position of the light source must be culled
against the viewing frustum.

A heads-up display (Figure 4) provides the player with information, such as
speed, round times, current car position and more. A mini map of the terrain is
created by rendering the entire procedural geometry into a texture image. The
position on the mini map and its rotation are determined by the vehicle’s position
and orientation. Similar to the mini map, we implemented a rear-view mirror
rendering the scene with an opposed camera direction. The frustum culling tech-
nique in the graphics subsystem must assure that the required tiles of the terrain
are resident in local video memory as well.

5 Conclusion

Developing an ambitious computer game in an educational environment is a chal-
lenge for both the educators and the students. For the educators, the described
game project was an experiment to evaluate whether or not game development
works as part of the computer science education. Although the result is still far
from being a commercial-level engine, the project already contains all important
aspects of a professional computer game from the technical point of view.

Creating a structured and detailed software design is essential. The educator’s
task in this design phase is to keep all students involved. In some cases the
educators will have to slow down some of the students, who would rather like
to start writing the code. Other students seemed to be overwhelmed by the
complexity. It is important for the educator to keep all students motivated, and
this requires discipline among all students to plan the project thoroughly before
writing the first line of code. In the design phase the educator should advise
the students which parts of the architecture must be fixed at the beginning
and which decisions can be postponed and discussed later. Before starting the
implementation, everybody must know exactly what to do.

Since the technical aspects of game development are in focus, the educator
should take care that not too much time is spent for content creation. Although
we were aware of that problem and tried to solve it using procedural graphics,
the time consumed for content creation, such as geometry and sound was still
underestimated.

Writing the code to implement the different modules probably was the least
time-consuming task. Most of the time was consumed for understanding and
evaluating poorly documented APIs, for ensuring that the different components
work together as expected, as well as for debugging, parameter tweaking and
performance optimization.

After finishing the project, the students stated that, if they had to start
over again with the project, they would definitely revise one design decision or
the other. This is not unusual. Above all, it approves that the students have
expanded their skills and gained experience with the large and complex project.
They have become familiar with project management as well as practical tasks



such as integrating and enhancing third-party code, which as well may be poorly
documented and contain errors. This experience obviously will be of great value
for any type of software project that they might work on in the future.

At the bottom line, we find that the game project was a full success. In the
end, both the educators and the students were somewhat amazed about the
complexity and the quality of the final result, although there is always room for
improvement.

References

1. Bilas, S.: A Generic Handle-Based Resource Manager. In DeLoura, M., ed.: Game
Programming Gems. Charles River Media (2000) 68–79

2. Boer, J.: Resource and Memory Management. In DeLoura, M., ed.: Game Pro-
gramming Gems. Charles River Media (2000) 80–87

3. Hawkins, B.: Lightweight, Policy-based Logging. In Treglia, D., ed.: Game Pro-
gramming Gems 3. Charles River Media (2002) 129–135

4. Robert, E.: Journaling Services. In Treglia, D., ed.: Game Programming Gems 3.
Charles River Media (2002) 136–145

5. Evertt, J.: A Built-in Game Profiling Module. In DeLoura, M., ed.: Game Pro-
gramming Gems 2. Charles River Media (2001) 74–79

6. Kelly, P.: Using Lex and Yacc To Parse Custom Data Files. In Treglia, D., ed.:
Game Programming Gems 3. Charles River Media (2002) 83–91

7. Harvey, M., Marshall, C.: Scheduling Game Events. In Treglia, D., ed.: Game
Programming Gems 3. Charles River Media (2002) 5–14

8. Bilas, S.: An Automatic Singleton Utility. In DeLoura, M., ed.: Game Program-
ming Gems. Charles River Media (2000) 36–40

9. Matsumoto, M., Nishimura, T.: Mersenne Twister: A 623-Dimensionally Equidis-
tributed Uniform Pseudorandom Number Generator. ACM Trans. on Modeling
and Computer Simulations (1998)

10. Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A Hierarchical Structure for
Rapid Interference Detection. Computer Graphics 30(Annual Conference Series)
(1996) 171–180

11. MIDI Manufacturers Association Incorporated: IASIG : IASIG Interactive 3D
Audio Rendering Guidelines (Level 2) (1999)

12. Pulkki, V.: Spatial Sound Generation and Perception by Amplitude Panning Tech-
niques. Espoo 62 (2001) 8


