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Abstract. A growing number of modern applications such as position
determination, object recognition and collision prevention depend on ac-
curate scene analysis. The estimation of an object’s distance relative
to an observers position by image analysis or laser scan techniques is
thereby still the most time-consuming and expansive part.
A lower-priced and much faster alternative is the distance measurement
with modulated, coherent infrared light based on the Photo Mixing De-
tector (PMD) technique. As this approach is a rather new and unexplored
method, proper calibration techniques have not been widely investigated
yet. This paper describes an accurate distance calibration approach for
PMD-based distance sensoring.

1 Introduction

The determination of an object’s distance relative to a sensor is a common field
of research in Computer Vision. During the last centuries, techniques have been
developed whose basic principles are still used for modern systems in a wide
scope, such as laser triangulation or stereo vision.

Nevertheless, there is no low-priced off-the-shelf system available, which pro-
vides full-range, high resolution distance information in real-time even for static
scenes. Laser scanning techniques, which merely sample a scene row by row with
a single laser device are rather time-consuming and impracticable for dynamic
scenes. Stereo vision camera systems on the other hand suffer from inaccuracy
caused by homogeneous areas.

The ZCam camera add-on provided by 3DV Systems [1] allows the deter-
mination of full range distance profiles of dynamic indoor scenes in real time.
However, it uses highly complex shutter mechanism which makes it cost-intensive
and unhandy.

A rather new and promising approach developed during the last years es-
timates the distance by time-of-flight measurements for modulated, incoher-
ent light even for outdoor scenes based on the new Photo Mixing Detector
(PMD) technology. The observed scene is illuminated by infrared light which
is reflected by visible objects and gathered in an array of solid-state image sen-
sors, comparable to CMOS chips used in common digital cameras [2–4]. Unlike
other system, the PMD-system is a very compact device which fulfills the above
stated features desired for real-time distance acquisition.
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The contribution of this paper is a calibration model for the very complex
and lightly explored distance mapping process of the PMD. This includes lateral
and distance calibration by deviation analysis.

A short overview about the PMD’s functionality and known PMD-calibration
techniques is given in Sec. 2. Our calibration model in general is described in
Sec. 3. A detailed description of the lateral and the distance calibration is given
afterwards in the Sec. 4 and 5. Finally, the results are discussed in Sec. 6 which
leads to a short conclusion of the presented work.

2 Related Work

2.1 Photo Mixing Detector (PMD)

By sampling and correlating the incoming optical signal with a reference signal
directly on a pixel, the PMD is able to determine the signal’s phase shift and
thus the distance information by a time-of-flight approach [2–4].

Given a reference signal g(t), which is used to modulate the incoherent illu-
mination, and the optical signal s(t) incident in a PMD pixel, the pixel samples
the correlation function c(τ) for a given phase shift τ :

c(τ) = s ⊗ g = lim
T→∞

∫ T/2

−T/2

s(t) · g(t + τ) dt.

For a sinusoidal signal, some trigonometric calculus yields

s(t) = cos(ωt), g(t) = k + a cos(ωt + φ), c(τ) = a
2 cos(ωτ + φ)

where ω is the modulation frequency, a is the amplitude of the incident optical
signal and φ is the phase offset relating to the object distance. The modulation
frequency defines the distance unambiguousness. The demodulation of the corre-
lation function is done using several samples of c(τ) obtained by four sequential
PMD raw images Ai = c(i · π

2 ):

φ = arctan

(

A3 − A1

A0 − A2

)

, a =

√

(A3 − A1)
2 + (A0 − A2)

2

2
. (1)

The manufacturing of a PMD chip corresponds to standard CMOS-manufac-
turing processes which allows a very economic production of a device which is,
due to an automatic suppression of background light, suitable for indoor as well
as outdoor scenes.

Current devices provide a resolution of 48×64 or 160×120 px at 20 Hz, which
is of high-resolution in the context of depth sensing but still of low-resolution in
terms of image processing. A common modulation frequency is 20 MHz, resulting
in an unambiguous distance range of 7.5 m.

An approach to overcome the limited resolution of the PMD camera is its
combination with a 2D-sensor [5].
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2.2 Calibration

The calibration of common 2D cameras is a highly investigated subject mainly
using point correspondences, vanishing lines or information from camera motion.
Several approaches using planar calibration targets has been proposed during
the recent years which use homographies and dual-space geometries [6–8], for
example.

A first distance calibration approach in the context of a PMD was done by
Kuhnert and Stommel [9]. Here, the phase-difference for the average of 5x5 center
pixel has been related to the true distance inside a certain range by a simple line
fitting for few distance samples only. After a correction of a given input image,
a min/max depth map has been calculated by examine the neighbors of each
pixel, which leads to a confidence interval for the true distance information.

3 PMD Calibration

Before we start to describe the individual calibration steps in more detail, a
short overview about the camera calibration and the calibration model designed
for the PMD camera is given.

In order to perform a full calibration of a given PMD camera, the calibration
process is decomposed into two separate calibration steps:

1. a lateral calibration already known from classical 2D sensors and
2. a calibration of the distance measuring process.

One main reason for the distance distortion in the PMD camera is a system-
atic error due to the demodulation of the correlation function. Beside that, there
a several factors like the IR-reflectivity and the orientation of the object that
may lead to insufficient incident light to a PMD pixel and thus to an incorrect
distance measurement. Additionally, the demodulation distance assumes homo-
geneity inside the solid angles corresponding to a PMD pixel. In reality different
distances inside a solid angle appear and lead to superimposed reflected light
reducing its amplitude and introducing a phase shift.

The only indicator about the accuracy of an individual distance endowed by
the PMD camera is given by the amplitude a of the correlation function, which
incorporates saturation, distance homogeneity, object reflectivity and object ori-
entation (see Eq. 1).

The presented depth calibration model does not take full account of all known
effects stated above. In the first instance, we rather want to concentrate on mea-
surement deviations caused by manufacturing inaccuracies and the systematic
error. Errors due to object reflectivity and distance inhomogeneity are subject
to future work.

4 Lateral Calibration

The lateral calibration is the classical computer vision approach for determining
camera specific informations such as radial lens distortion, focal length f and
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real image center (cx, cy). Given these parameters, the perspective projection
x of a point X in space is defined by λx = KΠ0X [10–12]. K is the matrix
of the camera depending intrinsic parameters and Π0 represents the standard
perspective projection.

K = KsKf =





f/sx =: fx 0 cx

0 f/sy =: fy cy

0 0 1



 , Π0 =





1 0 0 0
0 1 0 0
0 0 1 0





The lens distortion is commonly modeled by a polynomial of 4th degree [13]:

xd = cx + (x − cx)(1 + a1r
2 + a2r

4 + 2t1ỹ + t2(r
2/x̃ + 2x̃))

yd = cy + (y − cy)(1 + a1r
2 + a2r

4 + 2t2x̃ + t1(r
2/ỹ + 2ỹ))

where r2 = x̃2 + ỹ2 and x̃ = (x̃, ỹ, 1) are the projected coordinates λx̃ = Π0X.
The main goal of the PMD lateral calibration described in this section, is to

investigate common calibration methods for the calibration of the low resolution
PMD camera of at most 160×120 pixel. We therefore decided to analyze the be-
havior of an existing calibration module included in Intel’s OpenCV library [14],
which is based on techniques described by Bouguet [8], This approach uses at
least three different views of a planer checkerboard to estimate the intrinsic
parameters as well as the radial distortion coefficients.

The lateral calibration has been tested by interactively passing new PMD
images of a 4x7 checkerboard to the calibration module until the intrinsic pa-
rameters remained to be stable inside a certain range (see Fig 1). We therefore
calculate the average of 5 images at a time to additionally suppress noise inside
the grayscale image, which might negatively influence the pattern recognition.
In order to further increase the detection rate and improve the visual feedback,
we add an initial histogram normalization to enhance the low contrast of the
PMD grayscale image.

Before passing the pre-processed PMD grayscale to the pattern recognition
stage, a scaling of the whole image is necessary. This is due to the fact, that
the applied search window for the corner detection of the size 5×5 px covers too
many pixels in the low resolution PMD image. Thus, the PMD-image is scaled
to 480×360 px using a bi-linear resampling strategy. Higher order resampling,
e.g. bi-cubic, leads to slightly more robust corner detection.

Overall, both the intrinsic parameters as well as the distortion coefficients
were detected sufficiently robust in most of the experiments (see Fig. 1).

5 Distance Calibration

After the lateral calibration of the PMD-image, the distance information remains
to be calibrated. The following sections describe the distance calibration model
itself along with the data analysis which is the basis for the calibration model.

As basis for the distance calibration, a series of reference measurements for
known distances have been made. As reference data for the calibration analysis 5
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Fig. 1. Example of an PMD image before (left) and after a lateral calibration (right).
Reference points hase been marked by a line stripe.

images in the range of 0.75–7.5 m with a spacing of 10 cm have been carried out.
The 68 references distance images have been captured with a 48×64 PMD-sensor
acquiring data of a planar, semi-reflective panel.

Figure 2 shows the distance distortion, i.e. the difference between the mea-
sured and expected distance in each pixel for the depth images. The result ex-
hibits an oscillating error with large variance in the close-up range. The latter
can be explained by an constant exposure-time, which has been has been set up
for for medium distances of 4-7 m.

To compensate the distance deviation the distance calibration is done in two
distinguished steps (see Fig. 3):

1. a global distance adjustment for the entire image and
2. a local per pixel (pre-) adaption to obtain better results for the global ad-

justment and to compensate remaining deviation.

5.1 Global Distance Calibration

The main idea is to use a function of higher complexity for the global adjustment,
in order to get a much simpler adjustment for the per-pixel calibration. The per-
pixel calibration uses linear adjustment, thus being storage-efficient concerning
the overall number of calibration parameters.

Given the periodicity if the distance error, one attempt would be to use
sinusoidal base-function for the correction (see Fig. 2). Our approach uses uni-
form, cubic B-splines instead. B-splines exhibit a better local control and, even
more important for online-calibration tasks, the evaluation of B-spline always
requires a constant number of operations, in our case the evaluation of a cubic
polynomial.

A segmentation of the distance images is applied in order to remove outlayers
due to oversaturation. This has been done by examining the pixel’s amplitude of
the optical signal, which is a direct indicator for the reliability of the measured
value (see Sec. 2.1).
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Fig. 2. Deviation between the measured and the expected distance as function of the
measured distance (gray) for image depth information between 0.75-7.5 m and the
fitted B-spline (red).

Fig. 3. The distance calibration process.

In order to identify the optimal number of control points, an iterative least-
square fitting for B-spline curves bglob(d) =

∑m
l=0 cl ·B

3
l (d) is performed. In this

approach, the number of control points m is successively increased, until the
approximation error ‖Ac − b‖2 with

A =
[

B3
i (dJ )

]

i=0,...,m
J=(x,y,k)

, c = [ci]i=0,...,m , b = [pJ ]J=(x,y,k)

is below a given threshold or m exceeds a maximum. Here dJ = d(x, y, k) is the
measured distance at pixel (x, y) of distance-image k and pJ is the difference to
the real distance to the plane in image k. The resulting system of linear equations
can be solved for the control points c = (AT A)−1AT b.

The global adjustment of the distance d(x, y, k) due to the determined fitted
B-spline curve bglob is simply

dglob(x, y, k) = d(x, y, k) − bglob(d(x, y, k)) (2)
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Fig. 4. Original (gray) and adjusted deviation (dashed red) between the measured and
the expected distance for measured distances between 3.75 - 7.5 meter. Top: global
correction only, bottom: additional pre-adjustment.

Applying this global correction, we obtain an improved distance accuracy. Fig-
ure 4, top, shows the error functions for some pixels in the uncorrected and the
globally corrected situation.

5.2 Per-Pixel Distance Calibration

An even better result can be achieved by additionally taking individual pixel
inaccuracies into account. Up to this point we have discussed the main idea of
the global distance calibration process, but have not really considered which
distance to adjusted:

1. the polar distance dp(x, y, k) given by the PMD camera, which reflects the
natural time-of-flight point of view for a central perspective or

2. the according Cartesian coordinates dc(x, y, k) after the conversion with

αx = arctan((x−cx)/fx) and βxy = arctan((cy−y)/(((x−cx)·
fy

fx

)2+f2
y )0.5):

dc(x, y, k) = cosαx · cosβxy · dp(x, y, k)

The calibration process for both coordinates systems differ in the order of co-
ordinate transformation and distance adjustment. First, the case of Cartesian
coordinates is discussed. Here, the process of B-spline fitting can be simplified
by using mean values w.r.t. known plane distances. The average mean davg(k)
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of all per-pixel distances d(x, y, k) in distance image k can be used for B-spline
fitting to reduce the number of sample points.

As the B-spline fitting relates to an average deviation between the distance
d(x, y, k) and the expected distance dref (x, y, k),

b(d(x, y, k)) ≈ davg(k) − dref (x, y, k), (3)

an evaluation of the B-spline at a per-pixel distance leads to errors in the global
adjustment. In order to reduce this error, a per-pixel pre-adjustment is applied,
so that a pixel’s distance closer matches the average distance davg over all dis-
tance images k. This is done by fitting a line lx,y for pixel (x, y) minimizing

∑

k

‖d(x, y, k) − davg(d(x, y, k))‖2.

In the case of Cartesian coordinates dc
avg is simply given by

dc
avg(k) =

1

n

∑

(x,y)

dc(x, y, k)

where n is the number of pixels (x, y) taken into account.
Unfortunately, such an image averaging is not possible in the case of polar

coordinates. Here, we use the dependence between dp
avg(k) and the B-spline

bglob(d) as stated in Eq. 3

dp
avg(k) ≈ bglob(d(x, y, k)) + dp

ref (x, y, k)

Thus, the overall distance calibration is given by

dc(x, y, k) = bglob(d(x, y, k) − lx,y(d(x, y, k)))

To eliminate remaining distance deviations a second line fitting analog to
the pre-adjustment can be performed. This time for the differences between the
global corrected distances and the reference plane.

The comparison between the calibration of both coordinate systems, together
with the remaining results, are given in the Sec. 6.

6 Results

The calibration process of the PMD camera was decomposed into two separate
calibration steps for a lateral and distance calibration.

In the case of the lateral calibration we have been able to show that the
estimation of the PMD intrinsic parameters is possible and stable (see Tab. 1).
To achieve this, the PMD images have to be pre-processed. Here a normalization
and a up-scaling with bi-linear resampling suffices to stabilize and speed-up the
pattern recognition process. Occasionally, outliers have to be compensated by
passing another pattern view to the calibration module.
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Calibration Parameters

Focal Length (fx, fy) 12.39, 12.36 12.29, 12.28 12.30, 12.29

Image Center (cx, cy) 77.49, 66.20 76.27, 68.75 78.93, 63.34

Radial Distortion (r1, r2) -0.4869, 1.1313 -0.4700, 1.2842 -0.4824, 1.7011

Tangential Distortion (t1, t2) 0.0009, 0.0012 0.0000, 0.0048 0.0022, 0.0014

Table 1. Sample results of lateral calibration of a 120×160 PMD camera. The manu-
facturers’ value for the PMD camera are: focal length 12 mm, 0.04 mm pixel dimension.

Distance uncalibrated global adjust. + pre-adjust. + post-adjust.

Polar 64.1421 7.50838 3.20462 2.87305

Cartesian 64.1182 7.63023 3.11621 2.90705
Table 2. Average variance of distance deviation for all segmented pixel in the depth
range of 3.75-7.5 m.

For the distance calibration we have been able to show, that both – polar
and Cartesian adjustment – lead to the same results for a 48×64 PMD camera
(see Tab. 2). In both cases we reached a per-pixel precision of 10 mm or better,
whereas the averaged variance for each pixel has been about 3 mm (see Fig. 4).

The only difference between both approaches is the B-spline fitting, as already
mentioned in Sec. 5. By using Cartesian coordinates, it is possible to calculate an
average mean distance for each image in order to reduce the number of sample
points without changing the precision. This leads to a slight speed-up and less
oscillation of the B-spline.

Due to the per-pixel line fitting, it turns out that a post-adjustment can be
neglected as it leads to no further improvements. Therefore a global adjustment
with pre-processing alone should be sufficient for an accurate distance calibra-
tion. A final example for a 3D distance adjustment is shown in Fig. 5.

7 Conclusions

This paper proposes a first approach to calibration of PMD distance sensors. In
this context we are able to show a method for estimating the camera’s intrinsic
parameter. Furthermore we have been able to calibrate the distance data of a
64×48 PMD camera with high accuracy. This approach directly carries over to
PMD-sensors with higher resolution.

Further studies will consider how to combine high resolution 2D images and
low resolution PMD images to get more detailed information for calibration and
distance refinement, i.e. homogeneous surfaces or object outlines.
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Fig. 5. Original distance profile of a plane wall (left) and the same image after an
distance adjustment (right).
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