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ABSTRACT range cameras tend to be expensive and this hinders their use
The fundamental assumption of 3D videos using depth-imag#l & broad range of applications.
based rendering is the full availability of range imagesdes Alternatively, depth information can be computed from

rate. In this work we alleviate this hard demand and assumf@ Single image [2]. Several classes of shape-from-X meth-
that only limited resources of range images are availatge, i 0ds follow this goal, for instance shape-from-shading.&p f
corresponding range images exist for some, but not allrcoldrowever, there is still no proof of their practical usefidse
images of the monoscopic video stream. We propose to syn- A third way of 3D content generation is recovery from 2D
thesize the missing range images between two consecutiyéleos. Despite of the advances in the past, automatic 3D re-
range images. Experiments on real videos have demonstraté@nstruction remains a tough challenge [3]. Some apprsache
very encouraging results. Especially, one 3D video was ged€duire an object segmentation [4] which causes additional
erated from a 2D video without any sensory 3D data availablgncertainty to the difficult recovery task.

at all. In a quality evaluation using an autostereoscopic 3D Our approach: We assume that only limited resources
display the test viewers have attested similar 3D video-quaPf range images are available, i.e. corresponding range im-

ity for our synthesis technique and rendering based on dep@g€s exist for some, but not all, color images of the mono-
ground truth. scopic video stream, and propose to synthesize the missing

range images between two consecutive range images. This
1 INTRODUCTION aII(_)ws to: a) _Easg the recording of 3D mqtgrial. In_stead of
using expensive video-rate range sensors it is possiblsgo u

Recently, an advanced concept of depth-image-based rendeheaper sensors that generate less range images and @mplet
ing (DIBR) has been proposed for 3D videos [1]. Using athe missing range images automatically; b) Enhance egistin
single stream of monoscopic images and a second stream b video material with 3D effects by automatically complet-
range (depth) images, a high-quality stereoscopic stream fing depth information from a few, possibly manually created
any nearby viewpoint is synthesized in such systems. Contange images. Given the vast amount of existing 2D material,
pared to the end-to-end stereoscopic video stream, this cothis is an important application.
cept has a number of advantages [1]: backward compatibility The basic idea of our approach is to estimate motion in the
with existing 2D video systems; flexibility (optimal 3D ef- monoscopic video stream and to apply this motion informa-
fects customized to different 3D displays and user neegs; sution for synthesizing the missing range images. The teethnic
port of multiview 3D displays); efficiency (coding and trans details are described in next section. Given a color image an
mission of the range video stream cheaper than a monoscopi§ corresponding range image, a stereo pair can be synthe-
video stream). The most important components of DIBRsjzed by a special 3D image warping technique [1, 5]. Exper-
based 3D videos are: content generation, coding, transminental results are reported in Section 3. Finally, we codel
sion, virtual view synthesis and 3D display. Our currentkvor the paper with some discussion.
is devoted to content generation.

3D content generation: The fundamental assumption in
DIBR is the availability of range images at video rate. This 2. SYNTHESIZING RANGE IMAGES
can be achieved by a real-time 3D camera [1]. The practicdt is assumed that a monoscopic (color) video stream is given
value of this approach, however, is still limited. Currgntl by n framesky, ..., F,_1, along with depth informatio®
only very few range cameras deliver real-time range videoand D,,_ for the first and the last frame only. The goal is
and their use is typically restricted by limiting factorchias  to expand the depth information fromy andD,,_; so that a
operational environment (indoor, outdoor) and rangingaarecomplete set of range imagé¥, ..., D, is available for
(angular field of view, depth of field). In addition high-rate the subsequent depth-image-based rendering step.



Fm mF N TN RN fact dense optical flow fields. We have used the local method

: of Lucas-Kanade (LK), the global method of Horn-Schunck
o P, * (HS), and the recent combined local/global approach (CLG)
[6], which has both the high robustness of local methods and
N/ N N N N/ by the full density of global techniques.

D Dot Block matchingBlock matching techniques are common-
""""" ly used in feature tracking applications and in stereo eorre
4 spondence search: to find a match for the pixel at position
p in frame Fy at some positiory in frame £y, a block of
Fig. 1. Depth tracking from motion analysis size(2k + 1) x (2k + 1) aroundp is examined, and the best

match for this neighborhood is searchedin If g is the po-
sition of the match candidate currently under considenatio

Range image synthesis by depth tracking: The basic  then its matching costs are defined as:
idea is to track each point in the scene as it moves to differen

pixel positions from frame to frame. For a poifitat position k k
pi € F,, 0<i<n — 1, the corresponding positions € Fj Cp,g) = > Y clp+(re),4+(rc) (1)
andp, 1 € F,,_; are then known, and therefore also the as- r=—kc=—k

sociated depthd, andd,,—;. The depthd; required for the
unknown depth ma@; can then be computed by an interpo-
lation of dy andd,,_ .

To be able to compute the positipp, ; € F; 1 of a point
P with a given positiorp; € F;, itis necessary to know tHer-
ward motiorvector f;(p;): pi+1 = pi+fi(p;). Similarly, the
positionp;_; in F;_; of the point can be computed when the
backward motiorvectord; (p;) is known:p;_1 = p;+b;(p;).
To handle all points of the scene, the forward and backwar
motion vector fieldsfy, ..., fn—2 andby, ..., b,_1 that con-
tain motion vectors for each pixel position must be compute

The candidate positiofiwith the lowest matching costs wins.
The cost functior: differs between various block matching
variants.

One popular cost function uses the absolute difference of
pixel valuesicsap(p, q) = |Fo(p) — Fi(q)|. This expression
can be easily extended to handle color images. The YUV
color space is widely used in video processing applications

he Y component represents the brightness of a point, and
e U and V components define its hue and saturatidhus,
G1he following term can be used:

The complete process of depth tracking from motion analysis csap( _ 1
L P ke : o p,q) = L-[Y(Fo(p)) =Y (Fi(g))| + (1 - L) 5
is illustrated in Figure 1. Details will be given later in shi SAD _ _ 2
section. (U (Fo(p)) = U(F1(@)] + [V(Eo(p)) = V(Fi(a))])

Based on the depth tracking the missing range images ageach of the components Y, U, V is expected to béin | in
synthesized in the following way. A poitt with a given po-  this equation.L is the luminance weight: It determines how
sition p; in frame F; is tracked backwards to some position mych influence luminance differences should have in com-
po in frame Fy and forwards to some positign,—; in frame  parison to color differences.

F,—1. We distinguish between three cases: 1) Both backward  Tq reduce the uncertainty of the method, our SAD block
and forward tracking are successful: A linear interpolatd  matching variant for depth tracking uses the following rhatc

the corresponding depth valugg andd,,—, is performed to  jng cost function, which is an extension of Eq. (1):
determined;; 2) It can only be tracked to one of both end

frames: d; is set to the depth value at this end frame, thus Csap(p,4) =D - distanlfép,é)Jr
k ¢ )

assuming that it remains constant over time; 3) It can neithe k @
be tracked taF, nor to F,,_;: the depthd; is arbitrarily set (1=D)- > > csanlp+ (r,¢), 4+ (r,c))
to "far”. To avoid too frequent occurrences of such untrack- r=—kc=—k

able situations, it is necessary that the observed scere doe - ] ) )

not change too much, so that roughly the same objects arde addltlongl termis a d_lstance penalty: Larger motion vec

visible in Fy and F,,_;, albeit at different positions. If this {ors cause higher matching costs. The paramptefeter-

requirement is not fulfilled, the scene may have to be dividednines the balance between the distance penalty and the orig-

into sub-scenes. inal matching score. The distance penalty reduces the un-
Detailsof depth tracking: The key part of depth tracking certainty, for example in areas yvith peri_o_dic textures, rehe

is the per-pixel motion estimation: The more precise itfig, t 90°d matches are found at multiple positions. _

better the depth approximation. We have experimented with VW€ @IS0 considered alocally adaptive support-weighttech-

two approaches to compute motion vector fields: optical flowpidue for block matching [7]. For space limitation the ditai

and block matching. are omitted.

Optical flow: The per-pixel motion vector fields are in  Though not in the direct way as for example the HSL color spiess.
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Fig. 3. Nasavideo: depth map$::> from depth tracking
with different motion estimation methods

A h , S frame, one for the middle frame, and one for the last frame, re
sulting in a distance of 225 frames between two known depth
maps; see Figure 2. The range images only use four different
range levels: far (background), middle (the shuttle pathé

Consistency checkA postprocessing step often used for center), near (the part on the left), and very near (the part o
stereo correspondence search is adapted to improve the nibe right).
tion vector fields for depth tracking, regardless of the ot Evaluation of depth tracking: We report some results
estimation method they were created with. To catch unreliof evaluating the depth tracking quality. Figure 3 shows the
able motion vectors, the motion estimation is done in botilepth imagedy;, that result from the different motion esti-
directions: fromF, to £, leading to the vector fielgf, and ~ Mation methods when using the first depth imageand the
from F} to Fy, leading to the vector fieltl. The reliability of ~ middle oneDsy; of the Nasavideo. While all optical flow
a motion vectomw in f will be high if the corresponding mo- approaches have their problems with this video, the block
tion vector inb points back to the position afor neartoit. A matching method manages to follow object boundaries quite
thresholdt determines the maximum allowed difference for Precisely across a relatively long distance of 226 frames (9
vectors to be considered reliable. If the difference is grea Sseconds).
the vecton in f is marked as unreliable. In a second step, all ~ Since the videosnterviewand Orbi have depth ground
unreliable vectors iy are replaced by interpolating neigh- truth, quantitative measures can be computed for evalyatin
boring reliable vectors. This is done in a way that ensure&e depth tracking quality. For thaterviewvideo, for in-
that vectors with a high number of reliable neighbors are restance, the framek, . . ., F50 (ten seconds) were extracted,
placed first, to avoid propagating errors as much as possiblalong with real depth dat&, Das, ..., D25 for every 25th
The result is an improved vector fieltf. By swapping the frame. The missing depth maps were computed using depth

roles Off andb, the same can be done th‘”eadmg to an tracking with the motion estimation methods. Looking at the
improved fieldy*. synthesized depth images, the SAD block matching method

seems to deliver the most accurate depth map in this case as
well. The differences between ground truth and the computed
depth maps can be used as an error measurement:

Fig. 2. Nasavideo: first, middle, and last image with manu-
ally specified depth data

3. EXPERIMENTAL RESULTS
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Three example videos were used. The videdsrview (10 n
seconds, 251 frames) ai@tbi (5 seconds, 126 frames) are
widely used in DIBR literature. They have known depth maps Frap — -
for each video frame, which can be used as ground truth when DT = nNM
evaluating the computed depth data.

The third scené&lasa(18 seconds, 451 frames) is part of
a NASA mission vide& It is a conventional 2D videwith-

gk

Il
o

This average depth error value is|in 255] (the smaller, the
better). Table 1 shows the results for the complete series of
depth maps. The depth maps with the lowest errors according
. - ] *9€%, this measurement are the ones from the SAD block match-
were created manually with minimal efforts: one for the flrsting method, confirming our impressions. Similar behavior
2http://spacef | i ght.nasa. gov/ gal | ery/ vi deo/ has been observed for the videabi.

shuttle/sts-114/qtime/114_fdh05_cli p3. mov Rating of 3D video quality: Several 3D video variants




Image Quality 3D Effect

HS LK CLG SAD 0

errorEpT 2.32 2.46 230 174 1% 5 g ’ 0 ©
6 6 [m]
Table 1. Error values for allinterview depth maps created 4 4
with the motion estimation methods 2 2 g
0 2D GT DT 0 2D GT DT

of the videodnterview, Orbi, andNasawere computed from
different depth data, and prepared for display on a 2018XLQ.. . . . .
19” 3D monitor from DTE, which is an autostereoscopic dis—(?:'g' 4. Rating of image quallty_ and 3D effect for the variants
play, allowing 3D viewing experiences without the need onD’ Ground Truth Depth Tracking
wearing any glasses. Interested readers can find a summary
of (mostly commercially available) autostereoscopicldigp  eases the recording of 3D material by using less expensive
at http://www.stereo3d.com/displays.htm. range sensors and enables to enhance existing 2D video ma-

A group of 10 test viewers was asked to rate both theerial with 3D effect by limited manual overhead. Experi-
image quality and the quality of the 3D effect of each vari-ments on three videos have demonstrated very encouraging
ant, on a scale from 0 ("very bad” or "nonexistent”) to 10 results. Especially, one 3D video was generated from a 2D
("excellent”). A note handed out to each test viewer cladifie video without any sensory 3D data available at all. In all
that image quality means the absence of noise and distortiarases the test viewers have attested similar 3D video qual-
in the image, and 3D effect quality means the impression oty for our synthesis technique and rendering based on depth
real depth. The viewers did not have any experience with 3[@round truth.
videos, and they did not know anything about the nature of
the videos and their variants.

The following three variants were tested:

1. 2D: The original 2D video. Presenting this variant al- [1] C. Fehn et al., “Key Technologies for an Advanced 3D-

lows to measure the impact that depth-image-basedren- TV System,” inProceedings of SPIE Three-Dimensional
dering has on image quality. TV, Video and Display IlIPhiladelphia, 2004, pp. 66—80.

2. Ground Truth: A 3D video based on real depth maps. 151 5 Battiato et al., “3D Stereoscopic Image Pairs by Depth
This variantis expected to show the best results in terms Map Generation,” ifProceedings of 3D Data Processing
of 3D effect quality. For th&lasascene, this option was Visualization and Transmissip004, pp. 124-131.
not used due to the lack of real depth data. _ _

3. Depth Tracking:A 3D video based on depth data that [3] M- Pollefey, “3D from Image"S.equences: Calibration,
was computed using the depth tracking method. For ~Motion and Shape Recovery,” iHandbook of Mathe-
InterviewandOrbi, every 25th depth map from ground ~ Matical Models in Computer VisiomN. Paragios et al.,
truth was used as initial depth data. Fasa the three Ed. 2006, pp. 389-403, Springer.

artificial depth maps were used. [4] K. Moustakas et al., “A Non Causal Bayesian Frame-
The rating results are shown in Figure 4. Comparing the rat-  work for Object Tracking and Occlusion Handling for the

X Interview O  Orbi O  Nasa
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