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ABSTRACT

The fundamental assumption of 3D videos using depth-image-
based rendering is the full availability of range images at video
rate. In this work we alleviate this hard demand and assume
that only limited resources of range images are available, i.e.
corresponding range images exist for some, but not all, color
images of the monoscopic video stream. We propose to syn-
thesize the missing range images between two consecutive
range images. Experiments on real videos have demonstrated
very encouraging results. Especially, one 3D video was gen-
erated from a 2D video without any sensory 3D data available
at all. In a quality evaluation using an autostereoscopic 3D
display the test viewers have attested similar 3D video qual-
ity for our synthesis technique and rendering based on depth
ground truth.

1. INTRODUCTION

Recently, an advanced concept of depth-image-based render-
ing (DIBR) has been proposed for 3D videos [1]. Using a
single stream of monoscopic images and a second stream of
range (depth) images, a high-quality stereoscopic stream for
any nearby viewpoint is synthesized in such systems. Com-
pared to the end-to-end stereoscopic video stream, this con-
cept has a number of advantages [1]: backward compatibility
with existing 2D video systems; flexibility (optimal 3D ef-
fects customized to different 3D displays and user needs; sup-
port of multiview 3D displays); efficiency (coding and trans-
mission of the range video stream cheaper than a monoscopic
video stream). The most important components of DIBR-
based 3D videos are: content generation, coding, transmis-
sion, virtual view synthesis and 3D display. Our current work
is devoted to content generation.

3D content generation: The fundamental assumption in
DIBR is the availability of range images at video rate. This
can be achieved by a real-time 3D camera [1]. The practical
value of this approach, however, is still limited. Currently,
only very few range cameras deliver real-time range videos
and their use is typically restricted by limiting factors such as
operational environment (indoor, outdoor) and ranging area
(angular field of view, depth of field). In addition high-rate

range cameras tend to be expensive and this hinders their use
in a broad range of applications.

Alternatively, depth information can be computed from
a single image [2]. Several classes of shape-from-X meth-
ods follow this goal, for instance shape-from-shading. So far,
however, there is still no proof of their practical usefulness.

A third way of 3D content generation is recovery from 2D
videos. Despite of the advances in the past, automatic 3D re-
construction remains a tough challenge [3]. Some approaches
require an object segmentation [4] which causes additional
uncertainty to the difficult recovery task.

Our approach: We assume that only limited resources
of range images are available, i.e. corresponding range im-
ages exist for some, but not all, color images of the mono-
scopic video stream, and propose to synthesize the missing
range images between two consecutive range images. This
allows to: a) Ease the recording of 3D material. Instead of
using expensive video-rate range sensors it is possible to use
cheaper sensors that generate less range images and complete
the missing range images automatically; b) Enhance existing
2D video material with 3D effects by automatically complet-
ing depth information from a few, possibly manually created,
range images. Given the vast amount of existing 2D material,
this is an important application.

The basic idea of our approach is to estimate motion in the
monoscopic video stream and to apply this motion informa-
tion for synthesizing the missing range images. The technical
details are described in next section. Given a color image and
its corresponding range image, a stereo pair can be synthe-
sized by a special 3D image warping technique [1, 5]. Exper-
imental results are reported in Section 3. Finally, we conclude
the paper with some discussion.

2. SYNTHESIZING RANGE IMAGES

It is assumed that a monoscopic (color) video stream is given
by n framesF0, . . . , Fn−1, along with depth informationD0

andDn−1 for the first and the last frame only. The goal is
to expand the depth information fromD0 andDn−1 so that a
complete set of range imagesD0, . . . , Dn−1 is available for
the subsequent depth-image-based rendering step.
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Fig. 1. Depth tracking from motion analysis

Range image synthesis by depth tracking: The basic
idea is to track each point in the scene as it moves to different
pixel positions from frame to frame. For a pointP at position
pi ∈ Fi, 0 < i < n − 1, the corresponding positionsp0 ∈ F0

andpn−1 ∈ Fn−1 are then known, and therefore also the as-
sociated depthsd0 anddn−1. The depthdi required for the
unknown depth mapDi can then be computed by an interpo-
lation ofd0 anddn−1.

To be able to compute the positionpi+1∈Fi+1 of a point
P with a given positionpi∈Fi, it is necessary to know thefor-
ward motionvectorfi(pi): pi+1 = pi+fi(pi). Similarly, the
positionpi−1 in Fi−1 of the point can be computed when the
backward motionvectorbi(pi) is known:pi−1 = pi+bi(pi).
To handle all points of the scene, the forward and backward
motion vector fieldsf0, . . . , fn−2 andb1, . . . , bn−1 that con-
tain motion vectors for each pixel position must be computed.
The complete process of depth tracking from motion analysis
is illustrated in Figure 1. Details will be given later in this
section.

Based on the depth tracking the missing range images are
synthesized in the following way. A pointP with a given po-
sition pi in frameFi is tracked backwards to some position
p0 in frameF0 and forwards to some positionpn−1 in frame
Fn−1. We distinguish between three cases: 1) Both backward
and forward tracking are successful: A linear interpolation of
the corresponding depth valuesd0 anddn−1 is performed to
determinedi; 2) It can only be tracked to one of both end
frames: di is set to the depth value at this end frame, thus
assuming that it remains constant over time; 3) It can neither
be tracked toF0 nor toFn−1: the depthdi is arbitrarily set
to ”far”. To avoid too frequent occurrences of such untrack-
able situations, it is necessary that the observed scene does
not change too much, so that roughly the same objects are
visible in F0 andFn−1, albeit at different positions. If this
requirement is not fulfilled, the scene may have to be divided
into sub-scenes.

Details of depth tracking: The key part of depth tracking
is the per-pixel motion estimation: The more precise it is, the
better the depth approximation. We have experimented with
two approaches to compute motion vector fields: optical flow
and block matching.

Optical flow: The per-pixel motion vector fields are in

fact dense optical flow fields. We have used the local method
of Lucas-Kanade (LK), the global method of Horn-Schunck
(HS), and the recent combined local/global approach (CLG)
[6], which has both the high robustness of local methods and
the full density of global techniques.

Block matching:Block matching techniques are common-
ly used in feature tracking applications and in stereo corre-
spondence search: to find a match for the pixel at position
p in frame F0 at some positionq in frame F1, a block of
size(2k + 1) × (2k + 1) aroundp is examined, and the best
match for this neighborhood is searched inF1. If q̂ is the po-
sition of the match candidate currently under consideration,
then its matching costs are defined as:

C(p, q̂) =

k∑

r=−k

k∑

c=−k

c(p + (r, c), q̂ + (r, c)) (1)

The candidate position̂q with the lowest matching costs wins.
The cost functionc differs between various block matching
variants.

One popular cost function uses the absolute difference of
pixel values:cSAD(p, q) = |F0(p)−F1(q)|. This expression
can be easily extended to handle color images. The YUV
color space is widely used in video processing applications.
The Y component represents the brightness of a point, and
the U and V components define its hue and saturation1. Thus,
the following term can be used:

cSAD(p, q) = L · |Y (F0(p)) − Y (F1(q))| + (1 − L) · 1
2 ·

(|U(F0(p)) − U(F1(q))| + |V (F0(p)) − V (F1(q))|)

Each of the components Y, U, V is expected to be in[0, 1] in
this equation.L is the luminance weight: It determines how
much influence luminance differences should have in com-
parison to color differences.

To reduce the uncertainty of the method, our SAD block
matching variant for depth tracking uses the following match-
ing cost function, which is an extension of Eq. (1):

CSAD(p, q̂) = D · distance(p,q̂)
k

+

(1 − D) ·
k∑

r=−k

k∑

c=−k

cSAD(p + (r, c), q̂ + (r, c))
(2)

The additional term is a distance penalty: Larger motion vec-
tors cause higher matching costs. The parameterD deter-
mines the balance between the distance penalty and the orig-
inal matching score. The distance penalty reduces the un-
certainty, for example in areas with periodic textures, where
good matches are found at multiple positions.

We also considered a locally adaptive support-weight tech-
nique for block matching [7]. For space limitation the details
are omitted.

1Though not in the direct way as for example the HSL color spacedoes.



Fig. 2. Nasavideo: first, middle, and last image with manu-
ally specified depth data

Consistency check:A postprocessing step often used for
stereo correspondence search is adapted to improve the mo-
tion vector fields for depth tracking, regardless of the motion
estimation method they were created with. To catch unreli-
able motion vectors, the motion estimation is done in both
directions: fromF0 to F1, leading to the vector fieldf , and
from F1 to F0, leading to the vector fieldb. The reliability of
a motion vectorv in f will be high if the corresponding mo-
tion vector inb points back to the position ofv or near to it. A
thresholdt determines the maximum allowed difference for
vectors to be considered reliable. If the difference is greater,
the vectorv in f is marked as unreliable. In a second step, all
unreliable vectors inf are replaced by interpolating neigh-
boring reliable vectors. This is done in a way that ensures
that vectors with a high number of reliable neighbors are re-
placed first, to avoid propagating errors as much as possible.
The result is an improved vector fieldf∗. By swapping the
roles off andb, the same can be done withb, leading to an
improved fieldb∗.

3. EXPERIMENTAL RESULTS

Three example videos were used. The videosInterview(10
seconds, 251 frames) andOrbi (5 seconds, 126 frames) are
widely used in DIBR literature. They have known depth maps
for each video frame, which can be used as ground truth when
evaluating the computed depth data.

The third sceneNasa(18 seconds, 451 frames) is part of
a NASA mission video2. It is a conventional 2D videowith-
outany depth data. Three simplistic, qualitative range images
were created manually with minimal efforts: one for the first

2http://spaceflight.nasa.gov/gallery/video/
shuttle/sts-114/qtime/114_fdh05_clip3.mov
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Fig. 3. Nasavideo: depth mapsD112 from depth tracking
with different motion estimation methods

frame, one for the middle frame, and one for the last frame, re-
sulting in a distance of 225 frames between two known depth
maps; see Figure 2. The range images only use four different
range levels: far (background), middle (the shuttle part inthe
center), near (the part on the left), and very near (the part on
the right).

Evaluation of depth tracking: We report some results
of evaluating the depth tracking quality. Figure 3 shows the
depth imagesD112 that result from the different motion esti-
mation methods when using the first depth imageD0 and the
middle oneD225 of the Nasavideo. While all optical flow
approaches have their problems with this video, the block
matching method manages to follow object boundaries quite
precisely across a relatively long distance of 226 frames (9
seconds).

Since the videosInterviewandOrbi have depth ground
truth, quantitative measures can be computed for evaluating
the depth tracking quality. For theInterviewvideo, for in-
stance, the framesF0, . . . , F250 (ten seconds) were extracted,
along with real depth dataD0, D25, . . . , D250 for every 25th
frame. The missing depth maps were computed using depth
tracking with the motion estimation methods. Looking at the
synthesized depth images, the SAD block matching method
seems to deliver the most accurate depth map in this case as
well. The differences between ground truth and the computed
depth maps can be used as an error measurement:

EDT =

n−1∑

i=0

N−1∑

y=0

M−1∑

x=0

|Di(x, y) − GTi(x, y)|

nNM

This average depth error value is in[0, 255] (the smaller, the
better). Table 1 shows the results for the complete series of
depth maps. The depth maps with the lowest errors according
to this measurement are the ones from the SAD block match-
ing method, confirming our impressions. Similar behavior
has been observed for the videoOrbi.

Rating of 3D video quality: Several 3D video variants



HS LK CLG SAD
errorEDT 2.32 2.46 2.30 1.74

Table 1. Error values for allInterviewdepth maps created
with the motion estimation methods

of the videosInterview, Orbi, andNasawere computed from
different depth data, and prepared for display on a 2018XLQ
19” 3D monitor from DTI3, which is an autostereoscopic dis-
play, allowing 3D viewing experiences without the need of
wearing any glasses. Interested readers can find a summary
of (mostly commercially available) autostereoscopic displays
at http://www.stereo3d.com/displays.htm.

A group of 10 test viewers was asked to rate both the
image quality and the quality of the 3D effect of each vari-
ant, on a scale from 0 (”very bad” or ”nonexistent”) to 10
(”excellent”). A note handed out to each test viewer clarified
that image quality means the absence of noise and distortion
in the image, and 3D effect quality means the impression of
real depth. The viewers did not have any experience with 3D
videos, and they did not know anything about the nature of
the videos and their variants.

The following three variants were tested:

1. 2D: The original 2D video. Presenting this variant al-
lows to measure the impact that depth-image-based ren-
dering has on image quality.

2. Ground Truth: A 3D video based on real depth maps.
This variant is expected to show the best results in terms
of 3D effect quality. For theNasascene, this option was
not used due to the lack of real depth data.

3. Depth Tracking:A 3D video based on depth data that
was computed using the depth tracking method. For
InterviewandOrbi, every 25th depth map from ground
truth was used as initial depth data. ForNasa, the three
artificial depth maps were used.

The rating results are shown in Figure 4. Comparing the rat-
ing of the2D variant with the results of other variants shows
that the image quality always suffers a little from depth-image-
based rendering. This effect may be reducible by choosing
better parameters for the rendering step, but this was not sub-
ject of the test. Most viewers noticed the absence of any 3D
effect in the2D variant. Remarkably, the 3D videos synthe-
sized by depth tracking was rated similar to those from the
ground truth depth information with respect to both image
quality and 3D effect.

4. CONCLUSIONS

In this paper we have considered a range image synthesis
technique for reducing the need of full availability of a range
video stream in DIBR-based 3D video creation. Our approach

3http://www.dti3d.com/
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Fig. 4. Rating of image quality and 3D effect for the variants
2D, Ground Truth, Depth Tracking

eases the recording of 3D material by using less expensive
range sensors and enables to enhance existing 2D video ma-
terial with 3D effect by limited manual overhead. Experi-
ments on three videos have demonstrated very encouraging
results. Especially, one 3D video was generated from a 2D
video without any sensory 3D data available at all. In all
cases the test viewers have attested similar 3D video qual-
ity for our synthesis technique and rendering based on depth
ground truth.

5. REFERENCES

[1] C. Fehn et al., “Key Technologies for an Advanced 3D-
TV System,” inProceedings of SPIE Three-Dimensional
TV, Video and Display III, Philadelphia, 2004, pp. 66–80.

[2] S. Battiato et al., “3D Stereoscopic Image Pairs by Depth-
Map Generation,” inProceedings of 3D Data Processing
Visualization and Transmission, 2004, pp. 124–131.

[3] M. Pollefey, “3D from Image Sequences: Calibration,
Motion and Shape Recovery,” inHandbook of Mathe-
matical Models in Computer Vision, N. Paragios et al.,
Ed. 2006, pp. 389–403, Springer.

[4] K. Moustakas et al., “A Non Causal Bayesian Frame-
work for Object Tracking and Occlusion Handling for the
Synthesis of Stereoscopic Video,” inProceedings of 3D
Data Processing Visualization and Transmission, 2004,
pp. 147–154.

[5] L. Zhang and W. J. Tam, “Stereoscopic Image Generation
Based on Depth Images for 3D TV,”IEEE Transactions
on Broadcasting, vol. 51, no. 2, pp. 191–199, 2005.

[6] A. Bruhn et al., “Lucas/Kanade Meets Horn/Schunck:
Combining Local and Global Optic Flow Methods,”In-
ternational Journal of Computer Vision, vol. 61, no. 3,
pp. 211–231, 2005.

[7] K.-J. Yoon and I.-S. Kweon, “Locally Adaptive Support-
Weight Approach for Visual Correspondence Search,” in
Proceedings of IEEE Conference on CVPR, San Diego,
CA, USA, 2005, vol. 2, pp. 924–931.


