
High-Level User Interfaces for Transfer Function Design

based on Semantic Models

Diploma Thesis in Computer Science

submitted

by

Maik Keller

Written at

Computer Graphics and Multimedia Systems Group

Faculty 12

University of Siegen, Germany

ii

Eidesstattliche Erklärung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der ange-

gebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner

anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenommen

wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche ge-

kennzeichnet.

Siegen, den 24. August 2006

iii

Übersicht

Betrachtet man das Gebiet der Volumenvisualisierung vom technologischen Standpunkt aus, so

sind dort in den letzten Jahren eine Reihe neuer und nützlicher Verfahren entwickelt worden, wie bei-

spielsweise multidimensionale Transferfunktionen und ausgeklügelte Shadingmodelle. In der Praxis

ist die moderne Volumenvisualisierung allerdings noch nicht weit verbreitet. Die Benutzer berichten

von Problemen, die hauptsächlich auf die Bewältigung der Komplexität visueller Parametereinstel-

lungen zurückzuführen sind. Genau genommen liegen die Schwierigkeiten in der Spezifizierung der

optischen Eigenschaften, die mit Hilfe von Transferfunktionen vorgenommen werden. Die bereits

existierenden Automatisierungsverfahren bieten nicht die Flexibilität, die erforderlich ist, um gute

Ergebnisse für unterschiedliche Datensätze liefern zu können. Ihr Einsatz ist darüber hinaus oft auf

allgemeine Anwendungsfälle beschränkt, da sie für die Darstellung bestimmter Strukturen nicht spe-

zifisch genug sind. Alternativ kann die Transferfunktion auch manuell eingestellt werden. Dies ist

jedoch ein sehr langwieriger und zeitaufwändiger Prozess und selbst für Visualisierungsexperten ist

der Einfluss einer Parameteränderung auf das Ergebnisbild oft schwer vorhersehbar.

Bisweilen fehlt eine klare Semantik, um schnell, effektiv und zielorientiert arbeiten zu können. Die

vorliegende Ausarbeitung schlägt daher eine Methode zur Erstellung semantischer Modelle zur Volu-

menvisualisierung vor. Dabei wird ein aus dem Bereich der Computer-Animation bekanntes Verfahren

in Verbindung mit Principal Component Analysis angewendet. Dies erlaubt es Visualisierungsexper-

ten, Modelle zu entwickeln, die anschließend von Benutzern auf intuitive Weise angewendet werden

können.

Diese Ausarbeitung führt den Leser in die theoretischen Grundlagen der Entwicklung semanti-

scher Modelle ein. Im weiteren Verlauf wird ein Framework vorgestellt, mit dessen Hilfe diese Mo-

delle realisiert werden können. Anschließend werden zwei Modelle beispielhaft für die Visualisierung

medizinischer Datensätze erläutert (Computertomographie und Magnetresonanztomographie).

iv

Abstract

From the technological point of view, a variety of new and useful features has been added to

volume rendering algorithms in recent years, including multi-dimensional transfer functions and so-

phisticated shading models. However, advanced volume rendering techniques are not widely used in

practice. This is mainly due not to technological reasons, but to difficulties in managing the com-

plexity of visual parameter assignment which is done by means of transfer functions. Users report on

problems concerning the process of specifying optical properties for datasets. On the one hand, auto-

matic approaches of designing a transfer function are often not adaptable and flexible enough in order

to realize a desired visualization. On the other hand, manual transfer function assignment is a chal-

lenging task even for expert-users, since appropriate user interfaces, especially for multi-dimensional

transfer functions, are difficult to operate.

This thesis proposes an approach of transfer function design which deals with semantics. For

this purpose, an additional abstraction layer for parametric models of transfer functions is introduced

which facilitates the specification of optical properties. The method of calculation is based on princi-

pal component analysis and adapts concepts from the field of computer animation.

Additionally, a framework is presented which allows visualization experts to design high-level

transfer function models which can be used intuitively by non-expert users. As a result, user interfaces

are obtained which provide semantic information for specific application areas. Within this thesis,

two semantic transfer function models for medical visualization are developed, namely Magnetic

Resonance Imaging and Computed Tomography Angiography.

Besides the practical work, the following aspects are discussed in this thesis: an overview of the

basic techniques which this work implies, the development of a theoretical semantic transfer function

model, the practical realization and implementation of the transfer function model into a framework,

and the visualization of the results based on semantic models.

v

Acknowledgements

First of all, I would like to thank my supervisors Prof. Dr. Andreas Kolb and Dr. Christof Rezk-

Salama of the Computer Graphics Group of the University of Siegen, Germany, for their support, their

supervision of my work and the opportunity to visit Siemens Corporate Research (SCR) in Princeton,

New Jersey, USA, within the scope of this project. Dr. Rezk-Salama had always time for explaining

complex topics and sophisticated techniques in an understandable way. It was a privilege to develop

the software of this thesis together with such an experienced visualization expert.

I am very much obliged to the staff of the group of Dr. Gianluca Paladini at the Department of

Imaging and Visualization at SCR. Therefore, I am especially grateful to my supervisors in Prince-

ton: Dr. Paladini, Dr. Klaus Engel and Dr. Thomas Möller for helpful discussions, their valuable

advice and new ideas. I was privileged to work with such an experienced and capable group of peo-

ple. I would also like to thank Peter Kohlmann and Julien Gein for some software development and

providing support concerning the developer’s framework.

The CT angiography data was generously provided by Dr. Bernd Tomandl of the Klinik of Neuro-

radiologie, Bremen, Germany. Furthermore, the MRI data is by courtesy of Dr. Christopher Nimsky

of the Department of Neurosurgery, University of Erlangen-Nuremberg, Germany. I would also like

to thank Dr. Matthias Richter of the Ev. Krankenhaus, Plettenberg, Germany, and Dr. Mischa Braun

of the Charite, Berlin, Germany, for providing their medical experience.

Finally, and above all, I would like to express my deep gratitude to my family, my girlfriend

Kathrin Ohrndorf (who also proof-read this thesis), and her family, for their love and their absolutely

extraordinary emotional and financial support.

Maik Keller

vi

Preface

This work describes the results of the diploma thesis project that I carried out as a student of the

Computer Graphics Group of Prof. Dr. Andreas Kolb of the University of Siegen. The preparations of

this work started during my internship at Siemens Corporate Research (SCR Princeton, New Jersey,

USA). This project was established by my supervisor Dr. Christof Rezk-Salama, Computer Graphics

Group of the University of Siegen, and by the group of Dr. Gianluca Paladini and my supervisors Dr.

Klaus Engel and Dr. Thomas Möller of the Department of Imaging and Visualization at SCR.

Within the scope of this thesis, a high-level user interface based on semantic models is proposed

in order to facilitate transfer function adjustment in volumetric datasets. The existing object-oriented

C++ visualization framework “OpenQVis” is extended with several transfer function models and ed-

itors. The results of the semantic models are visualized on general purpose graphics hardware by

volume rendering.

This thesis is divided into 8 chapters. After the introduction in chapter 1, an overview of the re-

lated work is given in chapter 2, followed by a review of the theoretical basis in chapter 3, including

concepts from computer animation. Subsequently, theoretical aspects of a new semantic model are

introduced in this context in chapter 4. Chapter 5 proposes efficient ways of the design of semantic

models in practical cases. In chapter 6, a realization of the approach extending the OpenQVis frame-

work is described. The results of the new transfer function model which are based on two medical

application scenarios are presented in chapter 7. Chapter 8 concludes the presented thesis and com-

ments on future work. Finally, the appendix contains information about the implemented semantic

models and reference datasets.

vii

Abbreviations

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

CT Computed Tomography

CTA Computed Tomography Angiography

DTD Document Type Definition

GPU Graphics Processing Unit

GUI Graphical User Interface

MR Magnetic Resonance

MRI Magnetic Resonance Imaging

PCA Principal Component Analysis

RGB Red, Green, Blue

RGBA Red, Green, Blue, Alpha

SCR Siemens Corporate Research

SVD Singular Value Decomposition

UI User Interface

UML Unified Modeling Language

XML Extensible Markup Language

Contents

1 Introduction 3

2 Related Work 6

3 Background 9

3.1 Volume Data . 9

3.2 Multi-Dimensional Transfer Functions . 12

3.3 Principal Component Analysis . 16

3.4 Computer Animation . 17

4 Semantic Transfer Function Models 20

4.1 Transfer Function Parameters . 20

4.2 Semantic Parameters . 23

4.3 Influence and Key Concept . 25

5 Design of Semantic Models 27

5.1 Principles . 27

5.2 Template Creation and Adaption . 29

5.3 Data Approximation . 30

5.4 Additional Semantics . 33

5.4.1 Visibility . 33

5.4.2 Color . 35

5.4.3 Contrast . 37

5.4.4 Sharpness . 38

5.4.5 Discussion . 41

6 Implementation 42

6.1 Architecture . 42

6.2 Traditional Transfer Functions and Editors . 44

6.2.1 1D Transfer Functions . 44

6.2.2 2D Transfer Functions . 45

1

CONTENTS 2

6.3 Transfer Function Designer . 48

6.4 Semantic Transfer Functions . 51

6.4.1 XML Data File . 52

6.4.2 User Interface Generation . 53

6.4.3 Parameter Back Mapping . 54

7 Results 56

7.1 Principles . 56

7.2 CTA Datasets . 57

7.2.1 Semantic Model . 58

7.2.2 Visualization . 59

7.3 MRI Datasets . 62

7.3.1 Semantic Model . 62

7.3.2 Visualization . 64

7.4 Evaluation . 67

7.4.1 Stability of Eigenvectors . 67

7.4.2 Operating Aspects . 68

7.4.3 Clinical Study . 69

8 Conclusion 70

8.1 Summary . 70

8.2 Further Considerations . 71

8.3 Limitations and Future Work . 72

A Semantic Models 74

B Datasets 76

B.1 CTA . 76

B.2 MRI . 77

List of Figures 79

List of Tables 81

Listings 82

Bibliography 83

Chapter 1

Introduction

In recent years, interactive high-quality volume rendering has advanced from expensive high-end

graphics workstations to inexpensive desktop computers. That is one of the reasons why volume ren-

dering has gained great importance in many application areas such as medical applications, natural

and computational science, industrial design, and engineering. In the past, problems with memory

management have been successfully solved, making it possible to navigate interactively through a

volume dataset in real time. In addition to this, a variety of useful features has been added to vol-

ume rendering algorithms, including multi-dimensional transfer functions and sophisticated shading

models.

(a) (b)

Figure 1.1: Volumetric datasets and transfer functions. Figure 1.1(a) shows a volume dataset without

any appropriate transfer function. There are no clear structures visible. In Figure 1.1(b) a transfer

function is applied to a CTA dataset which separates the structures contained in the data.

In practice, and especially in medical imaging, however, advanced volume rendering techniques

are not used as frequently as you would expect them to be used. This is mainly due not to technological

reasons, but to difficulties in managing the complexity of visual parameter assignment. The process

of specifying optical properties with regard to datasets, which is usually done by means of transfer

functions, is a tedious and time consuming process for most users. The visual effect of parameter

modification often is hardly predictable even for visualization experts. In general, there are no intuitive

3

CHAPTER 1. INTRODUCTION 4

(a) (b) (c)

Figure 1.2: MRI head in slice and volumetric point of view. Figure 1.2(a) illustrates a traditional slice

image. Figures 1.2(b) and 1.2(c) are examples of volume rendering images of the same MRI volume

dataset.

user interfaces which could offer possibilities to access such features without profound knowledge of

the algorithms. An alternative might be to take automatic and semi-automatic approaches. But, on the

one hand, they are difficult to adapt to a wide range of datasets and, on the other hand, they often are

not specific enough to realize a desired visualization. If automatic approaches fail, non-expert users

are left alone and end up in struggling with parameters (see Figure 1.1).

At least there are two different ways which determine a transfer function. The first way is to think

of a transfer function as a large color table. For each data value, optical properties can be obtained

by a table lookup. In the field of multi-dimensional transfer functions, however, this representation

is not appropriate due to the memory requirements for storing the lookup table. The second way

is to introduce an additional layer of abstraction. The modern user interfaces for transfer function

specification use simple shapes such as boxes, ramps, and trapezoids as primitive objects to manipulate

the transfer function by moving the primitives directly on the screen. The main benefit of primitive

objects is the significant reduction of the degrees of freedom that the user must manage in order to

establish a suitable transfer function.

Yet the manipulation of primitives is still a difficult task, especially for non-expert users in a multi-

dimensional transfer function environment. The transfer function’s specification often is a trial and

error process, because of the number of parameters, which is still too high and confusing. Due to this

fact, the approval of volume rendering in scientific visualization is not distributed as widely as it could

be in everyday use.

With regard to the visualization of medical data applied by physicians, a lack of clear semantics

has been noticed. Physicians often suggest to make the vessels more sharp, to fade out the soft tissue,

and to improve the contrast between skin and bone, for instance. Even visualization experts who are

familiar with the underlying transfer function model and the respective editor have problems to figure

out which modifications of the primitives will yield the desired result.

Difficulties arising from complex applications being used by non-expert users are not a problem

CHAPTER 1. INTRODUCTION 5

which is unique to visualization only. Other fields like computer animation have already found so-

lutions to a large degree. This thesis adapts concepts from computer animation to the field of direct

volume rendering applications in order to improve the usability of transfer function design. The goal

of this work is to provide a high-level user interface based on semantics, mainly for clinical use, which

is easy to apply and adaptable to many application scenarios. Therefore, the user interface contains a

list of structures which the dataset consists of. In contrast to a Magnetic Resonance Imaging (MRI)

dataset, where the separation of “skin” and “brain” structures might be important (see Figure 1.2),

structures like “soft tissue”, “bone”, and “vessels” might be interesting in a Computed Tomography

Angiography (CTA), for example. Additionally, a list of attributes, such as “visibility”, “contrast”,

“sharpness”, and “color” completes each entry of the list of structures and, based on clear seman-

tics, it enables the user to explore the dataset interactively as well as and goal-directed . Finally, the

underlying technical model translates the manipulations into a modification of the transfer function.

This approach allows visualization experts to design transfer function models for specific exami-

nation purposes which afterwards can be used intuitively by non-expert users such as physicians, for

example.

Chapter 2

Related Work

Direct volume rendering research tends to focus either on making the rendering algorithms faster or

on extending existing rendering methods to work with a wider variety of datasets. From the techno-

logical point of view, new and useful features have been added to volume rendering algorithms. A

lot of sophisticated techniques try to solve the volume rendering integral in real-time, including the

shear-warp algorithm [LL94], 3D texture slicing [CCF95, WVW94], 2D texture mapping [RSEB+00],

pre-integration [EKE01], GPU-based rendering methods [KW03, RGWE03, SSKE05, EWRS+06,

EWRS+05], and special purpose hardware. The ideas which are described in this diploma thesis are

independent from the specific implementation of the rendering algorithm.

Most approaches with respect to direct volume rendering for scientific purposes are currently

based on a simplified physical model of light transport [Lev88a], in which light is assumed to travel

along straight lines. Thus, the integration of radiative energy along rays of sight is done by considering

physical quantities describing the light: emission and absorption are assigned to every voxel. Kniss

et. al. [KPHE02] develop a more complex and elaborate model of light transport involving shadows

and translucency. Their model requires the specification of additional physical quantities.

If the dataset’s scalar values alone are not sufficient to achieve the optical properties required for

rendering, so called multi-dimensional transfer functions1 may be used. Multi-dimensional transfer

functions are basically highly superior to traditional one dimensional (1D) transfer functions. Addi-

tionally to the scalar values, the magnitude of the first and second order derivatives of the scalar field

are frequently used to expand the domain of the transfer function. Vega et al. demonstrate the ben-

efit of two dimensional (2D) transfer functions for visualizing blood vessels in CTA data [HST+04].

Kniss et al. use multi-dimensional transfer functions to classify co-registered multivariate magnetic

resonance imaging (MRI) data [KSW+04] and Kindlmann et al. propose an algorithm to detect the

material boundaries based on the first and second derivatives of the scalar data [KD98]. Kindlmann’s

approach is probably the best method currently available to visualize shapes and structures in an un-

known volume dataset. However, the complexity of parameter specification significantly increases

with each additional dimension.

1 For further information about multi-dimensional transfer functions see section 3.2.

6

CHAPTER 2. RELATED WORK 7

In recent years, a lot of research on automatic and semi-automatic transfer function design has

been made. These approaches can be categorized into image-driven as well as data-driven techniques.

The major purpose of a transfer function is to create meaningful images. In consequence, image-

driven techniques for automatic transfer function design analyze the information contained in the

images which are generated with different parameter settings. Methods for setting visual parameters

reported in literature either explore the parameter space interactively (interactive evolution [Koc90,

Sim91, TL92]) or search for optimal settings based on an objective quality measure (inverse design

[Sim94, vdP93, KPC93, WK88]).

The first image-driven method which I would like to outline has been presented by He et al.

[HHKP96]. Their method uses genetic algorithms to create a good transfer function. The system ran-

domly generates a set of transfer functions and renders small images for each one. After having been

introduced to this set of renderings, the user then picks the few renderings that seem to best display the

interesting structures of the volume data, and a new population of transfer functions is stochastically

generated based on those that the user picked (like in [KG99]). The process iterates until the user feels

that the best transfer function has been found. Alternatively, an image-processing metric like entropy,

variance, and energy is used as an objective fitness function to evaluate the rendered images without

human guidance. The process eventually results in a transfer function which maximizes the fitness

function. The method succeeds in generating good renderings and frees the user from having to edit

the transfer function manually. The second method proposed by [MAB+97] addresses the problem of

parameter tweaking in general, with applications of light placement for rendering, motion control for

articulated figure animation as well as transfer functions in direct volume rendering. The basic idea of

this approach is to generate a very large set of transfer functions automatically and randomly and to

organize small thumbnail renderings, which result from these transfer functions, into a design gallery.

Design galleries arrange the results and organize them efficiently so that intuitive browsing can be

made by the user, who peruses these thumbnail images, selecting the most appealing rendering.

Both methods seem to create reasonable transfer functions, but at the cost of completely preventing

the user from a manual experimentation with the transfer function. As the process which generates

the transfer function is a random process, the user has to choose between results which were presented

by the system. The quality of the final transfer function is always uncertain. It is significantly that the

generated transfer functions are not constrained at all by any measured properties of the data. Instead

of interacting with the parameter space of transfer functions directly, the user explores it indirectly.

This means that he only sees the results of the parameter setting for the rendering. Furthermore, the

introduced methods may only generate good transfer functions for renderings from one particular

point of view. If the point of view changes, the algorithms will iterate in a different way and may

generate completely different results. It can be said that these methods are not appropriate for finding

good transfer functions but rather for finding good rendered images.

In contrast to image-driven methods, data-driven techniques analyze the volume data instead of

the generated images. The process of transfer function design is thus decoupled from the influence

CHAPTER 2. RELATED WORK 8

of image related parameters such as viewing position and pixel resolution. Fang et al. [FBT98] face

the problem of transfer function design from an image processing point of view. They use a transfer

function to transform a three dimensional (3D) scalar volume to a 3D red, green, blue, and alpha

(RGBA) volume and apply 3D image processing operations directly to the volume data. A disad-

vantage of this method is the high cost in memory that is required to store intermediate results for

the image processing operations. A related technique was presented by Sato et al. [SWB+00], who

applied 3D image filters in order to accentuate local intensity structures. The transfer function domain

is a multi-dimensional feature space in their concept. In order to overcome the limitations inherent

in conventional 1D opacity functions, they propose a classification method for tissues that employs a

multi-dimensional opacity function, which is a function of the 3D derivative features calculated from

a scalar volume, as well as the volume intensity. Tissues of interest are characterized by explicitly

defined classification rules based on 3D filters which highlight local structures. The 3D local structure

filters are formulated using the gradient vector and Hessian matrix of the volume intensity function

combined with isotropic Gaussian blurring. Three years earlier, Bajaj et al. [BPS97] described a tool

for assisting the user in selecting isovalues for effective isosurface volume visualizations of unstruc-

tured triangular meshes for isosurface rendering. By exploiting the mathematical properties of the

mesh, important measures of an isosurface such as surface area and mean gradient magnitude can

be computed with great efficiency. The results of these measurements are integrated into the same

interface, which is used to set the isovalue.

The principles of multi-dimensional transfer functions have been investigated before by various

researchers. Levoy [Lev88b] introduced two styles of transfer functions. Both are multi-dimensional

and both are using gradient magnitude for the second dimension. One transfer function is intended

for the display of interfaces between materials, the other for the display of isovalue contours between

more smoothly varying data.

Summing it up, it can be pointed out that image-driven techniques are based on a trial-and-error

generation of images to navigate the space of transfer functions. With this approach, the user can

examine the results to find the best rendering. Data-driven techniques are based on the analysis of the

volume data and provide methods to visualize shapes and structures in an unknown volume dataset. In

most practical cases the user knows exactly what structures are contained in the dataset. He wants to

visualize these structures of interest as fast as possible, without detailed knowledge of the rendering

algorithm or the transfer function. For this purpose, in this diploma thesis an additional level of

abstraction will be introduced which completely hides the transfer function from the user by providing

a limited set of semantic parameters.

Chapter 3

Background

The following chapter provides an overview of the components that are included in the approach

of high-level user interfaces based on semantic models. Volume data are described and it is said

how they can be used for image rendering. In addition to this, this chapter gives an introduction

to the field of multi-dimensional transfer functions, which includes 2D histograms based on data

values, gradient magnitude and the second directional derivative. Section 3.3 outlines the technique

of Principal Component Analysis briefly, which is used to approximate the range of input data to

a lower-dimensional subspace. This chapter is concluded by the idea of this thesis, which is about

facilitating visual parameter assignment based on concepts borrowed from computer animation.

3.1 Volume Data

A discrete volume dataset simply is a three-dimensional array of cubic elements called voxels. A

voxel (which is a coined word based on the words volumetric and pixel) is a volume element which

represents a value in 3D space. It is analogous to a pixel, which represents 2D image data. Figure 3.1

shows two interpretations of a voxel value which depend on the usage: a unit of space in the volume

as well as a sample point in a grid [Kau94].

Volume datasets can be divided into measured and simulated data and they differ in the structure

of the underlying grid. Measured datasets, as they are created by the following techniques, which are

mainly used in medical imaging, are usually acquired on a uniform rectilinear grid:

• Computed tomography (CT). CT, originally known as computed axial tomography (CAT or

CAT scan) or body section roentgenography, is a medical imaging method employing tomog-

raphy where digital geometry processing is used to generate a three-dimensional image of the

internals of an object from a large series of two-dimensional X-ray images taken around a single

axis of rotation.

• Magnet resonance imaging (MRI). An MRI uses powerful magnets to excite hydrogen nuclei

in water molecules in human tissue, producing a detectable signal. Traditionally, an MRI creates

9

CHAPTER 3. BACKGROUND 10

(a) (b)

Figure 3.1: Figure 3.1(a) shows cubes, with each cube representing a unit of space with particular

properties in a larger volume. In Figure 3.1(b) voxels are interpreted as point samples in a 3D grid.

a large series of 2D images of a thin slice of the scanned object, just like a CT scan. The

difference between a CT image and an MRI image is a question of details. In CT, X-rays must

be blocked by some form of dense tissue in order to create an image, thus the image quality will

be poor when you look at soft tissues. An MRI can only manage hydrogen based objects. This

means that bone, which is calcium based, will be a void in the image and will not affect soft

tissue views.

• Ultrasound (US). Medical ultrasonography uses high frequency sound waves of between 2.0

to 10.0 megahertz that are reflected by tissue in varying degrees producing 2D images. Doppler

capabilities of modern scanners allow the blood flow in arteries and veins to be assessed.

In contrast to this, grid design algorithms for finite element simulation usually produce unstruc-

tured grids based on tetrahedrons and prisms. The value of a voxel may represent various properties.

In CT scans, the values are Hounsfield units ([Hou73]), giving the opacity of material to X-rays.

Different types of values are acquired from MRI or ultrasound.

The rendering of data represented as 3D scalar fields is known as volume rendering. In many

ways, it has an even greater need for hardware acceleration than polygon rendering does, since volume

datasets are generally much larger than polygon datasets which are used for surface visualization

[FvDFH96]. Furthermore, voxel calculations are simpler than polygon calculations. Compared to

surface data, which determine only the outer shell of an object, volume data describe the internal

structures of solid objects. In addition to medical and scientific data representation, volume data

allow the modeling of fluid and gaseous objects as well as of natural phenomena such as clouds, fog,

fire or water [RS02]. The first architecture, which was designed in order to accelerate the display of

CHAPTER 3. BACKGROUND 11

volume datasets, classifies voxels as either occupied or empty [Mea85]. This approach minimizes the

amount of processing but also obscures data in the interior of the object. Nowadays, implemented

rendering algorithms in most cases fully use the programmable graphics pipeline for displaying and

editing the volume data in real-time1.

Physically, a scalar volume can be interpreted as a continuous three-dimensional signal:

f(~x) ∈ R with ~x ∈ R
3. (3.1)

In signal processing, the Nyquist Rate fN is the minimum sampling rate (in samples per second)

which is required to avoid aliasing when sampling a continuous signal. If the input signal is real and

band-limited, the Nyquist rate is twice the highest frequency contained within the signal, which reads

fN = 2fH , (3.2)

with fH being the highest frequency component contained in the signal. In order to avoid aliasing

effects, the sampling rate fS must exceed the Nyquist rate: fS > fN . According to the sampling

theory, an ideal reconstruction of the signal requires the convolution of the sample points with a sinc

function (Figure 3.2)

sinc(x) =
sin(πx)

πx
. (3.3)

Due to the fact that this function has infinite extend and thus all sampling points of the original

signal (and not only those in the close vicinity) should be considered, it follows that in practice it is

intractable to apply sinc for an exact reconstruction. Furthermore, it must be taken into account that a

signal’s shape is determined by its frequency spectrum. The sharper and more angular a waveform is,

the richer it is in high-frequency components. Signals with discontinuities have an infinite frequency

spectrum. Any sharp boundary between different materials ends in an infinite extend in the signal’s

frequency spectrum, which will produce aliasing artifacts if the signal is reconstructed from discrete

samples. In practice, the ideal 3D sinc filter is replaced by either a box filter or a tent filter in order to

reconstruct a continuous signal from the 3D array of voxels.

Sampling theory again becomes important in the topic of transfer functions. The order in which

signal reconstruction and transfer function are executed in the volume rendering pipeline can make a

significant difference in the quality and speed of renderings. If a transfer function is applied before the

reconstruction of the signal, the optical properties themselves are interpolated from the grid samples.

The image is rather disturbing, not only because the frequency spectrum is changed, which might

invalidate an initial assumption of band limitation and will thus strongly violate the sampling theorem,

but also because of the blocky appearance. This effect is caused by important features, which may

be missed if the data value changes rapidly from one grid sample point to the next. If the continuous

signal is reconstructed first and then the transfer function is applied, it is ensured that the sampling

1Recent volume rendering visualization techniques are mentioned at the beginning of chapter 2.

CHAPTER 3. BACKGROUND 12

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-3 -2 -1 0 1 2 3

sinc(x)

Figure 3.2: The ideal reconstruction filter for one dimensional signals is the sinc filter.

theorem is obeyed, although the transfer function will introduce another high-frequency component

to the signal. As long as the transfer function itself is band-limited, the signal is protected from any

aliasing. The volumetric shapes result in a much better representation by the high-frequency of the

transfer function applied as a so-called post-classification2 .

3.2 Multi-Dimensional Transfer Functions

The term “classification” refers to the assignments of optical properties to data values. The process

of classification is one of the most important steps in the volume rendering pipeline, as it creates

the optical properties that will emphasize an important feature or obscure unimportant ones. Optical

properties such as opacity and color are assigned to data values with the help of a transfer func-

tion. The quality of the resulting visualization will be largely dependent on how well these optical

properties capture features of interest. In general, the design of a transfer function is a manual and

time-consuming procedure, which requires detailed knowledge of spatial structures that are repre-

sented by the dataset. There are three difficulties regarding the process of specifying good transfer

functions [Kni02]:

• It is difficult to identify features of interest in the transfer function domain. A feature of interest

may be easily identifiable in the spatial domain, while, on the other hand, the range of the

concerning data values may be difficult to isolate in the transfer function domain, although

other, uninteresting regions may contain the same range of data values.

• The transfer function may have an enormous number of degrees of freedom, which may be

pretty difficult to handle by the user.

2For detailed information about different reconstruction filters for volume data and pre- and post-classification of transfer

functions see [Nov93, RS02].

CHAPTER 3. BACKGROUND 13

• Typical user interfaces do not guide the user with regard to setting all the control points of the

transfer function based on dataset specific information. Consequently, the user must rely on a

trial and error process in finding good images.

Traditionally, the easiest way to define a transfer function is to determine color and opacity values

for a voxel as a function of its scalar value. In practice, a transfer function is realized as a lookup

table of fixed size. Scalar values are assigned to the RGB color entries of the lookup table in order

to consider the emission of colored light. The opacity value for each voxel is determined as a scalar

value between 0 and 1 which represents the absorption coefficients.

(a) (b) (c)

Figure 3.3: Structure rendered with 1D and 2D transfer functions. The adding of the gradient magni-

tude as a second axis to the transfer function disambiguates the boundaries (Figures 3.3(b) and 3.3(c)),

whereas Figure 3.3(a) is generated with a 1D transfer function which offers no possibility to separate

the blood vessels from the bone.

Rather than classifying a sample based on a single scalar value, multi-dimensional transfer func-

tions allow a sample to be classified based on a combination of values. These values are the axes of

a multi-dimensional transfer function. Thus, the probability with regard to isolating and differenti-

ating between structures in the dataset increases. Figure 3.3 illustrates the differences of a 1D and a

multi-dimensional (2D) transfer function.

The first and second order derivatives can be taken into account in order to define a multi-

dimensional parameter domain in addition to the scalar value. The gradient vector is the first order

derivative for a scalar function f(x, y, z) representing the 3D data, and is defined by using the partial

derivatives of f in x-, y- and z-direction as

∇f = (fx, fy, fz) =

(

δ

δx
f,

δ

δy
f,

δ

δz
f

)

. (3.4)

As a vector, it points into the direction of the greatest change. The gradient magnitude is a scalar

quantity which describes the local rate of change in the scalar field. It is computed as the absolute

value of the vector

f ′ = ‖∇f‖ =
√

fx
2 + fy

2 + fz
2. (3.5)

CHAPTER 3. BACKGROUND 14

For notational convenience, f ′ is used to indicate the magnitude of the gradient of f . This value

is useful as an axis of the transfer function, because it distinguishes between homogeneous regions,

which have a low gradient magnitude, and regions of change, which have a high gradient magnitude.

Please consider the relationships between the different axis in Figure 3.4(a) in order to get a better

idea of multi-dimensional transfer functions. The image analyzes one segment of a slice from a

synthetic cylinder dataset. Please note that at the mid-point of the boundary between the two materials

(background and cylinder) the first derivative is at a maximum and the second derivative has a zero

crossing. Because of blurring, the boundary is spread over a range of positions.

(a) (b)

Figure 3.4: As a function of position, Figure 3.4(a) shows the relationship between data values (f),

gradient magnitude (f ′) and the second directional derivative (f ′′). In Figure 3.4(b), the derivatives

are displayed as a function of data value. Figure: courtesy of Gordon Kindlmann [KD98].

The patterns of which the datasets consist can be visualized with histograms. In general, a his-

togram is a structure for representing a discrete approximation of a probability distribution function.

Histograms are useful due to the fact that they can provide a compact summary of a large amount of

data. Statistical quantities can be measured easier from a histogram than directly from the data. It

is a good approach to examine the relationship between f , f ′ and f ′′. A common way to visualize

a histogram is to produce two dimensional scatterplots of data value versus first derivative, or data

value versus second derivative, as seen in Figure 3.5. In these scatterplot images, the data value and

their derivatives are aligned to the axes as in Figure 3.4(b) in order to facilitate comparison. The dark-

ness in the scatterplots encodes the number of hits for a given gradient/value pair. The results of the

scatterplots closely conform to the curves of the continuous linear sampling example in Figure 3.4(b).

Since materials are relatively homogeneous, their gradient magnitudes are low. Boundaries be-

tween the materials are shown as arches. Figure 3.6(a) shows a histogram of data value versus gradient

magnitude of a CTA dataset. The materials can be seen as circular regions added to the histogram.

The labeled regions of blood vessels, bone and skin were isolated by using a 2D transfer function and

can be found in the rendered image of Figure 3.6(b).

CHAPTER 3. BACKGROUND 15

(a) (b) (c)

Figure 3.5: Cross-section and histogram scatterplots for a synthetic cylinder dataset. In Figure 3.5(a)

a cross-section of the dataset is shown with only one visible material boundary. Figures 3.5(b) and

3.5(c) display a projection of the histogram volume, showing the relationship between f and f ′ and

between f and f ′ with the indicated values υ1 and υ2 from Figure 3.5(a) on the f(x) axes. Figure:

courtesy of Gordon Kindlmann [KD98].

(a) (b)

Figure 3.6: A volume rendering based on a 2D transfer function of data value and gradient magnitude

showing bone, skin and blood vessels. In Figure 3.6(a), some of the structures which are part of the

dataset are labeled in the histogram. Figure 3.6(b) displays the rendered image.

The arches that define material boundaries in a 2D transfer function often overlap. This prevents

sometimes a homogeneous region from being properly isolated by the 2D transfer function of data

value and gradient magnitude (f ′). This effect can be avoided by using transfer functions based

on data value and the second derivative (f ′′). More details on these measurements can be found in

the semi-automatic transfer function design method by Kindlmann and Durkin [KD98, Kin99]. Their

approach is capable of determining material boundaries within a given dataset by evaluating statistical

information about the first and the second order directional derivatives with the help of histograms.

CHAPTER 3. BACKGROUND 16

3.3 Principal Component Analysis

One of the statistical techniques frequently used in various fields of applications is called Principal

Component Analysis (PCA). It is a powerful method for data analysis and pattern recognition and it

can also be adapted to reduce a complex dataset to a lower dimension in order to reveal the sometimes

hidden, simplified structure. In the following, the PCA theory [PFTV92] is briefly described to get

familiar with the technique, which is used in chapter 5 of this thesis to approximate the range of input

data in a lower dimensional subspace.

The input for the PCA is a set of m parameter vectors pi ∈ R
n, with each vector consisting of n

parameter values. These vectors can be arranged into a matrix P = [p0, p1, . . . , pm−1] ∈ R
m×n.

The vector p̄ is the vector of mean values of all input variables defined by:

p̄ =
1

m

m−1
∑

i=0

pi. (3.6)

In order to calculate the mean-deviated representation D of the matrix P, the mean vector p̄ has

to be subtracted from all input vectors

di = pi − p̄. (3.7)

This process is called centering and results in a new matrix

D = [d0, d1, d2, . . . , dm−1] ∈ R
m×n . (3.8)

PCA can be described as a linear transformation A ∈ R
n×n of D into a matrix Y according to:

AD = Y. (3.9)

After the transformation, the row vectors of Y contain the components of the maximum variance in

descending sequence. Figure 3.7(b) shows the 2D scatterplot of the mean-deviated input vectors. The

mean vector p̄ is the new center of the scatterplot. With the help of the mean-deviated matrix D, the

symmetric and positive semidefinite covariance matrix CP ∈ R
n×n can be calculated by:

CP =
1

m − 1

m−1
∑

i=0

(pi − p̄)(pi − p̄)T

=
1

m − 1
DDT. (3.10)

The elements on its main diagonal are the variances of the vector components. All other entries

describe the covariance between two different components. In order to achieve the transformation

presented in equation 3.9, matrix A has to be determined by calculating the eigenvalues λ and the

eigenvectors e of the covariance matrix CP. The row vectors of matrix A are the eigenvectors ordered

by their eigenvalues in descending sequence.

CHAPTER 3. BACKGROUND 17

(a) (b) (c)

Figure 3.7: Figure 3.7(a) shows a scatterplot of the input vectors as point samples in a simple 2D

example. In Figure 3.7(b) the input vectors are mean-deviated and PCA is used to determine the axis

of the maximum variance. Figure 3.7(c): Reducing the input vectors to the first principal component

approximates the data in a lower-dimensional subspace.

The eigenvector corresponding to the largest eigenvalue is called the first principal component and

determines the axis of maximum variance of the joint probability distribution. Smaller variances in a

lower-dimensional subspace are marked by the following principal components which are orthogonal

to all other principal components. The values of Y are calculated with the help of the principal

components. The mean-deviated original data can be restored with the equations

D = A−1Y, (3.11)

D = ATY, (3.12)

P = (ATY) + p̄. (3.13)

The inverse of A in equation 3.11 is equal to its transpose in 3.12 because its elements are the

unit-length eigenvectors of the dataset. As D represents the mean-deviated data, the mean vector

p̄ has to be added to obtain the original dataset P once again (see equation 3.13). A more general

solution called “Singular Value Decomposition” (SVD) could also be used in order to reduce the

dimensionality of the data [Shl05]. The methods PCA and SVD are closely related.

3.4 Computer Animation

The inspiration of the user interface design presented in this thesis is based on concepts from computer

animation. Direct connections of attributes between the two objects can be established in order to

manipulate an object with the help of another object. For instance, connecting a cone’s rotation

CHAPTER 3. BACKGROUND 18

attribute to a cube’s position attribute results in a moving cube while the user is rotating the cone.

Direct connections are the strictest way to connect attributes of objects. The example shows that

there is no way for a direct connection to be weighted. This means that the cube would move out

of the image if the cone’s rotation would continue. In the modeling and animation package Alias

MayaTM, for example, this is possible by creating so-called “driven keys”. Other animation tools may

use different names for a similar concept. Driven keys are neither direct and rather rigid connections

of attributes nor conventional key frames, where an object is told to be in position 1 at one time and

in position 2 at another time. Driven keys are particularly key frames that are specified with respect to

an abstract parameter axis and not with respect to the time axis. They are an excellent tool for semi-

automation. In the example mentioned above, the cone should serve as a lever which has a predefined

motion sequence. Turning the lever counterclockwise moves the cube to the left until it reaches its

final position. The same applies to turning it clockwise, which moves the cube to the right end of the

scene. With the help of driven keys, the desired behavior is achieved without a single conventional

key frame (see Figure 3.8). In an animation, standard key frames can be used for the lever’s rotation.

The position of the cube will update automatically.

(a) (b)

Figure 3.8: The position of the cube’s movement is predefined and based on a weighted connection

via driven keys. Turning the cone to the left in Figure 3.8(a) will move the cube to the left until it

reaches its final position. Figure 3.8(b) shows the movement of the cube in the opposite direction by

turning the cone to the right.

A more complex example dealing with character animation points out the advantages of driven

keys with respect to the user interface design of this thesis. In a typical production, a technical

director is responsible for creating the articulated model of a single character, which can afterwards

be controlled intuitively by an animator. According to the underlying story board, each individual

character has a set of expressions that he must be able to perform. For example, the character’s

face could be able to smile and frown. The animator uses high-level parameters in order to control the

facial expressions directly. From the technical director’s point of view, however, each facial expression

consists of a combination of multiple low-level parameters such as the activation of specific muscles,

CHAPTER 3. BACKGROUND 19

which are nothing but objects with an abundance of attributes. Generating a smiling face, for example,

will involve the movement of the lips, the cheeks, the eyelids and the eyebrows, which are controlled

by different predefined blend-shapes [RCB05]. Additionally, the jaw, which is controlled by the

kinematic skeleton, will open slightly and wrinkles will become visible on the forehead, which may

be displayed by textures and bump maps. Examples of blend shapes and corresponding expressions

are shown in Figure 3.9. In order to provide intuitive control of the innumerable attributes for each

facial expression, the technical director compiles combinations of the low-level parameters into high-

level parameters used by the animator with the help of driven keys. This way, the technical director

creates semantic parameters such as “smile” and “frown” and hides the complex setup of low-level

parameters from the animator.

(a)

(b)

Figure 3.9: The simple example in Figure 3.9(a) demonstrates how blend shapes and driven keys

work in a basic muscle flex. Rotating the elbow in z-direction results in a mighty and strong arm.

In character animation (Figure 3.9(b)), facial expressions are implemented by using predefined blend

shapes in combination with kinematics and other deformation techniques. The technical director

hides much of the complexity of low-level parameter assignment from the animator by introducing an

additional level of abstraction.

Chapter 4

Semantic Transfer Function Models

This chapter summarizes the drawbacks of existing transfer function design models and introduces a

new model based on semantics. The benefit of this technique is exposed later on and a formal model

is developed.

4.1 Transfer Function Parameters

The automatic and the semi-automatic design of transfer functions in the field of data-driven and

image-driven techniques (see chapter 2) are still topics of active research. However, the most fre-

quently used way of transfer function adjustment is the manual visual editing of the transfer function

[RS02]. As already described in the previous chapter, transfer functions are usually stored and applied

as color tables. Current implementations of color table editors vary in the representation and in the

degrees of freedom for the transfer function. A simple user interface of transfer function adjustment is

shown in Figure 4.1. Each of the RGBA channels can be adjusted separately referring to a histogram

which is displayed in the background of the editor. Finally, the arranged intensities are mapped to an

1D array of RGBA quadruples, which the lookup table is consisting of.

Figure 4.1: Editor for the adjustment of a 1D transfer function. A separate editing of each of the

RGBA channels provides high degrees of freedom.

20

CHAPTER 4. SEMANTIC TRANSFER FUNCTION MODELS 21

Finding appropriate transfer functions that lead to a desired image is a tedious and time consuming

process of the manual tweaking of parameters. The higher the degrees of freedom of the transfer

function adjustment, the more it is difficult to accomplish good renderings. While adding dimensions

to the transfer function enhances the ability to isolate features of interest in a dataset (see section 3.2),

it tends to make the space of the transfer function, which already is not intuitive, even more difficult

to navigate. It would be helpful for researchers to use simplified editors which could be handled

intuitively and fast.

The modern user interfaces for transfer function specification often provide an additional layer

of abstraction by introducing simple shapes as primitive objects such as boxes, ramps or trapezoids.

Examples of primitives in case of 2D transfer functions are paraboloid shapes introduced by Vega et

al. [HST+04] and trapezoids suggested by Kniss et al. [KKH01]. Different types of user interfaces

for 1D and 2D transfer functions are shown in Figure 4.2.

(a) (b)

(c)

Figure 4.2: User interfaces for transfer function assignment. Figure 4.2(a) shows a 1D transfer func-

tion editor which supports ramps and trapezoids. Different types of primitive shapes are supported by

the 2D editor of Figure 4.2(b). It shows a template used for CT data. The direct manipulation widgets

presented by Kniss et al. are visible in Figure 4.2(c).

Regardless of its individual representation and its dimensionality, a transfer function can be con-

sidered simply as a collection of parameters. At the lowest level of abstraction, a transfer function may

be implemented as a simple lookup table with each entry in this table referring to a separate parameter.

CHAPTER 4. SEMANTIC TRANSFER FUNCTION MODELS 22

With respect to an additional abstraction layer which uses primitive shapes to adjust the transfer func-

tion, each primitive has a set of parameters such as position and control points, and color and opacity

values. Modifying the primitive’s shape results in a parameter change which directly influences the

transfer function. Table 4.1 lists some examples of parameters of a quadrilateral primitive.

Number Name Description

1 POINT1 X position of point 1 in x-direction

2 POINT1 Y position of point 1 in y-direction

3 POINT2 X position of point 2 in x-direction

4 POINT2 Y position of point 2 in y-direction

5 POINT3 X position of point 3 in x-direction

6 POINT3 Y position of point 3 in y-direction

7 POINT4 X position of point 4 in x-direction

8 POINT4 Y position of point 5 in y-direction

9 COLOR RED value of color channel red

10 COLOR GREEN value of color channel green

11 COLOR BLUE value of color channel blue

12 OPACITY the primitive’s opacity

...

Table 4.1: A few parameters of a quadrilateral primitive, such as position, color and opacity parame-

ters. Changing the parameters (i.e. modifying the shape) directly influences the transfer function.

Figure 4.3 illustrates a change of a quadrilateral parameter. Shifting point 3 will result in a change

of the parameter numbers 5 and 6 according to table 4.1. In this example, the point is moved to the

right. This movement responds to the x-direction and refers to parameter number 5. Some of the

primitive’s inner points are also effected by this point-shift, which is explained in detail in chapter 6.

A single transfer function can be defined by multiple and various primitives. Most implemen-

tations convert primitives into a color table representation before rendering. As an alternative, (if

programmable graphics hardware is used) transfer functions can be specified procedurally and eval-

uated at run-time, like the multi-dimensional Gaussian primitives proposed by Kniss et al. [KPI+03,

EWRS+06]. Independent of the kind of abstraction layer or number of primitives, the parameters

which represent an individual transfer function can be specified as an array of n floating point values

p:

p = (p0, p1, p2, . . . , pn−1) ∈ R
n. (4.1)

For instance, if a transfer function would consist of a quadrilateral primitive, the array of equation 4.1

would be filled with values of parameters listed in table 4.1.

CHAPTER 4. SEMANTIC TRANSFER FUNCTION MODELS 23

(a) (b)

Figure 4.3: A modification of the shape of a quadrilateral. Figure 4.3(a) shows the primitive before

moving point 3 to the right. Figure 4.3(b) illustrates the new shape after the change of parameters.

4.2 Semantic Parameters

Kniss et al. describe in [KKH05] a typical session of creating a good transfer function, which is a

natural process of exploration, specification and refinement. Exploration is the procedure by which a

user familiarizes himself or herself with the dataset. During the specification stage, the user creates a

rough draft of the desired transfer function. In the system which Kniss et al. use, features of interest

can be added to the transfer function independent of further investigation of the volume. In the last

step, the user can refine the transfer function by manipulating control points of the primitives. Finally,

this is an iterative process. The users continue the exploration, specification and refinement steps until

they are satisfied with the fact that all features of interest are visualized. For a non-expert user this is

a extremely difficult, time consuming task to obtain good transfer functions.

In section 3.4, a concept (driven keys) is described which allows the user to control an enormous

number of attributes easily by introducing an additional layer of abstraction. In computer animation,

for instance, the technical director creates semantic parameters such as smile or frown, and hides the

complex setup of low-level parameters from the animator. Could the draft of computer animation

described above be adapted to the task of defining a new transfer function model? The basic idea is

that the visualization expert, who is familiar with all the parameters involved in image design, will play

the role of the technical director transferred from the field of computer animation. If you introduce

semantic parameters as an additional abstraction layer in order to control the transfer function, this

may simplify the process of finding features of interest in the dataset for a non-expert client.

For example, a semantic parameter like “Brain Visibility” may be useful for a transfer function

model to visualize the brain’s structures in a CTA dataset. Figure 4.4 illustrates the behavior of such a

semantic parameter. A simple slider or spin-box can be useful to adjust the values. In correspondence

CHAPTER 4. SEMANTIC TRANSFER FUNCTION MODELS 24

to low-level parameters such as the activation of specific muscles in facial animation, the low-level

parameters in transfer function design are the values of the array p, which represents an individual

transfer function.

(a)

(b)

Figure 4.4: Semantic parameters as an additional abstraction layer. In Figure 4.4(a) the smile of the

character is controlled by a semantic parameter. The higher the value, the more distinctive the smile.

The pictures from the left to the right show an increasing value. Figure 4.4(b): The technique of an

additional abstraction layer is adapted to the transfer function design. A slider controls the value of

the brain’s visibility in a CTA dataset. An increasing value leads to a more opaque brain structure

(pictures from the left to the right).

The approach of this thesis deals with an effective technique that is developed to hide the com-

plexity of parameter assignment from the non-expert client. As a basis for implementing semantics in

the new transfer function model, a set of semantic parameters s

s = (s0, s1, s2, . . . , st−1) ∈ R
t, (4.2)

is introduced. The number of semantic parameters t will usually be significantly smaller than the

number of low-level parameters n of which a transfer function is composed, although this is not a

necessary condition.

CHAPTER 4. SEMANTIC TRANSFER FUNCTION MODELS 25

4.3 Influence and Key Concept

Each of the semantic parameters s ∈ R introduced in the previous section has an influence on the

vector of low-level parameters p. The influence q(s) is defined as the function q(s) : R 7→ R
n and

the final n-dimensional low-level parameter vector p is computed by summing up the influences of

all semantic parameters

p = f(s) =
t−1
∑

i=0

q(si). (4.3)

A simple example of a quadrilateral primitive is given in Figure 4.5, which forms a transfer func-

tion that consists of three semantic parameters. In general, the function f : R
t 7→ R

n that maps

semantic parameters to a transfer function can be an arbitrary function. The sum is chosen to keep the

model intuitively understandable.

q(s0) = (0.24 0.21 0.11 0.71 0.8 0.65 0.42 0.16 0 0 0 0)

q(s1) = (0 0 0 0 0 0 0 0 0.2 0.2 0 0)

q(s2) = (0 0 0 0 0 0 0 0 0 0 0 0.75)

p = (0.24 0.21 0.11 0.71 0.8 0.65 0.42 0.16 0.2 0.2 0 0.75)

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

P
O

IN
T

1
X

P
O

IN
T

1
Y

P
O

IN
T

2
X

P
O

IN
T

2
Y

P
O

IN
T

3
X

P
O

IN
T

3
Y

P
O

IN
T

4
X

P
O

IN
T

4
Y

C
O

L
O

R
R

E
D

C
O

L
O

R
G

R
E

E
N

C
O

L
O

R
B

L
U

E

O
P
A

C
IT

Y

Figure 4.5: Parameters of a transfer function. The figure represents a transfer function which consists

of a quadrilateral primitive. The order of the parameters is transferred from table 4.1. The parameter

array p consists of the sum of all influences q(s). The influence vector q(s0) is responsible for the

primitive’s shape, whereas q(s1) manipulates the color and q(s2) controls the primitive’s opacity

value.

Similar to the driven keys described in section 3.4, which are used to weight a connection between

various attributes, the influence of a semantic parameter si is specified by a variable set of keys (σj q̂j)

and by step-by-step linear interpolation

q(si) =

(σ1 − si

σ1 − σ0
) q̂0 + (si − σ0

σ1 − σ0
) q̂1, for σ0 ≤ si < σ1

(σ2 − si

σ2 − σ1
) q̂1 + (si − σ1

σ2 − σ1
) q̂2, for σ1 ≤ si < σ2

...
...

(σk − si

σk − σk−1

) q̂k−1 + (
si − σk−1

σk −σk−1

) q̂k, for σk−1 ≤ si ≤ σk

with q(σj) = q̂j . Because of the interpolation between influences specified by keys, at least two

keys are necessary to compute a valid influence q(si).

CHAPTER 4. SEMANTIC TRANSFER FUNCTION MODELS 26

With some effort it might be possible for an experienced user to specify the keys for a given dataset

manually, like the direct influence of the semantic parameter “visibility” on the opacity of a single

transfer function primitive. In Figure 4.6, this simple relationship is demonstrated: the adjustment of

the slider of Figure 4.4(b) to a value of 0.75 will result in the influence q(s2) presented in Figure 4.5,

for example. In more complex relationships, more sophisticated techniques must be used to find

appropriate keys that yield the desired visual results.

s2 = 0.75

σ0 = 0.0 q̂0 = (0 0 0 0 0 0 0 0 0 0 0 0)

σ1 = 1.0 q̂1 = (0 0 0 0 0 0 0 0 0 0 0 1)

q(s2) = (0 0 0 0 0 0 0 0 0 0 0 0.75)

↓

O
P
A

C
IT

Y

Figure 4.6: An example of keys and influences. The semantic parameter visibility s2 has the value

0.75. With the help of keys (σ0 = 0 and σ1 = 1) and their influence vectors (q̂0 and q̂1) the influence

q(s2) is computed. The result is based on linear interpolation.

The semantic models which this thesis is about, however, should not only function with regard

to one specific dataset. Instead, a semantic model will be developed which is applicable to different

datasets. It is required that the datasets have been recorded with a similar tomographic sequence and

with the same examination purpose in mind. This applies to most examination procedures in medical

routine. Some examples will be shown in chapter 7.

Chapter 5

Design of Semantic Models

The previous chapter has shown that the concept of computer animation is capable of developing

semantic transfer function models. A technique has still to be elaborated which is able to generate

semantic models for more complex relations regarding a transfer function and different datasets. Now

section 5.3 describes how this problem can be solved efficiently with PCA. The chapter closes with a

section about creating additional semantics.

During this chapter, primitives objects are used to adapt structures of the datasets, but finally,

chapter 6 contains a detailed description of the primitives’ properties and features.

5.1 Principles

Before starting the implementation of the semantic model, the expert-user who will design the model

should talk in detail about the relevant datasets’ structures of interest the client-user wants to have

visualized. Furthermore, the required semantic parameters have to be defined. It is a challenge to find

an appropriate set of weights which yield the desired result when the semantic parameters are finally

used to instantiate the transfer function according to equation 4.3.

(a) (b) (c) (d)

Figure 5.1: Entities of a CTA dataset. In Figure 5.1(a) a combination of all relevant structures of the

dataset is visualized. Each of the other images contains a single structure, such as bone (Figure 5.1(b)),

brain tissue (Figure 5.1(c)) and blood vessels (Figure 5.1(d)).

27

CHAPTER 5. DESIGN OF SEMANTIC MODELS 28

Semantic Parameters

Brain Sharpness

Brain Visibility

Bone Color

Skin Contrast

Skin Color

Skin Sharpness

Vessels Contrast

Entities

Brain

Bone

Skin

Vessels

Groups

Brain

Sharpness

Visibility

Bone

Color

Skin

Contrast

Color

Sharpness

Vessels

Contrast

Figure 5.2: An example of semantic parameters for a CTA dataset. The table on the left contains a list

of potential semantic parameters. All structures in which the user is interested are listed in the table

in the middle. The table on the right groups all semantic parameters under the entities they belong to.

It is assumed that you do not need a semantic model for each individual dataset, but instead of this

only one model is needed for similar datasets with the same examination purpose in mind, such as CTA

datasets, for instance. The basis of the approach of designing semantic models is a set of reference

datasets for each examination purpose. Ideally, this set should statistically represent the range of

possible datasets. In practice, however, this condition can hardly be verified and it is suggested to use

as many datasets of a specific type as available.

The next step is to list all relevant structures contained in the data. Each of the structures is called

an “entity”. Please note that there is a difference between semantic parameters, such as visibility or

color, and structures, such as bone and skin. To be more precise, semantic parameters are grouped

under entities. Figure 5.1 displays a couple of entities of a CTA dataset which comprise skin, bone,

brain tissue and blood vessels. In Figure 5.2, the relation to semantic parameters is illustrated in an

example.

Each entity is represented by one or more primitives the transfer function consists of. Based on

these primitives, a transfer function model is created which is used as a template for manual adaption

and refinement. In the following step, the transfer function template has to be adjusted to all reference

datasets. Each of the reference datasets is loaded one after another into the volume renderer. The

data values in the datasets are slightly different and the user interface for primitives is used to adapt

the transfer function model to each individual dataset. An instance vector for each reference dataset

is obtained by this adaption. The set of instance vectors is analyzed in order to create semantic

parameters by using PCA for finding similarities to approximate the vectors in a lower-dimensional

subspace. The following sections describe the process of template creation and adaption in detail, as

well as computing semantic influence vectors and creating additional semantic parameters.

CHAPTER 5. DESIGN OF SEMANTIC MODELS 29

5.2 Template Creation and Adaption

As already explained before, each entity is represented by one or more primitives with a set of primi-

tive parameters

prim = (prim0, prim1, prim2, . . . , primg−1). (5.1)

One of the reference datasets is loaded into the system in order to create a transfer function tem-

plate. As many primitives objects as needed are added to the transfer function and their parameters

are concatenated. A quadrilateral primitive, for example, has g = 12 parameters (see section 4.5). A

transfer function p which contains two of the primitives (for every entity a separate primitive) is then

specified as an array of n = g + g = 24 elements and is defined as

p = (p0, p1, p2, . . . , pn−1)

= (primentity1, primentity2)

= (primentity1 0, . . . , primentity1 11, primentity2 0, . . . , primentity2 11). (5.2)

As it has already been pointed out, modifying the shape of the primitives results in a parameter change

and directly influences the transfer function.

(a) (b)

(c) (d)

Figure 5.3: The process of aligning a primitive to the structures of the dataset. The movement of

the position of the quadrilateral primitive as shown in Figures 5.3(a) and 5.3(b) results in a better

rendering of the blood vessels. In Figure 5.3(c), some parts of the vessels are missing. The position of

the primitive in Figure 5.3(b) approximates the blood vessels in a better way, as shown in Figure 5.3(d).

A part of the histogram scatterplot is visible in the background of the primitive editor.

All primitives are aligned to the structures of the dataset as good as possible in order to achieve

the desired visual result. Figure 5.3 illustrates the procedure of finding a good transfer function which

CHAPTER 5. DESIGN OF SEMANTIC MODELS 30

approximates the blood vessels. The process of moving the appropriate primitive just a small distance

into another direction visualizes the vessels in a better way. In Figure 5.4, two primitives (primbone

and primvessels) are arranged as good as possible to achieve a good transfer function. It is a tedious

and time consuming process of manual tweaking of parameters to align the primitives to the structures

of the dataset.

(a) (b)

Figure 5.4: A transfer function showing bone and vessels. The red quadrilateral primitive in Fig-

ure 5.4(a) represents the vessels entity. The large white primitive covers the data of the bone. Fig-

ure 5.4(b) displays the rendered image based on the transfer function.

In order to create a transfer function template which can be adapted to other datasets, all primitives

have to be aligned to the datasets in the best possible way in order to visualize the structures described

in the entities. The template is now available for the reference datasets.

In the next step, the template has to be adjusted to the reference datasets. The justification to an

individual dataset requires a modification of the underlying primitives, as the structures in the datasets

are slightly different for each dataset. The scatterplot of a histogram is helpful in order to identify the

differences in the structures. Often only a small number of parameters is affected by the justification.

Finally, after having made manual adaption and refinement, an instance of the parameter vector pi of

the transfer function for each reference dataset i is obtained. The scheme in Figure 5.5 resumes the

process of template creation and adaption. These modifications, however, will most likely not affect

all of the low-level parameters the transfer function consists of. In many cases, only a limited subset

of parameters is involved in the modification.

5.3 Data Approximation

As already mentioned in the previous section, only a small number of parameters has to be adjusted

to achieve good transfer functions. In addition to this, the modified parameters are usually highly

correlated. PCA can be used to approximate the data of transfer functions in a lower-dimensional

subspace in order to take advantage of the correlation between the different data.

CHAPTER 5. DESIGN OF SEMANTIC MODELS 31

Figure 5.5: The process of template creation and adaption. The parameters of the instance vectors can

be approximated with PCA, for example.

In section 3.3, the PCA theory is briefly described. Each instance of the parameter vectors pi can

be interpreted as a point sample in the n-dimensional low-level parameter domain of the transfer func-

tion. Please remember that a transfer function p is specified as an array of n values. The components

of the instance vector pi are interpreted as random variables with Gaussian probability distributions

in order to apply PCA. If you assume that m reference datasets are available, then m instance vectors

p = (p0, p1, p2, . . . , pn−1) are extracted from the template’s adaption to the reference datasets, one

instance vector pi for each reference dataset i. According to section 3.3, the matrix of all input vectors

can be written as

P =

p0[0] · · · pm−1[0]
...

. . .
...

p0[n − 1] · · · pm−1[n − 1]

= [p0, p1, p2, . . . , pm−1]. (5.3)

The vector of mean values p̄ is approximated by averaging the instance vectors pi analogously to

equation 3.6. The symmetric and positive semidefinite covariance matrix can be computed like in

equation 3.10

CP =
1

m − 1
DDT, (5.4)

with D being the mean-deviated representation of the matrix P of input vectors. As a result, the

possible range of data is approximated in a lower-dimensional subspace, if the instance vectors are

represented by only a few principal components. The quality of such an approximation is determined

by the importance of the respective eigenvalues λj . The importance of a component axis can be

CHAPTER 5. DESIGN OF SEMANTIC MODELS 32

determined by dividing the eigenvalue λj by the sum of eigenvalues

I(λi) =
λi

∑n−1
j=0 λj

. (5.5)

Principal components with an importance of a value which is close to zero can be safely omit-

ted without a significant loss in accuracy. The goal is to use PCA to determine a single parameter

axis in the low-level parameter space based on the reference datasets. This axis will approximate the

modifications of the transfer function template to the parameter vector p. The importance of the first

principal component is usually close to 1.0 throughout the experiments, which means that the approx-

imation error can be neglected. Reducing the data to a single axis facilitates the transfer function to be

controlled by only one semantic parameter. In the following, this semantic parameter is called “adapt

template” since it adjusts the transfer function’s primitives to the dataset. In practice, splitting the

instance vectors into groups of primitives which, after being adapted to all reference datasets, belong

to the same entity may result in transfer functions easier to cope with. PCA will then be performed

separately for each group1 (see section 7).

Each semantic parameter can be represented by a spin-box or a single slider in the user interface.

A non-expert user is able to interact with the semantic parameters, and this process adapts the transfer

function to its individual dataset without any knowledge about the underlying transfer function model.

All instance vectors pi are projected on the axis spanned by the first principal component e0 in order to

determine the minimum and maximum values of the semantic parameter. This is done by computing

the n-dimensional dot product

µi = e0 · (pi − p̄). (5.6)

The influence vectors, which have been introduced in section 4.3 and which are specified by a

variable set of keys (σj q̂j), then can be computed by

σ0 = 0.0 , q̂0 = p̄ + min(µi) · e0 ,

σ1 = 1.0 , q̂1 = p̄ + max(µi) · e0 .

The values for the keys σ0 and σ1 can be chosen arbitrarily, since they determine the range of the

semantic parameter. Please remember that with the help of keys the influence q(s) of the semantic

parameter s is computed on the basis of linear interpolation.

1Since the adapt template parameter only affects the parameters of the primitives which change the shape, all other

parameter values such as opacity can be set to 0 while applying PCA to the instance vectors. Additional semantic parameters

can control these parameters separately (see section 5.4).

CHAPTER 5. DESIGN OF SEMANTIC MODELS 33

5.4 Additional Semantics

The semantic parameter adapt template offers the possibility to visualize structures of an unknown

dataset in a very fast and effective way. Therefore, the tweaking of just one parameter allows the user

to find an appropriate transfer function for a specific task. A modification of the semantic parameter’s

value results in a change of the low-level parameters of the underlying transfer function as well as

of the primitives’ shape. Usually the primitives which are contained in the transfer function have

much more parameters than those which control the shape (see table 4.1, numbers 1-8). Semantic

parameters can be applied to all parameters. The following sections give an insight into the creation

of additional semantics.

5.4.1 Visibility

A simple example in Figure 4.6 computes an influence vector for the semantic parameter “visibility”

exclusively based on the interpolation of the opacity parameter of the primitive. Turning down the

opacity will cause a rather homogeneous structure to slowly vanish. In many cases, however, it is

desirable to turn down opacity for low gradients first. This will change a previously opaque structure

into a transparent shell before it finally completely disappears. Such a behavior can be implemented

by including more than just the opacity parameter for interpolation and by using multiple keys for a

semantic parameter.

5.4.1.1 Manual Approach

The first approach, which describes the manual implementation of the list of keys, is a fast and easy

way to achieve the desired effect. The starting point is the set of parameters popaque which only

influences the visibility of the entity’s primitive in such a way that the structure of interest is opaque.

In order to find a transfer function pshell which fulfills the desired request of fading out the structures

of interest in a homogeneous region first, the primitive has to change its shape in a way in which it

does no longer cover any lower gradients.

This is achieved in a 2D primitive editor by shifting the parameters which control the lower part

of the primitive in the direction of the higher gradients. The transparency of the structure, which is

controlled by a parameter vector ptransparent, increases simultaneously. Due to the set of parameters

pinvisible the entity finally disappears entirely. Finally, the keys for a semantic visibility parameter can

be defined by:

σ0 = 0.0 , q̂0 = pshell + pinvisible ,

σ1 = 0.5 , q̂1 = pshell + ptransparent ,

σ2 = 1.0 , q̂2 = popaque .

CHAPTER 5. DESIGN OF SEMANTIC MODELS 34

(a) (b) (c)

Figure 5.6: The impact of the semantic parameter visibility on the primitive. Figures 5.6(a) and 5.6(b)

demonstrate the behavior of the primitive for turning down the semantic parameter. The points 1 and

4 move up in the direction of higher gradient values and the primitive vanishes slowly. Decreasing the

value affects the primitive’s opacity parameter and causes it to disappear (Figure 5.6(c)).

In Figure 5.6, the outcome of turning down the parameter visibility is shown. The primitive be-

comes more transparent and its shape contracts while the parameter changes. In the next step, the

primitive starts to disappear completely. An example of a key configuration of the visibility parameter

can be seen in Figure 5.7. The values are based on an adapt template parameter, which adjusts the

primitive’s shape to the basic structures of the dataset. Because of summing up all semantic param-

eters, the adapt template parameter provides the primitive’s basic shape and the visibility parameter

can influence the primitive in the desired way.

s = 1.0

σ0 = 0.0 q̂0 = (0 0.1 0 0 0 0 0 0.1 0 0 0 0)

σ1 = 0.5 q̂1 = (0 0.1 0 0 0 0 0 0.1 0 0 0 0.65)

σ2 = 1.0 q̂2 = (0 0 0 0 0 0 0 0 0 0 0 1)

q(s) = (0 0 0 0 0 0 0 0 0 0 0 1)

↓ ↓ ↓

P
O

IN
T

1
Y

P
O

IN
T

4
Y

O
P
A

C
IT

Y

Figure 5.7: A more complex example of keys with regard to the semantic visibility parameter s. The

y-coordinates of the points 1 and 4 increase between the keys σ1 and σ2 when it is assumed that the

default coordinate system for primitives has its origin (0, 0) in the bottom-left corner, and the value

of the opacity parameter decreases slowly. If s is between σ0 and σ1, the position parameters do no

longer vary, only the opacity parameter does. The influence vector q(s) is calculated for s = 1.0, and

this results in a completely opaque structure.

Please pay attention to the physical accuracy of this technique. The way how the primitive’s lower

CHAPTER 5. DESIGN OF SEMANTIC MODELS 35

points in the direction of the higher gradients are moved is based on experience. It is suggested to

perform a step-by-step adjustment of the primitive’s shape with respect to the desired optical effects

in order to design a visibility parameter that refers to the reference datasets more accurately. This

method is described in the following.

5.4.1.2 Mean Value Approach

This approach considers the specific structures contained in each reference dataset. First, the semantic

parameter adapt template is used to yield the best visual results for the structures of interest. This

results in a vector pbase i for each dataset i. These vectors can be modified to adapt the desired effects

of a visibility parameter, which results in a vector pAdjustedVisibility i, j for each dataset i and each

step j. It is important to proceed step-by-step, as the primitive’s shape should adapt the structures in

the dataset as close as possible. With each step the primitive covers less of the lower gradients and is

more transparent. The difference vectors

δvisibility i, j = pAdjustedVisibility i, j − pbase i (5.7)

are calculated next. The mean values are calculated for all difference vectors of a mutual step j:

δ̄visibility j =
1

m

m−1
∑

i=0

δvisibility i, j . (5.8)

A vector δ̄visibility j is obtained for each step, and this leads to a semantic parameter visibility with the

following keys, which are based on k steps:

σ0 = 0.0 , q̂0 = δ̄visibility 0 ,

σ1 = −1.0 , q̂1 = δ̄visibility 1 ,

... (5.9)

σk−1 = −(k − 1.0) , q̂k−1 = δ̄visibility k−1 .

5.4.2 Color

The semantic parameter “color” enables the user to change the color of an entity. This is achieved

by affecting the color parameters of all primitives which belong to the same entity. The semantic

parameter is used to control a range of color values. There is no need to apply PCA to any instance

vectors, since the keys (σj , q̂j) are defined manually. The step-by-step linear interpolation of colors is

given by the low-level parameter vectors pcolor j for each color j. Thus, the semantic parameter color

CHAPTER 5. DESIGN OF SEMANTIC MODELS 36

is defined by the following keys:

σ0 = 0.0 , q̂1 = pcolor 0 ,

σ1 = 1.0 , q̂1 = pcolor 1 ,

...

σk−1 = k − 1.0 , q̂k−1 = pcolor k−1 .

The parameters COLOR RED, COLOR GREEN and COLOR BLUE control the color of a quadri-

lateral primitive (see table 4.1), for instance. Figure 5.8 illustrates a simple example of defining the

semantic parameter color.

s = 6.5

σ0 = 0.0 q̂0 = (0 0 0 0 0 0 0 0 0 0 0 0)

σ1 = 1.0 q̂1 = (0 0 0 0 0 0 0 0 0 0 1 0)

σ2 = 2.0 q̂2 = (0 0 0 0 0 0 0 0 0 1 0 0)

σ3 = 3.0 q̂3 = (0 0 0 0 0 0 0 0 0 1 1 0)

σ4 = 4.0 q̂4 = (0 0 0 0 0 0 0 0 1 0 0 0)

σ5 = 5.0 q̂5 = (0 0 0 0 0 0 0 0 1 0 1 0)

σ6 = 6.0 q̂6 = (0 0 0 0 0 0 0 0 1 1 0 0)

σ7 = 7.0 q̂7 = (0 0 0 0 0 0 0 0 1 1 1 0)

q(s) = (0 0 0 0 0 0 0 0 1 1 0.5 0)

↓ ↓ ↓

C
O

L
O

R
R

E
D

C
O

L
O

R
G

R
E

E
N

C
O

L
O

R
B

L
U

E

Figure 5.8: Keys for the semantic parameter color. A range of colors of the RGB color space is

covered by the predefined influences. q(s) is the result of the linear interpolation between keys σ6 = 6
and σ7 = 7 for s = 6.5. This leads to the color light yellow (1, 1, 0.5).

The colors used in the keys of the example in Figure 5.8 are visualized in Figure 5.9. If the value

of the semantic parameter is s = 6.5, then the interpolation takes place between the keys σ6 = 6 and

σ7 = 7 and this results in the RGB color light yellow.

Figure 5.9: Interpolation of colors. The palette of colors is labeled with the keys defined in Figure 5.8.

CHAPTER 5. DESIGN OF SEMANTIC MODELS 37

In chapter 6, a more user-friendly implementation of color definition for entities is introduced,

which differs from the separate linear interpolation of keys.

5.4.3 Contrast

In order to create a semantic parameter which controls the contrast between different entities, a proce-

dure similar to the one described in section 5.2 has to be developed. This additional semantic parame-

ter has to be specified with respect to the adapt template parameter because of the sum in equation 4.3.

Two methods of defining the semantic parameter “contrast” are described in the following sections.

5.4.3.1 Mean Value Approach

Therefore, a transfer function model has to be adapted to all reference datasets. Instead of creating a

template from scratch and adapting each parameter to all datasets manually, the semantic parameter

adapt template may be used. Its value has to be adjusted to the best visual effect in order to identify the

specific structures of the datasets. This results in a vector p̃i of low-level parameters for each reference

dataset i. The calculation of keys is performed in two steps. At first the modifications are applied to

the primitives that are necessary to increase the contrast. This results in a vector p̃contrast+ i for each

dataset. A couple of actions exist that are capable of increasing the contrast between entities. For

example, the brightness of the colors can be modified. Another possibility is to edit the opacity slopes

at the borders of the primitive. Table 5.1 lists four more parameters which belong to a quadrilateral

primitive.

Number Name Description

...

13 SLOPE BORDER12 opacity slope at border (points 1 and 2)

14 SLOPE BORDER23 opacity slope at border (points 2 and 3)

15 SLOPE BORDER34 opacity slope at border (points 3 and 4)

16 SLOPE BORDER41 opacity slope at border (points 4 and 1)

Table 5.1: Additional parameters of a quadrilateral primitive. Changing the parameters directly influ-

ences the opacity slope at the primitive’s borders. Possible values are 0 = no blending to 1= maximum

blending distance ranging from the border to the core of the primitive.

After that, this step is repeated, but this time the vectors p̃contrast− i contain the decreased contrast

parameters for each dataset. Finally, the difference vectors

δcontrast+ i = p̃contrast+ i − p̃i (5.10)

δcontrast− i = p̃contrast− i − p̃i (5.11)

CHAPTER 5. DESIGN OF SEMANTIC MODELS 38

and their respective mean values

δ̄contrast+ =
1

m

m−1
∑

i=0

δcontrast+ i (5.12)

are calculated (and analogously also for δ̄contrast−). In the following, the semantic parameter contrast

is defined with three keys:

σ0 = −1.0 , q̂0 = δ̄contrast− ,

σ1 = 0.0 , q̂1 = ~0 ,

σ2 = 1.0 , q̂2 = δ̄contrast+ .

5.4.3.2 PCA Approach

Please note that the values in section 5.4.3.1 are computed solely on the mean values of instance

vectors. The method of applying PCA to all instances of difference vectors is a more accurate method.

Similar to section 5.3 about data approximation, PCA can be used to extract a single parameter axis

in the low-level parameter space of all δcontrast+ i as well as δcontrast− i vectors. The computation

of the keys differs from the proceeding of the adapt template parameter. All vectors δcontrast+ i are

projected on the axis spanned by the first component e0 in order to determine the minimum and

maximum values.

µcontrast+ i = e0 · (δcontrast+ i − δ̄contrast+) (5.13)

(µcontrast− i is calculated analogously). The keys and predefined influence vectors are then computed

by

σ0 = −1.0 , q̂0 = δ̄contrast− + min(µcontrast− i) · e0 ,

σ1 = 0.0 , q̂1 = ~0 ,

σ2 = 1.0 , q̂2 = δ̄contrast+ + max(µcontrast+ i) · e0 .

5.4.4 Sharpness

Sometimes it is desired to manipulate the sharpness of the structures contained in the dataset. There-

fore, the visualized entities are enhanced or dampened. The semantic parameter “sharpness”, which

is able to handle such a justification, can be implemented in different ways.

5.4.4.1 Manual Approach

This approach describes the manual implementation of keys. A vector psharpness+, which enhances

the structures of interest, is defined, as well as a vector psharpness−, which decreases the sharpness. A

CHAPTER 5. DESIGN OF SEMANTIC MODELS 39

possible way to change the visual appearance in the requested manner is to modify the opacity slopes

at the border of a primitive (see table 5.1). Hence, the keys for the semantic parameter sharpness are

defined by

σ0 = −1.0 , q̂0 = psharpness− ,

σ1 = 0.0 , q̂1 = ~0 ,

σ2 = 1.0 , q̂2 = psharpness+ .

The impact of the modification of opacity slope parameters on the primitive is shown in Fig-

ure 5.10. The more the sharpness value is increased, the closer the opacity slope control points move

to the outer border. The opposite happens while turning down the semantic value: the control points

move to the interior of the shape.

(a) (b) (c)

Figure 5.10: Quadrilateral primitive and opacity slope parameters. In Figure 5.10(a), all opacity slope

parameters are in a middle position. This is in contrast to Figure 5.10(b), which contains all opacity

slope parameters of the value 0 (no blending) and to Figure 5.10(c), which contains all opacity slope

parameters of the value 1.0 (maximum blending distance).

A sample configuration of keys of the parameter sharpness is shown in Figure 5.11. The meaning

of the values is explained in table 5.1. The resulting low-level vector of the sharpness parameter has to

be considered with respect to the influence vector based on the output of an adapt template parameter

which controls the primitive’s basic shape, since the mapping function of equation 4.3 sums up the

influences of all semantic parameters.

Again, this solution is not based on the individual structures of each reference dataset. The quality

of the result depends strongly on the outcome of the adapt template parameter. For example, if the

structures are already enhanced to a great extend by the use of opacity slope parameters, then it is

hardly possible to use the sharpness parameter to sharpen the entity’s structure even more, although it

may be a value which still should have the possibility to enhance or to dampen the structure.

CHAPTER 5. DESIGN OF SEMANTIC MODELS 40

s = 0.5

σ0 = −1.0 q̂0 = (0 . . . 0 0 0 0 0.5 0.5 0.5 0.5)

σ1 = 0.0 q̂1 = (0 . . . 0 0 0 0 0 0 0 0)

σ2 = 1.0 q̂2 = (0 . . . 0 0 0 0 -0.5 -0.5 -0.5 -0.5)

q(s) = (0 . . . 0 0 0 0 -0.25 -0.25 -0.25 -0.25)

↓ ↓ ↓ ↓

S
L

O
P

E
B

O
R

D
E

R
1

2

S
L

O
P

E
B

O
R

D
E

R
2

3

S
L

O
P

E
B

O
R

D
E

R
3

4

S
L

O
P

E
B

O
R

D
E

R
4

1

Figure 5.11: Keys for the semantic parameter sharpness. The vector q(s) of the sharpness parameter

has to be considered with respect to the influence vector based on the output of an adapt template pa-

rameter. In this example, the opacity slope parameters are reduced, which leads to a rather sharpened

structure.

5.4.4.2 Mean Value Approach

The second approach is similar to the one described in section 5.4.3.1, which concerns the semantic

parameter contrast. It takes all reference datasets into account.

The adapt template parameter adapts the transfer function as good as possible, and this results in

a vector p̃i of low-level parameters for each reference dataset i. In the next step, modifications are

applied to the primitive in order to enhance the structures of interest. For example, these modifications

are realized by adapting the opacity slopes, and this leads to a vector p̃sharpness+ i for each dataset.

This step is also accomplished for vectors p̃sharpness− i, which contain the variants of the structures

which are less sharp. The next step is the calculation of the difference vectors

δsharpness+ i = p̃sharpness+ i − p̃i (5.14)

δsharpness− i = p̃sharpness− i − p̃i (5.15)

and finally, their respective mean values are computed by

δ̄sharpness+ =
1

m

m−1
∑

i=0

δsharpness+ i . (5.16)

The computation has to be repeated analogously for δ̄sharpness−. According to this approach, the

configuration of keys for the semantic parameter sharpness, which is calculated with mean values,

CHAPTER 5. DESIGN OF SEMANTIC MODELS 41

reads as follows:

σ0 = −1.0 , q̂0 = δ̄sharpness− ,

σ1 = 0.0 , q̂1 = ~0 ,

σ2 = 1.0 , q̂2 = δ̄sharpness+ .

In addition to the techniques of defining keys for a sharpness parameter, which have already been

introduced, an approach based on PCA would be also possible2 .

5.4.5 Discussion

In this section, the design of additional semantics such as visibility, color, contrast and sharpness

is proposed. Most of the semantics can be implemented in many different ways. The process of

differentiating manual key constructions and of applying PCA to instance vectors, as well as keys

based on mean values referring to all reference datasets, all result in different accuracies concerning

the adaption of the underlying transfer function to the peculiarities of each dataset.

In addition to this, there may be different modifications to the primitives that yield similar results.

In order to decrease the visibility of a structure, either the opacity value can be turned down or the

size of the primitives can be reduced, for instance. For this reason it is necessary to use similar actions

to achieve a specific task for all reference datasets, otherwise the calculation of the final low-level

parameter vector will fail when summing up each influence of a semantic parameter.

2The approach of using PCA to calculate the keys of the semantic parameter sharpness would be similar to the solution

demonstrated in section 5.4.3.2.

Chapter 6

Implementation

For the development and testing of semantic transfer function models, a framework is necessary that

can be used for input, output, user interaction, and the visualization of the data. As semantic models

are closely connected to traditional transfer function models, user interfaces for 1D and 2D transfer

functions are needed as well as an interface for the remote control of the transfer functions. In addition

to this, the rendering system should be able to handle volume visualization with interactive frame rates

on general purpose hardware. An implementation of a semantic transfer function model software has

been realized within the scope of this diploma thesis.

In this chapter, “OpenQVis” - a framework which provides methods for interactive high-quality

volume visualization on general purpose hardware - is presented. The aim of this rendering system

is to achieve high image quality comparable to traditional ray-casting solutions at interactive frame

rates on inexpensive hardware platforms. The framework has been extended with different transfer

function editors, including the high-level user interface based on semantic transfer function models.

Section 6.1 presents an overview of the core architecture and describes the main features of the

system. Later on, the traditional transfer function editors and the new semantic editor are introduced.

6.1 Architecture

The purpose of the OpenQVis system1 is to provide a volume rendering environment which achieves

high image quality and interactive frame rates. The program is based on a volume rendering system

which uses the graphics processing unit (GPU) for rendering algorithms. The system is implemented

in C++ and OpenGL. Rendering techniques are supported that use both 3D texture slicing and 2D

multi-texture based rendering. OpenQVis is programmed by using the following three components: Qt

= a cross-platform C++ development library, Coin3d = a high-level 3D graphics toolkit for developing

cross-platform real-time 3D visualization and visual simulation software fully compatible with SGI’s

1The OpenQVis project was started in the year 2000 [RS02]. It is free software and can be redistributed or modified

under the terms of the GNU General Public License as published by the Free Software Foundation. For more information

please see http://openqvis.sourceforge.net.

42

http://openqvis.sourceforge.net

CHAPTER 6. IMPLEMENTATION 43

Open Inventor, and SoQT = the interface between Qt and Coin3d.

The transfer functions have been implemented with a programmable graphics hardware and post-

interpolative 1D and 2D dependent texture lookups.

Figure 6.1: An UML component diagram of the OpenQVis kernel components.

The core of the software is an open inventor node (SoVolume) which realizes the volume render-

ing algorithms by using cg (c for graphics), a high-level shader language (QCgShaderProgram). The

system is extended with several kinds of transfer functions (e.g., QTransferFunctions2DPrimitives).

These generate textures which are used by the rendering component. Corresponding editors (QTrans-

ferEditor1d, QTransferEditor2d, QSemanticsEditor) provide appropriate user interfaces to control the

transfer functions. Each transfer function model (QTransFuncModel) adjusted by the user is man-

aged by a database (QTransFuncDatabase) which keeps the models organized and which can connect

transfer functions with a semantic model (QSemanticModel). A unified modeling language (UML)

component diagram of the basic parts is shown in Figure 6.1. The architecture of the program is

simplified and outlined in order to keep the model understandable.

CHAPTER 6. IMPLEMENTATION 44

6.2 Traditional Transfer Functions and Editors

The rendering system supports different types of transfer functions. Since all transfer functions should

be relatively easy to handle for the user, the editors provide primitives that are more convenient to ad-

just than splines, curves, or lines separated by RGBA channels. However, the system can be extended

easily by implementing additional primitives in order to adapt the structures of the dataset as good

as possible. Various transfer functions and editors are presented in the following sections. The 1D

transfer function is briefly described, whereas the 2D transfer function is discussed more detailed.

6.2.1 1D Transfer Functions

As already described in section 3.2, the easiest way to define a 1D transfer function is to determine

RGBA entries in a fixed size 1D lookup table of the number of scalar values. Instead of specifying the

entries manually, the transfer function can be modeled as a superposition of separate primitive objects.

For that reason, the main benefit of primitive objects lies in the significant reduction of the degrees of

freedom that the user must manage in order to establish a suitable transfer function.

The 1D transfer function is configured in the 1D transfer function editor, which supports two basic

types of primitives, namely:

• Trapezoids with 5 parameters: 2 values for the x-coordinates of the lower vertices, 2 values for

the x-coordinates of the upper vertices, and one parameter for the height of the trapezoid. In

addition to this, 6 different RGB colors can be defined for color interpolation.

• Ramps with 3 parameters: one value for the x-coordinate of the lower vertex, one value for the

x-coordinate of the upper vertex, and one parameter for the height of the ramp. The colors can

be adjusted by defining 4 different RGB colors.

(a) (b)

Figure 6.2: 1D Primitive Editor. In Figure 6.2(a), the primitives on the left and in the middle are

trapezoids with different sizes, and the right primitive is a ramp. The interpolation of colors assigned

to the primitive is illustrated by the colorbar visible in the bottom edge in Figure 6.2(b).

Some primitive objects of 1D transfer functions are shown in Figure 6.2. All parameters, except

those for colors, can be modified by moving the handles marked in Figure 6.3. The primitive’s position

and shape both specify the data that are assigned with color and opacity values. According to this, the

CHAPTER 6. IMPLEMENTATION 45

range of values which is not covered by the primitive’s dimension is mapped to zero opacity, therefore

these values are not colored in the resulting image. The color and opacity values are interpolated

linearly between the position parameters. It is possible to adjust different shapes, which are useful to

meet a wide range of application scenarios.

(a) (b)

Figure 6.3: Primitives for 1D transfer functions. In Figure 6.3(a), a trapezoid is displayed and in

Figure 6.3(b) a ramp. The positions, where the colors are defined and interpolated, are marked. The

red arrows indicate the directions of the control points, which are movable by the user. They can be

translated in the directions of the arrowheads.

An arbitrary number of primitives can be added in order to define the transfer function. Originally,

the trapezoid is placed in the center of the visible area of the transfer function editor and can be

converted easily to a simple ramp. The primitives are adapted to the data by moving the handles

as illustrated in Figure 6.3. Some restrictions are implemented, because the creation of deformed

primitives should be avoided. Its components are movable only within a valid range. For example,

the height which defines the opacity cannot become smaller than zero. Finally, the transfer function

editor offers a couple of ways to assign colors to scalar values. On the one hand, colors can be applied

to the primitives; on the other hand, color tables can be used, which are already defined and which

specify a RGB color for each scalar value. If colors and data values are linked to each other and the

primitives’ are used to determine opacity values, the color tables are helpful to visualize the various

structures which the dataset contains.

6.2.2 2D Transfer Functions

In contrast to 1D transfer functions which classify a sample based on a single scalar value, 2D transfer

functions allow a sample to be classified based on a combination of values. These values are the

axes of a 2D transfer function. The gradient is a first derivative for volume datasets based on scalar

values. As a vector, it points to the direction of the fastest change. The gradient magnitude is another

fundamental local property of a scalar field, as it characterizes how fast values are changing (see

CHAPTER 6. IMPLEMENTATION 46

section 3.2). By using gradient magnitude as a second dimension it is assumed that regions of change

tend to be regions of interest. This allows the structure to be differentiated with varying opacity

or varying color, according to the magnitude of change. The gradient values used in the system

are calculated with the help of a multi-level technique. Each level is created by down-sampling the

previous level. The gradient magnitude is calculated for each level separately. After that, each level is

sampled up to the resolution of the previous level and is averaged. This technique results in smooth

gradient data without the necessity of additional filtering.

2D histograms are useful to adjust the transfer function to the structures of interest. In the scatter-

plot images, the data value and the gradient magnitude are aligned to the axes. As already pointed out

in section 3.2, the darkness in the scatterplots encodes the number of hits for a given pair of gradient

magnitude and data value. Figure 6.4 illustrates the slightly different structures of the datasets which

are visualized in histograms.

(a) (b) (c) (d)

Figure 6.4: Histograms of CTA datasets. Various datasets result in slightly different histograms which

are part of the primitive editor. A histogram of dataset CTA 12 is shown in Figure 6.4(a), CTA 22 in

Figure 6.4(b), CTA 29 in Figure 6.4(c), and CTA 38 in Figure 6.4(d).

With regard to the reduction of the degrees of freedom that the user must manage, the 1D approach

of using primitives also works in multi-dimensions, although it is hard to find adequate primitives. The

different types of 2D primitives supported by OpenQVis are shown in Figure 6.5 and comprise:

• Quadrilaterals with 16 parameters: 8 values for the (x, y)-coordinates of the four vertices, 4

parameters for the color and the opacity (RGBA) of the primitive and 4 parameters for the

opacity slopes at the borders.

• Trapezoid primitives with 14 parameters: one value for the x-position of the base vertex, 4

values for the (x, y)-coordinates of the two upper vertices, and one parameter for the shifting

the lower base line, as well as the parameters for RGBA and for the opacity slopes which are

the same as in the quadrilateral.

• Parabolic primitives with 15 parameters: 6 parameters for the (x, y)-coordinates of the control

points for the upper arc and one parameter for the lower indent, as well as the parameters for

RGBA and for the opacity slopes which are the same as in the trapezoid primitive.

CHAPTER 6. IMPLEMENTATION 47

(a) (b) (c)

Figure 6.5: 2D Primitive Editor. The primitives are colored according to the color parameters. Fig-

ure 6.5(a) shows a quadrilateral primitive, Figure 6.5(b) a paraboloid primitive, and Figure 6.5(c) a

trapezoid primitive.

(a) (b)

(c)

Figure 6.6: Primitives for 2D transfer functions. The three primitives are: a quadrilateral in Fig-

ure 6.6(a), a paraboloid in Figure 6.6(b), and a trapezoid in Figure 6.6(c). The red arrows indicate the

directions of the movable control points.

CHAPTER 6. IMPLEMENTATION 48

All parameters except those for RGBA can be modified by moving the control points as shown in

Figure 6.6. The color is assigned to the entire primitive and the opacity is interpolated linearly starting

from the primitive’s border up to the opacity slope control points, whereas the maximum opacity value

is modified separately.

With the implementation of additional primitives, the system can be extended easily by deriving

from the base class QPrimitive which provides several interfaces which are responsible for a conver-

sion to an XML file, the assignment of colors, and the drawing of elements. It is possible to add as

many primitive objects as required to the scene in order to obtain the desired effect. Then, the 2D

transfer function table is generated by rendering the shape of the primitives into an off-screen render

target. Finally, this is bound to a 2D dependent texture for volume rendering (see Figure 6.7). The cor-

rect composition of overlapping the primitives is important. In practice, the RGB values are blended

based on their opacities. Later on, a maximum operation is used to calculate the final opacity value.

(a) (b)

Figure 6.7: An off screen render target which is bound to a 2D dependent texture for volume ren-

dering. Figure 6.7(a) shows a paraboloid and a trapezoid primitive adjusted in the primitive editor.

Figure 6.7(b) displays the primitives directly rendered into an off-screen buffer, which will be bound

to a 2D dependent texture later on.

6.3 Transfer Function Designer

All transfer functions can be saved in an XML file format for further editing. Every change of the

primitives in the editors influences its parameters and is directly mapped to the low-level parameters

which describe the transfer function. The file contains the root element Model which enables a reg-

istration by the database. Thus, the transfer function can completely be restored. The file continues

by defining the child element TransferFunctionModel which includes an element Primitives which

has an arbitrary number of sub elements, with each of these containing a single primitive. The sub

elements which are available are Quad2D, Paraboloid2D, and Paraboloid2D. These elements have an

attribute name and a child element Parameters containing all low level parameters of the primitive.

CHAPTER 6. IMPLEMENTATION 49

Listing 6.1 presents the code of a transfer function consisting of a trapezoid and a paraboloid

primitive. Please note that the element Parameters with its values in line 6 and 11 is explained in

section 6.2.2.

1 <Model name="CT_test_model">

2 <TransferFunctionModel name="Transfer Function">

3 <Primitives>

4 <Trapezoid2D name="Structure1">

5 <Parameters>

6 0.3 0.1 0.5 0.6 0.4 0.2 0 0.6 0 1 0.6 0.5 0.4 0.5

7 </Parameters>

8 </Trapezoid2D>

9 <Paraboloid2D name="Structure2">

10 <Parameters>

11 0.2 0.3 0.9 0.8 0.5 0.1 0.3 1 1 0 0.7 0.5 0.7 0.3 0.5

12 </Parameters>

13 </Paraboloid2D>

14 </Primitives>

15 </TransferFunctionModel>

16 </Model>

Listing 6.1: An XML file of a transfer function consisting of a trapezoid primitive and a paraboloid

primitive.

Each instance of the transfer functions which is adapted to the reference datasets is saved in the

file format described above. These files form the basis for the analysis of dimensionality reduction

and data approximation as already mentioned in section 5.3. The automatic performance of PCA for a

design of the semantic parameter adapt template is made with the tool “Transfer Function Designer”,

which completes OpenQVis.

In order to apply PCA to the low-level parameters of the transfer functions, the files are split

into groups of primitives which belong to the same entity. This results in a file for each entity and

for each dataset containing the entity’s primitives. The entities of all files of a common dataset are

merged in order to ensure the proper order of parameters. To be precise, every entity file is filled

up with zero values for the parameters of the remaining entities. As the parameters of the primitives

are concatenated when applying PCA, it is important that primitives are sorted in the same way with

regard to all resulting files for all datasets. This guarantees a correct correlation of the dimensions of

the input vectors for PCA. When loading files of each entity and of each reference dataset into the

Transfer Function Designer, PCA is performed separately for each entity.

The result is an XML data file including information for semantic models which are arranged by

semantic parameters and which are grouped with respect to their entities. Figure 6.8 illustrates the

process of creating the XML data file, which also provides information for the user interface design of

a semantic model, for example, minimum and maximum values for user interface components. Please

see section 6.4.1 for further information about the output file. Figure 6.9 shows files which are split

and merged on the basis of the code sample from Listing 6.1.

CHAPTER 6. IMPLEMENTATION 50

Figure 6.8: The process of XML data file creation. The instances of different transfer functions of the

reference datasets are prepared for further analysis.

<Model name="CT_test_model">

<TransferFunctionModel name="Transfer Function">

<Primitives>

<Trapezoid2D name="Structure1">

<Parameters>

0.3 0.1 0.5 0.6 0.4 0.2 0 0.6 0 1 0.6 0.5 0.4 0.5

</Parameters>

</Trapezoid2D>

</Primitives>

</TransferFunctionModel>

</Model>

<Model name="CT_test_model">

<TransferFunctionModel name="Transfer Function">

<Primitives>

<Paraboloid2D name="Structure2">

<Parameters>

0.2 0.3 0.9 0.8 0.5 0.1 0.3 1 1 0 0.7 0.5 0.7 0.3 0.5

</Parameters>

</Paraboloid2D>

</Primitives>

</TransferFunctionModel>

</Model>

(a) Structure1 split.xml (b) Structure2 split.xml

⇓ ⇓
<Model name="CT_test_model">

<TransferFunctionModel name="Transfer Function">

<Primitives>

<Trapezoid2D name="Structure1">

<Parameters>

0.3 0.1 0.5 0.6 0.4 0.2 0 0.6 0 1 0.6 0.5 0.4 0.5

</Parameters>

</Trapezoid2D>

<Paraboloid2D name="Structure2">

<Parameters>

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

</Parameters>

</Paraboloid2D>

</Primitives>

</TransferFunctionModel>

</Model>

<Model name="CT_test_model">

<TransferFunctionModel name="Transfer Function">

<Primitives>

<Trapezoid2D name="Structure1">

<Parameters>

0 0 0 0 0 0 0 0 0 0 0 0 0 0

</Parameters>

</Trapezoid2D>

<Paraboloid2D name="Structure2">

<Parameters>

0.2 0.3 0.9 0.8 0.5 0.1 0.3 1 1 0 0.7 0.5 0.7 0.3 0.5

</Parameters>

</Paraboloid2D>

</Primitives>

</TransferFunctionModel>

</Model>

(c) Structure1 merged.xml (d) Structure2 merged.xml

Figure 6.9: The splitting and merging of files for the Transfer Function Designer. In Figures 6.9(a)

and 6.9(b), the code of Listing 6.1 is split into separated primitives. In Figures 6.9(c) and 6.9(d), the

files are merged with all primitives and filled up with parameters of the value zero. It is assumed that

the primitive Structure1 belongs to a different entity than Structure2 does.

CHAPTER 6. IMPLEMENTATION 51

6.4 Semantic Transfer Functions

In addition to traditional transfer functions, the framework offers a transfer function design based on

semantics. In Figure 6.10(a), the architecture of the semantic parts is briefly outlined in an UML

diagram. The semantic model class (QSemanticModel), which is connected to the database (QTrans-

FuncDatabase) (see program architecture in Figure 6.1), keeps the semantic features organized and

sums up the influences of the semantic parameters. Qt’s model/view framework is implemented in

order to visualize the current semantic values. The structure of the semantic parameters is created

internally with a connection of entities (QSemanticEntity) and parameters (QSemanticParameter) in

a highly variable order, which offers a more flexible structure as demonstrated in Figure 6.10(b).

(a) (b)

Figure 6.10: An UML diagram of semantic model components and an entity structure including

semantic parameters. In Figure 6.10(a), an UML component diagram of the OpenQVis components

is shown, which deals with semantic models. Figure 6.10(b) illustrates a nested entity structure with

semantic parameters.

All semantic parameters contain lists of key/value pairs for interpolation. Then, the influence

vector of each semantic parameter is calculated dependent on its current value. Please note that the

length of the arrays for interpolation as well as the length of influence vectors is always the sum of the

number of parameters of all primitives of which the transfer function consists. Only the values which

are affected by a semantic parameter are different from zero.

CHAPTER 6. IMPLEMENTATION 52

6.4.1 XML Data File

The XML data file is computed by the Transfer Function Designer. On the one hand, it contains

information about the transfer function and its initial values; on the other hand, it provides basics for

a semantic user interface, which facilitates the adjustment of transfer functions based on a semantic

model. The syntax of the file is XML and can be edited and extended easily by the user. A Document

Type Definition (DTD) is available in the appendix (Listing A.1).

The first part of the data file describes the transfer function model. Similar to Listing 6.1, all

primitives the transfer function is composed of are listed, including their names and parameters. The

transfer function can be interpreted by the database without any additional information and primitives

will be restored. Then, the primitives can be transformed in the primitive editor. In addition to this, the

second part of the file contains a semantic model for the design of a novel user interface, which enables

the user to control the adaption of the transfer function to new datasets without any knowledge of the

underlying transfer function model. The semantic model is grouped by entity elements which are

usually named according to the structures of the dataset which they represent. Possible sub elements

of an entity are semantic parameters such as the parameters visibility and contrast, as well as sub

entities (see Figure 6.10(b)).

1 <Entity name="Vessels">

2 <StandardParameter name="Adapt Template" type="double"

3 min="0" max ="1"

4 default="0.5">

5 <Influence key="0">

6 ... 0.1 0.7 0.1 0.8 0.2 1 0.3 0.7 0 0 0 0 1 0 1 1 ...

7 </Influence>

8 <Influence key="0.5">

9 ... 0.2 0.8 0.2 0.9 0.3 0.9 0.3 0.8 0 0 0 0 1 0 1 1 ...

10 </Influence>

11 <Influence key="1">

12 ... 0.3 0.8 0.3 0.9 0.4 0.9 0.4 0.9 0 0 0 0 1 0 1 1 ...

13 </Influence>

14 </StandardParameter>

15 ...

16 </Entity>

Listing 6.2: An excerpt of an XML data file showing key definitions of entity vessels.

A reason for using nested entities might be the reproduction of anatomical structures controlled by

the model. For example, the entity bone is divided into an outer and inner region. In order to initialize

the semantic parameters, necessary information is provided by attributes such as default-, minimum-

and maximum values, as well as the name and data type. The influence of each of the semantic

parameters on the low-level parameters is specified by a set of keys implemented as sub elements. In

Listing 6.2, a code excerpt of the semantic parameter adapt template is shown which is provided by

the Transfer Function Designer according to the transfer function instances of the template. Then this

CHAPTER 6. IMPLEMENTATION 53

template is adapted to the reference datasets2.

In addition to the element StandardParameter, an element ColorParameter is introduced. The set

of keys (σj q̂j) for color parameters is defined by splitting the color into its components. In variation

to other semantic parameters, which are calculated by a step-by-step linear interpolation, the influence

of a color parameter scolor ∈ R
k is specified by the multiplication of each individual component

q(scolor) =

scolor[0] · q̂0, for σ0

scolor[1] · q̂1, for σ1

...
...

scolor[k − 1] · q̂k−1, for σk−1

with q(σj) = q̂j and σj is an arbitrary name with regard to each component of scolor . Examples

for the attribute mode are the color models RGB and CMYK. An advantage of this technique is the

simplified color management which enables the user to specify an entity’s color directly. Listing 6.3

illustrates the syntax and key definition of the element ColorParameter.

1 <ColorParameter name="Color" type="color"

2 mode="rgb"

3 default="0.3 0.6 0">

4 <Influence key="red">

5 ... 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ...

6 </Influence>

7 <Influence key="green">

8 ... 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ...

9 </Influence>

10 <Influence key="blue">

11 ... 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ...

12 </Influence>

13 </ColorParameter>

Listing 6.3: The element ColorParameter for simplified color management.

6.4.2 User Interface Generation

The semantic model defined in the XML data file is edited and adjusted by the user in the semantic

editor, which is implemented by using Qt’s UI components. The user interface is generated by parsing

the data file and translating it into a clearly structured editor. A model/view architecture [GHJV94]

forms the basis for managing the relationship between the data and the way it is presented to the user.

In general, the model/view classes which are provided with Qt can be separated into the three groups

models, views, and delegates, which communicate with each other. Each of these components, which

can be extended easily, is defined by classes which provide mutual interfaces.

2 In the sample code, the low-level parameters of all remaining primitives are indicated by inverted commas, because

otherwise the concatenation of primitives would be too elaborate (see section 5.2).

CHAPTER 6. IMPLEMENTATION 54

• Model. The model is addressed by views and delegates to access data. It also informs the view

about changes to the data held by the data source.

• View. The view provides information about the user’s interaction with the items being dis-

played.

• Delegate. A delegate renders the items of data. During the process of editing, the delegate tells

the model and the view about the state of the editor.

The separation of functionality introduced by this architecture offers greater flexibility to cus-

tomize the presentation of items. Figure 6.11(b) illustrates the architecture of the editor. The delegate

part manages the central user interface components, including sliders and spin boxes which are shown

in Figure 6.11(a). Both elements are highly user friendly considering the adjustment of a single value.

Spin boxes offer the possibility to enter values manually for fine tuning, for example.

(a) (b)

Figure 6.11: Figure 6.11(a) describes the user interface components of the semantic editor. In Fig-

ure 6.11(b) the concept of the model/view architecture is illustrated.

The user determines the current values of semantic parameters by moving and editing the user

interface components. As already explained in section 4.3, the influence of a semantic parameter si is

specified by the set of keys. The involved keys σj and σj+1, which are interpolated linearly, are chosen

with regard to the current value of the semantic parameter, σj ≤ si < σj+1. The sliders are movable

within the range which is set in the data file. Alternatively, color semantic parameters, mainly color

parameters based on ColorParameter elements, are specified with a color picker. As already mentioned

in section 6.4.1, each of the keys is multiplied by the corresponding color component.

6.4.3 Parameter Back Mapping

Modifying semantic parameters by moving sliders, for example, results in a parameter change of the

underlying transfer function. This means that the change of a semantic parameter causes the recalcula-

tion of the final low-level parameter vector p by summing up the influences of all semantic parameters

CHAPTER 6. IMPLEMENTATION 55

(see 4.3). Please remember that the transfer function consists of low-level parameters of concatenated

primitives. Thus, the modification of the semantic parameters is immediately mapped back to the

low-level parameters of the primitives. The relationship of parameters and primitives is based on the

order of the primitives which are defined in the data file’s section about the transfer function model.

Finally, the vector of low-level parameters is decomposed and assigned to the matched primitives. A

signal informs the primitive editor to redraw its primitives because of the change of the parameters,

which leads to an updated shape of the primitives. With regard to 1D transfer functions, a new 1D

texture is calculated which functions as a lookup table. With respect to 2D transfer functions, the

shape of the primitives is rendered into an off-screen render target bound to a 2D texture as already

described in section 6.2.2.

(a)

(b) (c) (d)

Figure 6.12: The semantic editor and the process of parameter mapping. The semantic editor which is

shown in Figure 6.12(b) is useful to visualize the structures of the dataset without any knowledge about

the underlying transfer function. The low-level parameters, which are changed by the semantic editor,

are mapped back to the primitives (see Figures 6.12(a) and 6.12(c)). The primitives are rendered

directly into an off-screen buffer which is demonstrated in Figure 6.12(d).

Chapter 7

Results

This chapter presents the results of the transfer function design based on semantic models. After

outlining general proceedings, CTA and MRI datasets are analyzed and visualized. Furthermore, the

results are evaluated including the reference to the stability of the eigenvectors, operating aspects, and

the clinical study.

7.1 Principles

As already pointed out in section 5.2, at first a template is necessary which is adapted to all reference

datasets. One of the reference datasets is loaded into the system in order to create a template, and as

many primitives as needed are added to the primitive editor. The type of primitives chosen for the

visualization is dominated by the structures in the dataset. Finally, all primitives are aligned as good

as possible to the structures described in the entities in order to achieve the best visual result. After

having created the template, it is saved and adapted to all remaining reference datasets. The following

aspects have to be taken into consideration in order to create semantic models successfully:

• It is assumed that the template is adapted to the new structures, whereas the number of primitives

has been retained unchanged.

• The dimension of input data, which is the sum of the number of parameters, must be the same

for each data vector and for each reference dataset.

• As different modifications to the primitives may lead to similar results, it is required to use

similar actions to achieve a specific task for all reference datasets.

If the rules above are neglected, the computation model based on PCA will fail. After the template

has been adapted to all reference data sets, the transfer functions are split into groups of primitives

which belong to the same entity. This technique keeps the primitives organized and allows to perform

PCA to each entity separately (see section 6.3). Due to the different scales of the primitives it is

56

CHAPTER 7. RESULTS 57

(a) CTA 12 (b) CTA 19 (c) CTA 29 (d) CTA 30

(e) CTA 34 (f) CTA 38 (g) CTA 39 (h) CTA 42

Figure 7.1: The transfer function template for CTA datasets shown in Figure 7.2(a) is adapted to 8 out

of 10 reference datasets from the clinical study on intracranial vessels.

necessary to study each entity individually. A rather large modification of a large primitive may have

a less significant visual effect on the final rendition than a subtle modification of a small primitive may

have. If PCA is performed for the complete parameter vector containing all primitives of all entities,

the subtle but important adjustments to smaller primitives can be lost easily because the covariance

matrix is dominated by the large variance of other low-level parameters.

Alternatively, PCA can be applied to all input vectors at once. Besides the drawbacks described

above, the adjustment of a semantic parameter which adapts the whole transfer function results in

hardly predictable effects on the semantic model. The introduction of additional scaling factors for in-

dividual components of the parameter vector may be a solution for primitives which differ appreciably

for different entities.

The implementation of the techniques described in this diploma thesis has been evaluated by using

collections of real patient datasets of two different studies in clinical practice, namely CTA and MRI

data. Details of all datasets are available in appendix B. All images in this section are generated by

using 2D transfer functions and 12 bit volume data.

7.2 CTA Datasets

The first application example is about the visualization of CTA data collected within clinical stud-

ies at the Department of Neuroradiology at the University of Erlangen-Nuremberg. This collection

of data was acquired for the purpose of operation planning concerning the treatment of intracranial

CHAPTER 7. RESULTS 58

aneurysms. An aneurysm is a dilation or ballooning of a blood vessel by more than 50 percent of the

diameter of the vessel. It most commonly occurs in the arteries at the base of the brain. The larger an

aneurysm gets, the more likely it is to burst.

Ten different datasets are used as reference data in order to construct the semantic model. Six

additional datasets are used for evaluation. The resolution of the slice images is fixed at 512 × 512

with 12 bits per voxel. The number of slice images for each individual dataset varies between 90

and 260. The experiments have shown that semantic models do not change significantly if different

datasets are chosen as a reference set from the collection. The structures found in the 2D histogram

considerably vary among the datasets, mainly because of the different fields of view during data

acquisition.

7.2.1 Semantic Model

A template for the transfer function is created for the entities bone structures, brain/soft tissue, skin/-

cavities, and blood vessels. In Figure 7.2(a), the template for CTA datasets is shown, which contains

one primitive for the vessels (red), the brain (green), and the skin (yellow), as well as two primitives

for the bone (white and pink for the inner and outer bone). The bone structures are represented by two

separate primitives in order to improve their visual appearance. All primitives are quadrilaterals due

to the fact that for the user the adjustment of the control points is highly flexible and intuitive.

(a) (b) CTA 41

Figure 7.2: Template for CTA datasets. Figure 7.2(a) shows the template for CTA datasets with 5

primitive objects inside the editor. The template is applied to the reference dataset CTA 41, which is

shown in Figure 7.2(b).

The result of the template adaption with regard to the reference datasets is shown in Figure 7.1.

The visualization of the brain’s primitive is neglected in order to get a better view of the structures.

The process of performing PCA for each entity creates a semantic model with separate adapt tem-

plate parameters for each structure of interest. Furthermore, a semantic model consists of additional

semantic parameters. Concerning the semantic model for CTA datasets, each entity is completed with

CHAPTER 7. RESULTS 59

visibility and color parameters. The visibility parameters for vessels, brain and skin simply specify the

opacity of the respective primitive. For the bone structures, the visibility parameter can be used to si-

multaneously fade out both structures (inner and outer bone). The opacity of the inner bone structures

can separately be controlled by an additional semantic parameter to enhance the visual appearance.

The scheme of the semantic model is illustrated in Figure 7.3(a). Finally, the user interface, which is

shown in Figure 7.3(b), is generated automatically with respect to the underlying semantic model.

(a) (b)

Figure 7.3: Scheme and user interface for CTA datasets. Figure 7.3(a) shows a scheme of the entities

and associated semantic parameters. The generated user interface is displayed in Figure 7.3(b).

7.2.2 Visualization

Some example images created for datasets which are not part of the reference set are shown in the

following (see Figures 7.4 and 7.5). The semantic model for the CTA data, which has already been

introduced in the previous section, is applied by adjusting the semantic parameters in the user interface

in order to achieve the best results. First, the adapt template parameter is used to stress the structures

in oder to visualize the desired entities. Additional semantic parameters are adapted subsequently to

improve the visual appearance.

CHAPTER 7. RESULTS 60

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.4: An example of a template adaption to dataset CTA 18 which is not part of the reference

set. The images have been generated by decrementally adjusting the adapt template parameter, i.e. by

moving the slider for blood vessels as shown in the left column. This results in a change of the under-

lying transfer function’s low-level parameters and manipulates the primitive’s shape (middle column:

red primitive for blood vessels). The rendered images based on the presented transfer functions are

displayed in the right column.

CHAPTER 7. RESULTS 61

(a) CTA 18 (b) CTA 18 (c) CTA 18

(d) CTA 28 (e) CTA 28 (f) CTA 28

(g) CTA 40 (h) CTA 40 (i) CTA 40

Figure 7.5: The semantic model for CTA applied to three of the datasets which are not contained in

the reference set. The left column shows the bone and blood vessels, the middle column adds the skin

by increasing the visibility parameter, and the right column visualizes the brain in addition to the other

entities by adjusting the visibility parameter.

CHAPTER 7. RESULTS 62

7.3 MRI Datasets

The second application example deals with the visualization of preoperative MRI data acquired for

the planning of tumor resection in the brain. This time, the data were provided by the Department

of Neurosurgery of the University of Erlangen-Nuremberg. The term “tumor” is primarily used to

denote abnormal growth of tissue. This growth can be either malignant or benign. Malignant tumors

are cancerous and have a potential to invade and destroy neighboring tissues and create metastases.

Benign tumors do not invade neighboring tissues and do not seed metastases, but they may grow to

great size locally. They usually do not return after surgical removal.

(a) MR 04 (b) MR 05

(c) MR 06 (d) MR 07

Figure 7.6: The transfer function template for MRI datasets shown in Figure 7.7(a) is adapted to 4 out

of 7 reference datasets acquired for the planning of tumor resection in the brain.

Seven out of ten datasets are chosen as reference datasets and the remaining three datasets are

used for evaluation. A list containing the reference set is available in appendix B.4. The resolution of

the slice images is fixed at 256 × 256 and the number of slices varies between 100 and 150 with 12

bits per voxel. The image quality is limited due to the short period of time which was allowed for the

data acquisition in clinical practice . In consequence, a significant noise is contained in the data.

7.3.1 Semantic Model

The structures visualized by MRI differ from those in CTA, of course, since the former uses strong

magnetic fields and non-ionizing radiation in the radio frequency range. Therefore, the semantic

model consists of just two entities, namely brain tissue and skin. The template for MRI datasets is

shown in Figure 7.7(a). It contains one primitive for each entity, in particular for the skin (white), and

the brain (green). Both of the primitives are quadrilaterals. Please also note that the histograms which

CHAPTER 7. RESULTS 63

are displayed in the background of the primitive editor have a completely different structure than the

ones of the CTA datasets.

(a) (b) MR 04

Figure 7.7: Template for MRI datasets. Figure 7.7(a) shows the template for MRI datasets with 2

primitive objects inside the editor. The template is applied to the reference dataset MR 04, which is

shown in Figure 7.7(b).

The result of the process of adapting the template to reference datasets is shown in Figure 7.6. In

the next step, PCA is applied to each entity separately in order to build a semantic model. Besides

the semantic parameters adapt template, color, and visibility, an additional parameter sharpness is

introduced. Now the sharpness and fuzziness of the brain’s surface can be controlled, which strictly

speaking means that the opacity slopes at the primitive’s border are modified as described in section

5.4.4. The visibility parameter for the skin is implemented in such a way that it first turns down

opacity for low gradients in order to produce a transparent shell of the structure (see section 5.4.1).

Figure 7.8(a) shows the scheme of a semantic model for MRI data which leads to the user interface

displayed in Figure 7.8(b).

(a) (b)

Figure 7.8: Scheme and user interface for MRI datasets. Figure 7.8(a) shows a scheme of the entities

and the associated semantic parameters. The generated user interface is displayed in Figure 7.8(b).

CHAPTER 7. RESULTS 64

7.3.2 Visualization

Some example images of those datasets not included in the reference set are shown in the following

(see Figures 7.9 and 7.10). The semantic model which has been developed in the previous section

is applied to the datasets by adjusting the adapt template parameter and by adapting the remaining

parameters for the best visual results.

CHAPTER 7. RESULTS 65

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 7.9: An example of template adaption and sharpness parameter to dataset MR 02 which is

not part of the reference set. The images have been generated by adjusting the sharpness parameter

incrementally, i.e. by moving the slider for the brain as shown in the left column. This results in

a change of the underlying transfer function’s low-level parameters and manipulates the primitive’s

opacity slope parameters (middle column: green primitive for the brain). The rendered images which

are based on the presented transfer functions are displayed in the right column.

CHAPTER 7. RESULTS 66

(a) MR 01 (b) MR 01 (c) MR 01

(d) MR 02 (e) MR 02 (f) MR 02

(g) MR 03 (h) MR 03 (i) MR 03

Figure 7.10: The semantic model for MRI applied to three of the datasets which are not contained in

the reference set. The left column shows the brain, the middle column adds the skin by increasing

its visibility parameter, and the right column visualizes the skin in addition to the other entity by

adjusting the visibility parameter to the level of full opacity.

CHAPTER 7. RESULTS 67

7.4 Evaluation

Within this thesis it is not possible to consider all aspects which would make a convincing evaluation

necessary. This is due to the fact that a clinical environment and a large number of real patient data

would be necessary to obtain, which would cause an enormous effort. This chapter concludes with a

brief evaluation with respect to a technical analysis on the one hand, and to operating aspects on the

other hand.

7.4.1 Stability of Eigenvectors

The importance and the stability of each semantic parameter’s first eigenvector is investigated to eval-

uate the quality of PCA, which creates the basis for the adapt template parameter. In this case, a

principal component is defined as stable, if the dot product of the normalized axes of different evalu-

ations does not fall below 0.9. The axis spanned by the first principal component is relatively stable

for more than twelve CTA reference datasets. Furthermore, the stability significantly varies for each

entity and also depends on which datasets are chosen as reference sets. In table 7.1, the differences

concerning the importance of each entity are extracted.

Importance of the first Principal Component

Entity No. of Datasets: 12 11 10 9 8 7 6 5

Bone 0.95 0.94 0.92 0.93 0.91 0.89 0.87 0.88

Brain 0.99 0.98 0.96 0.96 0.94 0.91 0.89 0.87

Skin 0.90 0.87 0.85 0.84 0.82 0.75 0.74 0.67

Vessels 0.85 0.81 0.76 0.74 0.72 0.70 0.63 0.57

Table 7.1: Importance of the first principal component on a varying number of datasets for different

entities.

In the worst case, the importance of the first principal component is 0.85 for 12 reference datasets

and 0.57 for 5 datasets. Both values are measured for blood vessels. The pathways of the entities

vessels and skin in a variable number of reference datasets is outlined in the diagram of Figure 7.11.

Similar results are turned out for MRI datasets. The importance of the first principal component is

0.6 in the worst case and 0.8 in the best case due to the limited number of reference data sets available.

A higher number of training datasets would have been necessary for a more detailed analysis.

Various tests with 4 different expert-users have shown that the significance of the first principal

component is slightly higher if the manual template adaptation for all datasets is performed by the

same person instead of by several persons. This shows that the stability of the described approach

depends on the designer’s template adaptation strategy, which might be considered as a drawback of

the proposed technique.

CHAPTER 7. RESULTS 68

Figure 7.11: The pathways of the entities vessels and skin according to the importance of the first

principal component displayed in table 7.1.

7.4.2 Operating Aspects

A survey with regard to the usability of the semantic editor has been made in the following way: first,

ten unexperienced users explore the primitive editor which handles 2D transfer functions. Then the

same persons study the semantic editor with regard to the visualization of entities and the tweaking of

semantic parameters. In both cases, the users are requested to try to display the bone and the vessels

of the dataset CTA 18.

All users agree that the primitive editor is useful in exploring a dataset. The primitives are ma-

nipulable very easily and the visual feedback of the rendered image gives an idea of the dataset’s

structures. When it comes to a specific task, seven users visualize a part of the bone’s structures,

mostly including parts of the skin. Only one out of ten users is able to isolate the vessels in the primi-

tive’s editor. It seems to be impossible for unexperienced users to adjust characteristics of a structure

without any additional explanation.

Figure 7.12: An user interface for CTA datasets with unlabeled parameters.

In the next step, the semantic editor is presented to the users. In order to evaluate the accurate

meaning of the semantic parameters, the users are first asked to explore the user interface of the

CTA model created in section 7.2.1 with unlabeled parameters (see Figure 7.12). In most cases, the

users describe the intended visual effects such as visibility and color properly. The adapt template

parameter, however, is often described inadequately by the users. Sometimes it is mixed up with the

CHAPTER 7. RESULTS 69

visibility parameter. After showing and explaining the labels to the users, some of them propose that

“fine tuning” and “trimming” would be more adequate terms instead of the term “adapt template”.

All users are able to adjust the semantic parameters on their own in order to obtain the desired visual

results. The meaning of nested entities is also clear to most persons. In addition to this, a semantic

model is presented to the users which is based on only 4 reference datasets. The average importance

value of the principal components is less than 0.7. The users’ personal visual impression is that this

semantic model still reacts the same. This impression might be explained by the considerable amount

of redundancy contained in the data.

7.4.3 Clinical Study

A detailed study regarding the usability in clinical environment is still pending. Up to now, the ideas

and the approach presented in this thesis have been evaluated by a surgeon and a radiologist so far.

Their feedback concerning high-level user interfaces based on the semantic models is very positive.

With the help of a developer, the surgeon designed a simple semantic model for CT data. Then he

explored the parameter space in the high-level user interface based on semantics. He was extremely

enthusiastic about the quality and the tremendous speed with which he achieved the desired visual

results. However, he pointed out that the method used to design semantic models for new scenarios

is sophisticated and complicated for unexperienced users. A solution might be a wizard which leads

through the process of model design.

The radiologist was asked to perform the data visualization for a typical clinical examination

based on the semantic model which has been developed in section 7.2.1. He pointed out that he

would prefer the simplified user interface instead of the primitive-based editors he is accustomed

with. He appreciated the adapt template parameter for manual tweaking, although he emphasized that

an automatized initial setup would also be desirable.

Chapter 8

Conclusion

This chapter concludes this thesis with a short summary of the proposed approach concerning transfer

functions based on semantic models. The summary is followed by an outlining of limitations and the

sketching out of possible solutions and of further aspects for future work.

8.1 Summary

Apart from medical applications, volume rendering is of great importance in natural and computa-

tional science, industrial design, engineering, and in many other application areas. And although such

technical problems as the evaluation of the underlying physical model, the interactive exploration of

volume data as well as the memory management with regard to large datasets have been overcome

successfully, the existing solutions are still not used in practice as frequently as you would expect.

Many users report difficulties when specifying optical properties for datasets. The manual assignment

of transfer functions, which maps properties to values of the datasets, is time consuming and even for

experienced users the results are often hardly predictable. Automatic approaches are neither available

for all kinds of visualization tasks nor satisfying in many applications. In the field of medical visual-

ization, physicians complain about a lack of clear semantics in this process. For example, they suggest

to sharpen the vessels, to fade out the soft tissue, and to improve the contrast between two structures.

But even for a visualization expert who is familiar with the underlying transfer function model it is

sometimes challenging to obtain the desired results. This is due to an enormous number of degrees

of freedom the transfer function model might have. That is why there is still a need for new transfer

function designs and corresponding user interfaces.

An overview of related work in the field of volume rendering and transfer function design is

presented in chapter 2 of this thesis. Up to now, image-driven techniques and data-driven techniques

in transfer function design have not satisfied the claims of modern physicians. Therefore, the transfer

functions are adapted to datasets manually with the help of a primitive-based editor. Primitive shapes,

such as trapezoids [KKH01] and paraboloids [HST+04], which are introduced in section 4.1, consist

of a set of parameters describing the transfer function. But the adjustment of primitives in order

70

CHAPTER 8. CONCLUSION 71

to obtain the desired visual results is still a time consuming process because of the large number

of degrees of freedom the primitives may still have. The introduction of semantic parameters as an

additional abstraction layer is a solution for this. Each of the semantic parameters s has an influence

on the vector of the low-level parameters p and thus the transfer function is affected. The low-

level parameters are mapped back to the primitives which then update their parameters for texture

creation. The concept of semantics is borrowed from the field of computer animation where the

technical director creates semantic parameters such as smile and frown and hides the complex setup

of low-level parameters from the animator. Similar to the driven keys, which are also part of the

computer animation concept, the influence of a semantic parameter is specified by a variable set of

keys and a step-by-step linear interpolation (see section 4.3).

Chapter 5 deals with the design of semantic models. The basis of the design is a set of reference

datasets for a specific examination purpose. A template is created which consists of one or more

primitives for each structure of interest. Then the primitive editor is used to adapt the transfer function

template to each individual dataset. In order to create semantic parameters, the set of reference transfer

functions is analyzed by using PCA which is capable of finding similarities and which approximates

the vectors in a lower-dimensional subspace. The chapter concludes with an insight into the creation

of additional semantic parameters such as visibility, color, contrast, and sharpness.

Besides the theoretical model of semantics, the visualization framework OpenQVis is presented.

This allows to create semantic models for the visualization, processing, and evaluation of volume

data. In chapter 6, the main aspects of the framework are described. Traditional 1D and 2D transfer

function editors are implemented as well as the transfer function designer and the new semantic model,

including an automated user interface design. The presented results of the new transfer function model

are based on CTA and MRI datasets. In order to achieve the desired results, the adaption of transfer

functions no longer is an inconvenient tweaking of parameters which is only reserved for visualization

experts.

8.2 Further Considerations

In general, the design of transfer functions in volume rendering applications is a manual, tedious and

time consuming procedure which requires detailed knowledge of spatial structures contained in the

dataset. In this diploma thesis, a framework is presented for the implementation of semantic models

for the transfer function adjustment, which can be used effectively to hide the complexity of visual

parameter assignment from the non-expert user, as visualization experts create the transfer function

template for a given clinical scenario.

As a result it can be said that it does not seem necessary to provide a control system for all kinds

of modifications to the low-level parameters in order to present a successful user interface. Although

the design of a semantic model with a large number of parameters is created easily, it is more helpful

for non-expert users if the user interface is restricted to a limited number of essential parameters. The

CHAPTER 8. CONCLUSION 72

proposed semantic models and parameters for CTA and MRI datasets turned out to be completely

sufficient for creating all desired visual representations. This is possible without a significant loss in

flexibility, due to a considerable amount of redundancy in a low-level transfer function model.

Finally, the concept of high-level user interfaces based on semantic models could increase the

acceptance of volume rendering in scientific application scenarios. This is due to the simplification

of adjusting transfer functions, which is no longer a manual, tedious and time consuming process,

even for non-expert users. All in all, the concepts described in this diploma thesis are not restricted

to transfer function design. They can be used to provide intuitive user interfaces for different kinds of

visualization tasks.

8.3 Limitations and Future Work

Although the semantic model and the generated high-level user interface offer a new and innovative

technique of transfer function adjustment, it has to be considered that the proposed approach is limited

in some cases.

The creation of a semantic model is bound to an application scenario with a specific examination

purpose. That is the reason why two different models are needed for CTA and MRI datasets. A vi-

sualization expert has to design the semantic models in a 1D oder multi-dimensional primitive editor,

which is still a time consuming process. As it has already been said in section 7.4.1, the significance

of the first principal component is slightly higher if the manual template adaptation for all reference

datasets is performed by the same person instead of by several persons. Thus, the quality of the se-

mantic model depends to a certain degree on the designer’s strategy. In general, a risk of the presented

approach is to over-parameterize or under-parameterize the parameter space of the transfer function,

as it is always kept under the control of the designer. More importantly, the reference datasets should

statistically represent the range of all possible datasets in order to achieve an appropriate approxima-

tion of the input data. This can hardly be verified in practice and it is suggested to use as many datasets

of a specific type as available.

The handling of the user interface can still be improved by presenting an automatized initial trans-

fer function adjustment. For example, the techniques described in [RSHSG] can be investigated in

order to achieve this task in a future version. A sophisticated and elaborated wizard may be useful

to lead through the process of creating templates and semantic models. In addition to this, you could

imagine to extend the transfer function designer with database features which handle all recorded

application scenarios and proper semantic parameters for a faster and simplified semantic model cre-

ation. A future challenge might also be the implementation of additional parameters such as edge

properties, which are frequently used in non-photo realistic rendering, and material properties for

local illumination and translucent rendering.

A further challenge for future work concerns the Gaussian probability distribution of the low-

level parameters (see section 5.3). The assumption of the distribution is made with the intention to

CHAPTER 8. CONCLUSION 73

motivate to use the PCA, as the distribution is defined by the mean value and the variance. It could

be worthwhile to find out if an analysis using higher order statistics such as Independent Component

Analysis can be used to derive non-linear semantic parameters. However, this technique would require

an enormously large number of reference datasets in order to compute reliable results.

Appendix A

Semantic Models

In the following, an XML Document Type Definition (DTD) for transfer function models based on

semantics is displayed (see Listings A.1 and A.2). The purpose of a DTD is to define the legal build-

ing blocks of the XML document. Thus, the DTD structures the document with a list of elements.

1 <!DOCTYPE Model [

2 <!ELEMENT Model (TransferFunctionModel, Semantics)>

3 <!ATTLIST Model

4 name CDATA #REQUIRED

5 numParameters CDATA #REQUIRED

6 >

7 <!ELEMENT TransferFunctionModel (Primitives*)>

8 <!ATTLIST TransferFunctionModel

9 name CDATA #REQUIRED

10 >

11 <!ELEMENT Primitives (Paraboloid2D* | Trapezoid2D* | Quad2D*)>

12 <!ELEMENT Paraboloid2D (Parameters)>

13 <!ATTLIST Paraboloid2D

14 name CDATA #REQUIRED

15 >

16 <!ELEMENT Trapezoid2D (Parameters)>

17 <!ATTLIST Trapezoid2D

18 name CDATA #REQUIRED

19 >

20 <!ELEMENT Quad2D (Parameters)>

21 <!ATTLIST Quad2D

22 name CDATA #REQUIRED

23 >

24 <!ELEMENT Parameters (#PCDATA)>

Listing A.1: Part 1 of the DTD which defines the structure of the XML file for semantic transfer

function models.

74

APPENDIX A. SEMANTIC MODELS 75

25

26 <!ELEMENT Semantics (Entity*)>

27 <!ATTLIST Semantics

28 name CDATA #REQUIRED

29 >

30 <!ELEMENT Entity (Entity* | ColorParameter* | StandardParameter*)>

31 <!ATTLIST Entity

32 name CDATA #REQUIRED

33 >

34 <!ELEMENT ColorParameter (Influence+)>

35 <!ATTLIST ColorParameter

36 name CDATA #REQUIRED

37 type CDATA #REQUIRED

38 mode CDATA #REQUIRED

39 default CDATA #IMPLIED

40 >

41 <!ELEMENT StandardParameter (Influence+)>

42 <!ATTLIST StandardParameter

43 name CDATA #REQUIRED

44 type CDATA #REQUIRED

45 default CDATA #REQUIRED

46 min CDATA #IMPLIED

47 max CDATA #IMPLIED

48 >

49 <!ELEMENT Influence (#PCDATA)>

50 <!ATTLIST Influence

51 key CDATA #REQUIRED

52 >

53]>

Listing A.2: Part 2 of the DTD which defines the structure of the XML file for semantic transfer

function models.

Appendix B

Datasets

B.1 CTA

The image data was recorded with a Siemens Somatom Plus 4 spiral-CT scanner. During data acqui-

sition, the non-ionic contrast agent (100ml) was applied in all cases. The delay time was chosen with

respect to the circulation time for each individual patient.

Dataset Modality Size

CTA 12 CT 512x512x91

CTA 16 CT 512x512x72

CTA 18 CT 512x512x62

CTA 19 CT 512x512x77

CTA 22 CT 512x512x85

CTA 25 CT 512x512x31

CTA 27 CT 512x512x173

CTA 28 CT 512x512x64

CTA 29 CT 512x512x101

CTA 30 CT 512x512x167

CTA 34 CT 512x512x121

CTA 38 CT 512x512x246

CTA 39 CT 512x512x121

CTA 40 CT 512x512x138

CTA 41 CT 512x512x189

CTA 42 CT 512x512x242

Table B.1: An overview of the CTA datasets which are used for the design of a semantic model.

76

APPENDIX B. DATASETS 77

Table B.1 presents an overview of the properties of the datasets that have been used. The design

of the semantic model for CTA datasets in section 7.2.1 is based on the reference datasets listed in

Table B.2.

Reference Set

1 CTA 12

2 CTA 19

3 CTA 22

4 CTA 29

5 CTA 30

6 CTA 34

7 CTA 38

8 CTA 39

9 CTA 41

10 CTA 42

Table B.2: An overview of all CTA reference datasets.

B.2 MRI

The preoperative MRI datasets were acquired for the planning of tumor resection in the brain.

Dataset Modality Size

MR 01 MRI 256x256x112

MR 02 MRI 256x256x112

MR 03 MRI 256x256x112

MR 04 MRI 256x256x112

MR 05 MRI 256x256x112

MR 06 MRI 256x256x112

MR 07 MRI 256x256x102

MR 08 MRI 256x256x102

MR 09 MRI 256x256x112

MR 10 MRI 256x256x112

Table B.3: An overview of the MRI datasets which are used for the design of a semantic model.

APPENDIX B. DATASETS 78

Reference Set

1 MR 04

2 MR 05

3 MR 06

4 MR 07

5 MR 08

6 MR 09

7 MR 10

Table B.4: An overview of all MRI reference datasets.

List of Figures

1.1 Volumetric datasets and transfer functions . 3

1.2 MRI head in slice and volumetric point of view . 4

3.1 Two interpretations of a voxel: cubes and point samples 10

3.2 The ideal reconstruction filter . 12

3.3 Structure rendered with 1D and 2D transfer functions 13

3.4 Relationship between (f), (f ′) and (f ′′) . 14

3.5 Cross-section and histogram scatterplots for a synthetic cylinder dataset 15

3.6 A histogram and a rendered image showing blood vessels, bone and skin 15

3.7 Scatterplot of the input vectors and PCA . 17

3.8 A cube’s movement based on a weighted connection via driven keys 18

3.9 Examples with blend shapes and driven keys in computer animation 19

4.1 Editor for the adjustment of a 1D transfer function 20

4.2 User interfaces for transfer function assignment . 21

4.3 A modification of the shape of a quadrilateral . 23

4.4 Semantic parameters as an additional abstraction layer 24

4.5 Parameters of a transfer function . 25

4.6 An example of keys and influences . 26

5.1 Entities of a CTA dataset . 27

5.2 An example of semantic parameters for a CTA dataset 28

5.3 The process of aligning a primitive to the structures of the dataset 29

5.4 A transfer function showing bone and vessels . 30

5.5 The process of template creation and adaption . 31

5.6 The impact of the semantic parameter visibility on the primitive 34

5.7 A more complex example of keys with regard to the semantic visibility parameter s . 34

5.8 Keys for the semantic parameter color . 36

5.9 Interpolation of colors . 36

5.10 Quadrilateral primitive and opacity slope parameters 39

79

LIST OF FIGURES 80

5.11 Keys for the semantic parameter sharpness . 40

6.1 An UML component diagram of the OpenQVis kernel components 43

6.2 1D Primitive Editor . 44

6.3 Primitives for 1D transfer functions . 45

6.4 Histograms of CTA datasets . 46

6.5 2D Primitive Editor . 47

6.6 Primitives for 2D transfer functions . 47

6.7 Off screen render target . 48

6.8 The process of XML data file creation . 50

6.9 The splitting and merging of files for the Transfer Function Designer 50

6.10 An UML diagram of semantic model components and an entity structure including

semantic parameters . 51

6.11 User interface components and model/view architecture 54

6.12 The semantic editor and the process of parameter mapping 55

7.1 8 out of 10 reference datasets from the clinical study on intracranial vessels 57

7.2 Template for CTA datasets . 58

7.3 Scheme and user interface for CTA datasets . 59

7.4 An example of a template adaption to a CTA datasets which is not part of the reference

dataset . 60

7.5 The semantic model for CTA applied to three datasets 61

7.6 The transfer function template for MRI datasets . 62

7.7 Template for MRI datasets . 63

7.8 Scheme and user interface for MRI datasets . 63

7.9 An example of the template adaption and the use of the sharpness parameter to a MRI

datasets which is not part of the reference dataset 65

7.10 The semantic model for MRI applied to three datasets 66

7.11 The pathways of the entities vessels and skin . 68

7.12 A user interface for CTA datasets with unlabeled parameters 68

List of Tables

4.1 Parameters of a quadrilateral primitive . 22

5.1 Additional parameters of a quadrilateral primitive 37

7.1 Importance of the first principal component for a varying number of datasets for dif-

ferent entities . 67

B.1 An overview of the CTA datasets which are used for the design of a semantic model . 76

B.2 An overview of all CTA reference datasets . 77

B.3 An overview of the MRI datasets which are used for the design of a semantic model . 77

B.4 An overview of all MRI reference datasets . 78

81

Listings

6.1 An XML file of a transfer function consisting of a trapezoid primitive and a paraboloid

primitive . 49

6.2 An excerpt of an XML data file showing key definitions of entity vessels 52

6.3 The element ColorParameter for simplified color management 53

A.1 Part 1 of the DTD which defines the structure of the XML file for semantic transfer

function models . 74

A.2 Part 2 of the DTD which defines the structure of the XML file for semantic transfer

function models . 75

82

Bibliography

[BPS97] C. L. Bajaj, V. Pascucci, and D. R. Schikore. The contour spectrum. In IEEE Visual-

ization ’97 (VIS ’97), pages 167–174, Washington - Brussels - Tokyo, October 1997.

IEEE.

[CCF95] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated volume rendering and tomo-

graphic reconstruction using texture mapping hardware. In VVS, pages 91–98, 1995.

[EKE01] Klaus Engel, Martin Kraus, and Thomas Ertl. High-quality pre-integrated volume ren-

dering using hardware-accelerated pixel shading, May 22 2001.

[EWRS+05] K. Engel, D. Weiskopf, C. Rezk-Salama, J. Kniss, and M.Hadwiger. Real-time volume

graphics. In ACM SIGGRAPH Course Notes. 2005.

[EWRS+06] K. Engel, D. Weiskopf, C. Rezk-Salama, J. Kniss, and M.Hadwiger. Real-Time Volume

Graphics. AK Peters, 2006.

[FBT98] Shiaofen Fang, Tom Biddlecome, and Mihran Tuceryan. Image-based transfer function

design for data exploration in volume visualization. In IEEE Visualization, pages 319–

326, 1998.

[FvDFH96] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer graphics: Principles and

practice in C. Addison-Wesley, 2nd edition, 1996.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns – Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1994.

[HHKP96] Taosong He, Lichan Hong, Arie E. Kaufman, and Hanspeter Pfister. Generation of

transfer functions with stochastic search techniques. In IEEE Visualization, pages 227–

234, 1996.

[Hou73] Godfrey N. Hounsfield. Computerized transverse axial scanning (tomography): Part 1.

description of system. British Journal of Radiology, 46:1016–1022, 1973.

[HST+04] F. Vega Higuera, N. Sauber, B. Tomandl, C. Nimsky, G.Greiner, and P. Hastreiter. Au-

tomatic adjustment of bidimensional transfer functions for direct volume visualization

of intracranial aneurysms. In SPIE Medical Imaging, 2004.

83

BIBLIOGRAPHY 84

[Kau94] Arie E. Kaufman. Voxels as a computational representation of geometry, August 26

1994.

[KD98] Gordon L. Kindlmann and James W. Durkin. Semi-automatic generation of transfer

functions for direct volume rendering. In VVS, pages 79–86, 1998.

[KG99] Andreas H. König and Eduard M. Gröller. Mastering transfer function specification by

using volumepro technology. Technical report, March 29 1999.

[Kin99] Gordon Kindlmann. Semi-automatic generation of transfer functions for direct volume

rendering. Master’s thesis, Cornell University, 1999.

[KKH01] Joe Kniss, Gordon Kindlmann, and Charles Hansen. Interactive volume rendering us-

ing multi-dimensional transfer functions and direct manipulation widgets. In Thomas

Ertl, Ken Joy, and Amitabh Varshney, editors, Proceedings of the Conference on Visu-

alization 2001 (VIS-01), pages 255–262, Piscataway, NJ, October 21–26 2001. IEEE

Computer Society.

[KKH05] Joe Kniss, Gordon Kindlmann, and Charles Hansen. Multidimensional Transfer Func-

tions for Volume Rendering. Elsevier, 2005.

[Kni02] Joe Kniss. Interactive volume rendering techniques. Master’s thesis, 2002.

[Koc90] Sandeep Kochhar. A prototype system for design automation via the browsing

paradigm. In Graphics Interface ’90, pages 156–166, May 1990.

[KPC93] John K. Kawai, James S. Painter, and Michael F. Cohen. Radioptimization: goal based

rendering. In SIGGRAPH, pages 147–154. ACM, 1993.

[KPHE02] Joe Kniss, Simon Premoze, Charles D. Hansen, and David S. Ebert. Interactive translu-

cent volume rendering and procedural modeling. In IEEE Visualization, 2002.

[KPI+03] Joe Kniss, Simon Premoze, Milan Ikits, Aaron E. Lefohn, Charles Hansen, and Emil

Praun. Gaussian transfer functions for multi-field volume visualization. In Greg Turk,

Jarke J. van Wijk, and Robert Moorhead II, editors, IEEE Visualization, pages 497–504.

IEEE Computer Society, 2003.

[KSW+04] Joe Kniss, Jürgen P. Schulze, Uwe Wössner, Peter Winkler, Ulrich Lang, and Charles D.

Hansen. Medical applications of multi-field volume rendering and VR techniques. In

Oliver Deussen, Charles D. Hansen, Daniel A. Keim, and Dietmar Saupe, editors, Vis-

Sym, pages 249–254, 350. Eurographics Association, 2004.

[KW03] Jens Krüger and Rüdiger Westermann. Acceleration techniques for GPU-based volume

rendering. In Greg Turk, Jarke J. van Wijk, and Robert Moorhead II, editors, IEEE

Visualization, pages 287–292. IEEE Computer Society, 2003.

BIBLIOGRAPHY 85

[Lev88a] Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics and

Applications, 8(3):29–37, May 1988.

[Lev88b] Marc Levoy. Display of surfaces from volume data. IEEE Computer Graphics and

Applications, 8(3):29–37, May 1988.

[LL94] Philippe Lacroute and Marc Levoy. Fast volume rendering using a shear-warp factor-

ization of the viewing transformation. In SIGGRAPH, pages 451–458. ACM, 1994.

[MAB+97] J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang,

B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber. Design galleries: A

general approach to setting parameters for computer graphics and animation. In Turner

Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference Series,

pages 389–400. ACM SIGGRAPH, Addison Wesley, August 1997.

[Mea85] D. Meagher. Applying solids processing to medical planning. In Proceedings of

NCGS’85, pages 372–378, 1985.

[Nov93] Kevin Novins. Towards accurate and efficient volume rendering. PhD thesis, Cornell

University, 1993.

[PFTV92] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes

in C. Cambridge University Press, 2nd edition, 1992.

[RCB05] Kiaran Ritchie, Jake Callery, and Karim Biri. The Art of Rigging, Volume 1. Alias

conductors program. Cg Toolkit, 2005.

[RGWE03] Stefan Roettger, Stefan Guthe, Daniel Weiskopf, and Thomas Ertl. Smart hardware-

accelerated volume rendering. In In Procceedings of EG/IEEE TCVG Symposium on

Visualization VisSym 03, pages 231–238, 2003.

[RS02] Christof Rezk-Salama. Volume Rendering Techniques for General Purpose Graphics

Hardware (Volumenvisualisierung auf handelsüblicher Grafik-Hardware). PhD thesis,

University of Erlangen-Nürnberg, 2002.

[RSEB+00] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl. Interactive volume render-

ing on standard PC graphics hardware using multi-textures and multi-stage rasterization.

In Stephan N. Spencer, editor, Proceedings of the 2000 SIGGRAPH/EUROGRAPHICS

Workshop on Graphics Hardware (EGGH-00), pages 109–118, N. Y., August 21–22

2000. ACM Press.

[RSHSG] C. Rezk-Salama, P. Hastreiter, J. Scherer, and G. Greiner. Automatic adjustment of

transfer functions for 3D volume visualization. In B. Girod, G. Greiner, H. Nieman,

and H.-P. Seidel, editors, Proceedings of the 2000 Conference on Vision, Modeling and

Visualization (VMV-00), pages 357–364.

BIBLIOGRAPHY 86

[Shl05] Jonathon Shlens. A tutorial on principal component analysis.

http://www.snl.salk.edu/∼shlens/pub/notes/pca.pdf, 2005.

[Sim91] Karl Sims. Artificial evolution for computer graphics. Computer Graphics, 25(4):319–

328, 1991. ACM SIGGRAPH 91 Conference Proceedings, Las Vegas, Nevada, July

1991.

[Sim94] Karl Sims. Evolving virtual creatures. In SIGGRAPH, pages 15–22. ACM, 1994.

[SSKE05] Simon Stegmaier, Magnus Strengert, Thomas Klein, and Thomas Ertl. A simple and

flexible volume rendering framework for graphics-hardware-based raycasting. In Ed-

uard Gröller and Issei Fujishiro, editors, Eurographics/IEEE VGTC Workshop on Vol-

ume Graphics, pages 187–195, Stony Brook, NY, 2005. Eurographics Association.

[SWB+00] Y. Sato, C.-F. Westin, A. Bhalerao, S. Nakajima, N. Shiraga, S. Tamura, and R. Kikinis.

Tissue classification based on 3d local intensity structures for volume rendering. In Hans

Hagen, editor, IEEE Transactions on Visualization and Computer Graphics, volume 6

(2), pages 160–180. IEEE Computer Society, 2000.

[TL92] S. Todd and W. Lathan. Evolutionary Art and Computer Graphics. Academic Press,

1992.

[vdP93] Michiel van de Panne. Sensor-actuator networks. In SIGGRAPH, pages 335–342. ACM,

1993.

[WK88] Andrew Witkin and Michael Kass. Spacetime constraints. In Proceedings of SIG-

GRAPH 88, pages 159–168, 1988.

[WVW94] Orion Wilson, Allen Van Gelder, and Jane Wilhelms. Direct volume rendeing via 3D

textures. Technical Report UCSC-CRL-94-19, University of Califonia, Santa Cruz,

1994.

http://www.snl.salk.edu/~shlens/pub/notes/pca.pdf

	Introduction
	Related Work
	Background
	Volume Data
	Multi-Dimensional Transfer Functions
	Principal Component Analysis
	Computer Animation

	Semantic Transfer Function Models
	Transfer Function Parameters
	Semantic Parameters
	Influence and Key Concept

	Design of Semantic Models
	Principles
	Template Creation and Adaption
	Data Approximation
	Additional Semantics
	Visibility
	Color
	Contrast
	Sharpness
	Discussion

	Implementation
	Architecture
	Traditional Transfer Functions and Editors
	1D Transfer Functions
	2D Transfer Functions

	Transfer Function Designer
	Semantic Transfer Functions
	XML Data File
	User Interface Generation
	Parameter Back Mapping

	Results
	Principles
	CTA Datasets
	Semantic Model
	Visualization

	MRI Datasets
	Semantic Model
	Visualization

	Evaluation
	Stability of Eigenvectors
	Operating Aspects
	Clinical Study

	Conclusion
	Summary
	Further Considerations
	Limitations and Future Work

	Semantic Models
	Datasets
	CTA
	MRI

	List of Figures
	List of Tables
	Listings
	Bibliography

