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Abstract

This thesis examines Principal Component Analysis for transfer functions, based
on an initially g enerated set of manually assig ned transfer functions w ith respect to
a v ery specifi c type of data set and a strictly delimited type of application. The
process of transfer function desig n is decoupled from the specialized k now ledg e about
the transfer function domain (intensity, g radient mag nitude etc.). Transfer function
desig n is diffi cult because of the hig h deg rees of freedom and the lack of a truly
g oal-directed process.

E xisting approaches hav e been dev eloped for automatic and semi-automatic trans-
fer function desig n. These can be categ orized as imag e-driv en and data-driv en tech-
niq ues. To concentrate on the anatomical or functional structures w hich are interest-
ing for the user, an application-driv en method is needed. F or a w ell-defi ned applica-
tion scenario it is possible to reduce the complexity of transfer function g eneration by
restricting the classifi cation process to structures of interest for a specifi c examination
procedure.

F irst of all, transfer functions are manually g enerated for an initial collection of
v olume data sets that has been recorded for a specifi c clinical purpose. A sing le
transfer function is represented by a set of parameters of g eometric primitiv es (ramps
or trapezoids). E ach of these indiv idually assig ned transfer functions can be reg arded
as a point sample in the (hig h-dimensional) parameter space of the transfer function
model. F rom this set of point samples in parameter space a statistical shape model is
created by applying Principal Component Analysis. A hig her-lev el transfer function
model w ith only a v ery limited set of parameters based on this analysis is established.
This mak es the process of transfer function setup v ery simple and intuitiv e.
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Chapter 1

Introduction

The 3D visualization of medical data has become more and more powerful within the
recent years because of considerable improvements of methods and applications for
this process. However, in spite of a great benefit of the usage of these possibilities
in the clinical environment, the tools and applications are not yet fully accepted
by surgeons and radiologists. In general, there are two categories of techniques for
the visualization of the structure of volume data sets. Indirect methods require a
pre-processing step to transform the data values to surfaces descriptions before they
can be rendered. A very popular indirect method is the Marching-Cubes-algorithm
proposed by Lorensen and Cline [28] for the extraction of isosurfaces.

However, the most powerful approaches for the visualization of the structure of
volume data sets are the techniques of direct volume rendering. In contrast to indirect
methods there is no need for a surface extraction. The data values are mapped to a
rendered image in a more direct way and time-consuming geometric calculations are
avoided.

Classification denotes the process of mapping scalar values to optical properties
and is done by transfer functions. The assignment of a good transfer function is
the central step in achieving a high-quality rendering result for the specific purpose.
A transfer function performs the mapping of the data values to optical properties
(color and opacity) which are the bases for the displayed image. As the transfer
function is of such importance, the process of finding a good one has to be improved.
The development of an easy-to-use transfer function editor was the first step. In
a second step, a higher-level transfer function model was implemented. The input
for the calculations is a set of individually assigned transfer functions for an initial
collection of volume data sets. With these information the method can produce a very
limited set of parameters to reduce the complexity of the process of transfer function
generation for the end user.

In the next section there is a focus on the importance of 3D visualization. Follow-
ing, the goal of this work is described. A chapter overview finalizes the introductory
part of this thesis.
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1.1 Motivation

First of all, there is the question who need 3D visualization in the medical scope.
Figure 1.1 compares a single slice image of a computed tomography (CT) recording
of the human head (A) with a reconstruction of the data via volume rendering (B). It
can be seen that the result of the volume rendering off ers various possibilities which
are not off ered by the single slices.

A B

Figure 1.1: A typical slice image of a CT recording of the human head (A) and a
volume rendering result of a data set (B).

The first group which can greatly benefit from 3D visualization in the diff erent
steps of an intervention are surgeons. They need to collect as much information as
possible for pre-operative planning and assessment of the risks. During the inter-
vention 3D visualization is a central part of computer-assisted surgery (CAS). CAS
aims at an optimized synergy between people and machines in a combination of the
techniques of advanced image processing and the recent developments in robotic and
mechatronic surgical instruments. This technical assistance can help to achieve a
highly accurate execution of surgical interventions. According to J oskowicz and Tay-
lor [15], this integration of methods alters the procedures in the operating rooms
of the 21st century fundamentally. After the intervention, 3D visualized data can
support the post-operative evaluation.

The second group who benefit from 3D visualization are radiologists. Although
they are used to work with slice images and they adopted a certain ability to recon-
struct the 3D object mentally, there are still some complicated cases which will be
improved by using 3D visualization. Especially tiny structures like vessels and nerves
can be recognized and analyzed more accurately, due to the fact that 3D rendering
results can show complex structures much better than the single slices.

3D visualization of medical data requires explorative methods and applications
for the visualization process with a high degree of clear and simple user interaction.
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The applications have to account for three principal aspects to ensure usability by
physicians. At first, there is a high importance of the reproducibility of the whole
visualization process. Without it, the physician will not rely on the results. Second,
the speed aspect is very important. Especially the process of assigning color and
opacity to the data values via transfer functions is a time-consuming process which
needs to be facilitated. Besides the need of reproducibility and the speed aspect, the
tools for the process have to be easy to use. The key to meet these demands is the
development of intuitive user interfaces and the automation of certain tasks. Since
the software which provides this visualization is often very complex, this complexity
has to be hidden as much as possible from the user.

1.2 Goals

After this outline of the demands on the 3D visualization process, the goal of this work
can be defined: The process of transfer function setup should become as simple and
intuitive as the greyvalue windowing for slice images. Only if this can be guaranteed,
there will be a high acceptance of these advanced image processing methods in the
clinical process. For the transfer function design it is not sufficient to have a good
knowledge of the volume rendering algorithm. In addition, it is important to know
the interesting anatomical and functional structures which are contained in the data
set.

A first step towards the realization of these demands is the development of a
transfer function editor which is very easy to use. Although the transfer functions
have high degrees of freedom, the transfer function setup can be managed with simple
primitives such as ramps and trapezoids. After those primitives are added, they can
be easily moved by picking the primitive or certain movable parts like its edges or
points.

The second step is based on the generation of a set of manually assigned transfer
functions for a specific type of data sets and a strictly delimited type of application.
Through this goal-oriented process a basis for the reduction of the high degrees of free-
dom of the transfer function setup is produced. There are two underlying principles of
the existing approaches for the transfer function design. Im age-driven techniques are
based on a trial-and-error generation of images to navigate the space of transfer func-
tions. With this approach the user can examine the results to find the best rendering.
D ata-driven techniques are based on the analysis of the volume data itself. Neither
choice integrates the knowledge about what anatomical or functional structures are
interesting for the user. To overcome this drawback an ap p lication-driven method for
the transfer function design is investigated.

As the user usually is interested in the generation of a transfer function for a
specific examination procedure, the classification process has to be restricted in this
method. This can be accomplished through the manual setup of transfer functions
for an initial collection of volume data sets which is recorded for a specific clinical
purpose.

With the developed transfer function editor the transfer function is represented as
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a set of geometric primitives (ramps and trapezoids) which are positioned by the user.
Thus, the transfer function can be parameterized that each of the adjusted transfer
functions is regarded as a distribution of points in the high-dimensional parameter
space of the transfer function model. The dimension of this space is corresponding to
the number of modifiable parameters. This set of point samples is the input data for
an algorithm which is based on the statistical methods of the Principle Component

A nalysis (PCA). The result is a higher-level transfer function model which provides a
very limited set of parameters to navigate the space of appropriate transfer functions
for the specific application.

1.3 Structure

Now the motivation and the goal of this thesis are outlined. Chapter 2 starts with
some important topics of computed tomography. After pointing out how the data is
acquired, an introduction of image reconstruction techniques is provided. Following,
there is an outline of the principles how the data can be displayed. A description of
the basic techniques for modern volume visualization closes this chapter.

In Chapter 3 the theory of one-dimensional and multidimensional transfer func-
tions, as well as the design of transfer functions is introduced. As previous work
and existing approaches are always a great inspiration for new ideas there is also a
presentation of interesting methods for the transfer function design.

The results of the development of a sophisticated and easy-to-use transfer function
editor are outlined in Chapter 4. The focus is on the architecture and the most
important features of this application.

In Chapter 5 the mathematical foundations for the understanding of the applied
statistical methods are provided. There is also a focus on the benefit of principal
component analysis and on the application of this procedure to the investigation of
transfer function design.

Following, in Chapter 6 the implementation of the PCA algorithms for the purpose
of transfer function design is presented. Furthermore, it is described how an intuitive
user interface facilitates the fast transfer function setup.

Chapter 7 shows the results of the done work for a specific clinical application
scenario. Finally, there is a conclusion with a summary of the work and an outlook on
possible future work for the improvement of the transfer function design in Chapter 8.
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Chapter 2

Data Processing

It does not make sense to discuss the visualization of data without the basic knowledge
about the data source and the data acquisition. This chapter has a focus on the basic
principles of computed tomography and the techniques for volume visualization.

2.1 Computed Tomography

Before computed tomography was introduced, the classical x-ray imaging was the
standard defect detection technique. Through creating a projection of the internal
structure, the traditional method provided information for the determination of cer-
tain defects with the lack of detailed volumetric information. In 1972, the first prac-
tical implementation of computed tomography was presented by the English engineer
G. N. Hounsfield [10] and in the late seventies there was a huge demand for CT scan-
ners. In 2000, almost three decades after its invention, approximately 30.000 whole
body CT scanners were installed in clinical environments. These scanners provide
digital images of single discrete slices as a representation of the volume [18].

2.1.1 Measuring

The classical x-ray radiography records the relative distribution of the x-ray intensity
to provide a greyvalue image for the diagnostic purpose. In CT, the intensity of x-rays
is also recorded behind the object to determine the attenuation of intensity I caused
by the object in addition to the initial x-ray intensity I0. The basic equation for the
attenuation is Beer’s Law [19], defined as

I = I0 exp [−µx],

where µ is the linear coefficient of the attenuation and x is the length of the x-ray
path through the material. But as there are usually a number of different materials
within the scanned object, the equation has to be expanded to

I = I0 exp
[

∑

i

(−µixi)
]

,
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where each i represents a single material with the attenuation coefficient µi and the
path length xi. In the general case the summation has to be replaced by the integral
over µ along the ray path because the summation has to be carried out with very
small increments. To get the final equation for attenuation, the integration over the
range of the x-ray energy spectrum has to be included which lead to

I =

∫

I0(E) exp
[

∑

i

(−µi(E)xi)
]

d E.

For the computation of high-quality images a high number of recordings from
various directions is required. The covered angular space has to be at least 180◦. In

Figure 2.1: The measuring process of an object in CT [43].

Figure 2.1, a simplified measurement setup to illustrate the principle CT scanning-
cycle is presented. For a given angular position a radiation source emits a pencil beam
and the opposite placed detector measures its attenuated intensity. To cover the width
of the object, the radiation source and the detector perform a translation tangential
to the rotation circle. This set of parallel rays is recorded as an intensity profile. In
the setup of early clinical CT scanners the usual procedure was the recording of 180
projections each with an 1◦ angular displacement and 160 measured data points per
projection. A modern CT scanner covers an angular range of 360◦. Within this range
it fulfils the recording of 800− 1500 projections with 600− 1200 data points for each
projection. The reason for this enormous increase of recorded data is the focus on an
improved image quality and data sampling [18].

The cutting edge of CT scanner development is the multi-slice spiral scanner. This
mechanism is able to collect four slices of data in 250 to 350 ms. With the rotation
speed of 120 rpm (rotations per minute), the collection of data is performed in one
eighth of the time previous spiral systems needed. The reconstruction of a 512× 512-
matrix image from millions of data points can be achieved in less than one second.
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Multi-slice spiral CT scanning enables the recording of an entire human chest (forty
8 mm slices) in 5 to 10 seconds [12].

2.1.2 Image Computation

After the introduction how the CT scanner records the data there is the question how
a CT image is computed. The distribution of the attenuation coefficients µ(x, y ) is
given as a set of projection values. An inverse transformation has to be performed
to calculate this distribution. One way to do this is the solving of Nx independent
equations to compute the N2 unknown values of the matrix with NxN pixel-values.
Nx is the product of the number of projections and the number of data points per
projection. A solution is only possible if Nx is larger or equal than N2.

This approach to find the solution to the problem of three-dimensional reconstruc-
tion from projections was introduced by Gordon et al. [4] in 1970 as the Algebraic

R econstruction T echniques (ART). A simple case for demonstration purpose with
only four pixels (2 × 2-matrix) which present two measurements for two projections
is shown in Figure 2.2. The values of A, B, C and D can be calculated by solving a

Figure 2.2: Algebraic procedures for the computation of a CT image.

system of linear equations. Assuming that S1 = 7, S2 = 6, S3 = 8, and S4 = 7, an
equation can be arranged which reads
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This equation is of the form
K x = b.

The multiplication with KT leads to

KT K x = KT b.
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Finally, the multiplication with the inverted square matrix [KT K]−1 is performed to
obtain

x = [KT K]−1KT b.

The solution of this equation with the example values is A = 2, B = 5, C = 4 and
D = 3.

By adding projections and data points the calculation effort increases immensely.
As the CT recording usually generates much larger matrices, the equations have to
be solved by the iterative application of standard methods for solving large matrix
operation problems. This would lead to a high computational effort of ART for larger
data volumes.

The second method of CT image computation is the convolution-backprojection

procedure. Herman [7] describes the summation or backprojection method as the
simplest algorithm for reconstruction. The sum of all rays through one point has to
be added to estimate the density at this point. For the simple backprojection, the
start is the allocation of an empty image matrix filled with zeros as initial values.
Then, the matrix is filled by adding each projection value to all picture elements
which are represented by the defined matrix along the direction of the measuring.
As a consequence of this procedure an entry of the matrix represents not only the
value for the desired image point but information about other parts of the image as
well. The result is an unsharp image where the details of the scanned object can be
recognized because of high intensities.

Figure 2.3 is based on an example of Herman [7] and illustrates the simple back-
projection of a single point with a small number of projections. The result is not a
single point but a star-shaped object with the original point in its center. Because

Figure 2.3: Backprojection of a single point.

of this phenomenon the simple backprojection alone does not work as a satisfactorily
reconstruction method for computed tomography. The reason for this insufficient re-
construction is a wrong dimensionality of the values produced by the backprojection.
To solve the problem of unsharp images, each projection needs to be convoluted with
a so-called convolution kernel before its backprojection. These kernels can be used as
high pass filters to increase or decrease the boundaries of the object. Beside its basic
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function, the choice and design of the kernel influence the image properties and lead
for example to a smooth or sharp result. A weak high pass filter reduces the noise
and the spatial resolution of the image.

Besides the two presented reconstruction approaches the fourier methods have
to be mentioned. These methods are mathematical equivalent to the convoluted
backprojection and may become more widely used in the future. As the algebraic
reconstruction techniques lost its importance with increasing resolutions, the convo-
luted backprojection is the dominant implementation for CT image reconstruction
today [18].

2.1.3 Display

The result of the CT measuring and reconstruction process is a series of 2D im-
ages which are called slices. Because of the limited expressiveness of the attenuation
coefficients µ(x, y), they are not stored directly. Instead, the attenuation of wa-
ter serves as basis for the calculation of CT values. These values are specified in
Hounsfield Units (HU). The definition of the CT value for a certain tissue t with µt

as attenuation coefficient is described by the equation

CT v a lu et = (µt − µw a te r )/ µw a te r × 1000H U .

On the scale of Hounsfield Units which is shown in Figure 2.2, water has an
attenuation value (HU) of zero. CT values of lung and fat are in the negative area
because of their low density. As listed in Table 2.1, the density of most of the other
body parts is higher than the attenuation of water. The numbers represent a certain
grayvalue from white (+ 1000) to black (−1000). Although the usual range of this
scale is from −1000 to + 1000, some modern medical scanners provide a range of
4096 (= 212) values from −1024 HU to 3071 HU [18].

Figure 2.4: The Hounsfield scale based on [13].

Bone + 400 → + 1000
Soft tissue + 40 → + 80
Water 0
Fat −60 → −100
Lung −400 → −600
Air −1000

Table 2.1: The range of Hounsfield Units for certain tissues and materials.
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The 212 CT values would lead to 4096 shades of grey but the maximum number
which can be distinguished accurately by the human eye is 60 − 80. Because of this
fact, the various shades of grey are assigned to a certain window, representing the CT
value interval of interest. A window width defines a number of HUs, and a central HU
is represented by the window level. Then, a set of greyvalues is assigned to the covered
HUs and all other values are displayed either black or white. How this windowing

procedure can influence the displayed image is shown for the CT examination of the
the human chest in Figure 2.5. If the soft tissue (mediastinum) is interesting for the
observer, a window width of 350 and a window level of +40 will be a good choice (A).
To get a meaningful result for the details of the lung parenchyma a window width of
1500 and a window level of −600 is assigned (B) [13].

A B

Figure 2.5: The result of windowing procedures to display CT images. In (A) the soft
tissue is accentuated and the tissue of interest in (B) is the lung field [13].

2.2 Volume Visualization Algorithms

Within the last decade the visualization of volume data became more and more impor-
tant for medical applications. Usually, the objects under examination are represented
by a three-dimensional grid of volume elements (called voxels) measured by com-
puter tomography (CT), magnet resonance imaging (MRI) or ultrasound (US). If the
grid is uniform rectilinear, a three-dimensional array of cubic elements will repre-
sent the discrete volume data set. The great benefit of volume data is its ability to
represent the inner structure of the objects. While the indirect methods for volume
visualization like isosurface extraction compute a surface from the data, the direct
approaches generate the image without the need for a surface representation. Popular
algorithms for direct methods are ray casting, texture slicing, shear-warp factorization

and splatting. Figures 2.6, 2.10, 2.11 and 2.12 are inspired by Pfister’s description of
the algorithms [34].
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2.2.1 Ray Casting

Ray casting is based on the physical process of emission and absorbtion of radiative
energy. This technique was introduced by Kajiya and Herzen [17] in 1984 and gained
popularity because it achieves a very high image quality with a simple and optically
correct algorithm. It is an image-order algorithm because the value for each pixel

Figure 2.6: The principle of ray casting.

in the 2D image is calculated by the influence of multiple samples in the volume.
Rays of sight are projected through the volume passing the pixels of the image plane
as illustrated in Figure 2.6. Along these rays sampling points are calculated in a
uniform distribution. The data values at these points have to be reconstructed which
is usually done with trilinear interpolations.

A gradient vector is calculated at each sampling point for the classification and
the shading. The process of classification maps physical properties of the volume such
as density to optical properties (color and opacity). Depending on wether the classi-
fication is performed before or after the interpolation it is called pre-classification or
post-classification. To achieve high-quality and more realistic images, a local illumi-
nation model can be applied to the volume points. The accumulation of all classified
points along the ray of sight is the resulting value for one pixel. The final image
is computed as the sum of all rays. An even better image quality can be produced
by shooting several rays through one pixel and the computation of a combination of
these rays.

Ray casting serves as a reference in terms of image quality for the other algorithms
because of its modeling of the physical transport of light. The drawback of ray casting
is that it is computationally rather expensive. With the implementation of ray casting
on usual graphics hardware presented by Roettger et al. [42] in 2003, this algorithm
is able to produce interactive frame rates [34].
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2.2.2 Texture Slicing

Besides the performance, the quality of the images is highly important in the scope
of scientific visualization. In most of the cases it is crucial that the information in the
data set is displayed exactly. To meet these demands, the interpolation method and
the sampling rate are important. To achieve good visualization results, especially for
small structures like blood vessels or nerves, it is helpful to provide adjustable sam-
pling rates. Texture slicing is a very popular volume rendering algorithm and there
exist approaches with 3D-textures, 2D-textures and 2D-multi-textures. These meth-
ods use the abilities of the graphics processing units (GPUs) for hardware accelerated
interpolation [39].

3D Textures

Cabral et al. [2] presented the standard approach for texture based volume rendering
with the usage of 3D-textures in 1994. Their approach serves as a reference regard-
ing performance and image quality. For this method a support of 3D-textures and
trilinear interpolation by the GPU is necessary. Because the volume is saved as a
3D-texture, there is the possibility of calculating texture slices aligned to the image
plane. Figure 2.7 shows that the polygon slices need to be changed as soon as the

Figure 2.7: The principle of 3D-texture-slicing where the slices are aligned to the
image plane.

eye position is changing in relation to the object. To meet this demand the textures
have to be generated for each image. Interactive frame rates, even for scalar fields of
high resolution, are achieved because the hardware supports operations for trilinear
interpolation [39].

2D Textures

Although 3D-textures are supported by modern GPUs, 2D-texture-slicing is still an
often used method of volume visualization. This method is based on the use of
texture slices. As shown in Figure 2.8, a decomposition of the volume object into a
stack of polygons which is aligned to the object has to be performed. The volume
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has to be kept in the memory three times. The used texture stack is switched if
the angle between viewing direction and the normal of the slice exceeds 45◦. Caused
by the change of this angle, the distance between the sample points changes by a
factor between 1 and 2. Because of this effect, the integration of the sampling points

Figure 2.8: The principle of 2D-texture-slicing where the slices are aligned to the
volume.

becomes incorrect. An adjustment of the sampling rate is not possible because of the
fixed texture slices. This leads to visual sampling artifacts at the edges of the slices if
a high zoom into the volume is performed. To get rid of these artifacts, Rezk-Salama
et al. [38] introduced a method based on 2D-multi-textures [39].

Multi-Texture

This alternative approach of texture-sliced volume rendering allows trilinear interpo-
lation for 2D-textures by the computation of intermediate slices on the fly. With this
method visual artifacts caused by the fixed number of slices can be avoided as shown
in Figure 2.9. Multi-texturing offers the possibility to assign multiple textures to one
polygon within the rendering pipeline. With the use of these multi-textures the third
interpolation step is performed by the rasterization hardware. The missing slice be-
tween two neighbored slices is computed by a blending operation of the surrounding
slices Si and Si+1,

Si+α = (1 − α) × Si + α × Si+1.

Bilinear interpolations are performed by the texture unit because the slice images are
stored as 2D-textures. For trilinear interpolation a blending operation is computed
for the two resulting texels.

Modern multi-texture hardware offers several possibilities of texture combination.
The RGB texture-channels can be used for saving vectors and for the calculation of
dot products. This allows an integration of the Blinn-Phong illumination model to
texture based volume rendering [38, 39, 37].
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Figure 2.9: Without trilinear interpolation visual effects can be seen in the resulting
image (A). Intermediate slices lead to much better results (B) [38].

2.2.3 Shear-Warp Factorization

Another very popular volume visualization algorithm is the shear-warp factorization.
It was introduced by Lacroute and Levoy [25] in 1994 as a software solution but
today it is implemented in hardware with high performance. In Figure 2.10 the

A B

Figure 2.10: The principle of the shear-warp algorithm for parallel projection.

basic idea of the shear-warp algorithm for parallel projection is shown. First of all,
the distribution of the sampling points along the rays has to be placed in a way that
it matches exactly the slice images (A). This is necessary to replace the trilinear with
bilinear interpolation. The projection of the volume slices can be factorized into a
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Figure 2.11: The principle of the shear-warp algorithm for perspective projection.

3D shearing and a 2D warping step to get the final image (B). Out of all algorithms
for parallel projection the shear-warp factorization performs best.

If using the shear-warp factorization for perspective projection as illustrated in
Figure 2.11, an additional scaling has to be applied to the slice images. In contrast to
the method for the parallel projection, there are different angles between the viewing
rays and the image plane. These angles have an additional effect on the distance
between the single sampling points along the rays. The fact that the rows of voxels
are aligned with the rows of pixels in the resulting image of the first factorization step
(shear) leads to a fast computable interpolation process.

A drawback of the shear-warp algorithm is, that three copies of the volume have
to be kept in the main memory to achieve an interactive rotation of the data set. The
shear-warp algorithm is the fastest pure software implementation for direct volume
rendering and achieves very high frame rates [37].

2.2.4 Splatting

Splatting is an object-order algorithm and in principle, it is an inversion of the ray
casting algorithm. The ray casting approach calculates the value for each pixel in the
2D image by the influence of multiple samples in the volume. Splatting is based on
the calculation of the influence of each data point on several pixels in the image. This
method was introduced by Westover [45] in 1989.

For every data sample a convolution with a reconstruction kernel is applied with
the purpose of getting a 3D image of this data sample. The convolution result is
projected on the image plane and it contributes energy to to a number of pixels in the
2D image. Figure 2.12 illustrates the process of this projection and the generation of a
color distribution on the image plane. As the reconstruction kernels are independent
of the viewing direction and because they are the same for every data point, they can
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be calculated in a preprocessing step. The projection of the energy distribution to
the image plane is called the footprint of the data sample. To get the final image, all
the footprints have to be integrated.

Figure 2.12: The principle of the splatting projection process.

Z wicker et al. [47] presented E W A volume splatting, a splatting method with a very
high image quality. This approach integrates an elliptical Gaussian reconstruction
kernel and a low pass filter. Aliasing artefact in the output image and excessive
blurring are reduced with this method.
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Chapter 3

Transfer Functions

In the previous chapter different methods for the visualization of volume data were
presented. Now the focus is on transfer functions which are essential for the quality
of direct-volume-rendered images. After the introduction of the principles of transfer
functions the classification process is described. Multidimensional transfer functions
are presented because they can be used for the generation of high-quality images.
The chapter closes with the description of different existing approaches and chosen
realizations of transfer function design.

3.1 Principles

The goal of volume rendering is the visualization of volumetric data. To discover the
interesting structures inside the volume it is necessary to remove occluding elements.
For a complete removal clipping planes and clipping primitives can be used. A more
sophisticated approach is the application of transfer functions. They are required to
make the scalar values in the volume data visible.

The rendering methods are based on the transport theory of light. He et al. [6]
describe the integration of the effects of light interaction along viewing rays inside
the data with the equation

I(a, b) =

∫

b

a

s(x) exp
[

∫

x

a

α(t) dt
]

dx.

I(a, b) represents the intensity of a ray through the data set between the two points
a and b. The source term s(x) is the light which is added along the ray including
self-emission and reflected light. Light attenuation along the ray is described by the
absorption coefficient α(t).

This equation shows the requirement of a transfer function which maps the scalar
value f in the data set to optical properties. The opacity transfer function is the
function α(f) of the scalar value f that assigns opacities to the data values. Opacity
is the most important optical property because it is possible to assign high opacities
to the regions of interest. A transfer function s(f) of the scalar f to get the source
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term s can be used to assign color to the values in the data set. Colors are important
to distinguish features in the data set.

Figure 3.1 illustrates the role of the transfer function in the process to get a 3D
volume rendering from the volume data. With the set of slice images a three dimen-
sional volume is generated. To get a visual representation with assigned colors and
opacities the transfer function needs to be applied. There are also some alternative

Figure 3.1: The simplified process to get a volume rendering result (right) via applying
a transfer function to the volume data set.

techniques to create a three-dimensional rendering without numerical integration and
transfer function adjustment. One way of simple compositing is the Average Intensity

Projection (AIP). The resulting image is the average of the voxel-intensities along the
corresponding rays and looks quite similar to x-ray photographs. This method is not
very flexible. A similar compositing method is Maximum Intensity Projection (MIP).
Instead of the average, the maximum intensity is used for the image generation.
Although this technique leads to results with a confusing impression of depth, this
method is helpful to visualize blood vessels with contrast medium. Examples for these
alternative compositing methods are shown in Figure 3.2.

The way to assign the optical properties via transfer functions has the benefit of
a high flexibility. Edges can be presented with a semi-transparency and certain areas
in the data set can be displayed differently. A problem of transfer functions is their
difficult and slow adjustment. Often the setup process is not very intuitive.

Kindlmann [20] describes the high flexibility of transfer functions both as a benefit
and a drawback. The task of finding a good transfer function is extremely difficult
and often a frustrating trial-and-error process. He states some major reasons for this.
At first, it is because of the enormous degrees of freedom. Often this is too much for
the user and he gets lost. Simple user interfaces use linear ramps for the definition
of a transfer function. Even these geometric primitives add two degrees of freedom
for each control point. Second, there is a lack of guidance because the user interfaces
are not constrained or guided by a certain data set or a certain domain of interest.
This leads to the trial-and-error process which becomes especially difficult if little
changes of the transfer function lead to large changes in the rendered image. Because
of these drawbacks it is very important to provide methods to make it easier to get
good rendering results.

19



A B

Figure 3.2: MIP can lead to good results for vessel examinations (A) [11]. The AIP
method produces images which are similar to x-ray photographs (B) [46].

The way to realize this is the removal of unnecessary flexibility of the transfer
function setup process and the providing of helpful guidance and information. A
simple method to facilitate the process it the presentation of support data in form
of a 1D histogram. The histogram provides information, for example on density of
scalar values within the data set. This is useful to discover dominant structures which
should be assigned with certain colors and opacities.

3.2 Multidimensional Transfer Functions

After the presentation of the principles of 1D transfer functions, the fundamentals of
multidimensional transfer functions are introduced. Even though Levoy [27] already
investigated the use of the magnitude of the gradient vector in 1988, the scalar value
was the only dimension of interest to assign opacity and color until a few years ago.

Transfer functions of a higher dimension provide more flexibility to extract and vi-
sualize the features of interest in the volume data than 1D transfer functions. In med-
ical scans recorded with CT or MRI techniques multiple materials have boundaries of
a high complexity between each other. Because one data value often is connected with
more than one boundary, there are problems to render the regions isolated with 1D
transfer functions. Even if the boundaries are easy to identify in the spatial domain,
an isolation in the domain of the transfer function is more complex. That is because
the scalar value ranges of the interesting and the uninteresting regions within volume
data can overlap.

One major challenge is to find an intuitive way for the transfer function setup be-
cause multidimensional transfer functions provide even more degrees of freedom than
1D transfer functions. Furthermore, it is a difficult task to adapt the implementation
of 1D transfer functions as a Linear Lookup Table (LUT) to more than two dimen-
sions. In general, there are two categories of multidimensional transfer functions.
They are either applied to scalar data or to multivariate data.
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3.2.1 Scalar Data

The first order derivative of a 3D scalar field I(x, y, z) is the gradient which is defined
using the partial derivatives of I in x−, y− and z−direction as

∇I = (Ix, Iy, Iz) = (
∂

∂x
I,

∂

∂y
I,

∂

∂z
I).

An indicator for the local rate of change in the scalar field is the magnitude of the
gradient, defined as the absolute value of ∇I with the formula

‖∇I‖ =
√

I2
x + I2

y + I2
z .

With the help of the gradient magnitude which represents an additional axis of the
transfer function it is possible to distinguish regions of change (high gradient magni-
tude) and homogenous regions (low gradient magnitude).
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Figure 3.3: A 1D histogram (A,top) where the colored marks (A,B,C) identify the
basic materials. A log-scale 2D joint histogram (A,bottom) with marked materials
and material boundaries. The volume rendering of a head (B) is achieved with a 2D
transfer function and shows materials and identified boundaries [24].

Figure 3.3 compares a 1D histogram and a log-scale 2D joint histogram on its left
side. In the 1D histogram the three main materials in the CT data set of the head are
identified as air (A), soft tissue (B) and bone (C). In the 2D histogram the circles A, B
and C mark the materials with low gradient magnitude. The arches represent the high
gradient magnitudes as the boundaries between air and soft tissue (D), soft tissue and
bone (E) and air and bone (F). On the right side of Figure 3.3, a volume rendering of
the head is shown with labels to the materials except air and the boundaries. With
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the two dimensions, scalar value and gradient magnitude, it is possible to isolate the
materials and boundaries. Especially the boundary between air and bone (F) cannot
be isolated with transfer functions of solely one dimension.

But even the 2D transfer functions using the scalar value and the gradient mag-
nitude are not always able to isolate the materials properly. Difficulties can appear
if the arches in the 2D transfer function overlap. In these cases, the second order
derivative of the 3D scalar field described by the Hessian matrix can help to put
things right. With the three dimensions, scalar value, gradient magnitude and the
magnitude of the second order derivative of the scalar field, it is possible to avoid an
overlapping of the arches. This approach improves the isolation process of certain
boundaries. The relationship between the scalar value and the first and second order
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f(x)f ′(x)f ′′(x)

v1

v2

v3

v4

v5

f(x)
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Figure 3.4: The relationship between scalar value and the first and the second order
derivative of the 3D scalar field (left). G radient m agnitude and second order derivative
as a function of data value (right) [2 4].

derivative of the 3D scalar field is illustrated in Figure 3.4 with an idealized m aterial
boundary as ex am ple. M ost interesting for the boundary isolation is the m ax im um
of the gradient m agnitude where the second order derivative is zero (left). This point
identifies the center of the boundary . O n the right side of Figure 3.4, the gradient
m agnitude and the second order derivative are shown as a function of the data value.
These are the curves which appear in the histogram for a 3D transfer function [2 4].

A n approach introduced by K indlm ann et al. [2 2 ] uses the curvature inform ation in
m ultidim ensional transfer functions for the im provem ent of non-photorealistic volum e
rendering.

3.2.2 Multivariate Data

M ultidim ensional transfer functions can be applied to m ultivariate data, too. M ul-
tivariate data contain m ore than one q uantity at each sam ple point. These q uanti-
ties can represent either m easured or sim ulated values. M R I as a m edical scanning
m ethod can record various tissue characteristics. It is also possible to com pose data
from diff erent scanning m ethods such as M R I and C T to create a m ultivariate data
set.
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The different values can be represented by the axes of the transfer function. Mul-
tidimensional transfer functions can help to generate better images because they are
more fl exible in classifying the features of interest in the data set. Analog to the usage
of the gradient magnitude for scalar values, the first order derivative is very useful to
isolate and visualize the interesting materials and boundaries of multivariate data.

One field of application where multidimensional transfer functions offer good clas-
sification possibilities is volumetric color data. V arious volumetric color data sets
are available. The N ational Institute of H ealth’s Visual Human Project [32] acquired
color data by cryosection of male and female cadavers. These data sets are very good
sources for the investigation of anatomy. A multidimensional transfer function can
be utilized to assign opacity to different positions in the 3D space of RGB color. A
good example for multivariate data aside from medical usage are weather data sets
which can contain temperature, pressure and humidity as physical quantities [24].

3.3 Design

After the presentation of the theory of 1 D and multidimensional transfer functions,
it is time for a closer look into the design of transfer functions. As explained, the
setup of a good transfer function is a very important but diffi cult task which becomes
more and more complex with an increasing number of dimensions. E asy-to-use inter-
faces, as well as automatic and semi-automatic techniques can facilitate the transfer
function setup. In the following sections, three classes of approaches, the techniques
based on interactive ad justment, the image-d riven and the d ata-d riven techniques,
are presented with example implementations.

3.3.1 Interactive A d justm ent

Most scientific and commercial implementations of transfer function editors are based
on a manual setup of transfer functions with the help of a visual editor. The imple-
mentations differ in the degrees of freedom and the k ind of primitives that are used
for the definition of the transfer function. E xamples for used primitives are linear
ramps, trapezoids, gaussian curves and splines. A precondition for the account of
manual adjustment methods is an immediate visual feedback within the 3D viewer.
E very small adjustment of the transfer function has to initiate a new rendering of the
data set to allow goal-directed work .

To achieve the desired result with manual transfer function editors, some previous
k nowledge of the user about the specific data is helpful. As it is diffi cult to reproduce
certain assignments for similar data sets, some implementation of transfer function
editors provide templates for certain areas of examination. S uch methods are well
suitable for CT data sets because of the range of H ounsfield U nits which defines the
distribution of the scalar values for the different materials. After the application of a
template the user can still mak e manual changes to get the desired result.

Kniss et al. [23] introduced a very sophisticated approach based on d irect manip u-

lation w id gets for the interactive assignment of multidimensional transfer functions.
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Direct Manipulation Widgets

This approach for interactive volume rendering with the use of multidimensional trans-
fer functions provides direct manipulation widgets which are rendered geometric ob-
jects such as spheres, cylinders and cones. W ith these tools the user is able to select
certain parts within the volume. The idea behind this method is to reduce the spatial
problem. The assignment of opacities and colors with transfer functions is non-spatial
because their domain does not include the spatial position as a variable. This leads
to problems if the user wants to isolate spatial localized features within the volume
which covers the same data values as other regions.

Three dimensions are used for the transfer function because of the benefit ex-
plained in the earlier Section 3.2. Beside the scalar value, the gradient magnitude
is used as second dimension and the second directional derivative along the gradient
direction is used as third dimension. This enables advanced possibilities for the isola-
tion of the material boundaries. Direct manipulation widgets are the solution of Kniss
et al. [23] to close the conceptual gap between the transfer functions and the spatial
domains. In contrast to the comprehensible spatial domain which represents the 3D
space of the rendered volume, the domain of the transfer function is more abstract.
Direct manipulation widgets provide a bidirectional feedback to link interaction of
the two domains. The transfer function widget is embedded in the main rendering
window.

There are two different scenarios which describe the use of these widgets. At
first, the user can start to move and rotate a clipping plane through the volume to
get a good impression of the slices. If a certain area of interest is discovered he can
click on the clipping plane. This action initiates a visual feedback in the domain of
the transfer function which shows the data value and the corresponding derivative.
Through mouse movements around the clipping plane the user is able to examine the
changes in the transfer function domain and he can assign opacities to the regions
of interest. In the volume rendering, all the voxels with similar transfer function
values are displayed. This painting process of the transfer function can be repeated
until all features of interest are discovered and visualized. In another scenario, the
data set is initially visualized with a default or generated transfer function to display
some possible features of interest. Then, the user can use the widgets to act like in
the previous described scenario to work out a visualization of all the features he is
interested in.

In addition to the transfer function widget and the clipping plane widget, a data
probe widget, a classification widget, a shading widget and a color picker widget are
provided to allow a dual-domain interaction. Figure 3.5 shows the use of direct ma-
nipulation widgets. In (A) the bone surface is emphasized with the use of a triangular
classification widget. W ith the clipping plane a look at one slice inside the skull is
made possible and the skin is captured with the data probe widget. The soft tissue is
visualized with the application of the data probe widget (B) and the transfer function
is shown as result of the dual domain interaction (C) [23].
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Figure 3.5: The usage of direct manipulation widget to emphasize bone (A) and
skin (C). In (B), the data probe widget is shown in soft tissue [23].

3.3.2 Image-Driven Techniques

As a meaningful image is the most important result in the process of volume render-
ing, image-driven techniques for transfer function design are based on the analysis
of image-inherent information. The analyzed images are generated with varying pa-
rameter settings. One method for setting visual parameters is an interactive explo-
ration of the parameter space. Alternatively, a search for the good parameters can
be performed based on an objective quality measure. A benefit of image-driven ap-
proaches is that even unexperienced users can generate pretty good images with the
drawback that the results are often hardly reproducible. The reasons therefore are
non-deterministic concepts used for algorithms which are responsible for the image
generation.

Two interesting image-driven approaches are described in more detail. At first,
the concept of He et al. [6 ] for semi-automatic transfer function generation based on
stochastic search algorithms is presented. Second, the approach of Design Galleries

introduced by Marks et al. [29 ] as a general concept of setting visual parameter in
computer graphics is described.

S tochastic S earch Algorithms

He et al. [6 ] introduced an approach for the assisted exploration of transfer functions.
Stochastic search techniques are used to solve a parameter optimization problem
which describes the search for a transfer function. A random or predefined set of
transfer functions serves as initial population. A process of evolution of stochastic
algorithms works on this initial population which involves the user to get meaningful
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results.
In Figure 3.6 the visualization process is shown with the usage of semi-automatic

transfer function generation. Based on a certain data set, the initial population
of transfer functions is generated which leads to a first set of images. From this
point in the visualization process there are two different approaches to go on. Either
the user can evaluate the first population of images to initiate a new generation of
transfer functions (A) or the user can define objective goals for the generation of new
parameters (B). These goals can include entropy or histogram variance of the resulting
image. Both processes are repeated until a satisfactory result is achieved. Stochastic
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Figure 3.6: The visualization process with different options for user interaction to
generate the final image [6].

search techniques are used for a variety of problems and they most likely produce
an optimal global solution for a set of locally optimal solutions. These methods are
applied to various intermediate images which are partially satisfying. The intuition
is that these images have a positive influence on the results of the next iteration. For
the implementation of stochastic search techniques an encoding for the solutions of
the optimization problem is needed. This encoding is basically used for the mapping
of structures x(i) onto solutions. The population P (t) where t represents a certain
time step is defined as an s-dimensional vector of structures x(i),

P (t) = 〈x1(t), x2(t), ..., xs(t)〉.

In this equation, s is the size of the population and P (0 ) as the initial population can
be chosen randomly or with heuristic methods.

As the optimization techniques are based on evolutionary models the term geno-

type is used for the set of transfer functions. An algorithm for direct volume render-
ing translates the transfer functions into images which are regarded as ph enotypes.
In a user-controlled or automated process a fitness value is assigned to the set of
phenotypes. Different stochastic search algorithms produce different results concern-
ing the selection of an intermediate population and the generation of the solutions.
He et al. [6] applied their algorithm on a transfer function which maps a single scalar
value to a single optical property but their approach can be extended to multiple
dimensions. The normalizing of the domain and range of the transfer function leads
to the simple function

f : D → V , D ∈ [0 , 1], V ∈ [0 , 1]
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which defines the transfer function. To generate the initial population of transfer
functions, a library of common initial functions as shown in Figure 3.7 is provided.
These functions can be manual adjusted by the user. After the generation of the

Figure 3.7 : P rovided example transfer functions for the generation of an initial pop-
ulation [6].

intermediate population and new solutions via mutation processes, the solutions can
be evaluated. All transfer functions have an initial fitness value of 0. Depending on
the selection of good images by the user, the fitness value 1 is assigned to the functions
and a new intermediate population is set up.

The benefit of the application of stochastic search techniques is the hiding of the
complexity from the user. An unexperienced user does not have to handle the abstract
parameter space of transfer functions. Instead, he can just appoint the good images
and initiate a new process cycle to get new results of a further evolution process [6].

Design Galleries

The approach of Design Galleries introduced by Marks et al. [29] provides an auto-
matically generated and organized broadest selection of different graphics or anima-
tions. This selection is generated with a given varying input-parameter vector. The
challenging task is the finding of a set of input-parameter vectors for a good variety
of disperse output-value vectors. Furthermore, it is very important to present the
output in a way that allows the user an intuitive browsing of the results. Beside
solving several computer graphics problems like light selection and placement, Design

Galleries are well suited for opacity and color transfer function specification.
A list of parameters forms the input vector which controls the generation of the

output vector. The output vector holds the values that define the properties of the
output graphic. A distance metric is used as an indicator for similarities within the
set of output graphics. To ensure that the output vectors and the resulting output
graphics are well-distributed, a dispersion method is used. Finally, an arrangement
method is applied for presenting the graphics to the user. To keep the complexity
away from the user, the creator of a Design Gallery system defines input vector,
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output vector and the distance metric for a certain field of application. The user just
has to select the best graphics from the gallery.

In their examples on using Design Galleries for opacity and color transfer func-
tions, Marks et al. [29] developed interfaces for a CT data set of the human pelvis
and the simulated electron density of a protein. At first, the input vector has to be
defined. They parameterized the opacity transfer function for the protein data set
which contains values in the interval [0, 255] by a low-pass filtered polyline with eight
control points. Those are 16 values in total because of the x- and y-position of every
control point. Five values are chosen for the color transfer function. The six resulting
color ranges are yellow, green, cyan, blue and magenta. This configuration is shown
in Figure 3.8 . For the output vector eight pixel represented by 24 Y UV values are

Figure 3.8 : A pop-up window shows the graphical representation of the opacity and
color transfer functions [29].

selected manually for a certain data set. Those eight pixels are a solid base for a set
of images with an excellent dispersion. The standard euclidian distance is used as
output-space metric. For an optimal dispersion of the output vectors an evolutionary
strategy is applied. A randomly generated set of input vectors is perturbed to replace
the existing vectors.

The arrangement of the resulting images is presented within an easy-to-user in-
terface as shown in Figure 3.9. In the center of the panel are numerous thumbnails.
These thumbnails as volume rendered images with a low resolution are representations
of the output vectors. There is a correlation between the distance of the thumbnails
and the distance between their output vectors. To give the user a better impression
of the thumbnails a zoom of the center panel is implemented. The surrounding im-
ages are the full-size representations of selected images. Images of the surrounding
gallery can be selected, too. This leads to the display of the color and the opacity
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Figure 3.9: In the center panels are the graphical representations of the output vectors
which are small renderings with different color and opacity transfer functions. The
selected thumbnails can be placed in the surrounding image gallery by the user [29].

transfer functions as shown in Figure 3.8 to visualize the relation between image and
data [29].

3.3.3 Data-Driven Techniques

The presented image-driven techniques are based on the analysis of rendered images.
As a considerable amount of data has to be processed to render various opacity and
color transfer functions, the focus of interest of the data-driven techniques is the
original volume data set. Image-related parameters like pixel-resolution and viewing
position have no influence on transfer function design anymore.

At the Visualization 2000 conference, there was a panel discussion where four
promising approaches of transfer function design have been compared. A data-driven
technique presented by Kindlmann and Durkin [21] won this contest known as the

transfer function bake-off [35]. Their approach bases on the first and second order
directional derivatives of the scalar field and is described in the following section.
Following, a technique for the visualization of aneurysms from medical image data
with multidimensional transfer functions introduced by Vega et al. [8, 9] is presented.

Semi-Automatic Generation

Kindlmann and Durkin [21] assume that the boundary regions between relatively
homogenous materials are the areas of interest in the scalar volume. As their goal
is the visualization of material boundaries, they mention the problem of the band-
limitation of the measurement process. The boundaries of real world data are blurred
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by a gaussian. Gradient vectors have the property that they tend to point in the
direction of the material boundaries. An examination of the scalar field (f) and its
derivatives is used for the creation of an opacity function. This is done by following
a path inside the volume along the direction of the gradient.

In computer graphics common edge detectors use the first (f ′) and the second
directional derivative (f ′′) along the gradient direction to find edges. These techniques
work in the spatial domain to locate the edges. To apply opacity functions to the
volume boundaries, these regions have to be found with the help of a function of the
data value. The relationship of f , f ′ and f ′′ is used to locate the edges within this
domain.

In Figure 3.10 (A) f and f ′ are plotted as a three-dimensional curve. Its pro-
jections show the plot of data value versus position, first derivative versus position
and data value in relation to first derivative. The last of these projections has no
information about the position anymore. Figure 3.10 (B) shows the same projections
for data value and its second derivative. A three-dimensional plot of the relation-

A B

Figure 5: , and position .

Figure 3.10: The relationship between f , f ′ and position x (A) and between f , f ′′

and position x (B) [21].

ship between f , f ′ and f ′′ where the position information is eliminated as shown in
Figure 3.11 serves as an indicator for boundaries in the volume. The plotted curves
are used for the generation of an opacity function. If a curve is similar to the one
presented in Figure 3.11, it will be interpreted as a sign for a boundary in the volume.
The specific features of the curves have to be analyzed by a detection tool to assign
the highest opacity values to the center of the boundaries and to generate a rendering
which shows the detected boundaries.

A three-dimensional histogram is generated with the three quantities f , f ′ and f ′′

as axes. This histogram is used to measure how the data values and its derivatives are
related to each other. As soon as the histogram is generated it is possible to visualize
the histogram volume to see the boundaries of the object. For volume rendering
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Figure 3.11: The relationship of f , f ′ and f ′′ where the position information is elim-
inated [21].

the histogram volume is not the best choice because of its noisiness. To achieve an
improved rendering, scatterplots of f ′ versus f or f ′′ versus f are produced. This is
done with a summed-voxel projection of the histogram volume where the projection
can be performed along one of the two axis f ′ or f ′′. In Figure 3.12 the slice of a

Figure 3.12: Slice of a head data set (left), f ′ versus f (middle) and f ′′ versus
f (right) [21].

CT data set of a human head is shown with the relationship between f ′ and f and
between f ′′ and f . Each displayed curve is a representation of a boundary between two
materials. A position function p(v) is used to compute the opacity transfer function,

p(v) =
−σ2h(v)

m a x(g(v) − gthresh, 0)

where the parameter σ controls the amount of boundary blurring and g(v) and h(v)
represent the average of the first and second directional derivatives at value v. The
functions g(v) and h(v) result from slices at value v of the histogram volume. As the
gradient magnitude inside the materials has not very often the exact value of zero,
a small threshold gthresh is applied to determine zero-crossings of p(v). A boundary
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emphasis function b is needed for the calculation of the final opacity function α(v)
with the equation

α(v) = b(p(v)).

The shape of the boundaries is controlled by the boundary emphasis function. This
function allows the user to define the appearance of the boundaries and the object
interiors.

This algorithm reduces the parameter space of opacity transfer functions signifi-
cantly. Instead of the exploration of all possible opacity transfer functions which is
done with the image-driven techniques, only the opacity transfer functions which lead
to the display of object boundaries have to be regarded. This approach offers a good
possibility to find transfer functions that generate meaningful images for given data
sets where the boundaries between materials are the interesting regions. No a priori
knowledge about the spatial structures of the data set is necessary to achieve this
goal [21].

Visualization of Aneurysms

An approach for the 3D visualization of intracranial aneurysms with multidimen-
sional transfer functions is introduced by Vega et al. [8]. CT-angiography (CTA) data
sets are the basis for the visualization of vascular structures. Common 1D transfer
functions allow the mapping of measured scalar values to opacity and color values.
Problems occur if the vessels are too close to the skull base because the differences of
the data values of the vessels, filled with contrast agent, and the bone structures are
not big enough. As seen in the previous sections, multidimensional transfer functions
can help to get a good visualization of boundaries. Beside the introduction of multi-
dimensional transfer functions to improve the described clinical problem, Vega et al.
proposed tools for the manipulation of multidimensional transfer functions.

In addition to the data value, they use a border function based on first and second
directional derivatives as introduced by Kindlmann and Durking [21] and the gradi-
ent magnitude. A good presentation of the data properties allows the user an easy
identification of the interesting regions within the volume. The data value and the
derivatives are the axes of a 3D histogram as shown in Figure 3.13 (A). Information
about materials and the boundaries between them are contained in this structure.
Figure 3.13 (B) shows a 2D scatter plot of the histogram, where the x-axis represents
the data values and the gradient magnitudes are represented by the y-axis. This plot
provides a meaningful area where the user can define a 2D transfer function. Individ-
ual colors and opacities can be applied for each material and the weight of the single
materials can be controlled.

Geometric objects modeled with quadratic Bézier curves as seen in Figure 3.13 (B)
are the designed widgets to paint the transfer function. Each control point can be
moved by the user inside the painting area. In Figure 3.14 an image which is rendered
with a common 1D transfer function (left) is compared to a result rendered with
Vega’s multidimensional transfer functions (right). As Vega’s approach allows an
exact separation of two tissues, different colors can be assigned to the skull bone
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Figure 3.13: A 3D histogram generated from a CTA data set (A). The 2D scatter
plot of the histogram with two widgets designed for an easy painting of the transfer
function (B) [8].

and the vessels. One-dimensional transfer functions cannot offer these possibilities
because the scalar values of the two materials are to close to each other.

Figure 3.14: An image rendered with a common 1D transfer function (left) compared
to an image rendered with Vega’s multidimensional transfer functions (right) [8].

In further researches Vega et al. [9] presented a method for the automatic ad-
justment of bi-dimensional transfer functions for the visualization of intracranial
aneurysms. Transfer function templates based on the information of a 2D histogram
are used to achieve a clear visualization of the vessels. These templates are adjusted
automatically and produce results which are comparable to manual created transfer
functions [8, 9].
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Chapter 4

Transfer F unction E ditor

To allow an intuitive and user-friendly setup of the transfer function a 1D transfer
function editor was implemented. At first, the architecture of the editor is described.
The graphics library OpenInventor is used for the implementation and the trans-
fer function editor is realized with several OpenInventor nodes. These nodes are
integrated in the R adB uilder environment. Advanced networks can be build with
RadBuilder to realize medical applications. In the second part of this chapter, the
most important features of the transfer function editor are described. The used geo-
metric primitives for the transfer function setup are introduced and different options
for the color assignment are presented.

4.1 Architecture

This section presents the framework for the realization of the transfer function editor.
For its implementation the OpenInventor library is used. The transfer function editor
is realized as a network of nodes which is integrated in the Siemens RadBuilder
environment. Following, the framework and the most important implemented nodes
are described. Furthermore, it is shown how the nodes can be connected to build
advanced networks.

4.1.1 F ramew ork

The transfer function editor is integrated in the RadBuilder of SCR (Siemens Corpo-
rate Research). This platform for application development is based on OpenInventor
nodes. OpenInventor itself is based on OpenGL . Because of these connections there
will be a brief description of OpenGL first. Followed by an introduction of the pos-
sibilities of OpenInventor and RadBuilder. The chapter closes with a description of
the user interface development for RadBuilder which is based on HT M L , J avaS cript

and C S S .
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OpenGL

OpenGL was introduced in 1992 for the development of 2D and 3D graphics applica-
tions and became the number one graphics application programming interface (API)
for this purpose. It offers numerous functions for rendering, texture mapping, special
effects and visualization. As a main benefit, OpenGL is supported by all popular
platforms for desktop and workstation. Language bindings are available for a lot of
popular programming languages such as C, C++, Fortran, Ada, Python, Perl and
Java. Because of its high performance and visual quality, OpenGL often serves as
basic API for creating 2D and 3D graphics within the field of medical imaging. Main
advantages of using OpenGL are that it is:

• an open, vendor-neutral, multiplatform graphics standard.

• stable because implementations are available since several years on a wide vari-
ety of platforms.

• evolving and allows a fast integration of new hardware innovations via the
OpenGL extension mechanism.

• portable and produces a consistent visual result on different hardware and op-
erating systems.

• scalable and the applications can either run on consumer electronics and per-
sonal computers or on workstations and supercomputers.

• well structured and offers an intuitive set of logical commands.

• well-documented and a lot of sample code is available.

Because high-level commands for describing three-dimensional objects are not pro-
vided by OpenGL, the models have to be created with a small set of geometric prim-
itives like points, lines and polygons.

OpenGL works as a state machine. A state or mode is active until it is changed.
For example, if the current color is set to the state yellow, every following object is
drawn with this color until the state is set to another color. More OpenGL state
variables are other material properties, current viewing and projection transforma-
tions, positions and characteristics of lights, polygon drawing modes, line and polygon
stipple patterns, as well as pixel-packing conventions [33].

Open Inventor

As mentioned, OpenGL does not provide the high-level commands to build three-
dimensional objects. OpenInventor is a library built on top of OpenGL to provide
these features. It is a window system-independent library which offers a higher-level
and object-oriented approach to create interactive 3D graphics applications. A set
of building blocks reduces the programming effort while it taps the full potential of
powerful graphics hardware features. Its library of objects can be either solely used,
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or modified and extended. Examples for Inventor objects are shape, property, group,
database primitives, engine objects, interactive draggers and manipulators, as well
as several editors and viewers. Through providing a 3D interchange file format, 3D
scene objects can be shared by users and a variety of programs.

To render an image, all information of a 3D object like shape, size, color, texture
and position are stored in a scene database. While other 3D graphics packages offer
the possibilities to create photorealistic images, a main benefit of OpenInventor is
that it provides tools to add interactive elements to a scene. These can be used for
example to change the viewpoint and to resize or move the 3D objects. Furthermore,
the adding of new objects into an existing scene is easy to realize. In OpenInventor
a scene database is set up with a number of nodes which represent shapes, properties
or groupings. A sample scene graph as an ordered collection of nodes is shown in
Figure 4.1 which is based on an example by Wernecke [44]. OpenInventor elements

Figure 4.1: Example of a simple scene graph.

which were especially important for the realization of the transfer function editor are
fields, nodekits, draggers and sensors.

A node contains a number of fields to hold its parameters. For example, the
shape node SoCube has fields for its width, height and depth. The type of these
fields is SoSFFloat, which means that each is able to store a single value of the type
fl oat. OpenInventor also provides multifields which can store more than one value of
a certain type. Fields of different nodes can be connected through field-connections

with the result that a change of the one field leads to a change of the connected field
as well.

Nodekits are structured collections of nodes. They are working like templates and
offer the possibility to add certain nodes if they are needed at a specified position.
A good example of an OpenInventor built-in nodekit is the SoShapeK it. It offers a
so-called nodekit catalog where all its parts are available. The programmer can choose
the entries he wants to use and set their attributes. A cube is the default shape of
the SoShapeK it and properties such as material and geometric transformations are
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provided. These properties have a defined position in the nodekit and can be used
and changed if required.

A nodekit is an efficient organization of nodes because one of its nodes is only
created if it is needed. It is even possible that one nodekit contains other nodekits to
build very flexible, complex and powerful structures. The SoShapeKit is an example
of a nodekit provided by OpenInventor. It is possible to design own nodekits through
subclassing. This mechanism was used consequently to build the transfer function
editor.

A B

Figure 4.2: Two built-in draggers of OpenInventor. The SoTranslate2Dragger (A)
can be picked and moved in x- and y-direction and the SoScale2Dragger can be scaled
in the two dimensions.

Another type of objects which was necessary to realize the transfer function editor
are the draggers. A dragger is a node in the scenegraph which provides interactions
with the objects. They are configured with a built-in user interface. This geometric
representation is used for picking actions and user feedback. There are various drag-
gers for different purposes but all of them have some translation-, scaling- or rotation
functionality. Some of them even combine these features.

Simple draggers for two-dimensional translation and scaling are shown in Fig-
ure 4.2. They are subclasses of SoDragger and they can be used in three different
ways. One option is the connection of a dragger with fields or engines in the scene
graph to establish dependencies. Another common case for the use draggers is their
combination with callback functions which perform user-defined reactions on dragger-
changes. Finally, simple draggers can be combined to build more complex draggers.

As explained, draggers are useful for user-interactions. They are intensively used
within the graphical representation of the transfer function editor and they are applied
to move primitives (especially trapezoids and their parts), to place colors and for
zooming and scrolling purposes. Because a subclass of SoDragger is also a nodekit its
catalog entries can be manipulated. For the draggers in the transfer function editor,
the shapes of the draggers are changed to provide a user-friendly representation.
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In OpenInventor sensors are used to watch out for certain events. If a specified
event like the change of a field’s value happens, user-defined callback functions which
are connected to the sensor will be performed [44].

RadBuilder

The RadBuilder is a platform for the fast creation of medical applications developed
at Siemens Corporate Research in Princeton, NJ (USA). By creating networks within
a visual programming environment, applications can be built in an intuitive way.
A large number of modules of visualization graphs and processing pipelines, as well
as interfaces for external toolkits such as the Insight Segmentation and Registration

Toolkit (ITK) and the Imaging and Visualization Toolkit (IVT) are provided.
Areas of development which are supported by RadBuilder are C+ + modules for

processing and visualization purposes, user interfaces in HTML and scene graphs, as
well as pipelines to connect modules. Figure 4.3 shows the RadBuilder realization
of the simple scenegraph in Figure 4.1 with the resulting rendering. All RadBuilder

A B

Figure 4.3: RadBuilder realization of a simple scene graph (A) and the resulting
rendering (B).

modules represent either a rendering node or a processing engine that is based on
the OpenInventor toolkit. While the rendering nodes are traversed top down from
left to right to perform their actions, the engine updates its output fields if its input
is changed. Nodes and engines can be combined in various ways. Field connections
between modules can be created graphically so that field values are propagated to
other fields.

Each module provides an automatic value-display of its fields and nodes. These
panels can be used to change field-values of the nodes and to set up connections.
More user-friendly interfaces can be built with HTML documents. With the help
of a scripting language like J avaScript, it is possible to create objects like sliders,
checkboxes or comboboxes. This offers a convenient way to display only the attributes
which are interesting for the user of the application [30].
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4.1.2 Network

A RadBuilder project consists of a network of single nodes which are connected to
each other. This section describes the various parts of the transfer function editor
and their connections. A central element for the interaction of the different nodes is
a parametric description of the transfer function editor.

Nodes

As already mentioned OpenInventor is based on a scenegraph. A node is the fun-
damental element of the graph. It contains data and methods that define shape,
property or grouping [44]. Each node is composed of a set of data elements (fields)
which describes the parameters of the node. The transfer function editor is built with
nodes and nodekits. In the following paragraphs the different parts of the transfer
function editor are described.

SoRadTransferEditor and SoRadTFEEditorGU I: The SoRadTransferEditor

node is the control unit of all public settings and of the used primitives (e.g. trape-
zoids) to set up a transfer function. This node provides the functionality to create and
to remove trapezoids. In addition, the primitive’s properties can be edited. SoRad-

TransferEditor contains fields to set up global options like the display of units such
as Hounsfield Units or scalar values. All the functions the user may interact with for
the definition of the transfer function are provided by this node. To simplify the user
interface which is generated automatically by RADBuilder, the SoRadTFEEditorGU I

node is a well-structured and clearly arranged user interface. The fields of the GUI
node have to be connected to the corresponding fields of the SoRadTransferEditor.
Furthermore, the user has the option to create colorbars or to save and load transfer
functions.

SoRadTFEP arams1D: The SoRadTFEParams1D node represents a parametric
description of the transfer function and its settings. This node describes a complete
transfer function with only a few parameters. The parametric description can be
used for the distribution of certain tasks within a client/ server-architecture. One
important field of SoRadTransferEditor is called params. This field contains a So-

RadTFEParams1D node which stores the state of the transfer function. For example,
it keeps the parametric values of a global colorbar.

SoRadLU T1D: SoRadLU T1D has access to the parametric description to set up
a color array and an alpha array. Both fields have to be connected to a node which
generates a one-dimensional look-up-table based on these arrays. SoRadLU T1D has
fields to control the render quality by using a SoComplexity node.

Connections b etween Nodes

After the SoRadTransferEditor and the SoRadLU T1D node are added to the scene,
they have to be connected as shown in Figure 4.4. The RadBuilder application pro-
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vides a SoRadLut node which is part of the volume renderer network. This node
generates the texture for the volume renderer. If the input mode is set to ARRAY ,
the look-up-table will be based on the values of the arrayColor and arrayAlpha field.
This two fields of SoRadLUT1D have to be connected to the corresponding fields in
SoRadLut. In addition, the bitsUsed fields have to be connected to each other to
guarantee the proper array lengths in SoRadLUT1D. The SoRadLUT1D node needs
access to the parametric description to extract color and opacity information for its
computations. To enable this access the params field of SoRadTransferEditor has to
be connected to the tfe Params1D N ode field of SoRadLUT1D.

Figure 4.4: Automatically generated panels of SoRadLUT1D and SoRadTransferEd-

itor. The red marked fields have to be connected to each other. The params field
contains the parametric description of the transfer function editor.

Advanced Network

The basic network can be extended to a more user-friendly application as shown in
Figure 4.5. The use of an orthographic camera and a SoRadViewportGroup enable the
display of the transfer function in a desired layout. In addition, the SoRadExaminer

node can be used for a three-dimensional view of the scene. The SoRadTFEEditorGUI

node offers a well-structured user interface. To use this additional user interface, every
field of the SoRadTFEEditorGUI node has to be connected to the corresponding field
of the SoRadTransferEditor node. Furthermore, a SoRadKeyRemoteExaminer node
provides zoom and rotation functionality for the rendering window and the transfer
function editor window. The quality of the rendered volume image can be controlled
by a complexity node. A switch node allows the rendering of the volume in a lower
quality.
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Figure 4.5: An advanced network with the transfer function editor in a 2D-view and
a 3D-view.

Workflow

The panel of SoRadTFEEditorGUI and the automatically generated panel of SoRad-

TransferEditor provide the functions to add or remove primitives to the scene for
the transfer function setup. These user interface panels are also used to modify the
properties of the primitives and to adjust the colors. All modifications are stored
in the parametric description of SoRadTFEParams1D. Because of a field connection,
the SoRadLUT1D node has direct access to the parametric description and is able
to calculate the proper values for the look-up-table which is passed to the SoRadLut

node.

4.2 Features

In this section, the used geometric primitives for the transfer function setup and the
parametric description are presented. It is also described how the primitives can be
moved and adjusted and what restrictions are implemented. Following, there is a
closer look at various color options. Besides the usage of a global colorbar it is shown
how the colors can be defined for the single primitives. This section closes with the
presentation of some global options.

4.2.1 Primitives

The transfer function setup can be facilitated with various primitive objects such as
linear ramps, trapezoids, splines or gaussian curves. These objects can be adjusted
manually by the user. The underlying rendering algorithm has to provide interactive
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frame rates. An immediate visual feedback is very important to allow goal-directed
work. As the motivation for the development of the 1D transfer function editor
was the simplification of the transfer function setup, trapezoids and ramps are used.
For the user, these primitives which are shown in Figure 4.6 are more convenient to
adjust than splines or curves. The opacity is assigned in respect to the data value.
Trapezoids are common peak shapes for the transfer function setup. Data values
which are covered by the plateau of a trapezoid are mapped to full opacity. The
range of values which is not covered is mapped to zero opacity and not displayed
in the resulting image. A linear increasing or decreasing opacity value is assigned
to the data values covered by the slopes on the left and the right of the trapezoid.
If the plateau of the trapezoid is just a single point the primitive will looks like a

A B

Figure 4.6: The provided primitives for the transfer function setup - a trapezoid (A)
and a simple ramp (B).

tent. This shape can be used to display very narrow regions within the volume. A
box shape, where the plateau of the trapezoid is as long as its base line usually leads
to visual artifacts and should be avoided. Very simple primitives for the transfer
function setup are ramps. The ramp offers limited degrees of freedom because only
two of its edgepoints and its height can be adjusted.

Control

The user can add a number of trapezoids to define the transfer function. Depending on
the zoom and the scroll position of the transfer function editor, the original width and
position of the trapezoid are calculated. The trapezoid is originally placed centered
into the visible area of the transfer function editor. To convert the trapezoid to a
simple ramp the user has to choose isSimple at the trapezoid-properties. This feature
leaves the two edgepoints on the left side of the trapezoid at its place and moves the
right edgepoints to the very end of the range. To realize a user-friendly possibility
to adjust the primitives, their edgepoints and their lines are built as OpenInventor
draggers. Figure 4.7 shows how the elements of the primitives can be translated.
Lines and edgepoints can be picked by the user and translated in the directions which
are indicated by the blue arrows. The only limitation of a ramp is that two edgepoints
are fixed to the right end of the range and cannot be moved in horizontal direction.
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Figure 4.7: The lines and edgepoints are implemented as draggers. They can be
translated in the directions indicated by the blue arrows.

Another property of a primitive determines whether it is active or not. Inactive
primitives are not regarded for the lookup-table calculation. In addition, each added
primitive can be removed if it is not needed anymore.

Restrictions

To avoid the generation of deformed trapezoids as shown in Figure 4.8 some restric-
tions of the dragger movement are implemented. The primitives can only be moved
within a valid range. That means that their height cannot become smaller than zero
or greater than one. This restriction is necessary because the opacity is also defined
within this range. In addition, the primitives cannot pass the left or the right border
of the data range. Another restriction is, that the lower edgepoints cannot enter the

Figure 4.8: Deformed primitives which are avoided by implemented restrictions of
dragger movements.

base-projection of the trapezoid’s plateau as happened at the left primitive in Fig-
ure 4.8. Finally, the left upper edgepoint cannot pass the corresponding right one and
vice versa as happened at the right primitive in Figure 4.8. In all the cases when a
restriction is violated by dragger movements the last valid position is restored.

Parametric Description

The parametric description is a central part of the transfer function editor. In this
element the complete transfer function is saved with a limited set of parameters. If

43



the transfer function setup, the lookup-table generation and the rendering process
are realized within a client/server-architecture the parametric description can be sent
over a network with very low costs. The most important nodes which are stored in
the parametric description are of the types SoRadTrapezoid2D and SoRadGlobalLut.
In the multifield with the SoRadTrapezoid2D nodes, all properties of the trapezoids
are stored. These are for example the edgepoint-positions, the defined colors for the
trapezoids, as well as information if the trapezoids are simple (a ramp) and active. The
SoRadGlobalLut node contains the elements of the global lookup-table of the transfer
function editor. These elements are a multifield with the colors of the lookup-table
and a multifield with the corresponding x-positions. Filled with these entries, the
field with the parametric description can be connected with all the nodes which need
reading or writing access to trapezoid- or global lookup-table information.

4.2.2 Colors

The transfer function editor offers two different ways to assign colors to scalar values.
At first, colors can be applied to the primitives. Second, the user can load a saved
color table. To visualize the current state of the colors and to support the user with
helpful information about primitives and their influence to the look-up-table, the
transfer function editor provides up to three colorbars.

A B

C D

Figure 4.9: The transfer function editor provides up to three colorbars.
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Colorbars

Figure 4.9 (A) shows the first colorbar which is positioned directly below the selected
primitive. The colors are either individually assigned to the primitive or based on
the colors in a global colorbar. The second colorbar represents the colors of the look-
up-table which will be applied to the volume. Overlapping primitives influence the
colors in this colorbar depending on the primitive’s height at the certain scalar value
as shown in Figure 4.9 (B). The third colorbar represents the global colorbar. The
colors of this colorbar can be used by the primitives as illustrated in Figures 4.9 (C,D).

Primitive Colors

The multifield currentTrapezoidColors keeps the colors of the active primitive. For
a trapezoid six different colors can be defined as shown in Figure 4.10 (A,B). In

A B C D

Figure 4.10: Colors can be defined at six places of the trapezoid (A,B). A trapezoid
can adopt the colors of the global colorbar (C) or it can use its own colors (D).

this case the currentTrapezoidColors field has six entries. These values refer to the
four edgepoints of the trapezoid and the midpoints of the trapezoid’s slopes. The

A B

Figure 4.11: The trapezoid is moved to a different position while its colors remain
the same.

first colorbar below the trapezoid visualizes these colors. The colors are interpolated
between two defined colors. For example, if the colors of the upper edgepoints of
the trapezoid are blue and red, then the colorbar below the trapezoid displays the
transition of these colors as displayed in Figure 4.10 (B). The possibilities which are
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offered by the definition of trapezoid colors is shown in Figure 4.11. A trapezoid can
be moved while it keeps its colors.

Colorbar Colors

Figure 4.10 shows a trapezoid which adopts the color of the global colorbar (C) and
another one which uses its own colors (D). The global colorbar can be filled with
user-defined colors. This process is controlled by the fields globalLUTColors and
globalLUTPositions of the SoRadTransferEditor node. Each color which is part of
this colorbar needs an appropriate position where the color is placed. The position of
a color can be adjusted by moving the triangle-shaped draggers which are positioned
below this colorbar. In addition, the user can decide if the alpha values (opacity) of
the primitives should be regarded for the display in the second colorbar and if the
third (global) colorbar should be displayed separately.

4.2.3 Global Options

The SoRadTFEEditorGUI node offers a couple of options in order to control global
properties. The user interface of the transfer function editor provides a zoom- and
scrollbar which is located at the bottom of the transfer function editor window. In
order to adjust a primitive very precisely, the user can use an up to 21-fold zoom
into the panel of the transfer function editor as shown in Figure 4.12. It is also

Figure 4.12: A zoom into the scene. The trapezoid controls the visualization of the
light colored skin of the head.

possible to display different units such as Hounsfield Units, values from zero to one or
different scalar resolutions to facilitate the transfer function setup. The application
properties and the current transfer function settings can be saved as an inventor file
(.iv). Colors, colorbars, primitives and positions are part of the parametric description
which is written on hard disk.
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Chapter 5

Mathematical Foundations

This chapter lays the foundations for the application of a statistical shape model to
transfer function design. Principal Component Analysis (PCA) is used to reduce the
number of parameters of a transfer function significantly. To understand how PCA
works, some knowledge about statistics and matrix algebra is necessary. After the
introduction of the most important mathematical background, the steps of PCA and
its application to the research area of transfer function design are presented.

5.1 Statistics

PCA requires some calculations and quantities from the field of statistics. These are
especially random variables, the mean or expected value, the standard deviation, the
variance and the covariance. In general, statistics are useful to examine big sets of
data. It often is interesting to analyze the relationship between individual data values.
There are also powerful instruments to investigate multivariate data sets.

A random variable can be described as a function that maps events to numbers. If
a person is selected randomly, then the height of this person will be an example of a
random variable. The outcome is a numerical value that depends on chance because
it differs for another chosen person.

The mean is the representation of the average value of a certain set of data. To
show how the calculation of the mean is defined, an example set is helpful,

X = [1 2 3 4 5 6].

Following, X will is used as a reference for the entire set, n denotes the number of
elements and X1 . . . Xn are the single elements of X. To get the mean X̄ of the entire
set X, all elements X1 . . . Xn have to be added and divided by n. The formula for
this calculation is

X̄ =

∑
n

i= 1
Xi

n
.

In a mechanical interpretation the mean can be regarded as the center of gravity.
Besides the indication of a middle point, the mean says nothing about the distribution
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of the individual data values. The two sets of data [1 2 18 19] and [8 9 11 12] have
the same mean (X̄ = 10), although the values of the sets are quite different.

Another important property of the data set is the spread of its data values. The
measure of standard deviation tells the average distance of the values X1 . . . Xn from
the mean. All the squared distances of the individual data values from the mean
have to be added and divided by n − 1 before the positive square root is taken. The
resulting formula for the standard deviations s of a sample is

s =

√

∑

n

i=1
(Xi − X̄)2

(n − 1)
.

For the two sample data sets [1 2 18 19] and [8 9 11 12] the standard deviations are
9.8319 and 1.8257. That shows that the spread of the data values of the first data set
is much higher than the spread of the second data set. If there is a set of data with
only equal entries, then the standard deviation is zero because the individual data
values correspond with the mean.

A very similar measure of the spread of the data values is the variance, defined as

s2 =

∑

n

i=1
(Xi − X̄)2

(n − 1)
.

The variance is just the square of the standard deviation and it is introduced because
it is the basis for covariances which are needed for PCA. Standard deviation and
variance are very useful measures for one-dimensional data sets like the height or the
weight of a number of people. As there are data sets with more than one dimension it
is necessary to have a measure for the statistical relationship between the dimensions.
This allows to analyze if there are statistical dependencies between the height and
the weight of the chosen set of people.

Therefore, the covariance can be calculated between two dimensions. It indicates
the variation from the mean of the dimensions with respect to each other. For a
three-dimensional data set (x, y, z), the covariances between x and y, between x and
z and between y and z can be calculated. The covariance between one dimension and
itself is equal to its variance. The formula of the covariance is quite similar to the
formula of the variance,

co v(X, Y ) =

∑

n

i=1
(Xi − X̄)(Yi − Ȳ )

(n − 1)
.

Because of the fact that the equations for variance and covariance just differs in the
term (Xi−X̄)2 which is replaced by (Xi−X̄)(Yi−Ȳ ), co v(X, Y ) is equal to co v(Y, X).
Regarding to the previous mentioned two-dimensional data set, the dimension H

represents the height and the dimension W represents the weight of a selection of
people. The sign of the resulting co v(H, W ) is most important. If the result is
a positive value, there will be a positive linear correlation which means that both
dimensions increase together. A negative result indicates a negative linear correlation
which means that high values of one dimension are associated with low values of the
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other dimension. If the covariance of two dimensions is zero, both dimensions will be
independent to each other.

As seen before, the covariance is a value determined for two dimensions. If there
are more than two dimensions all covariances can be calculated and put together in
a matrix. For n dimensions there exist n!

(n−2)!∗2
different values for covariances. The

formula for the covariance matrix of a n-dimensional data set is

Cn×n = (ci,j, ci,j = cov(Dimi, Dimj)),

where the matrix Cn×n has n rows and n columns and the xth dimension is represented
by Dimx. The resulting matrix for a dataset with the three dimensions y, x and z is
the square matrix with three rows and three columns

C =





cov(x, x) cov(x, y) cov(x, z)
cov(y, x) cov(y, y) cov(y, z)
cov(z, x) cov(z, y) cov(z, z)



 .

Covariance matrices are always symmetrical about the main diagonal. The values
down the main diagonal represent the variances of the single dimensions [41].

5.2 Matrix Algebra

Besides a basic knowledge of matrices especially eigenvectors and eigenvalues of a
matrix are important to understand the steps of PCA. This section shows how eigen-
vectors and eigenvalues are calculated and what they are good for. It is possible to
multiply two matrices if the one on the left side of the multiplication is a r×s-matrix
and the one on the right side is a s × t-matrix. Providing the matrix is of the right
size, it can also be multiplied with a vector where the matrix is on the left side of

the multiplication. A two-dimensional vector

(

2
3

)

can be interpreted geometrically

as an arrow pointing from the origin (0, 0) to the point (2, 3). If a square matrix A

and a compatible vector �x are multiplied in the form of A�x, then the matrix will be
regarded as a transformation matrix. The result is a vector which is transformed from
its former position. In 2D, the matrix of an angle α counterclockwise rotation about
the origin is defined as

R =

(

cos α −sin α

sin α cos α

)

.

The rotation is performed by the multiplication of the rotation matrix with a vector

�x′ = R�x.

An eigenvector of a matrix is the vector which is changed in its length but not in its
direction (but the vector can point in the opposite direction) when multiplied with
the matrix on the left side of the multiplication.

The matrix A in the multiplication A�x can be regarded as a function which takes
the vector �x as an input parameter and calculates a reflection of �x on itself. All
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multiples of �x are also eigenvectors of the transformation matrix A because they just
have a different length than �x. There are not eigenvectors for every matrix. The
matrix has to be square that corresponding eigenvectors are possible, but not every
square matrix has eigenvectors. If a square n×n-matrix has eigenvectors, then there
will be n of them. Another important property of eigenvectors is that all eigenvectors
of a matrix are orthogonal to each other. This is very important for PCA because
the data will be transformed from their original multidimensional space in a way that
they are expressed in terms of the orthogonal eigenvectors.

As not the length of an eigenvector is important but its direction, the eigenvectors
usually are normalized that they have the length 1. To normalize any vector, it
has just be divided by its length. For small matrices it is not difficult to calculate
the eigenvectors but if the matrices are larger, the eigenvectors will be computed
by iterative methods. Eigenvectors and eigenvalues are closely related and for every
eigenvector there is an eigenvalue or vice versa: There is an eigenvector for every
eigenvalue. The task of finding a number λ and a corresponding vector �x ( �= �0) for a
square matrix that

A�x = λ�x

is called the eigenvalue problem.
In this formula the number λ represents the eigenvalue which can be a real or a
complex number and the vector �x is called the eigenvector of the matrix A. Every
multiple c�x (c can be any real number other than 0) of the vector �x is an eigenvector,
too. As it is not trivial to solve this equation because of the two unknowns �x and λ,
it is necessary to rewrite the equation to

(A − λI)�x = �0,

where I is the identity matrix filled with 1 down its diagonal and 0 anywhere else.
If the matrix A is symmetric, then the resulting eigenvalues will be real numbers.
At this point it is important to mention that PCA is based on the calculation of
the eigenvalues and eigenvectors of the covariance matrix. The covariance matrix is
square, symmetric and positive semidefinite.

As the eigenvalues of a positive semidefinite matrix are ≥ 0, the eigenvalues of a
covariance matrix are real numbers ≥ 0. For the calculation of the eigenvalues the
characteristic polynomial of A is needed which is defined as

pn(λ) = d e t(A − λI),

where n is the degree of the polynomial. Thus, it appears that the characteristic poly-
nomial is calculated as the determinant of the resulting matrix where λ is subtracted
of the main diagonal of A. The eigenvalues of A are the solutions for the equation

d e t(A − λI) = 0.

In the following example the calculation of the eigenvalues of a 2×2-matrix is demon-
strated.

A =

(

3 1
1 3

)
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det(A − λI) =

∣
∣
∣
∣

3 − λ 1
1 3 − λ

∣
∣
∣
∣

= (3 − λ)(3 − λ) − 1 × 1

= λ2 − 6λ + 8
︸ ︷ ︷ ︸

ch a ra c te ristic p o ly n o m ia l

= 0

It is possible to rewrite the equation

λ2 − 6λ + 8 = 0

as
(λ − 2)(λ − 4) = 0.

The equation will be true if λ is 2 or 4 and thus, λ1 = 2, λ2 = 4 are the eigenvalues
of the matrix A and the solutions of the equation pn(λ) = 0.

For some kinds of matrices the calculation of the eigenvalues is not necessary. If
A is a diagonal or triangular matrix, then the values of the main diagonal are the
eigenvalues of A. Another fact is that the sum of the eigenvalues is equal to the sum
of the values in the main diagonal of A. In the case of 2× 2-matrices, it is enough to
find one eigenvalue because the other is the sum of the values in the main diagonal
subtracted by the found eigenvalue.

The corresponding eigenvector �xi to an eigenvalue λi is the solution of the equation

(A − λiI) �xi = �0.

The first eigenvector can be calculated with the equation

(A − 2I) �x1 = �0.

A possible solution of this equation is x1 = −1, x2 = 1 and the resulting eigenvector
is

c

(
−1
1

)

,

where c is a real number other than zero. The equation to find the second eigenvector
is

(A − 4I) �x2 = �0

with the possible solution x1 = 1, x2 = 1 and the resulting eigenvector

c

(
1
1

)

.

The two eigenvectors of the matrix A are orthogonal to each other [1, 41].
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5.3 Principal Components Analysis

After the introduction of the most important mathematical foundations to understand
PCA, it is time for a closer look how this method works. PCA is used in various
fields of applications like neuroscience, geoscience and computer science as a tool for
data analysis. Beside its benefit for pattern identification it is very useful for the
extraction of relevant information from large and confusing sets of data. In the case
of multivariate data sets it is possible to reduce the number of dimensions without
much loss of information. In the space of reduced dimensionality it is much easier to
identify hidden dynamics within the data.

The major goal of PCA is to find the most meaningful bases for the given set of
data. If the data is represented in terms of these bases, then the inner correlation
of the data can be revealed. Often, not all data values are important because of
high redundancy within the data set. PCA calculates the new bases which are linear
combinations of the old ones. This precondition reduces the amount of potential
new bases. Assuming that X is a m × n-matrix which is linear transformed by P

to be re-expressed as a new m × n-matrix Y . The mathematical notation for this
transformation is

PX = Y.

In this equation P is a rotation matrix which transforms X to Y . The following
sections show that the rows of P are the principal components of X and the new
basis vectors for the columns of X. As the problem is defined now, the task is to
find an optimal way to re-express X. Therefore, it is important to choose the right
transformation matrix P .

5.3.1 Matrix of Observations

In the last section the matrix X was introduced without an exact description what
kind of values are the elements of this matrix. The input values of the principal
components analysis are lists of measurements made of a certain set of individuals or
objects. For instance, consider the measurement of the height h and the weight w of
a collection of n individuals. Then, the matrix X is the matrix of observations with
the columns as observation vectors X1 . . . Xn. This matrix can be written as

X =

(
h1 · · · hn

w1 · · · wn

)

.

Figure 5.1 shows a possible two-dimensional scatter plot of the observation vec-
tors. The distribution of the points indicates the redundancy in the data. If the
arrangement of the points looks like a circular-shaped point cloud, then there will be
little or no redundancy. If the points are located around a line, then there will be high
redundancy in the data. For example, a scatter plot of h and temperature most likely
leads to a circular shape. In contrast, a scatter plot of weight in kilogram and weight
in pounds results in perfectly aligned points. As the points of the scatter plot of w

and h appear like an ellipse, there is some redundancy in the data. The idea behind
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dimensionality reduction is the expression of redundant data as a linear combination
of the original data. Thus, the data can be presented more meaningful [26].

Figure 5.1: 2D scatter plot of the observation vectors.

5.3.2 Mean and Covariance

The next step is the calculation of the mean for the dimensions of the data set. With
the definition of the observation vectors it is possible to calculate a vector M with
the means of all dimensions as

M =
1

n
(X1 + . . . + Xn).

This mean vector M has to be subtracted from all observation vectors Xi for i = 1 . . . n

with the formula
X ′

i = Xi − M

to build a new matrix
D = (X ′

1 . . . X ′

n).

Matrix D is the mean-deviated representation of the matrix of observations X. Fig-
ure 5.2 shows the two-dimensional scatter plot of the mean-deviated observation vec-
tors. The mean vector M is the new center of the scatter plot. As a result the means
of the single rows of the matrix D are zero. With the help of the mean-deviated
matrix D, the covariance matrix can be calculated. The formula

C =
1

n − 1
DDT

calculates the positive semidefinite covariance matrix C.
C is a symmetric m × m-matrix, where m is equal to the number of dimensions

of the data set. For instance, the covariance matrix for the data set with the height
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Figure 5.2: 2D scatter plot of the mean-deviated observation vectors.

and the weight is a 2 × 2-matrix. As introduced in the previous Section 5.1, each
entry of C along the main diagonal represents the variance of one dimension and each
other entry describes the covariance between two dimensions. Positive off-diagonal
values of the covariance matrix indicate that the values of two dimensions increase
together. Negative values show that the values of one dimension increase if the values
in the other dimension decrease. Z ero entries indicate that the two dimensions are
independent of each other.

Another aspect which is important for PCA is the total variance of the data. This
measure is calculated by the sum of the diagonal entries of the covariance matrix and
is called the trace tr(C) of the matrix [26].

5.3.3 PCA Core Calculations

As the goal of PCA is the removal of redundancy, the data have to be transformed
in a way, that the corresponding covariance matrix is a diagonal matrix where all
off-diagonal entries are zero. If this is achieved there will be no redundancy in the
data anymore. This can be realized with the already mentioned change of the bases.

A matrix P is needed which transforms the mean-deviated matrix D with the
equation

PD = Y

in way, that the covariance matrix of the new data Y will be diagonal. The rows
of Y as the new dimensions of the data are arranged in order of decreasing variance
and they are independent of each other. These tasks can be fulfilled by a matrix
P where the rows are the unit eigenvectors of the covariance matrix of D. The
eigenvectors are ordered by the values of the corresponding eigenvalues. This means
that the transposed eigenvector in the first row of P is the one with the highest
eigenvalue. This vector is called the first principal component. With the help of the
first principal component, the first row or dimension of Y is calculated. The second
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principal component is used for the calculation of the second row of Y , and so on.
Let uT

1 be the first row of the transformation matrix P which is the first principal
component and y1 be the first row of the new data matrix Y . Then y1 can be
calculated with the equation

y1 = uT
1 D.

This shows that y1 is a linear combination of the mean-deviated data values weighted
by the principal component u1. The computation of the other entries of Y can be
done in an analog way. Thus, Y is the final data matrix with the dimensions in its
rows and the data items in its columns.

Figure 5.3: 2D scatter plot of the mean-deviated observation vectors and the eigen-
vectors of the covariance matrix.

Figure 5.3 shows the two-dimensional scatter plot of the mean-deviated observa-
tion vectors and the eigenvectors of the covariance matrix as dashed lines. The fact
that PCA assumes that the direction with the largest variance is the most important
one is illustrated. The first principal component is a line along the maximal variance.
Smaller variances in a n-dimensional space are marked by the following principal
components which are orthogonal to all other principal components.

It can be recognized, that the variance along the direction of the first princi-
pal component is higher than the variance along the second one. If there is a n-
dimensional data set where n > 2, then the first few principal components will ex-
press most of the variance in the data. The last principal components point in the
directions with less variance. After the transformation of the original data to the
new data matrix Y , it is possible to represent the data in terms of the eigenvectors
instead of in terms of their previous axes. The mean-deviated original data can be
re-calculated with the equation

D = P−1Y.

The inverse of P is equal to the transpose of P because the elements of P are the
unit eigenvectors of the data set and the equation can be written as

D = P T Y.
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As D represents the mean-deviated data, the last thing to do to get the original
data back is the addition of the mean vector M . Thus, the final equation for the
re-calculation of the original data X is

X = (P T Y ) + M.

To summarize PCA, its steps are data acquisition, subtraction of the mean, cal-
culation of the covariance matrix, calculation of the eigenvalues and eigenvectors,
building of the transformation matrix, deriving of a set of transformed data and the
recalculation of the original data [26, 41, 40, 14].

5.3.4 Dimensionality Reduction

In the last section the building of the transformation matrix P with the eigenvectors
was shown. PCA can be used to reduce the dimensionality of the data. The principal
component is the eigenvector with the highest eigenvalue. If the eigenvectors are
ordered by the value of their corresponding eigenvalue, then the less important ones
can be ignored without much loss of information. This can be done because the main
variances in the data are expressed by the first few principal components. If there are
originally n dimensions and only p eigenvectors are chosen to build the transformation
matrix P , then the final data set will be reduced to p dimensions.

Now the interesting question is how the importance of an eigenvector can be
determined. The percentage of the importance of an eigenvector is the corresponding
eigenvalue divided by the sum of all eigenvalues. As the results are values in the range
[0, 1], they have to be multiplied by 100. In the extreme cases that the percentage
is 100 or 0 percent, the corresponding eigenvector expresses the total variance of the
data or no variance at all. The decision how many eigenvectors should be used can
be made by the calculation of the cumulative percentage of total variance. Assuming,
there are the five ordered eigenvalues

[6.2412 1.2318 0.9857 0.3196 0.1483].

Table 5.1 shows the percentage of variance of the sample eigenvalues and the cumu-
lated percentages. A common way for the decision how many eigenvectors should be

eigenvalue percentages cumulated percentages
6.2412 70.55 70.55
1.2318 13.92 84.47
0.9857 11.14 95.61
0.2396 2.71 98.32
0.1483 1.68 100.00

Table 5.1: Eigenvalues, percentage of variance and the cumulated percentage for a
sample set of eigenvalues.

used, is to set a certain goal-percentage. If the reduction of the dimensionality has
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to preserve 95% of the data’s variance in the example, then the eigenvectors for the
first three eigenvalues will be taken to build the transformation matrix. The result is
a reduction from five to three dimensions.

Other common methods for choosing the number of eigenvectors are the Kaiser’s

rule [16] and the scree test [3]. The Kaiser’s rule keeps just the eigenvectors with
eigenvalues > 1 and the scree test is based on the steepness of the plotted eigenval-
ues [14, 5].
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Chapter 6

Implementation

Up until now the transfer function editor with its framework was presented and Prin-
cipal Component Analysis was introduced. This chapter describes the implementation
of a PCA node and its integration into the existing framework. There is also an in-
troduction of the used library for matrix calculations and a presentation of the node’s
user interface. To close this chapter the typical workflow of PCA in combination with
the transfer function editor is shown.

6.1 Matrix Library

As introduced PCA is based on several matrix calculations such as the identification
of eigenvalues and eigenvectors, matrix multiplications or the building of the trans-
posed matrix. The free Newmat C++ matrix library was the choice to facilitate the
matrix calculations. It supports various types of matrices like RectangularMatrix,

UpperTriangularMatrix, LowerTriangularMatrix, DiagonalMatrix, SymmetricMatrix,

BandMatrix, UpperBandMatrix, LowerBandMatrix, SymmetricBandMatrix, Identity-

Matrix, as well as RowVector and ColumnVector.
Newmat is supposed to help scientists and engineers with the manipulation of

matrices by using standard matrix operations. The element type of the matrices has
to be either float or double. Newmat especially is optimized for large matrices from
10×10-matrices upwards. Some of the supported operations are multiplication, addi-
tion, subtraction, concatenation, conversion between types, submatrix, determinant,
singular value decomposition and eigenvalues of a symmetric matrix [31]. Another
popular matrix library is the source code to the book Numerical Recipes in C++ [36].

6.2 PCA Node

As the functionality of PCA is implemented in an OpenInventor node, it can be
integrated in an existing RadBuilder network. The PCA node needs just a field-
connection with the parametric description which was introduced in Section 4.2.1.
This field is hold by SoRadTFEditorParams1D. Figure 6.1 shows how the PCA node
is integrated in the network. If this field-connection is established, then the PCA
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node is able to extract the relevant information for the dimensionality reduction. The
access to the parametric description also allows the manipulation of this field. This
offers the functionality that the PCA node can write back the result of its calculations.
Changes in the parametric description lead automatically to a new rendering process
and the adjustment of the transfer function primitives. To understand how the PCA

Figure 6.1: The integration of the PCA node into an existing network.

node works, it is helpful to have a closer look at its most important fields.

SoSFNode tfeParams1D Node: This field is the most important one because it is
the source of the input data and the target for the output data. SoRadTFEditor-

Params1D is connected with the parametric description in SoRadTransferEdi-

tor and provides this connection for SoRadLUT1D and SoRadPCA. SoRadPCA

extracts the parameters of the transfer function from the parametric descrip-
tion. These parameters are the x-positions of the trapezoid-points as well as
the heights of the trapezoids. After the calculation of the new transfer function,
the new parameters are written back to the parametric description. This leads
to a remote control of the trapezoids defining the transfer function and initiates
a new rendering process.

SoSFInt32 numTFs: The number of transfer functions which are used for the PCA
is stored in this field. This value represents the number of data items for the
matrix of observations. Thus, the value accords with the number of columns of
the matrix of observations.

SoSFInt32 numParamsPerTF: The number of rows of the matrix of observations
is defined by the number of parameters per transfer function. Usually, the
number of parameters is the number of trapezoids multiplied with the number
of parameters per trapezoid. One trapezoid is defined by five parameters which
are its height and the x-coordinates of its four edge-points. This means that the
value of numParamsPerTF accords with the dimensions of the data set. All
input transfer functions for the PCA have to be equal in the number of their
parameters.
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SoSFFloat informationPercentage: This field contains a value between 0 and 1
which is crucial for the dimensional reduction. The value represents the cu-
mulated percentages of the data’s variance which has to be preserved in the
transformed data. If a value of 0.95 is chosen, the final data will contain 95%
of original data’s variance.

SoMFFloat percentages: The percentages of the contribution to the total variance
of all eigenvectors are stored in this field in decreasing order. That means that
the number of entries is equal to the number of eigenvectors and the first entry
indicates the amount of variance which is represented by the first principal
component. The cumulated percentages are calculated with the values in this
field.

SoSFInt32 numEigenvectors: Based on the cumulated percentages, the necessary
number of eigenvectors is stored in this field. The final data will contain as much
dimensions as this field indicates. With the number of eigenvectors, the data’s
variance with at least the percentage which is stored in informationPercentage

is ensured.

SoMFFloat data: The parameters of all attached transfer functions are saved in
this field. Thus, the field is the base building the matrix of observations.

SoSFFloat minH eight and SoSFFloat maxH eight: Without little adjustments
the output transfer function can cause trapezoids with a height of more than 1.0
or less than 0.0 for some configurations. To avoid this, the maximal height and
the minimal height of the trapezoids of all input transfer functions are stored.
If the height of an output trapezoid is out of this range, it will be adjusted to
the value of minHeight or maxHeight.

SoMFFloat mean: This multifield contains the means for each dimension of the
data set.

SoMFFloat dataAdjust: The mean is subtracted from the corresponding values in
the data-multifield and the results are stored in dataAdjust. This field contains
the values of the mean-deviated data matrix.

SoMFFloat eigenvalues: This field stores the calculated eigenvalues of the covari-
ance matrix for the mean-deviated data matrix.

SoMFFloat eigenvectors: The values of the corresponding eigenvectors are stored
in this multifield.

SoMFFloat featurevector: Only the eigenvectors which are necessary to preserve
the required informationPercentage are contained in this field. That means the
number of eigenvectors is determined by numEigenvectors.

SoMFFloat fi nalDataMins and SoMFFloat fi nalDataMaxs: As it is not the
goal to calculate back a data set which contains the same amount of transfer
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functions as the number of input transfer functions, it is not necessary to use
the total set of the final data. It is exactly one transfer function needed. These
two fields save the minimal and the maximal value of each row of the final
data matrix. The number of entries of each multifield is equal to the value in
numEigenvectors.

SoMFFloat finalDataAdjust: For the calculation of the output transfer function
finalDataAdjust represents the selection of values from the final data matrix.
The values are user-defined within the range of the corresponding values in
finalDataMins and finalDataMaxs.

SoMFString TFnames: Every attached transfer function can get a user-defined
name. This provides the possibility to apply an already defined transfer function
to a the connected data set.

After this presentation of the node’s elements the steps of the PCA implementation
are described. At first, the data matrix has to be built. Therefore, it is necessary to
parameterize the transfer functions. In the presented implementation each trapezoid
of a transfer function has five parameters, namely the x-positions of its edgepoints
and its height. These parameters are regarded as the random variables.

Assume xnm are the elements of the data matrix where n is the number of the
parameters of one transfer function and m is the number of different transfer functions.
Then, the data matrix is defined as

X =






x11 . . . x1m

...
. . .

...
xn1 . . . xnm




 .

The second step is the calculation of the means for each row of the data matrix. It is
necessary to subtract the means from the corresponding entries in X to get the mean-
deviated data matrix D. After this step the covariance matrix C of D is calculated.
The covariance matrix is a symmetric matrix with n rows and n columns. With the
support of the matrix library the eigenvalues and eigenvectors of C are calculated.
Now the number of eigenvectors is chosen, based on the cumulated percentages of
the corresponding eigenvalues. If i eigenvectors are chosen with 0 < i ≤ n, then the
transformation matrix P will be a n× i-matrix with the eigenvectors as columns. The
two matrices for the calculation of the final data matrix Y are built and the formula

Y = P T D

produces a matrix with i rows and m columns. In other words, the number of rows
is equal to the number of chosen eigenvectors and the number of columns is equal to
the number of transfer functions.

Following, the two multifields finalDataMins and finalDataMaxs are filled with
the minimal and the maximal values of each row of Y . Let n1 . . . ni be the entries in
finalDataMins and m1 . . . mi be the entries in finalDataMaxs. Then, it is up to the
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user to define an i-dimensional vector �v where the first entry is a value in the range
[n1, m1], the second entry is a value in the range [n2, m2] and so on. How the user
can define this vector with i sliders is shown in the following section.

The last step is the calculation of the vector �t which contains the values for the
output transfer function with the formula

�t = P�v.

As all the input transfer functions have n parameters, �t is a n-dimensional vector.
The values of �t can be written to the parametric description which is connected to
the PCA Node. The change of the parametric description initiates an adjustment of
the trapezoids and a new rendering process.

6.3 User Interface

The user interface of the PCA node is kept clear and simple. Figure 6.2 shows the
two appearances of the interface. Initially, the windows display the state shown in

A B

Figure 6.2: The user interface of the PCA node. Initially, the window for the man-
agement of the transfer functions is displayed (A). The window with the sliders (B)
facilitates the generation of the output transfer function.

Figure 6.2 (A), with zero entries in the fields for Number and Parameter. If a transfer
function is connected to the PCA node, it will be saved by a click on the save button.
The Number and Parameter fields will display 1 and the number of the transfer
function’s parameters. Following transfer functions will be only saved if the number
of parameters corresponds to the number of parameters of all previous saved transfer
functions. The implementation of the save-functionality takes care about the number
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of parameters, the connection to a valid transfer function, the naming of the transfer
functions and avoids the multiple saving of identical transfer functions. All saved
transfer functions can be deleted with the clearAll button.

The lower part of the window provides buttons for the renaming and the removal
of saved transfer functions. With the combobox for the saved transfer functions
the application of each saved transfer function is possible. This feature especially is
interesting if a new CT data set is loaded because it is very easy to apply transfer
functions which were designed for other data sets. Following, the selected transfer
function can be adjusted to show the features of interest of the new data set optimally.

If at least two transfer functions are saved, the Apply link can be clicked to display
the slider window shown in Figure 6.2 (B). The number of sliders is equal to the
number of eigenvectors which is determined by the cumulated percentages. At the
right of the sliders the percentage of information of the individual eigenvector is
displayed. This it the percentage of the original data’s variance which is preserved
with this eigenvector. The position of the slider represents a value in the range [0, 1].
Let s be the value of the first slider, min the first entry of finalDataMins and max the
first entry of finalDataMaxs. As the slider is used for the definition of a value between
two corresponding entries in finalDataMins and finalDataMaxs, the first value v1 for
the vector �v that is inroduced in the last section is calculated with the equation

v1 = min + s × (max − min).

The other sliders are used for the calculation of the further elements in �v in the same
fashion. A click on the Perform link leads back to the transfer function management
window and it is possible to define more transfer functions.

6.4 Workflow

Two possible scenarios of using the PCA node are imaginable. For both scenarios
it is necessary to load at first a data set with the SoRadLoadRaw node. This node
needs information about the file location, the used bits, the voxel type (e.g. unsigned
short) and the resolution of the data set. Furthermore, a model matrix needs to be
defined which is derived from the resolution and the slice thicknesses.

The next step is the setup of a transfer function with an arbitrary number of
trapezoids. If a good transfer function is defined which shows the features of interest
in the data set, the transfer function can be saved with the PCA node as described
in the previous section. Following, it is possible to define more transfer functions for
the same data set which leads to the display of different features of interest. If a
certain number of defined transfer functions is saved, the PCA node can perform its
calculations. As a result, it is possible to navigate through the space of appropriate
transfer functions for the one data set with a significant reduced set of parameters.
This navigation is done with the user friendly sliders. Of course, it also is possible to
discover similar data sets with the recorded transfer functions and the slider control.

The other way of using the PCA node’s functionality is to define transfer functions
for different data sets which are recorded for the same examination purpose. In the
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following chapter, a couple of CTA data sets of the human head are taken. For each
of the data sets one transfer function is defined which shows existing aneurysms in an
optimal way. After the PCA calculations are performed, it is possible to visualize the
aneurysms in a data set of the same type with only one single slider. The physician
can use the slider for the setup of the transfer function. This process is now as simple
and intuitive as the greyvalue windowing for slice images.

64



Chapter 7

Results

In this chapter the results of the presented work are shown. First of all, the specific
goal is formulated. Followed by a description of the examined data sets. The transfer
functions and the corresponding renderings of the input data sets are displayed. After
the PCA node has performed its calculations the results are applied to independent
data sets. The visualization of these data sets is presented for different slider positions.
Decimal numbers in this chapter are rounded to four numbers behind the decimal
point.

7.1 Goal

The visualization of intracranial aneurysms is the clinical examination scenario. A
set of 14 CTA data sets is used to show how the Principal Component Analysis is
used to reduce the number of parameters of the transfer function immensely. Before
the acquisition of CTA data, a radiopaque substance is injected for the visualization
of the blood vessels. This is necessary to isolate the blood vessels because they have
the same density as the surrounding tissue. An aneurysm is a localized abnormal
dilatation or ballooning of a blood vessel. Aneurysms often occur in the arteries at
the base of the brain.

As the major goal is the simplification of transfer function setup it is interesting to
determine how many parameters have to be adjusted by the user to navigate through
the space of appropriate transfer functions. Because there is a lot of redundancy in
the input transfer functions most of the variance of the input data can be expressed
with the help of one slider in the investigated setup. As the input transfer functions
for a given clinical scenario can be produced by experts, the physician just has to
move this slider to generate the most meaningful image for a given data set. With
this technique the transfer function setup is not a time-consuming process for the
physician anymore.
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7.2 Input Transfer Functions

The input data are 12 CTA data sets with the resolutions and used bits as presented
in Table 7.1. For each of the data sets a transfer function which visualizes the bones
and the blood vessels is defined. Two trapezoids are used to visualize these features of
interest. The trapezoid for the bones has the same position for all transfer functions
but the trapezoid for the blood vessels is individually adjusted.

data set resolution bits
CTA 1 512 × 512 × 121 12
CTA 2 512 × 512 × 246 12
CTA 3 512 × 512 × 121 12
CTA 4 512 × 512 × 138 12
CTA 5 512 × 512 × 189 12
CTA 6 512 × 512 × 167 12
CTA 7 512 × 512 × 62 12
CTA 8 512 × 512 × 85 12
CTA 9 512 × 512 × 31 12
CTA 10 512 × 512 × 173 12
CTA 11 512 × 512 × 64 12
CTA 12 512 × 512 × 109 12

Table 7.1: The resolutions and bits of the input data sets.

Figure 7.1 shows the trapezoid which assigns opacity and color to scalar values
which represent the bones. It covers the range of Hounsfield Units from 886 to 3072

Figure 7.1: The trapezoid assigns opacity and color to scalar values which represent
the bones.

and is parameterized as [0.4662, 1, 0.5451, 1, 1]. The parametrization of a trapezoid
has five entries. It starts with the two lower edgepoints, followed by the two upper
edgepoints and the height. This order is chosen arbitrarily and can be replaced by
any other consistent parametrization. The value for the trapezoid’s height represents
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the opacity that is assigned to the covered scalar values. With the parametrization
value of the edgepoint pe, the corresponding Hounsfield Unit HU e can be calculated
with the formula

HU e = −1024 + pe × 4096.

The trapezoid is using its own colors as described in the earlier Section 4.2.2. These
colors are assigned to achieve a transition from black to white along the left slope.

In contrast to the trapezoid that represents the bones, the one that represents the
blood vessels differs for all input transfer functions. The exact parametrization of this
trapezoid in the transfer function definition for each data set is listed in Table 7.2.
A transition from black to red along the left and the right slope of this trapezoid
is achieved with the assigned colors. Each of the input transfer functions is defined

dataset parametrization of the blood vessels trapezoid

CTA 1 0.2801 0.3051 0.2894 0.3005 0.2274
CTA 2 0.2893 0.3656 0.3198 0.3243 0.1130
CTA 3 0.2705 0.3069 0.2830 0.2935 0.2012
CTA 4 0.2790 0.3253 0.3023 0.3113 0.3498
CTA 5 0.2743 0.3243 0.2914 0.3077 0.3761
CTA 6 0.2745 0.3431 0.2967 0.3243 0.2449
CTA 7 0.2926 0.3589 0.3198 0.3243 0.1399
CTA 8 0.2856 0.3202 0.2924 0.3103 0.2099
CTA 9 0.2773 0.3178 0.3023 0.3113 0.5772
CTA 10 0.3097 0.3599 0.3198 0.3292 0.1662
CTA 11 0.2949 0.3635 0.3198 0.3243 0.1487
CTA 12 0.2794 0.3132 0.2926 0.3003 0.1853

Table 7.2: The parametrization of the trapezoid that assigns opacity and color to
scalar values which represent the blood vessels. This trapezoid is individually defined
for each data set.

with two trapezoids and thus, it has ten position parameters. In Figure 7.2 and in
Figure 7.3 the images for the input data sets, rendered with the corresponding transfer
functions are presented. These images provide a good visualization of the blood vessel
and in most of them aneurysms can be recognized clearly. All images are rendered
with a ray casting implementation.
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CTA 1 CTA 2

CTA 3 CTA 4

CTA 5 CTA 6

Figure 7.2: Images for the data sets CTA 1 - CTA 6 rendered with the presented
transfer functions.
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CTA 7 CTA 8

CTA 9 CTA 10

CTA 11 CTA 12

Figure 7.3: Images for the data sets CTA 7 - CTA 12 rendered with the presented
transfer functions.
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7.3 Dimensionality Reduction

The presented parameterizations of the input transfer functions are the elements
of the matrix of observations. After the calculation of the covariance matrix and
the eigenvalues, the cumulated percentages are calculated to determine how many
eigenvectors have to be used for building the transformation matrix. Because each
input transfer function is represented by ten parameters, the covariance matrix is a
10 × 10-matrix with ten eigenvalues and ten corresponding eigenvectors.

For the presented example five of the eigenvalues are non-zero and their eigen-
vectors describe the variances in the data. The percentages of variance which are
represented by the five most principal components are listed in Table 7.3. More than

principal component percentages cumulated percentages
1st 95.6247 95.6247
2nd 3.9745 99.5992
3rd 0.2855 99.8847
4th 0.0933 99.9780
5th 0.0220 100.0000

Table 7.3: The percentage of the variance which is represented by the first principal
components.

95% of the variance can be expressed by the first principal component. With this re-
sult it is sufficient to provide one single slider for the user. This single slider facilitates
the transfer functions setup extremely. Very meaningful images for the visualization
of aneurysms are achieved by the generated output transfer functions.

7.4 Visualization Results

The slider is used to generate the output transfer functions for the two independent
data sets listed in Table 7.4. Independent means that they are different than the data
sets which are used as input. Because it is not possible to show the results of the

data set resolution bits
CTA 13 512 × 512 × 101 12
CTA 14 512 × 512 × 77 12

Table 7.4: The resolutions and bits of the data sets for the output images.

slider movement, the generated images are shown for six equidistant slider positions
as illustrated in Figure 7.4. The positions are labeled with the letters A-F according
to the headline letters of the Figures 7.5 and 7.6. This means that the image A
is generated with the output transfer function for the slider position A. Figure 7.5
presents the images for data set CTA 13 rendered with the different output transfer
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Figure 7.4: Output transfer functions are generated for six positions of the slider.

functions. The same transfer functions are used to render data set CTA 1 4 . F ig ure 7 .6

disp lay s the resulting imag es.

In the case of b oth data sets meaning ful results are g enerated. The aneury sms

can b e identifi ed clearly in each imag e, b ut the op acities and the rang e of disp lay ed

scalar v alues diff er slig htly from one imag e to the nex t. The p hy sician can select the

result he lik es b est w ith an easy mov ement of one sing le slider.
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A B

C D

E F

Figure 7.5 : The generated transfer functions are used to render data set CTA 13 .
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A B

C D

E F

Figure 7.6: The generated transfer functions are used to render data set CTA 14.
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Chapter 8

Co n c lu sio n

This chapter summarizes the major achievements of the work presented in this thesis.

At first, this is the development of an easy-to use transfer function editor. S econd,

an application-driven techniq ue for the design of transfer functions is introduced.

Conclusions follow and the chapter closes with an outline of future challenges which

are proposed to be done to improve the process of transfer function setup.

8.1 S u m m ary

At the beginning of this work there is a motivation and the goal is formulated. It is

shown that the physicians can greatly benefit from 3D visualization if some presump-

tions are realized. Especially the reproducibility of the whole visualization process,

the availability of intuitive applications and the speed factor are very important for

them.

Following, the focus is on computed tomography and algorithms for direct vol-

ume visualization. Computed tomography is introduced because it is a very popular

recording techniq ue for the acq uisition of data sets for medical examinations. Algo-

rithms for direct volume visualization such as ray casting or the shear-warp factor-

ization are used for the generation of images for the data sets.

In general, transfer functions are either one-dimensional or multidimensional. The

theory of both classes is introduced and the benefit of multidimensional transfer func-

tions is described. It is illustrated how the consideration of the gradient magnitude

leads to a clear identification of the boundaries in the data. For the design of transfer

functions, tools based on interactive adjustment are widespread in scientific and com-

mercial applications. V arious approaches for the automatic or semi-automatic design

of transfer functions have been developed in the last few years. These are either

image-driven or data-driven techniq ues. Image-driven techniq ues are based on the

image generation with different parameter settings. These approaches mainly differ

in the way how the parameters are chosen. Data-driven techniq ues analyze the data

instead of generated images. Thus, they are independent of image-related parameters

such as pixel resolution or viewing position.

The developed 1D transfer function editor provides various functionalities for the
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manual setup of transfer functions. Its implementation as OpenInventor nodes ensures
high fl exibility and portability. The used geometric primitives for the transfer function
definition are trapezoids and ramps. As soon as they are added to the scene, they
can be adjusted intuitively because the primitive elements (edgepoints and lines) are
implemented as OpenInventor draggers.

Two different ways for the color-coding of the different tissues are implemented.
At first, it is possible to define several colors for each primitives. These colors are
bound to the primitives. Second, the primitive can adopt colors which are defined in a
global colorbar. The final color which is used for the rendering process is displayed in
a separate colorbar. All relevant information about the transfer function are stored in
a parametric description. Each node which has a connection to this parametrization
is able to extract the relevant information.

To be able to relate to the steps of P rincipal Component Analysis some mathemat-
ical foundations are necessary. In the range of statistics the mean and the variance of
a data set are important basics. For a multivariate data set, the covariances can be
calculated for the composition of a covariance matrix. Furthermore, some matrix al-
gebra is required. Especially the calculation of the eigenvalues and the corresponding
eigenvectors of the covariance matrix is important.

The P rincipal Component Analysis is implemented as an OpenInventor node, too.
An intuitive user interface allows the acquisition of the input data via connections to
the parametric descriptions of manually defined transfer functions. The input data
are the parameterizations of the geometric primitives of of the transfer functions for
several data sets. These data sets are recorded for a specific clinical examination. The
collected parameters represent a point cloud in a high-dimensional space. P rincipal
Component Analysis is used for the calculation of the principal axes of this point
cloud. Because the input transfer functions contain a lot of redundancy it is possible to
reduce the degrees of freedom in a high-level model for the transfer function definition
significantly.

To demonstrate the benefit of the presented method, 14 different CTA data sets
are used. The clinical scenario is the visualization of aneurysms. For 12 of these data
sets transfer functions are manually defined and stored for the P CA calculations. The
result is, that one slider is enough to produces output transfer functions which lead
to meaningful visualizations. Images of two independent data sets are presented for
several output transfer functions. All these images provide a good visualization of
the aneurysms with slight but noticeable differences from one slider position to the
next.

8.2 Conclusions

The developed transfer function editor facilitates the manual adjustment of the input
transfer functions. Because of its intuitive set of functionalities this can be done
very fast by experts for different clinical scenarios. The used primitives combined
with the different possibilities of the color assignment build an easy-to-use but very
powerful tool for the transfer function setup. Furthermore, the transfer function editor
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is highly extendable and very portable because it is implemented as platform- and
window system-independent OpenInventor nodes.

The node which performs the PCA calculations can be connected to the parametric
description of the transfer function. W ith a clear user interface it is possible to
save any number of transfer functions. The only presumption is, that all transfer
functions have the same number of parameters. A combobox allows the selection of
any previous saved transfer function. This can facilitate the transfer function setup
for a new data set immensely if there is already a good amount of saved transfer
functions. It is possible to apply a previous defined transfer function to the new data
set before making final adjustments to produce an optimal image. The PCA node is
independent of a certain parametrization. It needs only an access to the parameters
of the transfer functions to work with any other transfer function editor.

The presented image-driven and data-driven techniques for the automatic or semi-
automatic transfer function design can help to find a good transfer function. Image-
driven techniques especially are useful for unexperienced users. W ith these ap-
proaches, the generation of good images is possible for them. The drawback of
image-driven techniques is that most of them are not really fast and the process
is hardly reproducible. A problem of the data-driven techniques is, that the provided
user interfaces often are very complex and the demands on the user are too high.
Both classes of approaches do not integrate the knowledge about what anatomical
or functional structures are interesting for the user. Therefore, an application-driven
technique is presented in this thesis. An expert can set up good transfer functions for
several data sets for a specific clinical scenario.

W ith this approach, the physician who asks for clear and fast solutions can gen-
erate various transfer functions with the easy movement of a very limited number
of sliders. In the presented example of the visualization of aneurysms, one single
slider was suffi cient to produce very meaningful images. The slider interaction makes
transfer function setup as simple and intuitive as the greyvalue windowing for slice
images.

8.3 Future Challenges

There are still some aspects that are worth a further investigation but it was not
possible to address all of them in this work. First of all, it is interesting to evaluate
a larger collection of data sets and to investigate other clinical scenarios than the
visualization of aneurysms.

To avoid the necessity of the manual setup of the input transfer functions, the
presented algorithm could be combined with automatic or semi-automatic methods.
For example, image-driven techniques can be integrated to allow non-experts the
definition of input transfer functions.

As described, multidimensional transfer functions can be used for the generation
of images of a higher quality. Especially the clear isolation of neighbored tissues is
achieved by the consideration of the gradient magnitude. If the reading and writ-
ing access to the parameters of a multidimensional transfer function is realized, the
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presented algorithm will be able to handle multidimensional transfer functions, too.
Finally, semantic models for transfer functions can improve the transfer function

setup for the non-expert user. These models can be used for a really goal-oriented
definition of the transfer function. For a specific, well-defined application scenario
an intuitive semantic in natural language can be provided by the user interface. The
user choose the tissue he wants to visualize from a list and gives some orders for the
way this tissue should be displayed. These orders can include formulations like try to

sh a rpen th e vessels or m a ke th e bra in tissu e m ore tra n spa ren t.
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Kurzfassung

Diese Arbeit untersucht die Anwendung der Principal Component Analysis auf
Transferfunktionen. Hierfür wird initial eine Anzahl von Transferfunktionen für
Datensätze aus einem ausgewählten Bereich und für ein bestimmtes Anwendungs-
gebiet manuell eingestellt. Der Prozess des Transferfunktionsdesigns ist losgelöst
von einer speziellen K enntnis der Domänen einer Transferfunktion (Intensität,
G radientenbetrag usw.). Aufgrund eines hohen Freiheitsgrades und des Fehlens von
zielorientierten Prozessen ist das Design von Transferfunktionen schwierig.

Existierende Ansätze ermöglichen automatisches und teilautomatisches Design
von Transferfunktionen. Diese können in bildbasierte und datenbasierte Techniken
unterteilt werden. U m sich jedoch auf die anatomischen und funktionalen Strukturen
zu konzentrieren, die für den Benutzer interessant sind, ist es nötig, anwendungs-
basierte M ethoden einzuführen. Für ein genau definiertes Anwendungsszenario ist es
möglich, die K omplexität der Transferfunktionsgenerierung zu reduzieren, indem der
K lassifizierungsprozess auf die interessanten Strukturen für eine bestimmte U nter-
suchung eingeschränkt wird.

Hierfür werden zunächst Transferfunktionen für eine initiale Sammlung von
Volumendatensätzen, welche zu einem bestimmten klinischen Zweck aufgenommen
wurden, manuell eingestellt. Eine einzelne Transferfunktion wird durch eine An-
zahl von Parametern geometrischer Primitive (R ampen oder Trapeze) repräsentiert.
Jede dieser individuell eingestellten Transferfunktionen kann als Punkte-Sample im
(vieldimensionalen) Parameterraum des Transferfunktionsmodells betrachtet werden.
Aus der G ruppe von Punkte-Samples im Parameterraum wird ein statistisches Shape
M odel erstellt, auf welches die Principal Component Analysis angewendet wird.
Dadurch wird ein Transferfunktionsmodell einer höheren Ordnung aufgebaut, welches
nur noch eine sehr eingeschränkte Anzahl an Parametern benötigt. Der Prozess des
Einstellens einer Transferfunktion wird dadurch sehr einfach und intuitiv.
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Zusammenfassung

Zu Beginn wird die Arbeit motiviert, und das Ziel wird formuliert. Es wird gezeigt,
dass Ärzte sehr von 3D-Visualisierung profitieren können, falls bestimmte Voraus-
setzungen erfüllt sind. Die Reproduzierbarkeit des gesamten Visualisierungsprozesses,
das Vorhandensein intuitiver Applikationen und der Geschwindigkeitsfaktor sind hier-
bei von besonderer Bedeutung.

Im Folgenden werden Computertomographie und Algorithmen zur direkten
Volumenvisualisierung eingeführt. Computertomographie wird beschrieben, da sie
eine sehr verbreitete Aufnahmetechnik zum Erfassen von Daten für medizinische
Untersuchungen ist. Algorithmen für die direkte Volumenvisualierung wie Raycasting
oder Shear-warp Faktorisierung werden verwendet, um aus den Datensätzen Bilder
zu generieren.

Transferfunktionen sind entweder eindimensional oder mehrdimensional. Die
Theorie für beide Klassen wird eingeführt, und die Vorteile mehrdimensionaler Trans-
ferfunktionen werden beschrieben. Es wird aufgezeigt, wie die Berücksichtung des
Gradientenbetrags zu einer klaren Identifizierung der Grenzen im Datensatz führt.
Zum Design von Transferfunktionen sind Anwendungen, welche auf dem interak-
tiven Einstellen von Transferfunktionen basieren, sowohl im wissenschaftlichen als
auch im kommerziellen Bereich am weitesten verbreitet. Verschiedene Ansätze zum
automatischen und teilautomatischen Design von Transferfunktionen wurden in den
letzten Jahren entwickelt. Dies sind entweder bildbasierte oder datenbasierte Tech-
niken. Bildbasierte Techniken basieren auf einer Generierung von Bildern mit einer
unterschiedlichen Einstellung von Parametern. Sie unterscheiden sich in der Art und
Weise, wie die Parameter gewählt werden. Im Gegensatz dazu analysieren daten-
basierte Techniken die Daten. Dadurch sind diese Verfahren unhabhängig von bild-
bezogenen Parametern wie zum Beispiel der Pixel-Auflösung oder der Blickrichtung.

Der entwickelte 1D-Transferfunktionseditor bietet eine Reihe von Funktionen für
das manuelle Einstellen der Tranferfunktion. Die Implementierung als OpenInventor
Knoten stellt ein hohe Flexibilität und Portabilität sicher. Trapeze oder Rampen
sind die geometrischen Primitive, die für die Definition einer Transferfunktion ver-
wendet werden können. Sobald diese hinzugefügt sind, können sie auf sehr intuitive
Weise manuell positioniert und eingestellt werden, da die Elemente der Primitive
(Eckpunkte, L inien) als OpenInventor Dragger implementiert sind.

Zur Farbgebung für die verschiedenen Gewebe sind zwei verschiedene
Möglichkeiten implementiert. Zum einen besteht die Möglichkeit, einem Primitiv
verschiedene Farben zuzuweisen. Diese Farben sind dann an das jeweilige Primitiv
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gebunden. Darüber hinaus können Farben verwendet werden, welche in einer glob-
alen Colorbar definiert sind. Die endgütigen Farben, die für die Bildberechnung
benutzt werden, werden in einer separaten Colorbar angezeigt. Alle relevanten In-
formationen einer Transferfunktion sind in einer parametrischen Beschreibung ge-
speichert. Jeder Knoten, der eine Verbindung zu dieser Beschreibung hat, kann rele-
vante Informationen extrahieren.

Um die einzelnen Schritte der Principal Component Analysis nachvollziehen
zu können, sind einige mathematischen Grundlagen erforderlich. Im Rahmen der
Statistik sind Mittelwerte und Varianzen von Daten wichtige Voraussetzungen. Für
multivariate Datensätze können Kovarianzen berechnet werden, die zu einer Ko-
varianzmatrix zusammengefügt werden können. Zusätzlich ist eine gewisse Kenntnis
der Matrixalgebra erforderlich. Insbesondere die Berechnung von Eigenwerten und
den dazugehörigen Eigenvektoren einer Kovarianzmatrix ist von Bedeutung.

Die Principal Component Analysis ist ebenfalls in einem OpenInventor Knoten
implementiert. Eine intuitive Benutzeroberfläche erlaubt das Sammeln von Ein-
gangsdaten durch eine Verbindung zur parametrischen Beschreibung der manuell
definierten Transferfunktionen. Diese Eingangsdaten sind die Parametrisierungen der
geometrischen Primitive der Transferfunktionen für verschiedene Datensätze. Diese
Datensätze sind für eine bestimmte klinische Untersuchung aufgenommen. Die ge-
sammelten Parameter repräsentieren eine Punktewolke in einem vieldimensionalen
Raum. Principal Component Analysis wird dazu verwendet, die wichtigsten Achsen
dieser Punktewolke zu bestimmen. Da die Eingangsdaten eine hohe Redundanz
aufweisen, ist es möglich, die Freiheitsgrade durch ein Transferfunktionsmodell einer
höheren Ordnung deutlich zu reduzieren.

Um die Vorzüge der präsentierten Herangehensweise zu demonstrieren, werden
14 CTA Datensätze verwendet. Das klinische Szenario ist die Visualisierung von
Aneurysmen. Für zwölf dieser Datensätze werden die Transferfunktionen manuell
eingestellt und für die PCA Berechnungen gespeichert. Das Ergebnis zeigt, dass
ein Slider ausreicht, um Ausgangstransferfunktionen zu generieren, welche zu sehr
aussagekräftigen Visualisierungen führen. Für zwei unabhängige Datensätze wer-
den Bilder zu verschiedenen Ausgangstransferfunktionen präsentiert. All diese Bilder
liefern eine gute Visualisierung der Aneurysmen mit leichten aber sichtbaren Unter-
schieden zwischen den Sliderpositionen.
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