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Abstract

An approximated Centroidal Voronoi Diagram (CVD) construction provides an efficient
and fast way for coarsening polygonal meshes. In this article a new generalization of
the CVD for 3D meshes is presented - a Multiplicatively Weighted Centroidal Voronoi
Diagram. Based on this concept we propose a mesh coarsening algorithm which is in-
tended to capture the mesh features as good as possible. To achieve this, we propose
three different types of cluster’s weights. The mesh clusters are obtained by minimiza-
tion of the underlying energy functional. To guarantee cluster connectivity, a specific
vertex-boundary-count approach is introduced. The final coarse mesh is obtained by
triangulating the optimized clustered model.

Along with that, we present a new and fast algorithm for initial seeds generation that
can also be used for various types of applications which require an approximatively
uniformly distributed initial set of seeds.

1. Introduction

In many situations a 3D model is represented by a polygonal mesh consisting of tri-
angular faces. For a wide range of applications the input mesh is too complex, i.e. in
terms of the number of vertices, therefore a simplified mesh is required. In general,
reducing the mesh for a given number of output vertices requires maintaining its origi-
nal fidelity. According to Heckbert and Garland [HG97], there are two major classes of
simplification methods. Refinement methods start from a base mesh adaptively adding
details to the mesh, e.g. Eck et al. [EDD∗95]. On the other hand, decimation approaches
start from the original mesh by removing mesh elements, i.e. vertices, edges or faces.
One frequently used method is based on edge collapses [Hop96, GH97].

A third category, the so-called remeshing techniques can be identified. Here a mesh for
a given number of output elements, e.g. vertices, or for a given error bound is com-
puted. Explicit parametric remeshing approaches use global [GGH02] or local [SG03]
parameterizations, whereas implicit or volumetric remeshing approaches construct an
intermediate volume model [KJ01] [NT03].

Valette et al. [VC04] proposed a new algorithm for a fast mesh coarsening based on an
approximated Centroidal Voronoi Diagrams (CVD). Due to its intrinsic properties, e.g.
compactness of obtained tessellation, CVD provide an optimal strategy for resampling
or, if seen from a clustering point of view, it provides an optimal k-clustering [DFG99].
That makes it most suitable for applications in which a final budget of elements, i.e.
vertices, is fixed. A coarse mesh is obtained by first constructing a CVD on a surface of
the input mesh and then triangulating the obtained Voronoi diagram resulting in its dual
triangulation. This approach provides a triangulation with well-shaped triangles, e.g.
suitable for applications such as finite elements analysis. Additionally, this approach is
very fast since it is based on local quantity measures only.

However, in many cases the obtained coarse mesh fails to preserve or capture the main
surface features. Valette et al. [VKC05] propose an extension of their prior technique,
using a specific density function related to surface features such as mesh curvature to
preserve these features.

An alternative approach to preserve surface features using a CVD technique, is pre-
sented in this paper. It is based on the expectation to have smaller sized Voronoi
regions in higher curvature areas and larger sized ones in lower curvature areas, re-
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sulting in more or less vertices, respectively. In order to achieve this, we introduce the
Multiplicatively Weighted Centroidal Voronoi Diagrams.

Many clustering algorithms use a cluster growing technique which requires an initial
set of seeds position. Ideally, the seed positions should be as close as possible to the
final result of the clustering process, in order to have a faster convergence of the cluster
optimization. In many situations a randomly chosen set of seeds is used, but in practice
this is an inefficient approach. Alternatively, the seeds are selected by maximizing the
distances between the seed points like in [JKS05] or distributing the seeds according to
the density function [VKC05].

Contributions: We introduce a generalization of CVD, namely the Multiplicatively
Weighted Centroidal Voronoi Diagrams. Based on this concept we propose a coars-
ening algorithm which is able to preserve the features of the input mesh based on a
curvature-like measure. For that propose, we defined three different types of cluster
weights. We also propose an approach for checking the cluster’s connectivity and a
new algorithm for initial seed generation. The later one is solely based on topological
tests and can be used for many kind of applications that require a fast generation of an
initial set of seeds that are approximatively uniformly positioned.

The rest of the paper is organized as follows: After discussing related work (Section
2) and the basic concept of Multiplicatively Weighted Centroidal Voronoi Diagrams (MWCVD)
(Section 3), an overview of the algorithm is given (Section 4). Details on the related en-
ergy functional are represented in Section 5. The methods for the initial seed generation
and for the connectivity check are discussed in Section 6 and Section 7, respectively.
Details on the implementation are given in Section 8. Sections 9 and 10 present results
of the proposed algorithm and draw some final conclusions.

2. Related Work

In [VC04] and [VKC05] algorithms for creating a coarse mesh using an approximated
Centroidal Voronoi Diagrams (CVD) construction are proposed. In the next paragraphs
we review these algorithms in more detail. Additionally, the basic definitions and prop-
erties of CVD and of Weighted Voronoi Diagrams in 2D are given.

Centroidal Voronoi Diagram (CVD): CVD is a Voronoi Diagram (VD) where each Voronoi
site zi is also the mass centroid z∗i of its Voronoi-region Vi defined as:

z∗i =

∫

Vi
xρ(x)dx

∫

Vi
ρ(x)dx

(1)

where ρ(x) is a density function.

One of the most important property of CVD is that it minimize the following energy
functional

E =
n−1

∑
i=0

∫

Vi

ρ(x) |x− zi |
2 dx. (2)

Common algorithms for constructing a CVD are the Lloyd’s method and k-means clus-
tering. For a more comprehensive discussion see [DFG99].
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The algorithm of Valette et al. [VC04]: Given a polygonal mesh M with cells Cj , one
assumes that the boundaries of a Voronoi-region Vi is a subset of the edges of M, i.e.
the Vi consist of a union of several mesh cells Cj . The energy functional equivalent to
Eq. (2) can be defined as:

E =
n−1

∑
i=0

( ∑
Cj∈Vi

∫

Cj

ρ(x) |x− zi |
2 dx). (3)

It can be shown that if approximating each cell Cj by a single point, i.e. by its centroid
γ j =

∫

Cj
ρ(x)xdx/

∫

Cj
ρ(x)dx, the energy functional defined by Eq. (3) can be simplified to

F =
n−1

∑
i=0

( ∑
Cj∈Vi

ρ j |γ j − γi |
2). (4)

where ρ j =
∫

Cj
ρ(x)dx is the weight of a given cell Cj and γi = ∑Cj∈Vi

ρ jγ j/∑Cj∈Vi
ρ j is the

centroid of the cluster Vi .

Now, constructing an approximated CVD for a polygonal mesh M can be seen as a
clustering problem, in which the original mesh cells are assigned to different clusters
Vi , i.e. to approximated Voronoi-regions. This is realized by minimization of the energy
functional (4).

The minimization process works as follows: First, each cluster is assigned a randomly
picked cell. Next, for each boundary edge of two adjacent clusters Vk and Vl the energy
F is computed for the initial configuration, for the case when cluster Vk grows, i.e. both
cells belong to Vk, and when cluster Vl grows, i.e. both cells belong to Vl (see Fig. 1
(a)). The case resulting in the smallest energy is chosen and the cluster configurations
are updated. Thus, the energy functional is iteratively reduced. The final clustering is
obtained when no further energy reduction occurs.

Valette et al. [VC04] also showed that comparing the energy for all three cases requires
only the computation of

L2 = −

∣

∣

∣∑Cj∈Vk
ρ jγ j

∣

∣

∣

2

∑Cj∈Vk
ρ j

−

∣

∣

∣∑Cj∈Vl
ρ jγ j

∣

∣

∣

2

∑Cj∈Vl
ρ j

That makes the algorithm very fast because there is no need to explicitly compute
the centroid position γi (see Eq. (4)). The resulting test is based on the cluster val-
ues ∑Cj∈Vi

ρ jγ j and ∑Cj∈Vi
ρ j , which have to be updated in case of a cluster growing or

shrinking.

For a uniform density function ρ(x) the algorithm yields a uniform output triangulation.
Here the weight ρi (see Eq. (4) is proportional to the area of the cell Cj . The vertices in
the final coarse mesh were set by identifying a vertex in the original input mesh which
is the closest to the corresponding cluster centroid γi .

Adaptive Mesh Coarsening: Recently, Valette et al. [VKC05] proposed an extension to
their previous work heading for an adaptive polygonal mesh coarsening. To simplify the
mesh according to the local mesh features, they use a curvature indicator as density
function, i.e. each mesh cell Cj is given a weight ρi (see Eq. (4)) according to the cur-
vature measures. To guarantee a valid clustering a three step algorithm is performed:
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(a) (b) (c)

Figure 1: (a) Local tests performed for a given boundary edge (solid line) of two adjacent
clusters Vk (red) and Vl (green). (b)&(c) Result of an approximated CVD using nonuniform
density function forρnew= 50 andρnew= 200, respectively.

First, an approximated CVD using the above described algorithm is constructed. Here
the density of the initial cluster seeds is related to the density function, i.e. in areas
with high curvature more seeds are placed. Second, a cleaning is applied, i.e. discon-
nected clusters are identified. After the cleaning the minimization step is applied again
together with an additional check to preserve the connectivity of all clusters. The quality
of the final coarse mesh was enhanced using a quadric-based vertex placement.

Weighted Voronoi Diagrams: Weighted Voronoi diagrams are well known in 2D (see for
example [OBS92]). For a given set of n different sites {zi}

n−1
i=0 in the domain Ω, the

weighted Voronoi-region can be defined as:

Vw
i = {x ∈ Ω| di(x,zi) < d j(x,z j) ∀ j 6= i}

where di is a weighted distance measure for cluster i. For this type of VD the assump-
tion is that the site has a predetermined weight which reflects an application-specific
property [OBS92].

For an ordinary VD one assumes that all clusters have the same weight, i.e. di(x,zi) ≡

d(x,zi), where d is the standard Euclidean distance.

Multiplicatively Weighted Voronoi Diagram: For this type of weighted Voronoi Diagrams
(see [AE84], [OBS92]) di is given by

di(x,zi) = wi |x− zi |

where {wi}
n−1
i=0 are predetermined positive weights. In this case, we refer to Vw

i as
multiplicatively weighted (MW) Voronoi-region Vmw

i and to the set {Vmw
i }n−1

i=0 as multiplicatively
weighted (MW) Voronoi diagram.

Generally, MW-Voronoi regions are not necessarily connected or convex. In some situ-
ation they may also contain holes, depending on the associated weights.

3. Multiplicatively Weighted Centroidal Voronoi Diagram ( MWCVD)

The concept of CVD can be also extended to the weighted Voronoi diagrams. In this
section we introduce the Multiplicatively Weighted CVD (MWCVD) as an extension of
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a CVD. This concept is the basis of our algorithm for mesh coarsening.

Given a set of n different seeds {zi}
n−1
i=0 together with predetermined positive weights

{wi}
n−1
i=0 and a positive density function ρ(x) in the 2D domain Ω. A Multiplicatively

Weighted Centroidal Voronoi Diagram (MWCVD) is a MW-Voronoi diagram for which the
sites {zi}

n−1
i=0 of the regions {Vmw

i }n−1
i=0 are their centroids (see Eq. (1) for the definition of

the centroid).

Similar to the CVD the following property holds:

PROPOSITION 3.1 Given a set of n different sites {zi}
n−1
i=0 with associated positive weights

{wi}
n−1
i=0 and a density function ρ(x) in the domain Ω. Let {Vmw

i }n−1
i=0 denote any tessellation

of Ω into n regions. Define:

Emw =
n−1

∑
i=0

∫

Vmw
i

ρ(x) wi |x− zi |
2 dx (5)

Emw is minimized if and only if {Vmw
i }n−1

i=0 is a MWCVD.

Proof of this Proposition is given in Appendix A.

Observe that in the case of uniform weights {wi}
n−1
i=0 the MWCVD becomes an ordinary

CVD, so that the MWCVD is a generalization of CVD.

4. Overview of the Algorithm

Our coarsening algorithm uses the same strategy as described in [VC04]: A coarse
mesh is constructed by first constructing an approximated MWCVD. The triangulated
model is obtained according to the clusters adjacency relations based on the centroids
of the clusters.

In a more general context, this kind of clustering can be viewed as a weighted mesh
clustering, where the cluster size is related to the density ρ, e.g. the curvature. This
results in a triangulation with smaller or larger triangles in regions with higher or lower
density, i.e. curvature, respectively.

The steps of our algorithm are as follows:

Initialization: Using our k-neighborhood initialization (Section 6) the initial number of
clusters along with the initial seeds and the k-neighborhoods are determined.

Initial Clusters Grow: Starting with the k-neighborhoods, we grow each cluster at a
time, looping over the boundaries of a cluster, until the entire model is covered.
This step does not require any energy computation. The initial cluster weights,
according to Section 5.3, are computed using this initial configuration .

Energy Minimization: At each iteration, the algorithm loops over the boundaries of
each cluster. For a given boundary edge, a check is performed if one of the
clusters will be disconnected by growing or shrinking (see Section 7). If grow-
ing is allowed the configuration which is energetically minimal will be chosen and
the cluster configuration will be updated accordingly. This process continues until
there is no change in the energy between two consecutive iterations.

Triangulation: The final triangulation is created by inserting one vertex per cluster, i.e.
the cluster centroid, and connecting them according to the cluster’s adjacency.
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5. Energy Functional

Clustering a mesh by minimizing the Multiplicatively Weighted CVD (MWCVD) energy func-
tional (5), one needs to define ρ(x) and wi accordingly. In this section, we present a
simplified version of the energy functional (Section 5.1) which is used to construct an
approximated MWCVD. Along with a specified density function (Section 5.2) we pro-
pose three different types of cluster’s weight (Section 5.3) that can be used to obtain a
desired clustering.

5.1. Approximation of the MWCVD Energy Functional

In the case of a continuous space the energy functional for a MWCVD is defined by
Eq. (5). The goal is to achieve a local energy comparison as in the case of the approx-
imated CVD (see Section 2).

Assuming ρ(x) to be uniformly defined over the cell Cj , i.e. ρ(x) = ρ j ,∀x ∈ Cj . In this
case the energy functional (5) becomes

Emw =
n−1

∑
i=0

( ∑
Cj∈Vi

ρ jA jwi |γ j − γi |
2) (6)

with the site of each cluster Vi chosen as its centroid

γi =
∑Cj∈Vi

ρ jA jγ j

∑Cj∈Vi
ρ jA j

. (7)

Here A j and ρ j are the area and the density function of the cell Cj , respectively. Eq. (6)
together with Eq. (7) can be simplified to:

Emw =
n−1

∑
i=0

wi( ∑
Cj∈Vi

ρ jA j |γ j |
2 −

∣

∣

∣∑Cj∈Vi
ρ jA jγ j

∣

∣

∣

2

∑Cj∈Vi
ρ jA j

) (8)

Thus the computation of the energy for a given cluster is base only on three values for
each cluster Vi , ∑Cj∈Vi

ρ jA j |γ j |
2, ∑Cj∈Vi

ρ jA jγ j and ∑Cj∈Vi
ρ jA j . The update of these values

can be done using local tests only.

5.2. Density Function

Because of the assumption that ρ(x) is uniformly defined over the cell Ci , i.e. equal to
ρi , the density function is no longer a continuous function but a discrete one defined for
each cell Ci . As we try to capture the mesh feature, ρi needs to have larger values in
higher curvature regions than in lower ones. In this case one possibility to define ρi is
to compute the curvature on the mesh and relate it with ρi , as done in [VKC05].

We use a slightly more simple approach and define ρi based on the observation that
generally normal field discontinuities directly indicate a mesh features, e.g. a cell which
is on a high curvature feature will have large deviation of its normal w.r.t. its neighbors.
Thus, we set ρi equal to the mean of normals difference of the cells in the 1-ring of cell
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Ci . For the cell Ci with vertices Vi1 , . . . ,Vim we have

ρi =
1
ni

m

∑
j=1

∑
Ck adj. to Vj

‖ni −nk‖

where nk is the normal of cell Ck and ni = ∑m
j=1 ∑Ck adj. to Vj

1.

Note that, with this definition of ρi , one gets a value of zero for planar regions. A
mapping of obtained values to a new interval is applied in order to prevent division by
zero in Eq. (8). For our application we used a linear mapping from [0;ρmax] to [1;ρnew].

In general, ρnew is a user defined parameter. For large values of ρnew the cluster cen-
troids move towards cells with higher density. This is a positive effect in the context of
feature preservation.

Remark:

Assume that the multiplicatively weights wi are uniformly defined for all clusters i,
i.e. one has an approximated CVD with nonuniform density function (see Eq. (6) and
Eq. (4)). Constructing an approximated CVD using this setup will result in a clustering
as depicted in Figure 1(b)-(c).

Observe that even if one uses a larger value for ρnew, one still gets approximatively the
same result, i.e. the cluster’s size is not affected considerably. The explanation can
be seen from Eq. (4). For a boundary face f between two adjacent clusters Vi and Vj

the energy contribution will be ρ f |γ f − γi |
2 and ρ f

∣

∣γ f − γ j

∣

∣

2
, respectively. Obviously, the

energy contribution of f is mainly driven by the distance to the cluster centroids γi and
γ j , thus the size of a cluster will not be affected by the density ρ f of cell f . Therefore,
we introduce methods to determine appropriate multiplicative weights for the clusters,
that take the cell densities into account.

5.3. Clusters Weights

To have a complete energy formulation, the cluster weights wi , which define the multi-
plicative weight in the distance measurement, have to be specified. To define the clus-
ters weights, we directly relate wi to the cell densities ρ j in the cluster. As the cluster
configuration changes during different iterations, the weight will be updated accordingly.

We propose three different types of cluster’s weight:

Weighted Area:
wA

i = ∑
Cj∈Vi

ρ jA j (9)

i.e. the area of the cluster weighted with the cell densities. This means, clusters
with higher density get smaller in size compared to clusters with low density.

Maximum Density:
wM

i = maxCj∈Vi{ρ j} (10)

Assigning the maximum density to the cluster weight is based on the idea, that
cells with low or high density should be contained in clusters with low or high
weight, respectively.

Density Variance:
wV

i = 1+ ∑
Cj∈Vi

(ρ j −ρi)
2 (11)
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(a) (b) (c)

Figure 2: Result of the k-neighborhood initialization for the Bunny model with level k= 7. (a)
Obtained seeds and their k-neighborhood, time: 1 sec.; (b) Result of the initial cluster growing,
time: 2sec.; (c) Triangulated result using the cluster centroid as vertex, time: 1sec.

Observe that in the case of a uniform density function our MWCVD will result in an
ordinary CVD for the maximum density based and density variance cluster’s weight.
This is not the case for wA and could be solved by normalizing wA with the cluster area
∑Cj∈Vi

A j . This, however, yields insufficient clustering results.

6. k-Neighborhood Initialization

In this section we present a simple algorithm for generating an initial set of seeds that
is approximatively equal distributed over the input mesh. It does not use any distance
computation, it merely use the cell adjacencies across edges (edge-neighborhood).

Given a polygonal mesh M with cells Cj . Assume that all valid cells, i.e. mesh faces,
are contained in an array (Cv

j ). Holes are considered to be invalid. We also assume
that each cell has references to its neighbors, which is a standard data element in mesh
data structures such as the half-edge data structure.

For a given level k, the algorithm works as follows:

∀ cell in (Cv
j ): setValid(cell)

∀ cell ∈ (Cv
j ) do:

if ( isValid(cell) && isValid(k-neighborhood of cell))
setInvalid(k-neighborhood of cell)
addToSeedSet(cell)

For example, for level k = 2 a given cell is reported as a seed if its neighboring cells
are valid and, at the same time, each neighboring cell also has its neighboring cells
valid. The result of this algorithm is presented in Fig. 2 (a).

The algorithm selects a set of seed cells, whose k-neighborhoods do not overlap. In a
brute-force implementation, for a triangulated mesh this algorithm has a runtime com-
plexity of 3k to identify a single seed or k-neighborhood (see Fig. 3). The number of
seed is of order m/(k2), where m is the total number of cells, yielding an overall com-
plexity of (m·3k)/(k2). Therefore, the k-neighborhood initialization should be used only
for small values of k. We use k = 7, resulting in neighborhoods of some 80 cells.

Observe in Fig. 2 (a) that there are some cells that are not assigned to any given seed’s
k-neighborhood. This is due to the fact, that the algorithm simply works on the array of
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Figure 3: Result of k-neighborhood initialization for the Bunny model.

cells trying to identify the next cell with valid, i.e. not yet covered, k-neighborhood.

In case of uniformly sized triangles in the input mesh, the resulting k-neighborhoods
are nearly disk-shaped. This yields very good starting seed sets for algorithms that try
to construct equally sized and compact clusters, as the original CVD algorithm [VC04].
Additionally, in some situations the result of the k-neighborhood initialization is already
good enough for a final mesh reduction (see result in Fig. 2 (b-c)). This is especially
true, if the user wants to evaluate the final mesh resolution interactively, before deciding
on the level to be used in the overall optimization.

Some applications may require a fixed number of seeds. In this case one can use a
modified version of the algorithm to reduce the number of obtained seeds. First perform
an initial growing based on the given k-neighborhoods (see Section 8.1). After that,
check the area of the resulting clusters and reduce the number of seeds by merging
the three neighboring clusters having a common vertex with the smallest summed area.
The seed’s new position is assigned to the common vertex of the three original clusters.
The same idea can be used to avoid inefficient initializations for large k.

7. Connectivity Check

In the final clustering, each cluster has to be a 1-connected set of cells in order to obtain
a valid triangulation. In this section we present an algorithm that prevents any violation
of this constraint during the clustering process.

In the following, consider a boundary edge c between two adjacent clusters (see Figure
4 (a)). We check, if the red cluster can grow in the direction of the edge c, i.e. whether
the triangle ∆(V1,V2,V3) may switch to the red cluster. Let n and p denote the next and
previous edges w.r.t. c for the considered triangle, respectively.

Our algorithm is related to the recently published work of Valette et al. [VKC05]. They
relate their approach solely on the check of edges n and p and on vertex V2. In their
implementation growing is allowed if: n or p are exclusively boundary edges. Otherwise,
if n and p are not boundary edges, all triangles in the 0-ring of the vertex V2 should be
of the same cluster. This approach has the disadvantage, that the check fails to handle
the disconnectivity as pointed out in Fig. 4 (c).

Our algorithm is based on an additional counter for each vertex storing the number of
adjacent cluster boundary edges, referred to as boundary-edge count. After the initial
growing, the counter is set to the according number of cluster boundary edges. Thus,
for example, in Fig. 4, case 0, vertex V1 will have count 2, V3 will have count 3, whereas
V2 still has a count equal to zero.

Clearly, growing does not lead to a disconnected cluster, if the boundary-edge count for
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Figure 4: All configurations. Boundary edge c is one which points from vertex V1 to V3; n and
p denote the next and previous edges w.r.t c.

V2 is zero. Also, as pointed out by Valette et al. [VKC05], if only one of the edges n or p
is a boundary to the current cluster, i.e. w.r.t. edge c, growing does to lead to an invalid
situation. Otherwise, if n XOR t is a boundary to the different cluster, we check, if vertex
V2 has no adjacent boundary to the current cluster. Only in this situation, growing is
permitted.

Putting this together, we have the following connectivity check:

( count(V2) = 0 ) OR // Case 0
( isBoundaryOfCurr(n) XOR isBoundaryOfCurr(p) ) OR // Case 1,2
( (isBoundary(n) XOR isBoundary(p)) AND

!V2.hasBoundaryEdge(curr) ) // Case 3,4

where curr denotes the current cluster, thus V2.hasBoundaryEdge(curr) checks for
boundary edges for the current cluster at V2.

Using this check the following situations are avoided (see Fig. 4 (a), (b) and (c)):

• The adjacent cell represent a single cluster . Here, a growing would lead to an
implicit deletion of one cluster.

• Splitting the cluster into two parts. This is the only situation that can possibly
cause a splitting of green cluster.

• Growing may result in nonzero genus clusters.

The update of the boundary-edge counter for the vertices after a growing is quite sim-
ple. With respect to the cases noted in the above algorithm, we have

Case 0: Update: count(v2) = 2.

Case 1, n is a boundary of the current cluster.
Update: count(V1) = 0.

Case 2, p is a boundary of the current cluster.
Update: count(V3) = 0.
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(a) (b) (c)

Figure 5: Algorithm stages: (a) Result of the initial cluster growing. (b) Final clustering ob-
tained after the energy minimization. (c) Triangulation ofthe final clustering (b).

Case 3, n is a boundary of a different cluster.
Update: count(V1) --; count(V2) ++.

Case 4, p is a boundary of a different cluster.
Update: count(V3) --; count(V2) ++.

Note, that case 0 is the most encountered situation during the cluster optimization,
which leads to a very efficient check in this situation. Cases 3 and 4 are the most
expensive checks, but they do not occur very frequently.

8. Implementations Details

In this section we will describe implementation details on the algorithm outlined is Sec-
tion 4.

8.1. Initial cluster grow

After the determination of the k-neighborhoods for a given value of k, the obtained
seeds, together with their neighborhoods, are considered as initial clusters. Then, the
algorithm starts to loop over the boundaries of the cluster, one at a time, and assigns
the free cells to the given cluster. That process is repeated until there are no more free
cells (see Figure 5 (a)).

Using the obtained clusters, we specify the weight wi according to the specified weight
(see Section 5.3). These weights will be used in the first iteration of the minimization
process.

8.2. Energy minimization

The energy minimization process can be described as follows: For a given boundary
edge, we first check if the cluster can grow or shrink w.r.t. this edge without violating
the connectivity constraint, using the algorithm described in Section 7. The energy
computation is done only for configurations where growing or shrinking is permitted.
Finally, the case resulting in smallest energy is chosen and the cluster’s configuration
is updated accordingly. In order to prevent a recalculation of the cluster’s energy, we
store the energy of the cluster configuration.
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The energy Emw is minimized at each iteration and the minimization process stops when
there is no more change to the configurations of the clusters between two consecutive
iterations. The result of this minimization process is presented in Fig. 5 (b).

8.3. Triangulation

A final triangulated coarse mesh is obtained by regarding each cluster Vi as a Voronoi-
region. Therefore the dual of the MWCVD is the resulting triangulation (see Fig. 5(c)).
The vertices of the final coarsened mesh are chosen to be equal to the centroid of the
cluster, which were already computed during clustering process. That makes the final
triangulation a simple and fast operation.

8.4. Efficient Cluster Weight Computation

A proper reformulation of the cluster weight (see Eq. (9),(10),(11)) results in local com-
putation rules which can be efficiently evaluated.

For the weighted-area based approach wA
i (see Eq. (9)) the value ∑Cj∈Vi

ρ jA j is already
computed for the energy functional (8). Therefore, this cluster weight is obtained with
no additional computational cost.

The density-variance approach (see Eq. (11)) can be simplified to

wV
i = ∑

Cj∈Vi

ρ2
j − ( ∑

Cj∈Vi

ρ j)
2/ni +1 (12)

where ni is the number of cells in a cluster. This allows to compute wV
i also using only

local computations based on the additional quantities ∑Cj∈Vi
ρ2

j and ∑Cj∈Vi
ρ j per cluster.

For the maximum-density approach (see Eq. (10)), the current maximum needs to be
identified by checking all cells in a cluster. To overcome this problem we propose to
use the following approximation:

maxCj∈Vi{ρ j} = lim
p→∞

( ∑
Cj∈Vi

ρp
j )

1/p (13)

This approximative value of the maximum ρ in a cluster can be computed using the
additional value ∑Cj∈Vi

ρp
j which again requires only local updates. To get a good ap-

proximation of the maximum ρ in a given cluster, the value of p must be large enough.
In our implementation we use a value of 10, since larger values may lead to numerical
problems.

9. Results

A comparison between a CVD clustering with varying density and the MWCVD tech-
nique utilizing the density variance cluster weight for the Bunny model exhibits the
desired result in sense of the feature elongated clusters (see Fig. 6).

Fig. 7 (top) shows different clustering results obtained for the Fandisk model, using pro-
posed cluster’s weights (see Section 5.3 and 8.4). Observe that, in all three cases the
obtained clustering provides smaller-sized clusters in higher curvature regions where
larger-sized one are covering lower curvature areas. Using the maximum-density or
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(a) (b)

Figure 6: Comparison of CVD clustering (a) with density in the range of[1,200] and the density
variance approach (b).

Figure 7: (Top) Clustering results and (bottom) corresponding triangulation for the Fandisk
model. Left: result using wA, Center: result using wM, Right: result using wV

density-variance approach, i.e. wM or wV respectively, result in clusters which are elon-
gated along the feature lines. For the weighted-area based, i.e. wA, the clusters are
more compact and also containing a significant number of cells with low curvature.
From this perspective, the clustering results obtained using former two cluster’s weight,
i.e. wM or wV , are more suitable for our final triangulation, because the cluster centroid
is closer to the original surface.

Fig. 7 (bottom) shows the corresponding triangulations. Although we use only the clus-
ter centroid as a vertex for the triangulation, the final coarse mesh still preserves the
main features of the original mesh. Note that using one of the vertex positioning tech-
niques proposed in [VC04] (closed mesh vertex) or [VKC05] (quadric-based place-
ment), the final mesh quality around feature line could be significantly improved. Small
defects which can be seen in the obtained triangulation are due to the fact that some
clusters contain more than one feature point, i.e. the intersection of several feature
lines. In the final triangulation these feature points are reduced to a single vertex.

Table 9 provides the results for different meshes. The first row gives the number of the
vertices of the input mesh. The second one shows a chosen value for level k. For a
given value of k, the k-neighborhood initialization gives the total number of seeds, i.e.
the number of vertices in the final coarse mesh. The fourth row shows the time used
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Model Fandisk Cube Bunny Horse Dragon
# V(input mesh) 6475 15002 34834 48485 437645

k (level) 3 7 7 5 7
# seeds (obtained) 527 274 594 1579 6829

Init (sec.) <1 <1 1 1 13

Clustering, wA ρnew 50 50 50 5 50
(sec.) 8 20 59 112 940

Clustering, wM ρnew 50 50 50 5 5
(sec.) 8 12 63 124 864

Clustering, wV ρnew 3 3 3 3 3
(sec.) 8 5 50 106 759

Table 1: Results for different input meshes.

for performing k-neighborhood initialization. For different cluster’s weights, the scaling
parameter ρnew and the time required to obtain the final clustering are presented. All
the results were obtained on a 3GHz Intel PC.

In the case of the density-variance approach the value for the scaling parameter ρnew

is usually chosen to be small compared to the value used for the weighted-area and
maximum-density approach (see Tab. 9). This is due to the quadratic influence of the
density function ρ on the cluster weight wV (see Eq. 11).

At the same time, we have to point out that the timing presented in Tab. 9 should be
seen as relative one due to the fact that our implementation does not use a highly
optimized mesh data structure.

10. Conclusions and Future Work

We presented a mesh coarsening algorithm based on an extension of Centroidal
Voronoi Diagram (CVD), namely Multiplicative Weighted Centroidal Voronoi Diagram (CVD).
The cluster weights are directly related to the density function of the mesh, which itself
resembles the mesh features, i.e. the curvature. We proposed three different ways to
define the cluster weights resulting in differently shaped clusters in the final MWCVD.
The algorithm uses only local computations w.r.t. cluster boundary edges yielding a
fast implementation. The MWCVD provides a natural way for feature-preserving coars-
ening.

Additionally, a new algorithm for defining an initial set of seeds for the clustering based
on edge-adjacencies has been introduced. This algorithm yields well distributed seeds
for the optimization process. Moreover, a concise connectivity check was presented,
guaranteeing that the clusters are always edge-connected.

In future we plan to introduce approaches for a better positioning of the vertices in the
final triangulation.
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11. Appendix

A: Proof of the Proposition 3.1

Given a set of n different seeds {zi}
n−1
i=0 with associated positive weights {wi}

n−1
i=0 , a pos-

itive density function ρ(x) in the 2D domain Ω and a tessellation of Ω into n regions
{Vmw

i }n−1
i=0 . Emw, according to Eq. (7), is minimized if and only if the regions Vmw

i are
the MW-Voronoi regions associated to the generators zi and, simultaneously, the gen-
erators zi are the centroids z∗i of the regions Vmw

i (see Eq. (6)). We follow a similar
argument as in [DFG99].

First, assuming that Emw is minimized, we have to show that the generators {zi}
n−1
i=0 are

the centroids corresponding to the regions {Vmw
i }n−1

i=0 .

Examine the variation of Emw with respect to zi , namely Emw(zi + εv)−Emw(zi), where
zi + εv ∈ Ω. Now, dividing by ε and taking the limit as ε → 0, one yields:

zi =

∫

Vmw
i

xρ(x)dx
∫

Vmw
i

ρ(x)dx

Second, we show that Emw is minimized if {Vmw
i }n−1

i=0 are MW-Voronoi regions associated
with sites {zi}

n−1
i=0 .

Recall the fact that due to the construction of the MW-Voronoi diagram for x ∈Vmw
i we

get for i 6= j:

wi |x− zi | < w j |x− z j |

⇐⇒ ρ(x)wi |x− zi |
2 < ρ(x)w j |x− z j |

2

Thus, for a fixed set of sites {zi}
n−1
i=0 the energy Emv defined according to Eq. (7) will be

smaller compared to the case when the tessellation is not a MW-Voronoi diagram.
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