UNIVERSITAT SIEGEN "

von morgen

i

Technical Report
Fast Hierarchical 3D Distance Transforms on the GPU
Nicolas Cuntz and Andreas Kolb

Version: May, 15", 2007

§ Faculty 12
(@S Computer Graphics and Multimedia Group
CG D) Prof. Dr. Andreas Kolb

Abstract

This paper describes a novel approach for the GPU-based
computation of approximate 3D Euclidean distance trans-
forms, i.e. distance fields with associated vector informa-
tion to the closest object point. Our hierarchical method
works on discrete voxel grids and uses a propagation tech-
nique, both on a single hierarchy level and between the
levels. We assume a closed object, so that a signed dis-
tance of a voxel w.r.t. the object boundary is defined.
The object’s boundary is given by means of the grid
voxel classification as interior or exterior and the pre-
initialization of voxels lying directly next to the boundary.
The propagation method can be seen as a filtering pro-
cess, where the voxel’s distance transform is updated by
computing alternative distances according to the distance
transforms for neighbor voxels. Using our hierarchical
approach, the effort to compute the distance transform is
significantly reduced.

Our technique is purely GPU-based. We build upon a spe-
cific approach to work on a 3D distance transform using
Multiple Render Targets (MRT). All hierarchical opera-
tions are performed on the GPU.

ACM Categories: 1.3.5 Computer Graphics (Compu-
tational Geometry and Object Modeling - Curve, sur-
face, solid, and object representations)

1. Introduction

Signed or unsigned distance fields have many applica-
tions in computer graphics, scientific visualization and
related areas. They can be used for implicit surface rep-
resentation and collision detection [KLLRS04], for skele-
tonization [ST04] or for accelerated volume raytracing
[HSS*05], to state just a few.

Computing a 3D Euclidean distance transform is a well-
studied problem (see [Cui99] for an overview). Depend-
ing on the initial object representation, as voxel grid or
as explicit geometric representation, different approaches
have been proposed. Concerning the voxel grid approach,
there are two major categories, propagation methods and
methods based on Voronoi diagrams. Propagation meth-
ods propagate the distance information to the neighboring
voxels, either by spacial sweeping or by contour propaga-
tion.

GPU-based approaches have been presented for distance
transform computation in the 2D case for voxel grid in-
put [ST04, RT06] and for 3D polygonal input [SPGO3,
SGGMO6].

The method presented in this report works on 3D voxel

Page 2 of 9

grid input models and is based on the propagation ap-
proach. The approach uses a specific hierarchical tech-
nique consisting of push-downs and pull-ups to halve and
double the grid resolution, respectively, thus exponen-
tially reducing the number of propagation steps required
for the computation of an approximate distance trans-
form. Our system demonstrates that the error can effi-
ciently be canceled with minor computational costs.

The remainder of this paper is structured in the following
way: Sec. 2 discusses related research results. Our hier-
archical approach is described in Sec. 3, whereas Sec. 4
contains a discussion of the error occuring in our algo-
rithm. Sec. 5 gives details on the implementation and
Sec. 6 provides experimental results obtained using two
different test cases.

2. Prior Work

This section describes the main concepts of voxel grid
techniques based on Voronoi diagrams (Sec. 2.1) and
propagation (Sec. 2.2) utilizing programmable Graphics
Processing Units (GPUs) to compute distance transforms.

Consider a voxel grid and a closed object boundary §€2
marked in the voxel grid. The Euclidian distance trans-
form dt (also called Feature or complete distance trans-
form) for a voxel P is defined as

auP) = (gy (1P - Q. are gy ([P - Q).

i.e. dt(P) stores the distance plus the point Q € 2
closest to P. We refer to the distance and the closest point
of dt(P) as dt4(P) and dts(P), respectively. In case of a
signed distance transform, dt,(P) is negative in the inner
region and positive in the outer region.

2.1. The Voronoi Diagram Approach

A 2D Voronoi diagram is a partitioning of the plane into
cells w.r.t. a fixed set of points (seeds), where each cell
contains all points in the planes closest to one seed. It
is clear that the distance transform can be obtained by
setting Voronoi seeds onto the object’s boundary.

2D-Voronoi diagrams can easily be determined using ras-
terization techniques. Therefore, cones with a common
opening angle are placed over each seed and the result-
ing scene is rendered from top-view using the OpenGL
depth buffer function GL_LESS. Automatically, the re-
sulting image is the Voronoi diagram of the given seeds
and the depth buffer contains the distance information
to the corresponding seed. Hoff et al. [HKL*99] ex-
tend this approach to other geometric objects and to 3D.
Sigg et al. [SPGO3] and Sud et al. [SGGMO06] present

Figure 1: Two propagation steps. Note that dt is initial-
ized with precise sub-pixel references in this example. We
use a 3 x 3 (x3) structure element in order to propagate
the distance information.

a GPU-based implementation of the Voronoi-based ap-
proach.

2.2. The Propagation Approach

For this approach, the object boundary is given in a voxel
grid. The original approach was introduced for 2D im-
ages, but can easily be adapted to 3D. An extensive survey
of related techniques is given in [Cui99]. The (signed)
distance transform is initialized in the following way:

(0,P) ifP € oQ
dt®(P) = { (M, %) if P € Q4 (obj. exterior)
(=M,*) if P € Q_ (obj. interior)

where M is greater than any possible distance between
grid voxels. A propagation step for the distance works
using a structure element M, defining a local neighbor-
hood, by taking a minimum:

dtz;rl(P) = sp Qg\i{r(lp){”dtg(Q) - PH}
The sign sp is taken from dt}(P), and dt"(P) is up-
dated using the selected Q. This algorithm, using a
3 x 3 x 3 structure element, is known to produce an ap-
proximate distance transform if applied a sufficient num-
ber of times for all voxels in parallel (refer to [CM99]
for a very comprehensible description). See Fig. 1 for a
visualization of two sequential propagation steps.

A fast variant of this algorithm is presented by Tsitsik-
lis [Tsi95]. This approach uses a priority queue approach
to optimize the order of the distance transform updates.

Page 3 of 9

Strzodka and Telea [ST04] present a GPU-based 2D ap-
proach using an arc length parametrization for 6€2, which,
in general, does not carry over to the 3D case.

Rong and Tan [RT06] present a GPU-based technique
called Jump Flooding primarily designed for the genera-
tion of Voronoi diagrams for a given set of seeds, but also
suitable to compute unsigned distance transform. Here,
propagation is performed within a neighborhood of vox-
els that are k steps away from the central point P. In order
to reach all voxels in a logarithmic number of steps, the
offset k is halved after each step. This can be seen as an
hierarchical procedure where k specifies the grid resolu-
tion during one step. Rong and Tan attempt to correct the
resulting error by performing one or two additional prop-
agation steps after termination. However, no qualitative
information is given about the remaining error. Moreover,
no performance results are given for 3D grids.

Besides speed, the main benefit of our approach is a fully
hierarchical design and the idea to control the error inde-
pendently for each hierarchy level. In addition, the use
of Multiple Render Targets allows for direct output into a
3D grid of resolution 2562 (according to current graphics
hardware specifications). In comparison to Jump Flood-
ing, our algorithm is asymptotically faster, as the levels in
the hierarchy are decreasing in size. In the Jump Flooding
approach, each step involves the same complexity w.r.t.
to the grid resolution. Moreover, the caching capability
of modern graphics hardware is exploited by storing hier-
archy levels in separate textures.

3. Hierarchical 3D Distance Transforms

This section describes the main steps involved in our hi-
erarchical approach. The algorithm is introduced and ex-
plained in the following section.

3.1. Algorithmic Overview

The input for our algorithm is a voxel grid representing
the object boundary separating the space into an inner
and outer region. This is done by initializing dt with ex-
act value for negative (inner) voxels next to the boundary.
We store precise sub-pixel references rather than setting
the initial voxel distances to 0 in order to get an exact rep-
resentation of our (implicitly defined) test geometries (see
Sec.6). The object boundary 0€2 could be as well defined
by selecting an appropriate set of O-distance voxels.

Thus, dt is defined for voxels directly next to the bound-
ary. Using super-sampling, the grid resolution is repeat-
edly reduced by a factor of 2 and, in parallel, the dis-
tance transform is (implicitly) propagated (push-down,
Sec. 3.2). The recursion breaks for the smallest level, for

which we compute the complete distance transform using
the propagation method described in Sec. 2.2 by repeat-
edly propagating until the complete grid is filled. Note
that, because of the low resolution, we can do this with-
out performance deficit. The push-down is then inverted
by a pull-up (Sec. 3.3) in combination with k, additional
propagation steps, where k;, is a small positive integer.

The algorithm is summarized in the following listing:

01 initialize +/-

02 compute distance next to object boundary
03

04 // push-down

05 for level =1 to n do

06 reduce to 1/2 resolution
07 done

08

09 compute dt for level n

10

11 // pull-up
12 for level = n-1 to 1 do

13 recursively combine with level+l
14 perform k_p propagation steps
15 done

3.2. Push-down

In the push-down pass (from fine to coarse resolu-
tion), distance information for voxels touching the object
boundary are propagated to lower hierarchy levels. In our
1283 example, we push-down until a resolution of 83 vox-
els.

The push-down is done by super-sampling surrounding
voxels, using a factor of 2 in each dimension. The dis-
tance transform 7 dt is combined and propagated from
level j to level j + 1 using the following update rule (see
Fig. 2):

Jj+1 dtd(j-‘rlP) —
Si1p * min
J (Qe_/\/'2 (J'+1 P)
with sign taken from 7 dty(“+1P), and 7+ dts (T P) is
updated using the selected Q. Here, /P and N5 denote
a voxel on level j and the super-sampling neighborhood
for the reduction factor 2, respectively.

{7 dts('Q) =71 P}

Note that the voxels initialized with £M are properly
handled in the next level, i.e. the correct references are
set for 771 P, if at least one /Q € Na(?~!P) has a valid
reference. Thus, the distance information is also propa-
gated in a spacial sense.

3.3. Pull-up

For now, we assume that the correct distance transform
J dt for the coarse level is given. In principle, this is the
case for the coarsest level, because for this level, we cal-

Page 4 of 9

Qu
° L2
I
dts(P) = dt5(Qs)
° L2 i
Q Q2

Figure 2: Push-down: Computing 7+ dt for samples in
a coarse grid. The closest reference point w.r.t. level j
triggers the push-down of the distance transform to level
Jj+ 1L

culate 7 dt explicitly (Sec. 3.1).

The pull-up pass (from coarse to fine resolution) works in
much a similar way as the reduction described in Sec. 3.2.
Eight surrounding samples in the coarse grid around a
voxel P are checked and the minimal distance determines
the reference point for P. Since we have already com-
puted distance information nearby the object boundary,
this step is only performed for points which contain +M
as distance. Note that this can be done easily because
each level is stored separately.

As mentioned (see above), the result after a pull-up pass
is an approximation of the distance transform /= dt. To
correct the error, we follow two strategies:

First, we perform k, additional propagation steps as de-
scribed in Sec. 2.2 for each level. The first motivation
for this correction is the fact that the error in the distance
value is constantly bounded (see Sec. 4.1). This strategy
is particularly useful in cases where we have no larger dis-
placements in the distance transform, because then, the
(constant) expansion of the propagation steps will annihi-
late the constant error. A second motivation is the obser-
vation that the continuous distance field strongly varies
near to the object boundary €2, whereas the variation far
from the object boundary is smaller. Thus, based on the
exact values next to the boundary, the area close to the
boundary will be adjusted by the additional propagation
steps.

Secondly, the reference point S’ =/~1 dts(?~!P) result-
ing from the pull-up step is tracked, and the surrounding
voxels of this point at the same level are used for a refine-
ment /! dt};(“~1P). For this purpose, super-sampling as
in Sec. 3.2 is performed around S':

=14t (I-1P) =

Si—1p * min

j—1 i—1y -1
jleleNz(S/){H dté(Q) PH}

with sign taken from /=1 dt;(~1P), and /=1 dtj(71 P)
is updated using the selected /~'Q’. This is an improve-
ment especially for far reference points which are dis-
placed by a small offset.

Ideally, one would like a pull-up method that generates
J=1dt from 7 dt without producing any error, using a
minimal number of propagation steps &, on each level.
Unfortunately, an optimal value £, is hard to determine,
even though a constant error bound for the distance com-
ponent /~! dt, can be determined for the general situation
(see Sec. 4.1). This is related to the fact, that a reference
can, in some cases, point in a wrong direction, indepen-
dently from the actual distance error in 7~ dt.

4. Error Analysis

This section discusses the distance error that occurs when
performing one pass of the hierarchical algorithm (see
Sec. 3). Refer to Sec. 6.2 for measurements of the overall
error in our sample geometries.

4.1. General discussion

First, we consider the error that generally occurs during
one super-sampling step. This examination is valid for
the push-down pass as well as for the pull-up pass (see
Sec. 4.2).

An error is generated in point P, if and only if the fol-
lowing situation is given: Assuming that the input grid is
filled with the correct distance transform, there exists a
reference point S € 62 in the input grid with

(1) dta(Q) < Q-S| and
2) [P =S[l<|P—dt;(Q)],

where P is a point for which we compute a new distance
value by taking the reference dts(Q) stored in the input
grid point Q. This reference is taken instead of the closer
point S (see Fig. 3), leading to a wrong value for the dis-
tance dty(P) and an incorrect reference dts(P). In the
following, we will discuss the distance error €, in dty(P)
rather than the displacement of dts(P).

The error €4 is given by the difference between the refer-
ence taken from Q and the missed reference S:

€ = [P —dts(Q)] — [P — S|

Property 1 The error e, is bounded by /3 where A is
the grid spacing in the fine grid.

Proof: Because of |P — Q|| = @A, we can write

V3
eq < dtg(Q) + TA — [P -S].

Page 5 of 9

Figure 3: Situation where the hierarchical propagation
produces an error — dts(Q) is closer to Q than S while
S is closer to P than dts(Q).

We know that dts(Q) must be closer to Q than S, yield-

ing:
V3
ca<lQ-S|+¥ AP -S|

From the triangle inequality follows ||Q — S|| —@A <
|P — SJ|, so we get

eq < V3A.
[l

This estimation is a sharp bound for a very degenerated
situation (see below). Two worst cases for push-down are
visualized in Fig. 4. Note that the figure addresses the 2D
case with bound v/2A. However, the 3D case is similar.

The first figure (a) shows a scenario where the cor-
ners Qg, ..., Q4 have references to some distant points
marked in red. The white circles around Q;, ..., Qq in-
dicate the regions where no other references can exist, be-
cause otherwise one reference would have been missed in
the fine grid. Point S cannot be in region B (dark-gray),
because we want S to be closer to P than dts(Q). Thus,
the only regions where S can lie are those marked as A.

Remark 1 By simple calculus, it can be shown that for
push-down, the worst case for (a) is bounded by §A,
if assumed that dts(Q) is located outside the sample
square. This is the case for |Q — dts(Q)|| = £, and
dts(Q;) = Q; for i € 1,...,4. Correspondingly, the

error is bounded by @A in the 3D case.

Fig. 4 (b) visualizes in a similar way an extreme case
where S lies exactly on top of P. Here, the error bound
given in Property 1 (v/3A in the 3D case) is sharp.

4.2. Error in Push-down

In principle, the above observation applies for the push-
down step as well as for the pull-up step in our algorithm.

Page 6 of 9

Figure 4: Push-down (in 2D): Worst case scenario for
exterior S (a) — worst case where S lies within the square

defined by Q1,...Qq (b)

However, only references close to a thin line of voxels
(with distance < A) are pushed down to the coarser level.
In addition, all references that will be stored in the coarser
grid are contained within the fine grid, which itself rep-
resents an accurate distance transform. This excludes the
extreme case shown in Fig. 4 (b). Typically, the error
is much smaller than v/3A in the push-down step, more
precisely, bounded by ?A (see Remark 1).

4.3. Error in Pull-up

Compared to the push-down step, the surrounding voxels
pulled up to the finer level are not equally far from the
currently considered point P (see Fig. 5). Nevertheless,
Property 1 is satisfied because of the fact that the distance
between P and the next surrounding point is @A as in

the push-down case.

Similar situations as in Fig. 4 can be constructed for the

Figure 5: Pull-up (in 2D): Worst case for exterior refer-
ences (a) — degenerated case (b)

pull-up step. Fig. 5 (a) shows a worst case situation where
the missed reference lies outside the sample square. Fig. 5
(b) is an extreme situation where Property 1 is a sharp
bound.

Altogether, we have shown that the error occurring in one
step (push-down or pull-up) in the algorithm is bounded
by v/3 times the spacing w.r.t. the finer grid. Typically,
this error will be corrected by the additional propagation
step we do after each pull-up step in our algorithm.

Cases where the error may not be canceled appear when
a wrong reference points in a completely incorrect direc-
tion. Still, this effect can also be compensated by per-
forming more than only one additional propagation step
and the reference tracking described in Sec. 3.2. See
Sec. 6.2 for measurements of the error in our test exam-
ples.

subregion 1 —
subregion 0
slice id | /
0 4
array 0 B :_12_ 5
array 1/9 13
array 2 g

array 3

~
0123 4567 ...

Figure 6: Referencing of slices in four larger 2D textures
using sub-regions

5. Implementation Details

This section is devoted to technical details concerning the
GPU realization of the algorithm. The implementation
is based on OpenGL as graphics API and uses GLSL as
GPU programming language.

5.1. 3D Grid Processing on the GPU

Our system relies heavily on the ability to dynamically
update 3D grids on the GPU using fragment programs.
Current graphics hardware does not provide 3D render-
to-texture functionality, thus we cannot store 3D textures
explicitly. We use a technique we presented in [KCO05]
which represents a grid as a stack of 2D slices and offers
fast 3D texture processing.

In order to maximize the number of voxels processed
in one pass, so-called multiple render targets, supported
by the GL_ARB_draw_buf fers-extension, are used to
handle up to four slices in parallel. Additionally, each
of the four render targets is partitioned in sub-regions,
which represent the slices. Thus, four textures can be
used to represent the 3D grid, theoretically allowing a
maximal resolution of 2563 because of the 2048-limit for
2D textures on current graphics hardware. Since the MRT
mechanism allows only computation at the same output
position for all four arrays, the slice reference to the sub-
regions in the four render targets in an alternating manner
in order to process four adjacent slices in parallel (see
Figure 6).

5.2. GPU Programming Aspects

The distance transform is represented by a structure as
described in Sec. 5.1. Frame buffer objects (supported
by GL_EXT_framebuffer_object) are used to store
the render targets. A quad exactly fitting into the out-
put buffer is rendered and rasterized in order to write di-
rectly into the structure using a fragment program. This
is a commonly used approach to perform general purpose
computations on the GPU (see [OLG*05]). Because in-
put and output must be different in this approach, voxel

Page 7 of 9

processing is done by binding a double buffered texture
containing the data of the previous pass. The levels of
the hierarchy are stored in separate textures. Note that
super-sampling as in push-down and pull-up greatly takes
advantage of the caching capability of the GPU, because
adjacent texels are sampled.

Super-sampling is done by checking samples for the clos-
est reference point. The same operation is used for prop-
agation of the distance information. The following listing
shows how this operation is implemented in GLSL. The
parameters position and center contain the infor-

mation related to the output voxel, sample is the sample
we want to compare:

01 vec4 minDistance (const vec3 position,

02 const vecd center,

03 const vec4 sample)

04 {

05 float val_pos = distance (position,

06 sample.gba);
07

08 if (val_pos < abs(center.r))

09 return vec4 (sign(center.r)*val_pos,
10 sample.gba);

11 else

12 return center;

13 }

We use textures storing 4 floating point components. In
order to obtain precise distances and best possible frame-
rates, we choose GL_RGBA_FLOAT16_ATI as internal
texture format. The first component stores the (signed)
distance, the remaining components contain the coordi-
nates of the closest point to the object boundary.

The run-time analysis of the fragment programs shows
that the push-down and the pull-up are texture-fetch-
bounded. On the other hand, the distance propagation
using a 3 x 3 x 3 structure element is computation-bound.

6. Results

The presented approach has been implemented and tested
using implicit geometries stored as voxel data. Figure 7
shows the computed distance field for a notched sphere
using our hierarchical approach. Figure 8 and 9 show a
more detailed example obtained by joining and intersect-
ing several implicit geometries.

6.1. Performance

We use a GeForce 7600 GT as graphics card for our per-
formance tests. The fragment programs in our implemen-
tation leave some room for improvements. Still, in the
notched sphere example we have a frame rate of 30 FPS
(= 33ms) in a grid with resolution 64% when using four
additional hierarchy levels and performing one additional
propagation step for each level (k, = 1). For compar-

Figure 7: Notched Sphere: Object used in our testing
framework — the volume has resolution 643. Note that
only one of four render target is shown, thus we see 16
grid slices. Negative distances are shown in green/yellow,
positive in blue/white, both scaled and biased for better
visual output.

Figure 8: Detailed Object: Four slices taken from our
second example in a 128 volume.

Figure 9: The detailed object in 3D

ison, the frame-rate falls to approximately 3 FPS when
propagation is used without hierarchy (until all voxels are
reached). Thus, the hierarchical structure yields a signifi-
cant performance benefit.

Taking a 1283 volume instead of 64 with the hierarchy
approach leads to 4 FPS.

Page 8 of 9

Performance

140 32x32x32 —e— |
64x64x64 —=—
120 \“\
100
e

80 .\

'\ “\“\
60
40 \
20
0 1 2 3 4 5 6 7

Additional propagation steps

FPS

Figure 10: Performance for the notched-sphere example
in a 32% and a 643 volume using 3 additional hierarchy
levels

Fig. 10 shows the performance depending on k,. Notice
the typical non-linear behavior due to optimizations per-
formed by the GPU architecture.

Although the propagation step is very well-suited for par-
allelization on the GPU, this step is still a bottle neck if
applied on the finest level in the hierarchy. Thus, it is
important to choose a compromise between the result-
ing error and the loss of interactivity. A second bottle
neck in the current implementation is the pull-up step de-
scribed in Sec. 3.3. The overall performance is essentially
bounded by the number of texture-fetches.

6.2. Error

The same configuration as in Sec. 6.1 produces an aver-
age of the relative error of 0.000247059 in a 64 volume
and 0.000021961 in 1283. The correct distance transform
is computed using a (slow) brute force method which
checks all pairs of voxels.

Fig. 11 shows how the error evolves depending on k;, in a
323 volume. The error greatly decreases for both geome-
tries already for k, = 1. It nearly disappears for a larger
k.

Fig. 12 demonstrates the usefulness of additional propa-
gation steps. As one can see, switching from k&, = 0 to
k, = 1 significantly improves the accuracy of the refer-
ences.

7. Conclusion

A method for computing 3D distance transforms in real-
time has been presented. The algorithm computing the
distance transform is organized hierarchically. We pro-
vide a bound for the resulting distance error, which, in

Average Error in a 32x32x32 grid

" Notched Sphere ——
Detailed Object —=— |

0.001 '\

1e-04 \
‘\1
1e-05 .\

Relative error

1e-06

0 1 2 3 4 5 6 7
Additional propagation steps

Figure 11: Average Error for both examples in a 323 vol-
ume using 3 additional hierarchy levels

7

=, —

N

WY
W W//%/

A\

W7,

Nz

W
7

I/

=

||
\

W|
S

7, b -— == ‘“%\',
7R

Figure 12: References computed by the hierarchical
method, without additional propagation step (top image),
with one additional propagation step (bottom image) —

A

references to other slices are left out.

our experiments, is thinned out without a large impact in
the performance by means of k, additional propagation
steps. Thus, an error estimation depending on &, would
be an interesting task for further investigations.

References

CM99. CUISENAIRE O., MACQ B.:
distance transformation by propagation using mul-
tiple neighborhoods. In Computer Vision and Im-
age Understanding, Vol. 76, No. 2 (November 1999),
pp. 163-172.

Fast euclidean

Page 9 of 9

Cui99. CUISENAIRE O.: Distance transformations: Fast
algorithms and applications to medical image pro-
cessing. Ph.D. Thesis, UCL, Louvain-la-Neuve, Bel-
gium (October 1999).

HKL*99. HOFF K., KEYSER J., LIN M., MANOCHA
D., CULVER T.: Fast computation of generalized

Voronoi diagrams using graphics hardware. ACM
Proceedings SIGGRAPH (1999), 277-286.

HSS*05. HADWIGER M., SIGG C., SCHARSACH H.,
BUHLER K., GROSS M.: Real-time ray-casting and
advanced shading of discrete isosurfaces. In Proc.
EUROGRAPHICS (2005), pp. 303-312.

KCO05. KoLB A., CUNTZ N.: Dynamic particle coupling
for GPU-based fluid simulation. In Proc. 18th Sym-
posium on Simulation Technique, ISBN 3-936150-41-
9 (Sep. 2005), pp. 722-727.

KLRS04. KoLB A., LATTA L., REZK-SALAMA C.:
Hardware-based simulation and collision detection

for large particle systems. In Proc. Graphics Hard-
ware (2004), pp. 123-131.

OLG*05. OWENS J., LUEBKE D., GOVINDARAJU N.,
HARRIS M., KRUGER J., LEFOHN A., PURCELL T.:
A survey of general-purpose computation on graph-
ics hardware. In Proc. EUROGRAPHICS, State of
the Art Reports (2005), pp. 21-51.

RT06. RONG G., TAN T.-S.: Jump flooding in gpu with
applications to vornoi diagram and distance trans-
form. In ACM Symposium on Interactive 3D Graph-
ics and Games, 14—17 March, Redwood City (2006),
pp. 109-116.

SGGMO06. SUD A., GOVINDARAJU N., GAYLE R.,
MANOCHA D.: Interactive 3d distance field com-
putation using linear factorization. In Proc. Symp. on
Interactive 3D graphics & games (2006), pp. 117—
124.

SPGO03. S1GG C., PEIKERT R., GROSS M.: Signed dis-
tance transform using graphics hardware. In Proc.
IEEE Conf. on Visualization (2003).

ST04. STRZODKA R., TELEA A.: Generalized distance
transforms and skeletons in graphics hardware. In
VisSym (2004), pp. 221-230.

Tsi95. TSITSIKLIS J. N.: Efficient algorithms for globally
optimal trajectories. In IEEE Trans. on Automatic
Control (1995), pp. 1528-1538.

