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Abstract

Climate models simulate the most important processes of the Earth System, includ-
ing the circulation of the atmosphere and the ocean. For the the visualization of the
resulting large time dependent data sets, many different techniques are used. In order to
analyze the fluid flow, interactive flow visualization techniques are important. Various
commercial and free software packages used for climate data visualization have rather
limited support for the interactive exploration of large flow data sets. For example, some
of them are designed to generate pre-calculated animations only.

On the other hand, recent developments in visualization techniques exploiting pro-
grammable features of current graphics processing unit (GPU) have proven to be very
powerful. This is especially true for particle-based techniques. However, there is still
a functional gap between these particle-based flow visualization techniques utilizing
GPU processing power and the requirements in the context of geophysical fluid flows,
which is the focus of this paper.

We present a complete GPU-based framework for interactive visualization of time-
dependent climate flow data. The framework includes a proper data work flow from the
simulation to the visualization, the handling of non-uniform data grids and, finally, a
proper support for the interactive data-exploration feasible to climate researchers.

We demonstrate the framework using the flow data of a simulation of a typhoon.
This work is still in progress and the framework’s design is open for future incorpora-
tion of more particle-based visualization techniques.
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Figure 1: Interactive, particle-based flow visualization of a typhoon (Data courtesy of Max-
Planck-Institute for Meteorology), incorporating shadows casted onto a height map of the
respective geographical region. The left image shows a color-coding of flow magnitude,
the right image uses additive blending in order to obtain smooth visual effects.

1 Introduction and Motivation
For the simulation of long term changes of our climate, coupled three dimensional models
of the most important compartments of the earth system are used: atmosphere and ocean,
including models for sea ice and land cover. These so called general circulation models
(GCMs) simulate the dynamics of fluids, i.e. liquids and gases. The partial differential
equations, which describe these processes, can only approximately be solved for discrete
computational grids. The resulting multivariate and time dependent data consist of numer-
ous scalar and vector quantities, which are stored for all grid points in regular time inter-
vals. Due to limitations in storage capacity, it is only feasible to use storage intervals (e.g.
6 hours) which are much larger as the computational time step (e.g. 20 minutes) used for
the simulation.
Although the interactive visualization of the climate data is absolutely essential for the
analysis and communication of the results, only some suitable visualization systems are
available, and in most cases they offer only a limited subset of the desired functional-
ity [HBSB02]. In respect to the interactive exploration of climate simulation data, a visu-
alization system should fulfil a set of basic requirements, such as geographical mapping
and support of the time dimension. Although the system should ideally support the original
grids used for the simulations, at least rectilinear grids must be supported to account for the
aspect ratio of the physical space and the non linear vertical grid spacing used in most mod-
els. Most systems use arrows and/or stream lines for the visualization of vector quantities,
i.e. wind or ocean currents. The transports of the fluids, and hence of energy, momentum,
chemical compounds etc., which are of great importance for the large scale processes in
the climate system, are directly linked to the vector fields.
Both, vector arrows and stream lines, fail to visualize the transports within time dependent
flow fields. Arrows show only the actual velocity components per time step while stream
lines are only applicable for stationary flows. Trajectories show the paths of particles trans-
ported by the flow field, but the simultaneous display of actual and past positions can be
misleading - especially when other scalar quantities are visualized in the same context.
Animated short trajectories or particles allow for correct visualization of the transports in
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Figure 2: Left: Vis5d visualization using arrows and particles; Right: Global ocean circula-
tion using Line Integral Convolution (LIC) visualizing the top layer stream pattern colored
by temperature.

3D flow fields. Some of the available visualization systems support trajectories and parti-
cles. Fig. 2, left, shows a screen-shot of a visualization of a meteorological data set with
vis5d [HS90] with arrows and particles. After the initial particle placement the advection is
done on the CPU, the positions are stored for all time steps, before the results can interac-
tively be visualized. It is not possible to move the emitter around in order to explore the flow
field interactively. Other visualization systems like the commercial AVS/Express [AVS06]
may support the interactive emitter placement, but lack the desired interactive performance,
especially for larger numbers of particles. A larger number of particles allows for a dense
representation of the flow field, comparable to LIC (see Fig. 2, right, and [CL93]), in or-
der to observe small scale features and critical regions. Traditional LIC-based visualization
techniques, however, can only be used for 2D data and are not suitable for interactive visu-
alization.
The development of programmable graphics hardware introduced a large number of
very powerful techniques in the visualization context. Examples are real-time volume
graphics [EHK+06] and illustrative visualization [VKG05]. Based on purely GPU-based
particle tracing techniques, introduced by Latta [Lat04], Kipfer et al. [KSW04] and
Kolb et al. [KLRS04], Krüger et al. proposed the usage of GPU-based particle systems
for flow visualization [KKKW05]. Other works realize the flow simulation on the GPU,
either using grid-based techniques [Har03, KW05] or particle methods [KC05, HCM06].
However, none of these techniques have been adopted to the specific context of climate
research and its specific requirements concerning functionality and usability.
The goal of this work is to leverage the power of GPU-based particle systems for specific
applications in climate research. We focus on the question, if GPU-based particle systems
can overcome the limitations of existing visualisation systems in respect to the use of dense
3D respresentations of unsteady flows for interactive data exploration. The major contribu-
tion of this paper is the concept of an open framework for particle-based visualization of
climate flow data. This incorporates major technical and algorithmic aspects like handling
non-uniform grids and unsteady 3D flow data on the GPU. The developed framework en-
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ables the end-user, i.e. the climate researcher, to interactively explore his simulation results
utilizing the graphics hardware from his commodity PC. Beside the interactive placements
of particle sources, various visualization techniques have been integrated in the framework,
including particle shadows on surface height-field and semi-transparent as well as solid
sphere particle rendering with color-coded mapping of scalar values.
The remainder of the paper is structured as follows. After a presentation of related topics
in the context of climate simulations and GPU-based particle tracing (Sec. 2), Sec. 3 deals
with data conversion and non-uniform data grids. Sec. 4 discusses technical aspects of
the framework. Implementation details are given in Sec. 5. Results and conclusions are
presented in Sec. 6.

2 Related Topics
In this section, the major requirements to flow visualization implied by specific climate and
earth-system research application are discussed (Sec. 2.1). Additionally, the current state
in particle based flow visualization, especially on GPUs, is presented in Sec. 2.2.

2.1 System Requirements
In the context of climate research a large set of visualization task occur. Focus on the major
task of flow visualization, the following system requirements are of high interest.

Data Sets: In general, climate simulations result in large sets of unsteady flow data, asso-
ciated with various physical flow attributes like temperature or salinity.

We address the requirement by integrating existing conversion tools in the data pre-
processing (see Sec. 3.1).

Grids: Typically, the simulation is performed on three-dimensional grids covering a spe-
cific section of the earth. In case of the simulation of global climate phenomena,
these grids are curvilinear in horizontal direction and rectilinear in vertical direction.

Currently, our system supports rectilinear and, for specific cases, curvilinear grids
(see Sec. 3.2).

Data Formats: Due to the specific setup of climate simulation quantities, the simulation
data cannot directly be used for visualization. The usage of standard formats, how-
ever, is necessary in order to allow for the application of data handling tool at hand.

Our system does not introduce any further constraint on the data management. Thus,
the integration of existing tools for data handling suffices to guarantee a proper data
handling (see Sec. 3.1).

Flow Primitives, Geographical Mapping and Visualization Effects: The investigation
of the flow can also be significantly improved by advanced visualization methods.
For example, arrows are frequently used to indicate the direction of the flow, stream

4



lines give a better impression of the evolution of the flow, and complex glyphs can
be used to store more information about the visualized data.

Furthermore, visual effects like shadows and lighting effects in combination with the
a proper geographical mapping significantly improves the perception of 3D objects
and thus of the fluid behaviour.

Currently, only particles are used for the flow visualization. The particle rendering
is combined with the visualization of heightfields, representing the corresponding
topographic features, and various rendering and lighting effects (see Sec. 4.3 and
Sec. 4.4).

Interactivity and Precision: The visualization needs to provide as much interactivity as
possible in order to allow fast exploration and comparison of large flow data sets.

In order to assess the quality of climate models, simulations of the past and the cur-
rent climate are made and compared with observations. The mean state and the vari-
ability of the observed patterns should be met as good as possible. This includes
processes like storm events. For this task, not only interactive rendering is essential,
but the online control over visualization process itself, e.g. the placement of flow
primitives, is of great importance.

On the other hand the precision of the visualization, i.e. the precision of the numerical
integration in our case, should be under control of the user. Ideally, one would like
to control the error due to numerical inaccuracy. At least, the visualization system
should provide a mechanism to check whether errors occur, and where errors are
located.

Utilizing the GPU’s processing power in online particle tracing, our system can han-
dle a large number of particles in real-time (see Sec. 2.2 and 4.2).

Computational Resources: Many systems, especially real-time tools, require high-end
hardware in order to cope with the large amount of data. Performing interactive flow
analysis on commercial, general purpose PCs highly decreases the costs for the hard-
ware and helps to reduce the time for development and evaluation of climate models.

2.2 GPU-Based Particle Systems
Although various techniques for the visualization of vector fields have been proposed, parti-
cle systems play an important role in the analysis of flow mechanics. The mass-less particle
p is tracked within the time-dependent flow field ~v(x, t) using Newton’s law of motion, i.e.

xp(t) = xp(t0) +
∫ t

t0

~v(xp(s), s) ds,

where t0 and xp(t0) represent the initial time and the initial particle position, respectively.
This provides a basis for different kinds of derived visualization techniques for dynamic
flow fields, like curve-based techniques (e.g. streak lines, stream lines or path lines) or
surface-based methods (e.g. stream ribbons or stream tubes) [SM00, WE04].
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Latta first presented a state-preserving particle tracing system, e.g. a system that stores the
particle state variables for the last time step(s), completely realized on the GPU [Lat04].
Latta stores the particle states, e.g. position, velocity or life time in 2D textures. Textures
storing varying state parameters are used in a double buffering setup, in order to deal with
the fact that the stream processing paradigm of the GPU requires a strict separation of
source and destination data storage. Only the particle initialization is done on the CPU,
thus keeping the data transfer to the GPU at a minimum. As a result, this system can track
1 million particles at interactive frame rates using a graphics card with NVIDIA GeForce
5900 chip. Latta’s system additionally integrates an approximate depth sorting mechanism
in order to achieve proper blending results in case of non-commutative blending operators
in the image composition stage.
A concept for the visualization of static 3D flow-data on uniform grids was presented by
Krüger et al. [KKKW05]. This work aims to achieve a precise and interactive visualization
of flow data. Beside the pure particle visualization, Krüger et al. integrated stream lines and
stream ribbons into their system. The approach also analyzes the resulting errors of the in-
tegration, allowing the user to alter the fix step size accordingly. Since this approach works
on a given static velocity field, a computation of the particle’s velocities is not needed, e.g.
only one 2D texture storing the varying particle positions is used. The velocity field is stored
in a 3D texture and transferred into the video memory during the program initialization.
Weiskopf et al. [WSEE05] propose a hybrid particle and texture based technique for un-
steady, meanly 2D flow data on uniform grids. Here the particle tracing is used to generate a
visualization by means of a Line Integral Convolution (LIC) utilizing radial basis functions,
thus the particles indirectly contribute to the final visualization. The system has been ap-
plied to 2D climate flow data and achieves interactive frame rates in a Lagrangian-Eulerian
Advection (LEA) framework. Since LIC is a space filling technique, it can not be applied to
the visualization of 3D flow data directly.

3 Processing Climate Flow Data
Adopting the known particle based techniques discussed in Sec. 2.1 to the requirements
in climate and earth-system research involves several problems addressed in this section.
Sec. 3.1 describes the processing of data resulting from climate simulations in order to be
applicable to particle-based visualization on the GPU. The handling of non-uniform grids
is discussed in Sec. 3.2.

3.1 Data Conversion
One of the data formats widely used for the storage, exchange and further analysis of cli-
mate data is the self describing netCDF-Format [Uni06]. Beside the velocity in horizontal
direction in [m/s] and in vertical direction in [Pa/s] (pressure variation per second), the
data includes additional quantities like temperature, relative humidity and surface pressure.
In a preprocessing step, the vertical component of the 3D velocity vectors has to be con-
verted to [m/s]. To perform this computation, a specific conversion routine is applied,
resulting in a unified flow vector representation, again stored in netCDF-Format.
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Figure 3: Data work flow from the climate simulation to the visualization.

Finally, the data relevant for visualization, i.e. the velocity vectors plus one additional scalar
like temperature is extracted using the command line tool cdo (climate data operators),
developed at MPI for Meteorology in Hamburg [MPI06]. The visualization data is then
stored in a binary float format, including additional header information, i.e. size, resolution
and number of time steps. After slight modifications, this format is ready to be used in the
GPU-based particle visualization.

3.2 Data Grids
Current particle-based GPU-techniques for flow visualization use uniform grids, which
resembles the usage of 2D- or 3D textures storing the flow fields. However, in climate
research rectilinear, curvilinear or even unstructured grids are used, requiring additional
functionality in particle tracing.
In general, one has to distinguish between the physical space P , or p-space, e.g. a portion
of the earth’s troposphere, and the computational space C, or c-space, in which the simu-
lation results, i.e. all vector- and scalar quantities, are stored (see Sec. 2.1). Note, that the
quantities are valid in P only. A location xc in c-space can be mapped to a p-space location
xp via a bijective mapping Φ : C 7→ P (see Fig. 4, left).
For local phenomena, the grids are defined in longitude-latitude coordinates and altitude.
For visualization purposes, it is sufficient to assume the longitude-latitude coordinates to
be orthogonal, i.e. Φxy is bi-linear in this case. For global phenomena, the simulation grids
are defined more generally: Φxy(xc, yc) = (φx(xc, yc), φy(xc, yc)). The visualization is
done in longitude-latitude parameters. In both cases the altitude is parametrized using a list
of fixed and ascending height values {zp

0 , . . . , zp
zmax−1}, zp

i < zp
i+1, i = 0, . . . , zmax−2.

For atmospheric simulations, the height spacing in p-space increases with larger altitudes
(see Fig. 4, right).
During the particle tracing, it is necessary to transform a particle position xp

p from p-space
into c-space, i.e. xc

p = Φ−1(xp
p), in order to determine any particle attribute, especially the

particle velocity (see Fig. 4, left). Here, the assumption is made, that for a known location
xc

p in c-space, the corresponding attribute, e.g. velocity, temperature etc. can be obtained
using tri-linear interpolation on the c-space grid (see also Sec. 4.2).
The altitude values φz are placed on a rectilinear grid, thus φ−1

z is piecewise linear and can
be determined using binary search in conjunction with a linear interpolation in c-space:

zc = i +
zp − zp

i

zp
i+1 − zp

i

, if zp ∈ [zp
i , zp

i+1[.
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Figure 4: Data grids for climate simulations. Left, the mapping between computational
space (c-space) and physical space (p-space) for a single time step in particle tracing. Right,
the ascending altitudes with increasing spacing in the case of atmospheric simulations.

In the horizontal direction, our framework supports curvilinear grids with the restriction,
that Φ−1

xy is known analytically, thus xc
p = Φ−1(xp

p) can be computed directly. However,
in climate research this restriction is not always met. Efficient and robust algorithms to
determine Φ−1(xp

p) numerically will be integrated in the future.

4 Technical Aspects
In this section, techniques related to GPU-based particle visualization are described. This
includes memory management (Sec. 4.1) particle tracing (Sec. 4.2) and the final visualiza-
tion (Sec. 4.3 and 4.4).

4.1 Memory Management
There are two problems when working with large buffers stored on the GPU. First, the
GPU usually disposes significantly less memory than the CPU. Climate visualization data
comes along with particularly large buffers (e.g. flow data stored in large 3D textures)
which cannot be hold completely in the GPU memory. The second problem occurs when
data is initialized on CPU side and has to be transferred to GPU memory. The speed of this
transfer is limited by the bandwidth of the graphics port, e.g. AGP (Accelerated Graph-
ics Port) or PCI Express. The first problem implicates the second one, if only a portion
of the data set can be hold in GPU memory at one time. Using the OpenGL extension
ARB pixel buffer object, it is possible to transfer data asynchronously, i.e. a buffer
located in CPU memory is copied in parallel while control flow continues (see List. 1).
Note that proper rearrangement of the data for efficient transfer to the GPU is performed by
the graphics driver only in the case of non-power-of-two textures (provided by the OpenGL
extension ARB texture non power of two).
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void *pPBOMemory;

// bind and initialize pixel buffer object
glBindBuffer(GL PIXEL UNPACK BUFFER ARB,

nTexBuffer[nBufferId]);
glBufferData(GL PIXEL UNPACK BUFFER ARB,

nDataSize, NULL, GL STREAM DRAW);

// local copy from RAM to pixel buffer
pPBOMemory = glMapBuffer(GL PIXEL UNPACK BUFFER ARB,
GL WRITE ONLY);
memcpy(pPBOMemory, (void*)data, nDataSize);
glUnmapBuffer(GL PIXEL UNPACK BUFFER ARB);

// bind and transfer texture
glBindTexture(GL TEXTURE 3D, uiTexNames[nTextureId]);
glTexSubImage3D(GL TEXTURE 3D, 0, 0, 0, 0,

uiResolutionX, uiResolutionY, uiResolutionZ,
GL RGB, GL FLOAT, BUFFER OFFSET(0));

Listing 1: OpenGL code sample for asynchronous bus transfer using pixel buffer objects.

4.2 Particle Tracing
The computation of the particle positions for a subsequent time step is done in a fragment
shader triggered by rasterizing the particle texture. Thus, the shader code is processed for
each particle independently.
Since we aim for an accurate particle integration, the velocity vectors stored in the discrete
flow field and for discrete time steps are sub-sampled using linear interpolation. Essen-
tially, this is a quadri-linear interpolation, where three spatial and one time components
are involved. Unfortunately, no support for hardware accelerated tri-linear texture filtering
for 3D texture is currently available. Thus, the interpolation has to be performed manually
using Cg’s linear interpolation lerp.
This interpolation code is run twice in order to interpolate between two subsequent time
steps. The time integration responsible for particle motion can be done by an integration
scheme like Euler or Runge-Kutta. The Runge-Kutta method is known to produce accurate
results, provided that an appropriate time step is chosen. Traditionally [Stö95], an ideal
time step can be obtained by means of the so-called Q-factor, which is defined as follows:

Q =
∣∣∣∣k3 − k2

k2 − k1

∣∣∣∣
Numerical errors are minimal for Q ∈ (0.025, 0.1). Typically, the time step is adapted in
an iterative algorithm, until this requirement is fulfilled.
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float3 x1, x2, x3;
float t1, t2, t3;
float3 k1, k2, k3, k4;

k1 = sampleVField(oldPos, time);
t1 = time + timeStep * 0.5;
x1 = oldPos + timeStep * 0.5 * k1;

k2 = sampleVField(x1, t1);
t2 = time + timeStep * 0.5;
x2 = oldPos + timeStep * 0.5 * k2;

k3 = sampleVField(x2, t2);
t3 = time + timeStep;
x3 = oldPos + timeStep * k3;

k4 = sampleVField(x3, t3);
newPos = oldPos + timeStep/6.0 * (k1 + 2.0*(k2 + k3) + k4);

float q = abs((k3-k2)/(k2-k1));
float color = step(0.025, q)*step(-0.1, -q);
// color = 1: ok, color = 0: not

Listing 2: Cg code sample for particle tracing using 4-th order Runge-Kutta integration.

For real-time applications, nearly constant frame rates are required in order to produce a
smooth animation. Thus, time-adaptivity is hard to realize, but it is possible to check accu-
racy during simulation in order to provide a feed-back to the user. In our system, particles
for which the Q-factor fails to be in the desired bounds are color-coded, indicating the
i occurrence and location of the numerical error. If desired, the user can adjust the time
step iteratively until the error is eliminated. The code for the implemented Runge-Kutta 4
approach, together with accuracy check, is listed in List. 2.

4.3 Height Fields
A height field is used to represent the earth surface. A vertex buffer object (provided by
the OpenGL extension ARB vertex buffer object) stores the vertices of a regular
2D grid storing the z-displacement for each vertex. An additional texture, with potentially
higher resolution, is used to visualize topographic details. The resulting visualization of the
model topography shows the geographic registration of the flow field.
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Figure 5: Shadow rendering using a shadow texture approach (left), the user interface is
designed to facilitate the exploration of the visualized flow data. In the picture, the emitter
plane is just being moved. (right)

4.4 Rendering Particles and Shadows
The particles can be rendered either as solid spheres or as semi-transparent sprites. Both
approaches are realized using quadratic, screen-aligned point sprites (see Fig. 1). In case
of the semi-transparent sprites, additional α-blending is used. Currently, this is restricted
to commutative blend-operators, in order to prevent a particle depth sorting. However,
there is no conceptual challenge to extend this to non-commutative blending operators
(see [KLRS04, KSW04]. Rendering sphere is realized using a binary α-component in the
point-sprite stenciling the sphere in conjunction with an α-test. The actual sphere-shape is
generated in a fragment program using a Phong model. The color-coded visualization of
the additional scalar quantity stored in the 3D flow texture can be applied only in case of
spheres, since blending alters the color values leading to not meaningful results.
Along with the particle rendering, shadows facilitate the perception of the spatial location
and orientation of displayed 3D objects. In our case, particles moving in the flow can be
better associated with locations on the underground by means of projected shadows. This
is especially the case where the flow is not restricted to stay in a plane, thus forcing the user
to choose different points of view.
Shadows are rendered orthogonally onto the textured height field which visualizes the
model topography. This is done by mapping the z component of the particle positions
in a vertex shader while rerendering all particles. The advantage of orthogonal mapping in
combination with height fields is that even for elevated regions, the shadows remain correct.
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5 Implementation
This section discusses aspects related to the application interface. his includes the graphical
user interface and the textual configuration of the visualization scenario.
The application can be controlled by means of two interfaces. Interactive control is respon-
sible for the exploration of the visualized data. It is supported by the graphical user interface
(GUI), which is based on the SoExaminerViewer provided by the scene graph library
OpenInventor and the GUI toolkit Qt. This combination is known to be suited for scientific
visualization tools (see [RSEH06]). This interface provides control elements for navigating
in the scene. It supports moving, resizing and orienting of particle emitter planes, which is
a very useful tool when exploring different areas in the flow (see Fig. 5).
The second interface is given in terms of a configuration file. The idea behind this mech-
anism is to provide a flexible method to the user in order to incorporate new visualization
setups. For each new setup, all parameters are encapsulated in one single configuration file.
This is a powerful tool in addition to the user interface. In the configuration file, technical
aspects as integration time step, number of particles and the flow data set can be modified.

6 Results and Conclusions
The evaluation of the described system was performed using a prototype implementation
running on an AMD64 3000+ system with 1 GB main memory and an NVidia Geforce
7800 GS (AGP 8x) and 256 MB local video memory.
For the tests of our method we used data simulated with the global AGCM (atmospheric
general circulation model) ECHAM5 [RBB+03] in T213 resolution, which corresponds to
a horizontal grid spacing of 0.5625 degrees or approximately 60 km near the equator. For
the visualization, the originally 31 vertical hybrid model levels have been interpolated onto
39 rectilinear height levels. We selected a time period and region where a strong tropical
storm, a typhoon, occurred in the simulation. The resulting subset of the original data was
106× 53× 39 grid points and 32 time steps.
To evaluate the performance of our framework, several grid resolutions have been tested.
On a 503 grid (1.5 MB), the measured frame rate is 21.3 fps, for a 1753 (64.3 MB) grid, the
frame rate is 11.8 fps. Note that at least two time steps have to be in GPU memory for the
particle tracing, while a third one is loaded asynchronously. In all cases, some 50, 000 par-
ticles are traced and visualized. The evaluation has shown that the described technique is
capable of sustaining interactive frame rates for field resolutions of the order of those used
in climate simulations. Due to the fact that the distance between two time steps is large (6
hours in the visualization of the typhoon), the amount of data transferred from CPU mem-
ory to GPU memory is relatively small. Thus, our code is limited by computation rather
than bandwidth. Although the flow data for one time step is relatively small, texture cache
misses are likely to happen due to the linear memory layout for non-power-of-two textures,
which is rather inefficient for 3D textures. More efficient storage schemes exist for power-
of-two 3D textures. In this case, however, the CPU is required to rearrange the texture data,
which prohibits asynchronous texture transfer from host to local video memory.
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An ongoing practical evaluation by the domain experts shows that the presented application
is a valuable improvement compared to previous solutions for climate research. The users
highly appreciate the possibility to interactively navigate their simulation data and explore
the inherent information by selectively probing the vector field using real-time interaction
with the particle emitters.
The presented framework should still be considered to be work-in-progress and provides
the first step toward a fully functional real-time application for climate visualization. Fu-
ture investigations must include more intuitive user interfaces and advanced means to in-
teractively probe the data. The use of transfer functions will potentially be of help for the
isolation of interesting structures in the flow. Particle visualization can be enhanced by en-
coding additional information by the use of vector or tensor glyphs. Higher-order primitives
such as stream lines, ribbons and surfaces to further improve the perception of flow char-
acteristics may be integrated using approaches similar to [KKKW05]. The extension of the
presented techniques to allow for arbitrary curvilinear grid topologies is another challenge
to be addressed in future work.
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