
A Simulation Framework for Time-Of-Flight
Sensors

Maik Keller∗, Jens Orthmann∗ Andreas Kolb∗ and Valerij Peters†
∗Computer Graphics Group, Institute for Vision and Graphics, University of Siegen, Germany

Email: maik.keller@uni-siegen.de
†Center for Sensorsystems (ZESS), University of Siegen, Germany

Email: peters@zess.uni-siegen.de

Abstract— Modern Time-Of-Flight (TOF) cameras enable the
measurement of full-range distance information in real time.
The distance information can be calculated by estimating the
elapsed time between the emission and the receiving of active
light. The simulation of sensors is an essential building block for
hardware design and application development. Thus, expensive
prototypes can be omitted and down-stream algorithms, e.g. for
sensor calibration and sensor data processing, can be tested.

This paper deals with the simulation of camera-like time-of-
flight sensors and focuses particularly on the manipulation of
camera parameters and the generation of synthetic sensor data
in real-time. The sensor framework provides tools for object and
camera manipulation as well as animation. All relevant parame-
ters for the camera-like sensor, object appearance and per-pixel
sensor information are available to the TOF-Sensor Simulation
Unit (SSU), which realizes the specific sensor characteristics.

Moreover, we present a first concept of the simulation of Pho-
tonic Mixing Device (PMD) sensors. The framework is hardware
accelerated to allow for interactive simulator feedback, making
use of the programmability of modern Graphics Processing Units
(GPUs), i.e. of vertex and fragment programs.

I. INTRODUCTION

Various camera-like techniques for measuring distances
between objects and a sensor location exist in literature.
Prominent examples based on triangulation and/or image
correspondences are laser triangulation, structured light and
stereo vision [1], [2]. Time-of-flight (TOF) sensors, on the
other hand, compute the distance to an object by estimating
the elapsed time between the emission of light from an
active illumination to the arrival at the pixel of a sensor
chip. Relatively new camera-like approaches, like the Photonic
Mixing Device (PMD) [3], [4] and the Z-Cam [5], are still
developing and only a few prototypes are available.

A simulation program which is able to reproduce the essen-
tial sensor characteristics is very helpful in a variety of use
cases. Apart from the easy modification of sensor parameters
- resolution, focal-length, frame-rate and radial distortion -
the main aspect in simulation is the possibility of carrying
out experiments under reproducible conditions, especially for
dynamic scene setups. Therefore, the simulation results must
reflect major sensor characteristics in order to produce results
representative of and comparable to real sensor data. With
the help of this kind of simulator, the development of the
TOF-sensors themselves and of down-stream algorithms, e.g.

in the fields of object recognition and image analysis, can be
significantly enhanced.

In this paper we present a framework for the simulation
of camera-like TOF distance sensors. The TOF-simulator
framework provides manipulation techniques for objects and
cameras. Using standard graphics rasterization techniques and
programmable graphics hardware, all relevant global param-
eters, e.g. intrinsic camera parameters as well as per-pixel
information, are available to the Sensor Simulation Unit (SSU).
This unit is the core simulation process, resembling the
sensor’s hardware characteristics as well as possible sensor-
internal data pre-processing. We focus on the real-time simu-
lation of TOF-sensors, thus the SSU is implemented as freely
configurable fragment programs on the Graphics Processing
Units (GPUs).

The structure of this paper is as follows: in Sec. II, we re-
view related work on TOF-simulation applications. In Sec. III
we introduce the simulator’s architecture and its generic in-
terface as well as the application’s features. Sec. IV describes
the API for the SSU. A first concept to integrate PMD-based
TOF-sensors is presented in Sec. V. Sec. VII concludes the
presented work and comments on further development.

II. RELATED WORK

Today’s developers often test their algorithms on both
real camera data and on simulated image sequences.
Streckel et al. [6] set up a simple simulation procedure which
generates synthetic depth images to test enhancements of their
structure from motion-algorithm using PMD sensors. They use
results presented by Kuhnert and Stommel [7] to simulate
depth noise for synthetic PMD data. This approach assumes
a quadratic relation between sensor-object distance and the
standard deviation of the distance information provided by
PMD-sensors.

Peters et al. [8] use synthetic test data for the localization
of mobile robots. They use a simulator application which is
especially developed for the simulation of PMD sensors. The
approach they favor is MATLAB-based and not suitable for
real-time simulation. The principle of their simulated PMD
system is based on the measurement of the time of flight of the
transmitted signal, which leads to the distance to the object.
The simulated theoretical response of the whole 3D scene,
which is a point cloud, is represented by an overlapping of



single point responses. The possibility to position and orientate
the illuminator and the sensor separately allows simulating
of real bistatic and multibistatic (in case of multi-illuminator
systems) configurations.

III. SIMULATION FRAMEWORK

The simulation framework is in particular designed for the
generation of synthetic sensor data which usually serve as
input data for further data processing and algorithm develop-
ment. Our ideas of facilitating the generation of such synthetic
data are based on the reuse of a framework which is able to
deal with the simulation of different full-range camera-like
TOF-sensors. Therefore, the data-manipulation and sensor-
simulation parts of the application are very generic, so that
a new sensor can easily be incorporated into the framework.

A sketch of the framework’s architecture is shown in Fig. 1.
All relevant scene-, object- and camera-parameters (e.g. intrin-
sic sensor parameters) are fully editable by the user and acces-
sible to the scene manager and to the Sensor Simulation Unit
(SSU). Additionally, the framework provides the possibility to
add user-defined parameters which are essential for integrating
a sensor’s characteristic. Next, the scene is processed using
standard rasterization techniques and programmable graphics
hardware which ends up in data containing “per pixel infor-
mation”, i.e. ideal depth values, material information, object
normal and reflectivity for the corresponding object point. All
data is written to the GPU memory and thus also available to
the SSU for further processing (see Sec. IV).

A. Configuration

The scene with all its objects and definitions is loaded
into the application using VRML compatible data [9], [10].
Optical camera parameters like exposure time, focal length
and image resolution as well as sensor specific parameters such
as the modulation frequency are accessible and editable in the

Fig. 1. The architecture of the simulation framework. All parameters are
freely configurable by the user and accessible by the scene manager and the
SSU. A timer triggers the rendering process (see Fig. 3). The SSU also has
full access to the output of the gathering fragment program which calculates
several data per pixel.

framework’s GUI. Additionally, the configuration of object and
camera motion during an animation can be specified. For this
purpose, the built-in animation system provides an easy way
to define object and camera movements for dynamic scenes. A
keyframe list is assigned to every object with each keyframe
referring to an object’s orientation and position of a certain
moment in time (“key”).

B. Simulation

The sensor simulation is based on all previously configured
parameters. The usage of the GPU’s rendering pipeline offers
the possibility of data acquisition in real-time. During an
animation, each frame can be selected and viewed separately
by the user, which simplifies the evaluation process. The values
between two keyframes can be interpolated using either linear
or cubic interpolation schemes like Catmull-Rom splines. The
interpolation of orientations is based upon quaternions in order
to safeguard against the ambiguity of interpolating between
Euler angles. The result of the simulation is a sequence of
synthetic sensor data.

C. Advanced Features

The approach of using standard rasterization techniques is
limited to the simulation of one “ray” per pixel at one moment
in time. For more detailed information about the standard
rendering pipeline in computer graphics see [11]. In order
to compensate for this disadvantage the framework supplies
several features.
• The temporal integration provides a super-sampling based

on the time-axis.
• The spatial super-sampling allows the sampling of mul-

tiple rays per pixel.
Thus, advanced sensor effects like motion blurring and

depth of field are also feasible in the framework and can be
implemented in the SSU.

IV. SENSOR SIMULATION UNIT (SSU)

The Sensor Simulation Unit resembles the characteristics
of the sensor’s hardware and offers the ability to simulate the
sensor-internal data pre-processing. Fig. 2 displays the archi-
tecture of the SSU. The real-time emulation of TOF-sensors is
achieved by implementing the SSU as freely configurable frag-
ment programs on the GPU. The image data is directly written
to the GPU memory with the help of framebuffer objects. This
enables the advantages of modern graphics hardware which is
fast, flexible and highly configurable [12]. Its parallel stream
processors offer a way to outsource a considerable part of the
sensor’s logic to the graphics card and thus a sensor-pixel can
be processed very fast. On the one hand, as already described
in Sec. III, the SSU has full access to all relevant parameters
(e.g. intrinsic sensor parameters), on the other hand, the per
pixel information is also available to the SSU at the end of
the rasterization stage.

The implementation of the SSU is useful for more elaborate
techniques, for example,
• the temporal and spatial super-sampling (see III-C),



Fig. 2. The SSU architecture. This part of the framework is freely
configurable and programmable by the user. The Sensor Simulation Unit is
implemented as fragment programs on the GPU which emulate the hardware
of the sensor. In combination with the control unit innumerous configurations
and procedures are possible.

• the conversion of “per pixel data” to intermediate physical
data, as it is produced by the real sensor and controlled
by the global sensor parameters,

• and multiple render passes are feasible and may be
necessary in the case of more complex networks of
fragment programs.

V. CONCEPT: SIMULATION OF PMD-DATA

In this section we propose the use of the simulation frame-
work for a simulation of TOF-sensors based on the PMD
technology. The implementation of the sensor simulation is
shown in principle. The fine-tuning and adjustment of the
parameters is still in progress and under current development.
First, a short introduction to the PMD technology is given
followed by the implementation concept.

A. Photo Mixing Detector (PMD)

The PMD camera illuminates the scene with modulated,
incoherent NIR-light. Smart pixel sensors [4], [3] gather the
reflected light. One pixel samples and correlates the incoming
optical signal with the reference signal of the modulated
illumination. Thus, the PMD is able to determine the signal’s
phase shift, and the distance to the according object region
can be calculated.

This process can be expressed by the following equations:
given a reference signal g(t) and the optical signal s(t)
incident to a PMD pixel, the pixel samples the correlation
function c(τ) for a given internal phase delay τ :

c(τ) = s⊗ g = lim
T→∞

∫ T/2

−T/2

s(t) · g(t + τ) dt. (1)

In detail, the demodulation of the correlation function is
done using several samples of c(τ) obtained by four sequential
PMD raw images Ai = c(τi) which use internal phase delays
τi = i · π

2 , i ∈ [0, . . . , 3].

Assuming the reference signal as sinusoidal, i.e. g(t) =
cos(ωt) and not another non-linear signal deformation, the
optical response signal is given by s(t) = k + a cos(ωt + φ).
Basic trigonometric calculations yields

c(τ) = k + a
2 cos(ωτ + φ), (2)

where ω is the modulation frequency, a is the amplitude, k is
the correlation function’s bias, and φ is the phase shift relating
to the object distance. Please note that the modulation fre-
quency defines the distance unambiguousness for the distance
sensing, e.g. ω = 20 MHz results in an unambiguous distance
range of 7.5 m. The final distance d to the object’s surface can
be calculated based on the four raw images:

φ = arctan
(

A3 −A1

A0 −A2

)
, d =

c

4πω
φ, (3)

where c ≈ 3 · 108 m
s is the speed of light. For more detailed

information about the physical background of the PMD tech-
nology see Lange [4].

B. Concept of Implementation

In the following we outline a configuration of the simulation
framework which is able to simulate the characteristics of a
PMD sensor. The goal is the retrieval of the four phase images
(raw images) as well as the final depth image. Therefore, we
reverse the data generation process of the PMD-sensor.

1) Theoretical Reflection: According to the phase delay τ ,
the scene is rendered four times. Please note that during an
animation sequence these four images may differ from each
other due to camera or object motion. Using the simulator’s
per-pixel ideal depth information, the corresponding phase
shift φ = 4πω

c d can be reconstructed (see Eq. (3)). The
corresponding values of the correlation function, i.e. Ai =
τ(i· π2 ), can be determined, if the concrete form of the function
c is known. The final depth value is restored by compositing
the four phase images as it is the case for real sensor data.

2) Framework Adaption: As described in Sec. III the
framework handles common parameters, e.g. the chip-
resolution and the radial distortion, automatically. The user has
to specify the object NIR-reflectivity to cope with the PMD-
sensor’s range of active light wavelengths. Different values
can be assigned to different objects during the framework’s
configuration mode. The gathering fragment program then
calculates the reflectivity per PMD-pixel, because the sensor’s
image processing works on pixel-resolution (see Sec. V-A).
The timer unit will trigger the framework to render the scene
four times into different framebuffer-objects Ai, i ∈ [0, . . . , 3],
provided by the memory management unit. The SSU will
afterwards be triggered for further data processing.

The relevant framebuffer-objects are now available to the
SSU via the framework API. In a first pass, each of the images
will be processed separately to compute Ai. Therefore, an SSU
fragment program computes the phase images based on the
content of the existing framebuffer-objects and writes the result
to four new framebuffer-objects. A second pass is implemented
as an additional fragment program which does the compositing



Fig. 3. A simple example of a timer configuration. The timer is able to
trigger the scene manager and the SSU unit asynchronously. Here, at first the
scene will be rendered four times into different framebuffer objects, finally
the SSU is triggered by the timer and starts data processing.

of the phase images Ai. The output will be a depth image
according to the equations in Sec. V-A.

VI. RESULTS

Even though we have not fully realized SSU for the PMD-
sensor yet, we have set up a simple test sensor scheme in
order to verify various base functionalities of the simulator
framework. The test SSU simply uses the distance information
determined during the rasterization stage in the framework to
compute an average distance value.

Here, the basic super-sampling functionalities for both the
temporal and the spatial domain are used. As a final result,
four subsequent distance images are stored in the color RGBA-

(a) (b)

(c) (d)

Fig. 4. Simulation results. 4(a) shows the test object. 4(b) displays the
ideal depth values as gray-level image. The images in the bottom row are
calculated by the SSU for a moving camera. 4(c) represents the depth of
four raw images, each coded in one RGBA component. Fig. 4(d) shows the
averaged depth images.

components and a final average distance image is generated
(see Fig. 4). The result already resembles closely the visual
result of a PMD sensor.

VII. CONCLUSION AND FUTURE WORK

We have presented a framework to set up simulators for
camera-like time-of-flight sensors, i.e. which incorporate an
optical lens system and pixel-matrices in order to acquire
full-range depth information. The framework’s architecture
includes fixed subsystems for the user-control of the simulation
process, especially for the animation of camera and scene
objects and for the sensor parameters. A Sensor Simulation
Unit realizes the special TOF-sensor’s physical behavior.

Up to now, we have only integrated a simple SSU, which
serves as proof of the concept. The concept of the integration
on PMD-based distance sensors is at hand and we will
integrate this sensor into our framework in the near future.
We are very confident to be able to present a fully equipped
PMD SSU at the ISSCS workshop in July.

ACKNOWLEDGMENT

This work is partially funded by grant V3DDS001 from
the German Federal Ministry of Education and Research
(BMB+F).

REFERENCES

[1] O. Faugeras, Three-dimensional Computer Vision. The MIT Press,
1993.

[2] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Visio, 2nd ed. Cambridge University Press, ISBN: 0521540518, 2004.

[3] Z. Xu, R. Schwarte, H. Heinol, B. Buxbaum, and T. Ringbeck, “Smart
pixel – photonic mixer device (PMD),” in Proc. Int. Conf. on Mechatron.
& Machine Vision, 1998, pp. 259–264.

[4] R. Lange, “3D time-of-flight distance measurement with custom solid-
state image sensors in CMOS/CCD-technology,” Ph.D. dissertation,
University of Siegen, 2000.

[5] 3DV Systems, 2007, http://www.3dvsystems.com.
[6] B. Streckel, B. Bartczak, R. Koch, and A. Kolb, “Supporting structure

from motion with a 3D-range-camera,” in Scandinavian Conf. Image
Analysis (SCIA), 2007.

[7] K.-D. Kuhnert and M. Stommel, “Fusion of stereo-camera and pmd-
camera data for real-time suited precise 3D environment reconstruction,”
in Proc. Int. Conf. on Intelligent Robots and Systems, 2006, pp. 4780–
4785.

[8] V. Peters, F. Hasouneh, S. Knedlik, and O. Loffeld, “Simulation of PMD
based self-localization of mobile sensor nodes or robots,” in Symp. on
Simulation Technique (ASIM)), 2006.

[9] Web-3D-Consortium, “VRML specification,” http://www.web3d.org/
x3d/specifications/vrml/, 1997.

[10] Autodesk, “Maya and 3D Studio Max,” http://www.alias.com/, 2006.
[11] T. Akenine-Moller and E. Haines, Real-Time Rendering. Natick, MA,

USA: A. K. Peters, Ltd., 2002.
[12] J. Owens, GPU Gems 2: Programming Techniques for High-

Performance Graphics and General-Purpose Computation. Addison-
Wesley Professional, 2005, ch. Streaming Architectures and Technology
Trends, pp. 457–470.


