
GPU-based Framework for
Interactive Visualization of SAR Data

Martin Lambers∗, Andreas Kolb∗, Holger Nies‡, Marc Kalkuhl§
∗Institute for Vision and Graphics, University of Siegen

Email: martin.lambers@uni-siegen.de
Email: andreas.kolb@uni-siegen.de

‡Center for Sensorsystems (ZESS), University of Siegen
Email: nies@zess.uni-siegen.de

§Department of Simulation, University of Siegen
Email: marc.kalkuhl@uni-siegen.de

Abstract—Synthetic Aperture Radar data presents specific
problems for interactive visualization. The high amount of multi-
plicative speckle noise has to be reduced. The high dynamic range
of the amplitude data must be mapped to the lower dynamic
range of display devices in a way that makes image features
appropriately visible. In addition to interactive navigation in the
data, it is desirable to allow interactive selection of despeckling
and dynamic range reduction methods and adjustment of their
parameters.

Graphics processing units (GPUs) can be seen as ubiquitous
parallel coprocessors with extreme computational power. In
this paper, we propose a GPU-based framework for interactive
visualization of SAR data. Data management techniques are
used to make full use of the GPU. We reworked well-known
despeckling and dynamic range reduction techniques for the GPU
programming model and implemented them in our framework.
Both navigation in large data sets and adjustment of processing
parameters are fully interactive.

I. INTRODUCTION

Major processing steps of the visualization of SAR data
include despeckling and dynamic range reduction.

The goal of despeckling is to reduce the multiplicative
speckle noise that affects SAR images. This noise can hinder
data analysis tasks, especially segmentation and classifica-
tion. Common despeckling methods include convolution filters
(Mean, Gauss), rank operators (Median), methods based on
local statistics (Lee, Kuan, Frost, Gamma MAP), filters with
adaptable masks (Oddy), and wavelet based methods (Soft
Thresholding). Reviews and comparisons of these methods are
available in [1], [2], [3].

The purpose of dynamic range reduction is to map the
high dynamic range1 of SAR amplitude data to the lower
dynamic range of display devices. A direct linear mapping of
amplitude values to gray values is usually not feasible. Often,
a logarithmic mapping is used to preserve image features, but
other methods are also possible.

In addition to these processing steps, interactive visualiza-
tion must provide interactive navigation through large data
sets. The user must be able to choose and adjust a region

1The dynamic range is the defined as the ratio of the largest possible value
and the smallest possible non-zero value in an image.

of interest (ROI) of the image and the zoom level in which it
is displayed. Furthermore, it is desirable to allow interactive
selection of despeckling and dynamic range reduction methods
and adjustment of their parameters. This significantly reduces
the time required to perform visual image analysis, especially
in the context of new techniques such as bistatic SAR imaging.
Here, a fixed set of standard methods is not yet established and
a certain amount of testing and experimenting is necessary.

These requirements result in a large demand for compu-
tational power. Our framework uses the graphics processing
unit (GPU) of modern programmable PC graphics hardware
to meet this demand.

Current GPUs have access to fast dedicated graphics mem-
ory. They can store 2D image data with up to four 32bit float-
ing point components per pixel. The hardware is optimized for
fast parallel processing of such data with microprograms. High
level programming languages such as the OpenGL Shading
Language (GLSL) are available. These capabilities open a lot
of possibilities to use GPUs for scientific and general purpose
programming. See [4] for an overview.

The GPU is a parallel stream processor [5]. The correspond-
ing programming model is highly optimized for hardware
accelerated parallel data processing, but it is very restricted
when compared to the general purpose CPU programming
model. In the stream programming model, an action is defined
and activated via a microprogram, and then applied to a data
stream. Input and output data sets are strictly separated. While
it is possible to read data elements from different positions
in the input data set to compute a predefined element of the
output data set (gathering), it is rather difficult to select a
specific position of the output stream (scattering), e.g. with
regard to a computational result. To adapt existing algorithms
to this model, it is necessary to rework them. Their workflow
must fit the data stream model, and their calculations must
avoid or circumvent the limitations of the GPU. A discussion
of the stream programming model and its specific restrictions
can be found in [5].

In the following section, we present data management
techniques for large SAR images. This basis allows us to make
full use of the GPU’s potential to achieve the processing speed



Fig. 1. A tiling pyramid for the SAR raw image represented by the gray
rectangle. Each lower level has four times as many tiles as the next higher
level, but some of them may be empty (dashed).

that is necessary for interactive visualization and parameter
adoption. We then adapt despeckling and dynamic range
reduction algorithms to the GPU programming model and
show how to implement them in our framework.

II. FRAMEWORK

Because both the available memory and computing power is
limited, it is not feasible to repeat the processing steps for the
whole SAR raw image each time a parameter changes. Data
management techniques must ensure that only the currently
visible part of the image is processed.

A. Data Management

If only a small part of the image is currently displayed,
then only that part needs to be processed. If the whole image
is displayed, then it will be displayed in a low zoom level
because of the fixed display resolution, so that it is sufficient
to process a downscaled version of the image. Following this
idea, the SAR raw image is divided into tiles of fixed size at
different resolution levels in a non-interactive preprocessing
step. The result is a tiling pyramid as shown in Fig. 1. Each
higher pyramid level halves the resolution of the image.

Depending on the current ROI and the zoom level in which
it needs to be displayed, a subset of the tiles is chosen. This
subset of tiles is loaded into graphics memory if necessary,
processed according to the currently selected despeckling and
dynamic range reduction methods and their parameters, and
then displayed on the screen. This process is continuously
repeated to acknowledge user interactions.

Fig. 2 gives an overview of the data flow in our frame-
work. While loading the SAR data and building the tiling
pyramid, it is possible to perform some (potentially time-
consuming) preprocessing to compute e.g. statistical properties
that may later be needed by despeckling or dynamic range
reduction methods. Interactive navigation (ROI adjusting) and
interactive adjustment of processing methods and parameters is
done using appropriate GUI elements. All the computationally
intensive work is done on the GPU: the tiles best representing
the current ROI and resolution are processed with the currently
selected despeckling and dynamic range reduction methods
and then visualized. This is performed fast enough to provide
immediate feedback to ROI or parameter adjustments.

To permit working with very large SAR raw images, the
tiling pyramid can be stored on disk and the tiles can be
cached in main memory. Only the currently needed subset
of tiles must be available in the dedicated graphics memory.

SAR Data

Selection of
Region of Interest

Adjustment of
parameters

Despeckling

Visualization

Graphics hardware

Dynamic Range

Reduction

Fig. 2. Data flow in the framework.

Additional data can be prefetched if assumptions about the
user’s next actions are made. That way, data tiles can be readily
available when they are needed. The necessary data transfers,
both from disk to main memory and from main memory to
graphics memory, can be done asynchronously without the
need to halt the application.

In each tile of the tiling pyramid, we store additional
information from its surrounding region, as shown in Fig. 3.
This ensures that local neighborhood information is always
available. Thus, local operations like despeckling and dynamic
range reduction can always be performed without expensive
data fetching from neighboring tiles.

Tiles are stored as textures in graphics memory. Floating
point textures allow to store up to four 32bit floating point
values of information per pixel. This capacity can be used
to store phase information in addition to the amplitude infor-
mation, and to temporarily store intermediate results of the
various processing steps.

The processing of a tile is a sequence of distinct processing
steps. Since input and output data must be strictly separated
on the GPU, two temporary tiles are needed: one for input,
and one output. After each processing step, the role of the
temporary tiles is swapped: the output of the last processing
step becomes the input of the next processing step.

The complete processing chain is shown in Fig. 4. The
processing steps are implemented using the render-to-texture
functionality of the GPU: the source texture is rendered 1:1
into the destination texture. A microprogram implementing the
current processing step computes the value of each output pixel
with 32bit floating point precision.

The number of steps needed for despeckling and dynamic
range reduction depends on the chosen methods. Simple meth-
ods may require only one step, while more complex methods
require more steps.

B. Despeckling

Despeckling filters fall into several categories: convolution
filters, e.g. Mean, Gauss, ranking operators, e.g. Median, meth-
ods based on local statistics, e.g. Lee, Kuan, Frost, Gamma



Fig. 3. A tile (dotted line) with an overlap area that includes information
from neighboring tiles.

MAP, filters with adaptable masks, e.g. Oddy, and wavelet
based methods, e.g. Soft Thresholding. The implementation
of methods from each of these classes is described in the next
paragraphs.

Simple convolution filters like the Mean and Gauss filters
are easily implementable in the framework. A 3×3 Mean filter,
for example, can be implemented using one processing step.
The microprogram gathers the information from the 9 pixels of
the local neighborhood and computes the filtered output pixel.
Mean and Gauss filters with larger masks can be implemented
in a separable manner to increase performance. In this case,
each filter needs two processing steps: one for the horizontal
mask, and one for the vertical mask.

Methods based on local statistics interpret a local neigh-
borhood (e.g. 5×5 or 7×7) as a sampling distribution, and
compute sample mean and variance from it. The value of
the output pixel is then computed based on the underlying
assumptions about statistical properties of SAR data. The
sample mean and variance can be computed in two steps in
a separable manner. The computation of the output pixel can
usually be included into the second step.

Some methods based on local statistics need additional
values that are computed globally from the SAR raw image.
For example, the method of Xiao et.al. [6] needs to compute
global minimum and maximum deviation values. This cannot
be done efficiently in the GPU microprograms due to the tile-
based data management. Generally, there are three methods
to solve this kind of problem: 1) Compute the values in
the preprocessing step, while building the tiling pyramid,
and pass them to the GPU microprograms as parameters.
2) Estimate the values based on a local neighborhood. This can
be done within the GPU microprograms. 3) Treat the values as
additional parameters and let the user adjust them. Although
method 1 is the method of choice in order to achieve results
that are comparable to the original algorithm, we found that
method 3 also works reasonably well. Method 2 will lead to
unintended differences in filter behaviour in different regions
of the image.

Ranking operators like the Median filter are based on
sorting. This is still a hard problem on GPUs due to the
constraints of the programming model. We implemented the
separable approximation of the median filter. For each rect-
angular neighborhood, the median is approximated by first
computing the median for each row, and then computing the
median of these row medians. This can be done using two GPU
microprograms. Computing the exact median would either

Image

tile

Temp.

tile 1

Temp.

tile 2

Temp.

tile 2

ScreenD.r.r. 2Desp. 1 Desp. 2 Desp. 3 D.r.r. 1

tile 1

Temp.

Fig. 4. A processing chain that prepares a tile for display using three
despeckling (desp.) and two dynamic range reduction (d.r.r.) steps.

limit the filter to small mask sizes, or introduce the need for
a sophisticated texture sorting algorithm [4].

In addition to the above, we also implemented a filter
based on adaptable masks (Oddy [1]) and wavelet based Soft
Thresholding [3], to show the implementability of these classes
of methods in our framework.

C. Dynamic Range Reduction

Dynamic range reduction is used to map the high dynamic
range of the SAR amplitude data to the lower dynamic range of
the display device. Often, only a part of the dynamic range of
the amplitude values is mapped to gray levels for this purpose,
e.g. high peaks in the amplitude data are clamped to white.

Multiple possibilities exist for this mapping. Linear, loga-
rithmic, or gamma-correction like are some that are commonly
used. All of these methods transform one input value into
one output value using a globally defined function. They
can therefore easily be implemented using a single GPU
microprogram.

More complex methods might take the local neighborhood
of pixels into account and adapt themselves accordingly. This
has the advantage that the visibility of important image details
can be improved in certain areas. The disadvantage is that
the resulting intensities in different regions are not directly
comparable anymore.

As an example for such a local method, we adapted the
Durand tone mapping operator [7] to work on SAR amplitude
values instead of optical intensity values and integrated it in
our framework as a single-step dynamic range compression
operator. Analogous to the Xiao despeckling method, the
Durand tone mapping operator needs to compute a global
maximum value from the raw image. We replaced this value
with a user-adjustable parameter.

In general, the task of dynamic range reduction of SAR data
is related to the task of tone mapping of optical images. Tone
mapping operators approximate the appearance of high dy-
namic range optical images on lower dynamic range displays.
Many global and local techniques exist [8]. Examining which
of these techniques are adaptable to SAR images is subject of
future work.

III. RESULTS

Fig. 5 shows a screenshot of our framework. The user can
interactively choose the ROI and zoom level in the upper
left part of the application window. Despeckling and dynamic
range reduction methods can be chosen and interactively



Fig. 5. A screenshot of our framework (raw data courtesy of FGAN).

adjusted using the toolbar in the lower left part. The ROI
is displayed in the large view area. The effects of different
processing methods and parameters are shown in Fig. 6.

An export function allows to save a processed version of
the whole image at its original resolution. All of the necessary
processing is then performed on the graphics hardware using
the existing framework, which is typically much faster than
CPU based processing.

On a system with an AMD X2 4200+ processor, 4GB RAM,
and an NVIDIA GeForce 7900 GTX graphics card, building
and storing the tiling pyramid for a SAR raw image with
8192×32768 pixels requires about 2 minutes. In this example,
the tiles of the pyramid have 256×256 pixels. The overlap area
is 9 pixels on each side, to allow mask sizes of up to 19×19
pixels for despeckling and dynamic range reduction methods
that work on local neighborhoods. This leaves 238×238 pixels
of image coverage per tile. Pyramid level 0, which stores the
SAR raw image in its original resolution, therefore consists of
35×138 = 4830 tiles. The pyramid has 9 levels, storing a total
of 6520 tiles. It needs to be computed only once and can be
stored on hard disk for later reuse. Once the tiling pyramid is
built, interactive visualization performance is maintained even
for processing steps using large mask sizes.

Tab. I gives some FPS (frames per second) measurements
for different sizes of the view area and different combina-
tions of despeckling and dynamic range reduction methods.
A minimum and a maximum FPS value is given for each
combination. The difference between them is due to the
different number of tiles that are needed to fill the view area,
depending on the current resolution. The FPS rate is limited by
the processing power of the GPU. Large view areas combined
with demanding despeckling and dynamic range reduction
techniques may lead to low frame rates. Additionally, the
amount of main memory is important for the pyramid building
step and can also help visualization performance by allowing
more tiles to be (pre-)cached.

Fig. 6. The effects of different despeckling and dynamic range reduction
parameters (raw data courtesy of FGAN). Left: no despeckling, logarithmic
dynamic range reduction. Middle: with Xiao despeckling. Right: with gamma-
correction like dynamic range reduction.

TABLE I
FRAMES PER SECOND FOR DIFFERENT SIZES OF THE VIEW AREA AND
DIFFERENT COMBINATIONS OF DESPECKLING AND DYNAMIC RANGE

REDUCTION (D.R.R.) METHODS.

730×730 1130×920

No despeckling, linear d.r.r. 172 – 370 87 – 238

5×5 Xiao despeckling, logarithmic d.r.r. 42 – 99 24 – 54

7×7 Lee despeckling, 3×3 Durand d.r.r. 21 – 46 11 – 39

IV. CONCLUSION

In this paper, we have shown that interactive visualization of
large SAR images, including interactive parameter adjustment,
is made possible by exploiting the capabilities of modern
GPUs. Efficient data management is necessary to make full use
of the GPU’s resources. Important algorithm classes have been
reworked to fit the GPU programming model. The resulting
system allows for fast, interactive analysis of SAR data.

ACKNOWLEDGEMENTS

This project is partially funded by grant KO-2960-3/1 from
the German Research Foundation (DFG).

REFERENCES

[1] L. Gagnon and A. Jouan, “Speckle filtering of SAR images – a compara-
tive study between complex-wavelet-based and standard filters,” in Proc.
SPIE Vol. 3169, 1997, pp. 80–91.

[2] W. Hagg and M. Sties, “The EPOS speckle filter: a comparison with some
well-known speckle reduction techniques,” in Proc. 18th Congress of the
International Society for Photogrammetry and Remote Sensing, 1996, pp.
135–140.

[3] E. Hervet, R. Fjørtfort, P. Marthon, and A. Lopès, “Comparison of
wavelet-based and statistical speckle filters,” in EUROPTO Conference
on SAR Analysis, Modeling, and Techniques, 1998, pp. 43–54.

[4] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.
Lefohn, and T. J. Purcell, “A survey of general-purpose computation on
graphics hardware,” Computer Graphics Forum, vol. 26, no. 1, pp. 80–
113, 2007.

[5] R. Strzodka, M. Doggett, and A. Kolb, “Scientific computation for
simulations on programmable graphics hardware,” Simulation Practice
& Theory, vol. 13, no. 8, pp. 667–680, 2005.

[6] J. Xiao, J. Li, and A. Moody, “A detail-preserving and flexible adaptive
filter for speckle suppression in SAR imagery,” Int. J. Remote Sensing,
vol. 24, no. 12, pp. 2451–2465, 2003.

[7] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-
dynamic-range images,” in ACM Proc. SIGGRAPH, 2002, pp. 257–266.

[8] E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec, High Dynamic
Range Imaging: Acquisition, Display and Image-based Lighting. Morgan
Kaufmann, 2005.


