
GPU-Based Monte-Carlo Volume Raycasting

Christof Rezk Salama
Computer Graphics Group, University of Siegen, Germany

Abstract

This paper presents a practical, high-quality, hardware-
accelerated volume rendering approach including scatter-
ing, environment mapping, and ambient occlusion. We ex-
amine the application of stochastic raytracing techniques
for volume rendering and provide a fast GPU-based pro-
totype implementation. In addition, we propose a simple
phenomenological scattering model, closely related to the
Phong illumination model that many artists are familiar
with. We demonstrate our technique being capable of pro-
ducing convincing images, yet flexible enough for digital
productions in practice.

1 Introduction

Volume rendering techniques are important in many sci-
entific areas, such as engineering, computational science
and medicine. Throughout the years, GPU-based volume
rendering techniques have reached a high stage of maturity,
providing high-quality results at interactive frame rates.

In recent years, visual artists who are concerned with
the production of educational computer animations, have
reported an increasing demand for high quality renditions
among their customers. The approaches presented in this
paper aim at increasing the visual quality of volume ren-
ditions of scanned objects by including multiple scattering
effects in a practical way.

Monte-Carlo raytracing techniques are frequently em-
ployed whenever photorealistic and physically-based light
computation is needed. This paper investigates how GPU-
based volume raycasting techniques can be supplemented
to support multiple scattering by implementing stochastic
raytracing for volumetric objects.

2 Related Work

Many sophisticated techniques to solve the volume ren-
dering integral in real-time have been proposed in the past,
including 2D [6] and 3D texture mapping [9]. A detailed

overview of GPU-based volume rendering can be found in
the book by Engel et al. [1].

The first solely GPU-based implementations of volume
raycasting have been published by Krüger and Wester-
mann [5] and Röttger et al. [7]. Hadwiger et al. have pro-
posed a flexible raycasting framework for discrete isosur-
faces in large volume data using hierarchical space-leaping
and adaptive sampling.

Images generated by the approximation to volume scat-
tering proposed by Kniss et al. [4] were inspirational for this
paper. Scattering is approximated by jittered sample posi-
tion from an attenuation map. Their approach is restricted to
illumination from a single point light source or directional
light at a time. Hadwiger et al. [2] introduce GPU-based
deep shadow maps.

Numerous publications exist on Monte-Carlo-based
techniques. As an introduction we refer the reader to the
detailed SIGGRAPH course notes [3] or the excellent script
by László Szirmay-Kalos [8].

3 Phase Function Model

We use a simple phenomenological phase function
model, which is equal to the BSDF at specified isosurfaces
and contains a simple forward peak otherwise. The para-
meters of this phase function model are derived from the
underlying scalar field s(x). To keep the model control-
lable by the user, we restrict scattering events to happen at
a fixed set of isosurfaces. Between these isosurfaces the ray
direction does not change, but attenuation may still happen.
Attenuation is controlled by a traditional transfer function.

At the specified isosurfaces, the gradient magnitude
∇s(x) is guaranteed to be non-zero. Our phenomonolog-
ical phase function is illustrated in Figure 1. The reflective
part fr is equal to the specular and diffuse term of the Phong
local illumination model,

fr = fdiff + fspec (1)
fdiff(v ← ωi) = kd (n · ωi) (2)
fspec(v ← ωi) = ks (r · ωi)s (3)

with r = 2n (n · v)− v. (4)



g

r

-v

g

r

vv
t

-g

specular
reflection

diffuse
reflection

transmission

-v

Figure 1. Phase function model with (right)
and without refraction (left).

The transmissive part scatters the transmitted light in an ad-
ditional Phong lobe centered around the negative viewing
vector -v in case of non-refractive transmission,

ft(v ← ωi) = kt (−v · ωi)q. (5)

For refractive transmission (Fig. 1, right),−v is replaced by
the refracted vector t calculated according to Snell’s law.

4 GPU-Based Monte-Carlo Raycasting

Existing implementations of GPU-based raycasting sam-
ple the volume successively along a viewing ray and calcu-
late a solution of light transfer in the absence of scattering
events. If the volume data set is represented by a 3D tex-
ture, however, we have the freedom to reflect the ray into an
arbitrary direction at any point inside the volume. Random
directions can be pre-computed, stored in additional texture
images and accessed via randomized texture coordinates.

Such a simple implementation immediately leads to sev-
eral problems:

• The pre-computed randomized ray directions do not
account for the directions with dominant radiance con-
tribution. The convergence is slow, because many rays
are wasted in areas with only little contribution.

• Many rays are terminated due to low attenuation and
do not contribute to the final image.

• The visual appearance of the volumetric object is hard
to control by the artist.

The first problem is tackled by the use of importance
sampling, as described in Section 5. The second and third
problems are solved by multi-layer rendering technique
which controls the reflection and transmission events. De-
tails for the multiple passes are explained in Section 6.

5 Sampling Schemes

Importance sampling is an effective means of increasing
the rendering performance by reducing the variance of the

Figure 2. Geometric relationship between the
interpolation weight α and the scattering
cone angle γ.

Monte-Carlo estimator. More samples are placed in regions
of the parameter domain where the function to be integrated
is expected to be large, while fewer samples are used in re-
gions where only a small contribution to the integral is as-
sumed. While software implementation have the flexibility
to employ arbitrary probability distributions and tailor them
to the specific integrand in Equation ??, our GPU-based im-
plementation must work with the same probability distrib-
ution for all scattering events due to the parallel nature of
fragment programs.

We decided to use random directions uniformly distrib-
uted on the unit sphere as basis and employ simple but ef-
fective strategies to omit regions with only little contribu-
tion according to the phase function or BSDF. To avoid the
necessity to account for different probability distributions
p(x), we restrict ourselves to uniform distributions.

For a fast access to randomized direction vectors from
within a fragment shader, we use a pre-computed set of ran-
dom value triplets representing points uniformly distributed
on the unit sphere. The pre-computed random vectors are
stored in a 3D texture.

The random directions obtained from the texture can di-
rectly be used to sample the phase function. For diffuse,
surface-like reflection, however, it is necessary to restrict
the random directions to a hemisphere centered around a
given unit vector n. We can easily generate such samples by
negating all random vectors outside the given hemisphere,

rH(n) = sgn(n · rS)rS , (6)

with sgn being the signum function.
For efficiently sampling a specular Phong lobe, we need

to focus the sampling directions to a narrow cone centered
around a given direction of reflection. A simple way of fo-
cussing ray directions is to compute a weighted sum of the
hemispherical random samples rH and the direction of per-
fect reflection h:

r̃P (h) = α · rH(h) + (1− α)h.

rP (h) =
r̃P (h)
‖r̃P (h)‖ (7)



Figure 3. Results of the rendering passes. Far left: Ambient occlusion pass for the first isosurface.
Left: Beauty pass for the first isosurface. Right: Scattering Pass below the first isosurface Far right:
Final Composite.

The scalar weight α determines the maximum cone angle
of scattering around the direction h. A value α = 1 means
scattering in all directions on the hemisphere, while a value
of α = 0 results in the (non-randomized) ray direction per-
fectly focused into direction h.

To determine an appropriate value of α for a given spec-
ular exponent s, we calculate the maximum reflection an-
gle γmax, at which the specular term falls below a user-
specified threshold T (say 0.1),

γmax(s) = max{γ | cos(γ)s > T}. (8)

Solving this equation yields

γmax = arccos(s
√

T ). (9)

Figure 2 illustrates the relationship between the focus
weight α and the angle γ. It is easy to derive an equation
for α as function of the maximum angle γmax:

α =
1 + tan(γmax − π

4 )
2

(10)

6 Practice

For digital productions it turns out to be advantageous
to decompose the final rendering into different independent
layers. Although this often leads to physically incorrect so-
lutions, it allows the artist to adjust contrast and brightness
of different layers without the necessity to recompute a sin-
gle frame of footage.

First Isosurface Pass: In practice, we calculate the first
hit of the ray with the isosurface. The first pass is a beauty
pass which calculates local illumination for the first isosur-
face. We estimate the gradient vector using central differ-
ences and sample the environment cube map multiple times
to calculate local diffuse and specular illumination.

The leftmost image in Figure 3 shows the result of the
beauty pass for the UTCT Veiled Chameleon data set illu-
minated by the LDR-version of the Grace cathedral environ-
ment map (courtesy of Paul Debevec, www.debevec.org).
Since light is additive, for maximum flexibility in the com-
positing step, we can as well render separate diffuse and
specular passes. This allows us to adjust the specular and
diffuse reflection coefficients later in the compositing step.

Ambient Occlusion: For rendering soft shadows, ambi-
ent occlusion [10] is an essential way to fake global illumi-
nation effects, resulting in images similar to radiosity cal-
culations, but at considerably lower computational cost.

For an ambient occlusion pass we need the position and
gradient vector generated in the previous passes. For each
pixel we cast several rays across the hemisphere centered
around the gradient direction. The rays are traced a few
steps only using a large step size to determine whether they
hit the isosurfaces again or not. The percentage of rays
which do not hit the geometry are stored as grayvalue in
the frame buffer. The seconf image in Figure 3 shows the
result of the ambient occlusion pass.

Scattering: In practice, a single scattering pass turned
out to be sufficient in most cases (Figure Figure 3, 3rd im-
age). We start a transmissive ray at the hit point with the
first isosurface. The direction is scattered within a Phong
lobe around the refracted vector. We trace this ray by ac-
cumulating the attenuation factors until it hits the second
isosurface. At this second hit point, the gradient vector is
estimated and the ray is reflected randomly into the hemi-
sphere centered around the gradient direction. The ray is
traced with attenuation but without further scattering until
it leaves the volume.

A faster, but less accurate version of the scattering pass
is based on the assumption that the attenuation which is ac-
cumulated from the eye point to the second hit point is an
appropriate estimate for the attenuation from the hit point



Pass Samples Time/msec
First Hit pass - 45–50
Iso Beauty (P) 16 spec., 8 diff. 80–170
Amb.Occ. (P) 32 rays, 10 steps 120–170
Sub.Scat. (P) 4 prim., 4 sec. 210–470
Final (P) see individual passes 598–690
Iso Beauty 128 spec., 64 diff. 274–349
Amb.Occ. 128 rays, 20 ray steps 1450–1876
Sub.Scat. 64 prim., 16 sec. 5968–8771
Final see individual passes 7156–9203

Table 1. Performance measurement for differ-
ent passes in preview (P) and final quality
(5123, 16bit data).

back to the outside. Hence, we can square the accumulated
attenuation and directly sample the environment map in the
reflected direction without tracing the ray any further. The
final composite is displayed in the rightmost image in Fig-
ure 3

7 Results and Conclusion

The presented Monte-Carlo volume raycasting approach
has been implemented using Cg (nv40 profile) and OpenGL
on an NVidia Geforce 8800 GTX graphics board with 768
MB video memory. The GPU-based implementation of the
Monte-Carlo raycaster does not maximize the efficiency us-
ing stratified sampling or importance sampling, like many
software implementations do. Nevertheless, the high paral-
lel architecture of the GPU generates images at considerable
speed.

The convergence of the proposed technique greatly de-
pends on the phase function used. We have experimented
with different phase functions and found that allowing scat-
tering events to happen at every point inside the volume
leads to extremely slow convergence and is thus computa-
tionally not feasible. The resulting images are hardly pre-
dictable for the artist, which leads to visual parameters be-
ing impossible to control in practice. This is the reason,
why we suggest restricting the scattering events to a limited
set of isosurfaces.

The performance of the different passes is shown in Ta-
ble 1. Performance was measured both for preview (P)
and final quality. The results show that preview renderings
of the single passes are possible at interactive frame rates,
which is important to adjust visual parameters in practice.
The results of the preview passes are still noisy, but the im-
age quality is good enough to get the visual impression of
the final result.

The first conclusion we draw is that, in practice, the ren-

dering of volumetric objects with observable internal struc-
tures, such as the tomographic scans used throughout this
paper, requires considerably different strategies than render-
ing typical translucent materials, such as clouds, milk and
skin, where scattering is rather homogenous. The method
described in this paper is meant as a proof of concept.

Another conclusion we draw from our experiments is
that scattering passes must be tailored to the desired visual
effect. Multiple scattering layers may be used and view-
ing rays may be transmitted through the entire volume to
account for translucency effects for backlit objects and the
like. The described techniques integrate well in the layered
shading framework known to visual artists. Since the ren-
dering parameters are derived from the Phong model, they
are intuitive to control and already familiar to most artists.

References

[1] K. Engel, M. Hadwiger, J. Kniss, C. Rezk-Salama, and
D. Weiskopf. Real-Time Volume Graphics. AK Peters, Ltd.,
2006.

[2] M. Hadwiger, A. Kratz, C. Sigg, and K. Bhler. Gpu-
accelerated deep shadow maps for direct volume rendering.
In Proc. Graphics Hardware, 2006.

[3] H. W. Jensen, J. Arvo, P. Dutre, A. Keller, A. Owen,
M. Pharr, and P. Shirley. Monte carlo ray tracing. In ACM
SIGGRAPH Course Notes 44, 2003.

[4] J. Kniss, S. Premoze, C. Hansen, and D. Ebert. Interative
Translucent Volume Rendering and Procedural Modeling. In
Proceedings of IEEE Visualization, 2002.

[5] J. Krüger and R. Westermann. Acceleration Techniques for
GPU-based Volume Rendering. In Proceedings of IEEE Vi-
sualization 2003, pages 287–292, 2003.

[6] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and
T. Ertl. Interactive Volume Rendering on Standard
PC Graphics Hardware Using Multi-Textures and Multi-
Stage Rasterization. In Proceedings of ACM SIG-
GRAPH/Eurographics Workshop on Graphics Hardware,
2000.

[7] S. Röttger, S. Guthe, D. Weiskopf, and T. Ertl. Smart
Hardware-Accelerated Volume Rendering. In Procceedings
of EG/IEEE TCVG Symposium on Visualization VisSym ’03,
pages 231–238, 2003.

[8] L. Szirmay-Kalos. Monte-carlo methods in global illu-
mination. http://www.iit.bme.hu/ szirmay/script.pdf, 1999.
Script, Institute of Computer Graphics, Vienna University
of Technology.

[9] O. Wilson, A. V. Gelder, and J. Wilhelms. Direct Volume
Rendering via 3D-textures. Technical Report UCSC-CRL-
94-19, Univ. of California, Santa Cruz, 1994.

[10] S. Zhukov, A. Iones, and G. Kronin. An ambient light illumi-
nation model. In Proc. Eurographics Rendering Workshop,
1998.


