
Faculty 12
Computer Graphics and Multimedia Group

Prof. Dr. Andreas Kolb

Theorie
und Praxis
für Karrieren
von morgen

U N I V E R S I T Ä T S I E G E N

Technical Report

Real-Time Particle Level Sets with Application to Flow Visualization

Nicolas Cuntz1 and Robert Strzodka2 and Andreas Kolb1

1University of Siegen, Germany
2Stanford University, Max Planck Center

Version: May, 15th, 2007
(update: January, 17th, 2008)

Page 2 of 12

Abstract

Level set methods have evolved as powerful tools for the
representation and evolution of free surfaces. While the
implicit grid based representation deals very well with
topological changes, high resolutions and high order inte-
gration schemes are required to preserve fine surface de-
tails. The particle level set (PLS) method is an important
extension which additionally employs particles to correct
the numerical dissipation in the grid. This allows to re-
duce the spatial resolution and the order of the integra-
tion, while preserving a time consistent evolution.

While grid-based numerical schemes and particle systems
on their own have been efficiently mapped to GPUs, the
coupling of these methods is still a challenging task. GPU
applications in graphics and visualization continue to uti-
lize particle or grid representations exclusively. This pa-
per presents an enhanced variant of the PLS approach
which fully maps to the GPU. Improvements w.r.t. the
original PLS technique include a sub-voxel interface rep-
resentation and a more accurate level set correction using
more precise particle radii. Our method achieves both,
higher performance and superior quality in terms of mass
preservation compared to a public CPU-based reference
implementation.

As a concrete application we demonstrate that our fast
and accurate PLS is well suited for the visualization of
dynamic flows. In particular in 3D, where higher dimen-
sional objects (in contrast to points) are tracked, an accu-
rate evolution of time surfaces and representation of path
volumes offer a more reliable basis for data interpretation.

ACM Categories: I.3.5 Computer Graphics (Compu-
tational Geometry and Object Modeling - Curve, sur-
face, solid, and object representations)

1. Introduction

The level set method, introduced by [OS88], is an impor-
tant tool in a growing number of areas where the simula-
tion of a moving interface, i.e. a surface between two par-
ticipating media, plays a key role, e.g. fluid mechanics,
computer vision, material science and computer graphics
[OF02].

The main idea of the level set method is to represent a sur-
face implicitly as iso-contour of a signed distance func-
tion. This interface easily captures changes in the sur-
face topology during its time evolution. But the Euler-
based advection of level sets suffers from numerical dif-
fusion, resulting in a mass loss in areas of high curvature.
High resolution grids and high order HJ-(W)ENO advec-
tion schemes in conjunction with a small time step can

be used to improve the accuracy, yet this significantly in-
creases the computational complexity.

The particle level set (PLS) method is a hybrid grid/par-
ticle method introduced by [EMF02] in order to reduce
the numerical diffusion. Marker particles placed near the
interface are used to correct the level set representation.
Since the particles track the underlying flow characteris-
tics more accurately, the order of the level set advection
can be reduced (see [ELF04] and the open source library
[MF06]). PLS seeks an ideal balance of both, local accu-
racy and the number of particles and thus performance.

The PLS method has been used in complex flow visu-
alizations and animations, including special effects in
major motion pictures. Despite the high usefulness of
the method no fine-grained parallel implementation have
been demonstrated.

Traditional concepts of flow visualization are based on ex-
plicit object representations . Line-based techniques have
been expanded to surface and volume animations in order
to better convey the flow behavior in 3D [CSM00]. Track-
ing the generating vertices (or particles) is very accurate,
but for inhomogeneous and divergent flow a refinement is
required to ensure a proper representation of the under-
lying continuous flow objects. This leads to an exponen-
tially growing number of particles and outliers, not repre-
sentative for the surface any more. Implicit flow visual-
ization techniques map the flow field to a scalar function
and apply volume rendering techniques [vW93].

Contribution: The focus of this paper lies on a fine-
grained parallel PLS implementation on the GPU. This
requires a modification of the PLS algorithm in order to
make best benefit of the parallel capabilities of GPUs.
Additionally, due to a precise sub-voxel description of the
interface using distance transforms, we achieve a more
accurate result. Combining vertex/fragment buffer ob-
jects, shaders and blending functionality in an innovative
way leads to an extremely compact information exchange
between the particles and grids. We trace a manageable
number of particles in real-time and show as much de-
tail as possible, while ensuring a minimal average qual-
ity. The resulting GPU-based PLS implementation out-
performs the public PLS library [MF06], making it ready
to be used in real-time applications.

We demonstrate our parallel PLS method in real-time
flow visualization. Our implementation includes complex
time surfaces and path volumes. These flow primitives
have been tested with highly inhomogeneous and diver-
gent flows.

In this paper we are concerned with an efficient parallel
grid/particle coupling. For simplicity the level set func-

Page 3 of 12

tion is represented on the entire domain, not just in a nar-
row band around the interface. Consequently, the exam-
ples are restricted to 1283 to reduce the effect of the full
grid. Clearly, for better efficiency on large domains an
adaptive representation (cf. [LKHW04]) is desirable.

The remainder of this paper is structured as follows.
Sec. 2 discusses related research topics. The classical
PLS method is summarized in Sec. 3. Our GPU-based ap-
proach is described in Sec. 4. The application of the par-
allel PLS method to flow visualization is given in Sec. 5.
The result section 6 provides performances and accuracy
statistics as well as a comparison of our method to the
PLS library [MF06].

2. Related Work

In this section we briefly describe GPU-based level set
methods for the representation of free surfaces (Sec. 2.1),
flow visualization techniques using explicit and im-
plicit flow geometries (Sec. 2.2), and distance fields and
distance transforms (DTs), which are major building
blocks for our enhanced and GPU-based PLS technique
(Sec. 2.3). The original PLS technique is sketched in Sec-
tion 3.

2.1. GPU-based Level Set Methods

A first GPU based implementation of the level set equa-
tion was presented by Rumpf and Strzodka [RS01]. It
uses intensity and gradient based forces to drive a seg-
mentation of 2D images. Lefohn et al. [LKHW04] ad-
ditionally incorporated a curvature term and an adaptive
memory model for the narrow band technique and thus
could run efficient segmentation in 3D. In these applica-
tions, the numerical dissipation was not a problem, on the
contrary, a smooth boundary of the segmented 3D region
is desirable and the curvature term is used exactly for this
purpose. An iterative solution to the level set equation
was presented by Griesser et al. [GRNG05].

2.2. Surfaces and Volumes in Flows

Stream (or flow) volumes, the volumetric equiv-
alent to stream lines, have been introduced by
Max et al. [MBC93]. Here, an explicit represen-
tation of the volume based on tetrahedra is used.
Silva et al. [SHK97] do not visualize the volume but
rather animate the motion of an arbitrary smooth surface
in the flow. Instead of explicit quadrilateral or triangular
patches Brill et al. [BHR∗94] use stream balls to repre-
sent the stream surface. When multiple stream balls are
near each other they form a closed single surface, when
they diverge, the surface splits. Krüger et al. [KKKW05]

show a GPU-based implementation of particle based
techniques like stream lines and stream ribbons.

Wijk [vW93] generates implicit stream surfaces by look-
ing at level sets of a specific scalar function. The scalar
function is obtained from the flow field by back-tracking
each 3D-position to an inflow boundary point. Flow vi-
sualization results from rendering the level sets of this
scalar function. Westermann et al. [WJE00] extend this
approach to precomputed arrival times of a particle at
each position. Xue et al. [XZC04] introduce a varia-
tion and postponing of the assignment of scalar values
and also the allowance of other termination surfaces than
the inflow boundaries in the back-tracking process. The
use of volume rendering and texture mapping techniques
can interactively visualize the implicit flow volumes with
different choices of the values. The generation of streak
volumes with the level set method is discussed by Weis-
kopf [Wei04]. The level set formulation allows to retain
a sharp interface of the volume, whereas the simple ad-
vection of a density function (dye, smoke) smears out the
density quickly.

2.3. Distance Fields and Transforms

The reinitialization of the level set function requires the
construction of a Euclidean 3D Distance Field. Distance
Field computation is a well studied problem (see [Cui99]
for an overview). Consider a voxel grid and a closed
object boundary δΩ in the voxel grid. The Euclidean
Distance Field dm represents the minimum distance of
a voxel x to δΩ, i.e.

dm(x) = min
x′∈δΩ

{‖x− x′‖}.

The Euclidian distance transform dt in addition stores the
closest reference point on the boundary:

dt(x) =
(

min
x′∈δΩ

{‖x− x′‖}, arg min
x′∈δΩ

{‖x− x′‖}
)

.

Depending on the initial object representation, using a
voxel grid or an explicit geometric representation, differ-
ent approaches have been proposed.

Concerning the voxel grid approach, there are two major
categories, propagation methods and methods based on
Voronoi diagrams. Propagation methods iteratively prop-
agate the distance information to the neighboring voxels,
either by spacial sweeping or by contour propagation.

Different parallel approaches for the computation of a dis-
tance transform for a set of sites have been proposed, for
2D pixel sites [ST04, RT06] and for 3D polygonal input
data [SPG03, SGGM06]. For our PLS framework, a fast
computation of a 3D distance transform is required. The

Page 4 of 12

jump-flooding approach from Rong et al. [RT06] can be
extended to 3D. An alternative hierarchical propagation
method has been proposed by Cuntz et al. [CK07], com-
puting an approximate distance transform (see Sec. 4.2).
In comparison to the previously mentioned works, the
main benefits of this approach are a fully hierarchical de-
sign and the possibility to balance speed and accuracy.

3. Particle Level Set Method

This section is a résumé of the PLS method based on
[ELF04] and serves as starting point for our GPU-based
PLS approach.

The key idea of the level set method is the representation
of the typically lower dimensional interface I in a domain
D by the iso-contour I(φ) := {x ∈ D|φ(x) = 0} of the
level set function φ : D → R. The motion of the interface
is performed by evolving φ within a velocity field.

Typically, φ is initialized to be a signed distance field.
However, after advecting φ with different velocities, this
property is lost, and φ needs to be reinitialized, i.e. the
distance field is re-computed ideally not changing the lo-
cation of the zero level-set I(φ).

Enright et al. [ELF04] use a fast first order accurate semi-
Lagrangian method to evolve φ. Without particle correc-
tions, this leads to high inaccuracies after multiple time
steps, because the committed errors quickly accumulate,
e.g. resulting in a mass loss (see left image in Fig. 8).

The PLS method aims to prevent the numerical diffusion
caused by the advection, utilizing a particle tracing ap-
proach. Two sets of particles are placed near to the in-
terface I(φ). Positive particles are located in the φ > 0
region and negative particles in the φ < 0 region. A par-
ticle p at position xp has a radius rp defined as:

rp =

rmax if spφ(xp) > rmax

spφ(xp) if rmin ≤ spφ(xp) ≤ rmax

rmin if spφ(xp) < rmin

where sp is the sign of the particle, i.e. sp = sgn(φ(xp)).
Thus, the circle around xp with radius rp touches the in-
terface, if |φ(xp)| ∈ [rmin, rmax].

Particle tracking is much more accurate than the grid-
based advection of the level set, especially if a high order
Runge-Kutta integration is used. Thus, it is reasonable
to rely on the particles to correct the interface represen-
tation. The correction step involves the definition of a
temporary level set function φp around each particle:

φp(x) = sp(rp − ‖x− xp‖). (1)

After level set and particle advection, escaped particles,

i.e. those that are further away than their radius on the
wrong side of the interface, are used for the level set cor-
rection. Each escaped particle p contributes to the eight
surrounding grid voxels through intermediate level set
functions φ+ and φ− that are initialized to φ and updated
according to the formulas

φ+(x)← max(φp(x), φ+(x)),
φ−(x)← min(φp(x), φ−(x))

(2)

After processing of all escaped particles, the new (cor-
rected) level set is constructed according to

φ(x) =
{

φ+(x) if ‖φ+(x)‖ ≤ ‖φ−(x)‖
φ−(x) else

(3)

After the particle correction, φ is reinitialized in order to
restore a signed distance function.

The PLS method is known to produce good results
even when performing a first order semi-Lagrangian
level set advection. The algorithm according to En-
right et al. [ELF04] is summarized below. Note that the
level set correction is performed two times.

Algorithm 1 (PLS algorithm)

1. Definition of the interface location and velocity field
2. Initialization of the level set based on the interface
3. First order semi-Lagrangian level set advection
4. Second order Runge-Kutta particle advection
5. Correction of the level set function using the particles
6. Level set reinitialization
7. Correction of the level set function using the particles
8. Particle positioning and reinitialization
9. Go to 3

4. GPU-based PLS Method

An analysis of the PLS algorithm reveals several chal-
lenges concerning an efficient implementation on the
GPU, especially as we want to further enhance the ac-
curacy of the method:

• Representing and processing of PLS data requires
grid and particle data structures on the GPU and a
two-way data exchange between them.

• The level set (re-)initialization requires a fast par-
allel method to compute distance fields or distance
transforms.

• The level set correction requires a fast selection of
escaped particles and an efficient construction of the
intermediate level set functions φ+ and φ−.

• Sub-voxel accuracy is required to achieve less nu-
merical diffusion and thus less mass loss.

Page 5 of 12

These tasks are addressed in detail in the following sec-
tions. The first part covers necessary data structures and
the corresponding GPU analogies and outlines the PLS
data flow as it is realized in our GPU-based system. The
remaining parts discuss the individual steps of the algo-
rithm. For orientation we will refer to the steps in Alg. 1.

As the whole PLS algorithm runs completely on the GPU,
we assume some familiarity with the graphics hardware
and GPU programming in the following description of the
implementation. For an introduction to GPU program-
ming, see [Buc05, Har05].

4.1. Data Structures

The level set reinitialization algorithm used in our ap-
proach produces a distance transform, including the ref-
erence to the nearest point. This information is useful for
the particle reinitialization (Alg. 1, step 8 and Sec. 4.4)
and in addition to level set reinitialization at sub-voxel
precision (Sec. 4.2). Finally, the DTs can efficiently be
computed on GPUs using a very fast hierarchical method.

The DT is stored in a voxel grid Φxyzd with 4 components
per voxel storing the actual level set value Φd(x) = φ(x)
and a sub-voxel reference to the interface in Φxyz(x).
The sub-voxel references are of interest not only for the
level set reinitialization, but also for particle reinitializa-
tion (see Sec. 4.4). Note that in some stages of the algo-
rithm, e.g. after the level set advection, Φxyzd may not
represent a precise and/or complete distance transform.

On the technical side, we represent Φxyzd by a tiled 2D
GL RGBA FLOAT16 ATI floating point texture and use
frame buffer objects for render-to-texture functionality. A
simple double buffering approach is used to separate in-
put from output data in the data parallel GPU-processing.
The 16 bit components of Φxyzd reduce the bandwidth
requirements in contrast to full floats, are absolutely suf-
ficient for the interface and DT representation, and in ad-
dition allow a faster execution of the level set correction
stage through clever use of blending modes (see Sec. 4.7).

The velocity field ~v can be given in any form and format
that allows parallel point sampling. We use as a 3 com-
ponent 16-bit texture with a tiled 2D representation.

Only for the particle system we want to use higher pre-
cision values, as the same particles are tracked for a
considerable time in the velocity field, and we want
to reduce the accumulation of errors in this process.
The particle system is stored in a 2D 32-bit texture
(GL RGBA32FLOAT ARB). In Pxyz(p) we store the po-
sition of the particle p, and Pd(p) is a composed num-
ber containing a signed radius and a bit-flag determining
whether the particle has to be used during the PLS cor-

1

5b

2

6

4
8

3

5a

~v

Φrgba

Prgba

Φ±rg

interface

Figure 1: The data flow in the GPU-based PLS frame-
work – use of double buffering is marked by cyclic, blue
arrows; numbers indicate steps in Alg. 1; step 7 is omitted
in our GPU-based framework.

rection (Alg. 1, step 5 and Sec. 4.7). Moreover, the sign
of the radius determines whether the particle lies on the
inner (negative) or outer (positive) side of the interface.

The data flow with the corresponding steps of Alg. 1 is
outlined in Fig. 1. In- and outgoing edges represent data
input and output. Cyclic arrows involve double buffering,
as input and output data has to be distinct on the GPU.
The error correction (step 5) involves two passes and is
split into two separate entities 5a and 5b.

4.2. Level Set Reinitialization

Enright et al. [ELF04] realize the reinitialization of the
level set function via the fast marching method [Set99].
There is no feasible way to do this on the GPU. Using
distance transforms, instead, allows us to achieve sub-
voxel accuracy and enhances the particle reinitialization
(Sec. 4.4).

Level set reinitialization is performed on Φxyzd at the be-
ginning of the algorithm and later on the advected and
corrected level set. In the initial state, Φxyzd contains the
interface, which is given by means of the voxel classifica-
tion as interior or exterior or, alternatively, by a gray-level
voxel function, defining the interface on a sub-voxel level.

First, the interface needs to be identified, i.e. voxel close
to the boundary are assigned suitable reference points on
the interface. This is done in a fragment program which
is executed for each voxel x. Φxyzd(x) is updated if
and only if there exists a direct neighbor voxel y with
sgn(Φd(x)) 6= sgn(Φd(y)). The update is done by cal-
culating a sub-voxel position using linear interpolation:

Φxyz(x)← x +
‖Φd(x)‖

‖Φd(x)‖+ ‖Φd(y)‖
(y − x). (4)

Page 6 of 12

Figure 2: Two propagation steps in a volume slice –
Φxyzd is initialized with precise sub-voxel references.
Wrong references, e.g. the crossing reference vectors in
the third image, are rectified by a future propagation step.

The level set value Φd(x) is set to the distance between x
and Φxyz(x), multiplied by the sign previously stored at
position x. Note that the sub-voxel refinement performed
in Eq. 4 is especially important after advecting a coarse
grid. Using a simple binary interface representation dis-
allows small time step for advection, since the changes
might be too small to move the interface resulting in an
unchanged interface. Additionally, the refinement can be
used for a sub-voxel initialization of Φxyzd, if distance
values are present for voxels directly next to the interface.

After identification of the interface, the complete distance
transform Φxyzd is determined using the hierarchical ap-
proach proposed in [CK07], which is based on a prop-
agation technique, both on a single hierarchy level and
between the levels.

The propagation method can be implemented as a frag-
ment program, where Φxyzd(x) is updated by computing
alternative distances according to the reference points of
neighboring voxels:

Φxyz(x)← arg min
x′∈M(x)

{‖Φxyz(x′)− x‖}

Φd(x)← min
x′∈M(x)

{‖Φxyz(x′)− x‖}

Here, M is a structure element containing the direct
neighborhood of x. This algorithm, using a 3 × 3 × 3
structure element, is known to produce the correct result
if applied a sufficient often on all voxels in parallel (see
[CK07] for details; Fig. 2 shows two sequential propaga-
tion steps).

4.3. Particle Positioning

For an efficient use of particles for the PLS correction
(Alg. 1, step 5), all particles should be located near the in-
terface (see Sec. 3). This, however, is difficult to achieve

in parallel on the GPU, since one cannot iterate over the
interface neighborhood and place particles accordingly.
The positioning of particles close to the interface is not
only necessary during the initialization in the beginning,
but also occasionally during the execution of the algo-
rithm, because more and more particles will drift away
from the interface with an increasing number of time
steps. Frequent repositioning has the negative side effect
that inaccuracies in Φxyzd are constantly transferred into
the new set of particles, thus annihilating the advantage
gained by the particle correction. According to the liter-
ature [EMF02], a reasonable trade-off is to reposition the
particles every 20 time steps on average, e.g. by reposi-
tioning 5% of all particles in each iteration.

A major advantage of the distance transform used for in-
terface representation is the utilization of the references
Φxyz for the particle reinitialization. First, the location
Pxyz(p) for each particle p is chosen randomly within
[0, 1]3. Afterward, the particle is pushed towards the in-
terface by following the reference at the initial particle
location Φxyz(Pxyz(p)). The new position Pxyz(p) is
computed according to:

Pxyz(p)← Φxyz(Pxyz(p)) + ε · v̂rand, (5)

where v̂rand is a normalized random vector pointing to an
arbitrary direction and ε is a predefined small constant
scalar. In our implementation, conforming with [ELF04],
we choose ε such as to build a band of few cells around
the interface. The random vector can be fetched from a
texture with precomputed random values.

Pushing the particles towards the interface according to
the above scheme can lead to sparsely populated regions,
especially in areas with high curvature. In our experi-
ments, this effect could always be sufficiently reduced by
using a higher number of particles, but more efficient,
even distributions of particles should be investigated in
the future.

4.4. Particle Reinitialization

The radius of reinitialized particles should touch the inter-
face (see Sec. 3). As the interface is represented by sub-
voxel references in Φxyz, we fetch the nearest reference
by reading Φxyz at the new particle position. Because the
particle will, in general, not lie exactly on a grid voxel,
neighborhood-sampling is used to fetch the optimal ref-
erence point:

Pd(p)← min
x′∈N (Pxyz(p))

{‖Φxyz(x′)−Pxyz(p)‖}, (6)

where Pxyz(p) is the new particle position resulting from
Eq. 5 and N denotes the neighborhood consisting of the

Page 7 of 12

Figure 3: Comparing particle radii using tri-linear dis-
tance interpolation and neighborhood-sampling of near-
est reference point. Left: A notched sphere (first) is ro-
tated 8 times by reseeding 5% particles in each frame
using interpolated radii (second) and nearest reference
(third).

Figure 4: More accurate distance computation with the
neighborhood-sampling of reference points (right) than
with tri-linear distance interpolation (left)

eight voxels around a given location. The sign of the par-
ticle is determined by the sign Φd for the corresponding
voxel. Note that there is no obvious way to obtain the
sign on a sub-voxel level as it is the case for the radius.

Pd(p)← Pd(p) · sgn(Φd(Pxyz(p))).

At a first glance, the sampling method described in
Eq. 6 appears too expensive compared to a simple tri-
linear texture look-up of the distance component Φd(p).
However, a closer observation of the mass loss reveals
that the overall correction is more accurate when us-
ing the more precise distance based on the reference
point Φxyz(x′). Fig. 3 illustrates the difference between
the neighborhood-sampled reference-based radii compu-
tation and the tri-linear interpolation of the distances. Tri-
linear distance interpolation leads to undesirable smooth-
ing of important surface features (see Fig. 6 for quantita-
tive results).

In Fig. 4, the grid points (red point) contain the length
of the normal (red line) to the interface (blue). On the
left, the distance at the particle position (black point) is

computed with a bilinear interpolation of the grid point
distances; it is simply an average in these examples. In
case of a convex interface the resulting distance (green
circle) is too small, because distances corresponding to
very different normals are averaged. On the right, the dis-
tance is computed by finding the closest reference point
(yellow point). Here, we also commit an error, as the se-
lected reference point is not exactly the closest point on
the interface to the particle (black point), but for highly
convex interface parts, this is more accurate than the in-
terpolation. For (almost) flat interface parts the interpo-
lation is better because all normals point in (almost) the
same direction.

In [ELF04], the radii of the particles are reset after level
set reinitialization while [MF06] omit this step. The given
reason for this is similar to the explanation why particle
repositioning after each frame should be avoided: As par-
ticle radii have to be reset with information stored in the
level set, inaccuracies of the level set are propagated into
the particle model. Thus, it is reasonable to wait until the
next particle repositioning before the radii are updated,
and we follow this approach.

4.5. Level Set Advection

Level set advection (Alg. 1, step 3) is easily ported to the
GPU due to its parallel nature. A velocity texture ~v is read
using tri-linear interpolation within a fragment program.
New level set values are computed according to a semi-
Lagrangian approach

Φd(x)← Φd(x− ~v(x)∆t),

where ∆t is the time step used for both level set advection
and particle tracking.

4.6. Particle Tracking

In principle, particle tracking is performed according to
the traditional PLS algorithm. A second order accurate
Runge-Kutta integration is used to calculate the new po-
sitions in a fragment program.

In addition to the position, the sign and the radius, a flag
has to be stored in the particle texture Pxyzd, determining
whether a particle p escapes the interface. In contrast to
the original PLS approach (Sec. 3), we refine the particle
correction by involving more particles in the level set cor-
rection. This is done by defining a particle as escaped if
its radius is greater than its distance to the interface, i.e.

Pd(p) bit←

{
true if ‖Pd(p)‖ > ‖Φd(Pxyz(p))‖
false else

(7)

Page 8 of 12

where bit← stands for a bit-encoding operator which stores
the boolean value into one bit of the float mantissa.

4.7. Level Set Correction

For level set correction (Alg. 1, step 5), we need a way
to select particles marked as “escaped” and, based on this
selection, to construct the intermediate level set functions
φ+, φ−. To reduce bandwidth requirements we do this
differently than in the original formulation, postponing
the combination with φ until the final update.

The construction of φ+, φ− requires particle-to-grid cou-
pling by scattering into the grid data structure. The key
idea is to render a marker-geometry at the particle posi-
tions to trigger a computation for the 8 grid-voxel around
the particle. To process all particles, the particle texture
Pxyzd is copied into a Vertex Buffer Object. For the level
set correction, all particles are sent through the graphics
pipeline and a vertex program detects whether a particle
p has escaped by checking a the encoded bit in Pd(p)
(see Eq. 7). If the particle has not escaped it does not
contribute to the level set correction and is discarded by
moving it outside of the volume.

Point scattering approaches are known to be rather time-
exhaustive, e.g. Kolb and Cuntz [KC05] could handle
only a few thousand particles at interactive rates, using
relatively large point sprites. Evaluating different types
of marker-geometries, i.e. point sprites, quads and indi-
vidual points, rendering four individual points into two
subsequent slices of the grid is the most effective variant
in our situation. Here, no explicit rasterization needs to
be performed, since all relevant pixels, i.e. grid voxels,
are addressed directly.

The intermediate level sets φ+ and φ− given in Eq. 1 are
stored in a two-component voxel grid Φ±xy = (φ+,−φ−).

The accumulation of particle contributions in Φ±xy uses
min-max blending, provided by the OpenGL extension
GL EXT blend minmax. This turned out to be a very
efficient method to compute the max and min terms (see
Eq. 2 in Sec. 6). Storing −φ− instead of φ− allows a
single pass update of Φ±xy using maximum blending only.
Initially, Φ±xy is set to (−∞,−∞) for all voxels. Listing 1
in Appendix A shows an efficient way to implement the
computation of Φ±xy in a fragment program.

A second pass rasterizes the complete level set, comput-
ing the corrected level set Φxyzd using Φ±xy according to
Eq. 3, including the postponed combination with φ (see
Listing 2 in Appendix A). Fig. 5 shows the steps involved
in the error correction.

1

4

2

3

Figure 5: Low resolution level set correction example
with a small number of particles – (1) level set after ad-
vection by 30◦, (2) the particle system (escaped particles
are marked in magenta (positive) and orange (negative)),
(3) the temporary level set containing φ+ and φ− (the
component with highest magnitude is displayed), (4) the
corrected level set. Note that the shrinking of the object
due to inaccuracies in the advection is partially reverted.
Usually, more particles are used in order to achieve better
results after the correction.

5. PLS-based Flow Visualization

Our parallel GPU-based PLS system offers an inher-
ent balancing mechanism for accuracy and performance.
Flow visualization can clearly benefit from the perfor-
mance and the improved accuracy, allowing interactive
navigation and parameters adjustment. The PLS tech-
nique is especially useful in case of complex flows.
Where purely particle-based approaches generate sparse
or overpopulated regions, PLS presents a more consis-
tent picture as it does not rely on the particle distribution
alone.

5.1. Settings

We concentrated on two types of entities: Time surfaces
and path volumes. Time surfaces result from the evolu-
tion of arbitrary surfaces within a flow field. This is di-
rectly supported by the PLS method by representing the
surface as a level set. Path volumes can be seen as the
union of all path-lines starting at any point within an ini-
tial surface or volume. In the implicit volume representa-
tion, the interior is given by φ(x) < 0, thus path volumes
can easily be determined by taking the minimum of the
distance transforms for the evolving time surfaces. The
result is a volume describing the path which has been tra-
versed by the tracked shape. The minimum is stored in a
separate voxel grid.

Page 9 of 12

An example for time surfaces is shown in Fig. 9. It visu-
alizes the internal structure of a complex typhoon flow by
evolving a transparent shape. Further flow visualization
examples are given in Fig. 7 and 10.

5.2. Rendering

The volume renderer is based on a back-to-front slicing
technique using view-aligned polygons. Only fragments
within a small iso-value range [−ε, ε] around the inter-
face are colored in a shader using Phong lighting. Ap-
plying alpha blending makes internal structures visible,
which is important e.g. for complex time surfaces. This
approach is similar to semi-transparent interval volume
rendering [FMST96].

6. Results

This section evaluates the performance and the accuracy
of our GPU-based PLS system on its own and in com-
parison to the public PLS library [MF06]. Additionally,
various examples in the context of flow visualization are
given.

The hardware used for testing is a PC with an AMD
Athlon 64 X2 Dual Core Processor 4200+ (2.21 GHz),
4 GB RAM with a GeForce 8800 GTS graphics chip.

For performance evaluation, we use Zalesak’s sphere
(Fig. 8) used in previous work about PLS [ELF04], which
is also available in the PLS library [MF06].

We compare our GPU method with the PLS li-
brary [MF06] using exactly the same Zalesak sphere and
with equal parameters for both implementations. The test
consists of 100 evolution steps in a vortex flow field to a
total of 360◦. Fig. 6 shows the resulting frame-rate and
relative mass loss as function of the number of particles.

 1

 10

 100

32890881644544822272411136205568102784 51392 25696

M
a

s
s
 l
o

s
s
 i
n

 %
 /

 F
P

S

Number of particles

Mass loss

GPU FPS
CPU FPS

CPU mass loss
GPU mass loss

Figure 6: Comparison of CPU and GPU method for Za-
lesak’s sphere (same logarithmic scale for both) – the re-
sults have been taken after 360◦ rotation, grid resolution:
643, no particle reinitialization

Following prior works (e.g. Enright et al. [ELF04]), the
resulting mass loss is measured by counting the number
of interior voxels of the object. It should be pointed out,
that this method is not very accurate, since it does not
take sub-voxels into account. Also, PLS tends to pro-
duce bumps on the interface resulting in a slightly fluctu-
ating volume size. For some high resolutions (1283 and
524,288 particles), we even get a slight volume gain.

In Fig. 8, two examples are given, one where the initial
state and the state after rotation by 360◦ in a simple vor-
tex field without and with PLS correction is visualized,
the other showing a deformation using PLS within a dis-
torting vortex field. Fig. 7 shows the advantage of PLS
for a time surface after 122 evolution steps in the typhoon
flow. Note that fine features close to the typhoon’s vortex
disappear in the version without the particle correction.

Table 1 lists the time consumption for all steps of our
GPU-based algorithm separately for Zalesak’s sphere.
One can see that, depending on the resolution, the level
set reinitialization and correction are the most time-
consuming steps of the application. Due to the large size
of the structure element used in the propagation method,
the level set reinitialization is texture-fetch-bound (see
Sec. 4.2).

The usage of distance transform instead of a distance field
increases the memory footprint of the level set texture.
However, the advantage of using references for particle
reinitialization is clearly noticeable in the direct compar-
ison in Fig. 3, see also the discussion in Sec. 4.2.

Fig. 9 shows an evolution of a complex time surface in
the typhoon flow. Note how the cylindrical holes in the
inner region of the volume are pulled into the vortex of
the typhoon. The interior flow structure is clearly visi-
ble due to the semi-transparent interval volume rendering
(see Sec. 5).

A path volume consisting of 9 spheres is given in Fig. 9.
Without particle correction, the path volumes do not

Figure 7: Time Surface in a dynamic typhoon flow field.
The flow data consists of 106× 53× 39 voxels at 32 dis-
tinct time steps – state after 122 evolution steps without
PLS correction (left) and without PLS correction (right);
524,288 particles, resolution 1283, frame-rate 9.23 FPS

Page 10 of 12

Figure 8: Left: 360◦ rotation of Zalesak’s sphere: initial, rotated without and with correction; 524,288 particles, 14.74
FPS, grid resolution: 1283 – right: Stanford bunny in a vortex flow using PLS: initial, after 40 advection steps, after
backward advection; 131,072 particles, 96x96x96, 40.4467 FPS

Table 1: Run-time of the steps involved in the PLS al-
gorithm – object: Zalesak’s sphere (see Fig. 8), 262,144
particles. In each frame, 5% of the particles are reinitial-
ized.

step grid res. time in ms
framework 643 5.01

level set advection 643 0.41
particle tracking 643 0.31

LS correction 643 5.95
level set reinitialization 643 1.29
particle reinitialization 643 0.22

framework 1283 5.05
level set advection 1283 0.27

particle tracking 1283 0.44
LS correction 1283 7.64

level set reinitialization 1283 29.52
particle reinitialization 1283 0.06

evolve properly through the complete flow volume. Ap-
plying particle correction yields a well-behaved path vol-
ume, especially around the flow source (central path vol-
ume).

7. Conclusions and Future Work

We have presented an enhanced and purely GPU-based
Particle level set method with a beneficial application to
surface and volume based flow visualization. The pre-
sented method shows that surface evolution can be per-
formed efficiently and accurately on the GPU. We achieve
a convincing performance and far superior quality of re-
sults over both, CPU-based PLS methods and grid-only
GPU-methods. The use of distance transforms instead
of distance fields alleviates the difficult problem of even
particle distribution in a dynamically changing region and
offers sub-voxel accurate distances for higher quality rep-
resentation of moving surfaces.

Examples of accurate and interactive flow visualizations,
including path volumes and time surfaces, have been
presented. Especially for inhomogeneous and divergent

Figure 9: Semi-transparent time surface visualizing the
typhoon flow; about 4 mill. particles, grid res.: 160 ×
160× 128

Figure 10: 9 spheres forming path volumes in an ana-
lytical flow field without (left) and with PLS correction
(right); 524288 mill. particles, resolution: 160 × 160 ×
140

flow fields such as a complex unsteady typhoon flow, the
method allows for a good balance between accuracy and
performance by means of grid resolution and number of
particles.

Page 11 of 12

We will continue work on the optimization of the im-
plementation, e.g. on the particle reinitialization scheme
and the scattering of particles. In principle, any dynam-
ically generated velocity field can be used to drive the
interface motion in a physically based or artistically con-
trolled way. Consequently, we want to explore how our
GPU-based PLS method can enable interactive design of
special effects, e.g. with velocity fields generated by a
CFD GPU engine. The parameters of the effects could be
easily recorded and later employed in real-time applica-
tions like computer games.

Appendix A: Fragment Shader

The following GLSL code is used to calculate φ+ and φ−

during the particle correction. The result is stored in Φ±xy.
The particle information is given by _particle, which
corresponds to Pxyzd(p), the voxel position is passed
from the vertex program via _voxel

Listing 1 (Calculating Φ±xy(x))

vec2 phi_pm; // temp. pos./neg. level sets

// Compute phi_p(position)
float phi_p = sign(_particle.w)*
(abs(_particle.w)-

distance(_voxel, _particle.xyz));

phi_pm = vec2(phi_p, -INFTY); // pos. side
if (_particle.w < 0.0) // change to neg. side
phi_pm.xy = vec2(phi_pm.y, -phi_pm.x);

return phi_pm;

The following GLSL code is used to update the level set
function at the end of the correction step. The function
mix computes a linear interpolation between two values.

Listing 2 (Updating Φd(x))

// The level set which is to be corrected
float phi_r=texture2DRect(phi_r_sampler,

gl_TexCoord[0].xy);
// Intermediate level set
vec2 phi_pm=texture2DRect(phi_pm_sampler,

gl_TexCoord[0].xy);

phi_pm.x = max(phi_pm.x, phi_r.x);
phi_pm.y = max(phi_pm.y, -phi_r.y);
float alpha;
alpha = float(abs(phi_pm.r)>=abs(phi_pm.g));

phi_r = mix(-phi_pm.g, phi_pm.r, alpha);

return phi_r;

References

BHR∗94. BRILL M., HAGEN H., RODRIAN H.-C.,
DJATSCHIN W., KLIMENKO S.: Streamball tech-

niques for flow visualization. In Proc. IEEE Conf. on
Visualization (1994), pp. 225–231.

Buc05. BUCK I.: Taking the plunge into GPU computing.
In GPU Gems 2, Pharr M., (Ed.). Addison Wesley,
Mar. 2005, ch. 32, pp. 509–519.

CK07. CUNTZ N., KOLB A.: Fast hierarchical
3d distance transforms on the GPU. Techni-
cal Report (2007). http://www.cg.informatik.uni-
siegen.de/Publications/.

CSM00. CRAWFIS R., SHEN H., MAX N.: Flow visual-
ization techniques for cfd using volume rendering. In
Int. Symp. on Flow Visualization (2000).

Cui99. CUISENAIRE O.: Distance transformations: Fast
algorithms and applications to medical image pro-
cessing. Ph.D. Thesis, UCL, Louvain-la-Neuve, Bel-
gium (1999).

ELF04. ENRIGHT D., LOSASSO F., FEDKIW R.: A
fast and accurate semi-lagrangian particle level set
method. Computers & Structures, Volume 83, Issues
6-7 (2004), 479–490.

EMF02. ENRIGHT D., MARSCHNER S., FEDKIW R.:
Animation and rendering of complex water surfaces.
In ACM Proceedings SIGGRAPH (2002), pp. 736–
744.

FMST96. FUJISHIRO I., MAEDA Y., SATO H.,
TAKESHIMA Y.: Volumetric data exploration
using interval volume. IEEE Trans. on Visualization
and Computer Graphics2, 2 (1996), 144–155.

GRNG05. GRIESSER A., ROECK S. D., NEUBECK A.,
GOOL L. V.: Gpu-based foreground-background
segmentation using an extended colinearity criterion.
In Proc. Vision, Modeling and Visualization (2005),
pp. 319–326.

Har05. HARRIS M.: Mapping computational concepts to
GPUs. In GPU Gems 2, Pharr M., (Ed.). Addison
Wesley, Mar. 2005, ch. 31, pp. 493–508.

KC05. KOLB A., CUNTZ N.: Dynamic particle coupling
for GPU-based fluid simulation. In Proc. 18th Sym-
posium on Simulation Technique, ISBN 3-936150-41-
9 (2005), pp. 722–727.

KKKW05. KRÜGER J., KIPFER P., KONDRATIEVA P.,
WESTERMANN R.: A particle system for interactive
visualization of 3d flows. IEEE Trans. on Visualiza-
tion and Computer Graphics11, 6 (11 2005).

LKHW04. LEFOHN A., KNISS J., HANSEN C.,
WHITAKER R.: A streaming narrow-band algo-
rithm: Interactive computation and visualization
of level-set surfaces. IEEE Transactions on Vi-

Page 12 of 12

sualization and Computer Graphics 10, 4 (2004),
422–433.

MBC93. MAX N., BECKER B., CRAWFIS R.: Flow
volumes for interactive vector field visualization. In
Proc. IEEE Conf. on Visualization (1993), pp. 19–24.

MF06. MOKBERI E., FALOUTSOS P.: A parti-
cle level set library. Technical Report (2006).
http://www.magix.ucla.edu/software/levelSetLibrary/.

OF02. OSHER S., FEDKIW R.: Level set methods and
dynamic implicit surfaces. Springer, ISBN 0-387954-
82-1 (2002).

OS88. OSHER S., SETHIAN J.: Fronts propagating
with curvature-dependent speed: Algorithms based
on Hamilton-Jacobi formulations. Journal of Com-
putational Physics 79 (1988), 12–49.

RS01. RUMPF M., STRZODKA R.: Level set segmen-
tation in graphics hardware. In Proceedings of
IEEE International Conference on Image Processing
(ICIP’01) (2001), vol. 3, pp. 1103–1106.

RT06. RONG G., TAN T.-S.: Jump flooding in GPU with
applications to Voronoi diagram and distance trans-
form. In ACM Symposium on Interactive 3D Graph-
ics and Games, 14–17 March, Redwood City (2006),
pp. 109–116.

Set99. SETHIAN J. A.: Level Set Methods and Fast
Marching Methods. Cambridge University Press,
1999.

SGGM06. SUD A., GOVINDARAJU N., GAYLE R.,
MANOCHA D.: Interactive 3D distance field com-
putation using linear factorization. In Proc. Symp. on
Interactive 3D graphics & games (2006), pp. 117–
124.

SHK97. SILVA C., HONG L., KAUFMAN A.: Flow sur-
face probes for vector field visualization. In Scientific
Visualization, Overviews, Methodologies, and Tech-
niques (1997), pp. 295–310.

SPG03. SIGG C., PEIKERT R., GROSS M.: Signed dis-
tance transform using graphics hardware. In Proc.
IEEE Conf. on Visualization (2003), p. 12.

ST04. STRZODKA R., TELEA A.: Generalized dis-
tance transforms and skeletons in graphics hard-
ware. In VisSym, Symposium on Visualization (2004),
pp. 221–230.

vW93. VAN WIJK J.: Implicit stream surfaces. In Proc.
IEEE Conf. on Visualization (1993), pp. 245–252.

Wei04. WEISKOPF D.: Dye advection without the blur:
A level-set approach for texture-based visualization
of unsteady flow. In Proc. EUROGRAPHICS (2004),
pp. 479–488.

WJE00. WESTERMANN R., JOHNSON C., ERTL T.: A
level-set method for flow visualization. In Proc. IEEE
Conf. on Visualization (2000), pp. 147–154.

XZC04. XUE D., ZHANG C., CRAWFIS R.: Rendering
implicit flow volumes. In Proc. IEEE Conf. on Visu-
alization (2004), pp. 99–106.

