
TECHNICAL REPORT, COMPUTER GRAPHICS GROUP, UNIVERSITY OF SIEGEN, 2007

Fast (Spherical) Light Field Rendering with Per-Pixel Depth

Severin Todt, Christof Rezk-Salama and Andreas Kolb

Abstract— Image-based rendering techniques are a powerful alternative to traditional polygon-based computer graphics. This paper
presents a novel light field rendering technique which performs per-pixel depth correction of rays for high-quality reconstruction. Our
technique stores combined RGB and depth values in a parabolic 2D texture for every light field sample acquired at discrete positions
on a uniformly sampled sphere. Image synthesis is implemented on the GPU as a fragment program which extracts the correct image
information from adjacent cameras for each fragment by applying a per-pixel depth correction of rays.
We show that the presented image-based rendering technique provides a significant improvement compared to previous approaches.
We explain two different rendering implementations which make use of a uniformly sampled parameterisation to minimize disparity
problems and ensure full six degrees of freedom for virtual view synthesis. While one rendering algorithm implements a run-time
efficient iterative refinement approach for rendering light fields with per pixel depth correction the other approach employs a raycaster
for per pixel depth correction and provides superior rendering quality at moderate frame rates.
GPU based per-fragment depth correction of rays, used in both implementations, reduces ghosting artefacts to a non noticeable
amount and provides a rendering technique that performs without exhaustive pre-processing for 3D object reconstruction or real-time
ray-object intersection calculations at rendering time.

Index Terms—Image-Based Rendering, Light Field.
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1 INTRODUCTION

Research in the field of image-based rendering (IBR) has contributed
algorithms for real-time generation of photorealistic images of com-
plex scenes. Generally, these algorithms are based on a collection of
pre-acquired input images to produce new, virtual views. Unlike the
polygonal rendering pipeline, IBR techniques are almost independent
of scene complexity thus providing an efficient solution for photoreal-
istic image synthesis at a predictable computational cost.

The accuracy of continuous light field reconstruction can be im-
proved if information about the scene geometry is taken into account.
Depth information as well as polygonal approximations of the ob-
served scene have been used for scene representation in a selection
of IBR implementations to enhance image quality [7, 19, 23, 20, 3].
Depth estimation, however, has been identified to be crucial for the
performance of rendering algorithms which apply depth correction of
rays to improve image synthesis results. Vogelgsang et al. [22] have
shown that best rendering performance can be achieved if depth de-
termination can be reduced to a simple lookup, i.e. depth information
which can be obtained directly from depth-maps. The approach de-
scribed in this paper represents the result of our effort to develop an
image-based scene representation that can directly take advantage of
combined color and depth information for best rendering performance
and image-synthesis quality.

We present a new light field parameterisation and rendering algo-
rithms based on a sparse set of discrete light field samples arranged on
the surface of a camera sphere around an object in combination with
associated per-pixel depth information. The spherical alignment en-
sures full 6 DOF for image synthesis of new virtual views and avoids
disparity problems by using a uniformly sampled sphere. For high-
quality real-time reconstruction our advanced GPU-based rendering
technique directly employs the full set of combined per pixel color
and depth information acquired for every sample position.

The remainder of the paper is structured as follows. In Section 2
we give an overview of relevant related work, including a survey on
existing light field approaches. In Section 3 we introduce our light
field representation and show the benefits with respect to combined
RGB and depth data. Section 4 describes our novel techniques for
GPU-based light field rendering with per-pixel depth refinement. In
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Section 5 we explain how light fields can be efficiently generated from
3D geometry. Section 6 evaluates the technique with respect to image
quality and rendering performance. In Section 7 we draw conclusions
and comment on future work.

2 RELATED WORK

The use of environment maps to capture the incoming light in a texture
map [2, 8] has inspired several successive IBR techniques. As envi-
ronment maps record the incident light arriving from all directions at
a given point each individual environment map of a scene describes a
concrete sample of the plenoptic function [15] as desribed by Adelson
and Bergen [1]. The plenoptic function describes all of the radiant en-
ergy that can be received at a certain point in space (Vx,Vy,Vz) from
an arbitrary direction (θ ,φ ) at a certain moment in time t for a chosen
band of wavelengths λ :

ρ = P(θ ,φ ,λ ,Vx,Vy,Vz, t) (1)

Given a set of discrete samples of the plenoptic function, the goal
of image-based rendering techniques is to generate a continuous repre-
sentation of that function. Most IBR approaches reduce the 7D plenop-
tic function to a 5D plenoptic function by restricting it to a static light-
ing situation, eliminating t and reducing the wavelength λ using the
primary values RGB.

For objects being observed from positions either completely out-
side or completely inside its convex hull, the observation space can be
assumed to be free of occluders. This assumption leads to further re-
duction of the plenoptic function by erasing spatial redundancies of the
5D plenoptic function. The plenoptic function can than be expressed
as function on the space of oriented lines. The function of position
and direction is described as light field [14]. Different discretisation
methods for the 4D parameterisation lead to a variety of different IBR
methods.

Traditionally, image based rendering approaches are classified by
the amount of geometric information being used for image synthesis.
This classification leads to the IBR continuum introduced by Kang
[12] and Lengyel [13]. Levoy and Hanrahan [14] use different criteria
to categorize IBR techniques. These are the parameterisation and rep-
resentation of the light field, the method to generate or acquire the light
field and the approach to fast and accurate reconstruction of different
views.

Each of the techniques reviewed in the following section focuses on
certain aspects of the above mentioned challenges. The individual ap-
proaches have influenced different parts of our work. Two Plane Light
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Field Rendering (see Section 2.1) introduces the 4D plenoptic func-
tion, Lumigraph Rendering (see Section 2.1) exploits geometric infor-
mation for increased image quality and introduces full 6 DOF for vir-
tual view synthesis and Spherical Light Field Rendering (see section
2.2) employs uniform spherical parameterisations to avoid disparity
problems. Free Form Light Fields as well as Unstructured Lumigraphs
are targeted at hand-held light field acquisition for non-uniform pa-
rameterisations, both of them applying depth correction for improved
rendering quality.

2.1 Two-Plane Parameterisations
Light field rendering as proposed in the original paper by Levoy and
Hanrahan [14] restricts objects to lie within a convex cuboid bounded
by two planes, the camera plane and the image plane. Rays describing
the observation space are parameterised by their intersection points
with these two planes leading to the 4D plenoptic function. A set of
such two planes is called a light slab.

Reconstruction of the light field for a ray described by the intersec-
tion points with the two planes (u,v, t,s) is performed by quadri-linear
interpolation of the images taken by the cameras positioned around the
intersection point on the camera plane(u,v).

It has been shown that light field rendering as described above will
provide satisfactory rendering results, if the observed object is posi-
tioned exactly on the image plane. In the general case, noticeable
ghosting artefacts will appear due to incoherent light field information
for adjacent rays. Incoherence results from rays hitting the object at
a surface point far from the image plane, thus resulting in deviating
intersection points on the image plane (see Figure 1).

The Lumigraph introduced by Gortler et al. [7] uses a proximity
polygonal object representation to overcome incoherence by applying
a depth correction of the rays. With ray correction significant improve-
ment in image quality for generated novel views can be achieved. Im-
proved quality comes at the price of time consuming pre-processing
steps to generate the proximity object. Lumigraph rendering perfor-
mance is clearly limited by the depth estimation performance applied
for ray correction. Discrete depth values are estimated by a compu-
tational expensive raycasting approach at rendering time. The dis-
crete depth values are evaluated in an additional successive process
for depth correction of ray.

In addition to depth correction, Gortler et al. use up to six light slabs
to cover the complete space surrounding the convex hull of the object,
thus providing full 6DOF for virtual viewpoint selection. In the origi-
nal work 32 views were generated for each of the light slabs, resulting
in a total count of 192 views for the cubic parameterisation. However,
discontinuities appear at corners of the camera planes. Non-uniform
sampling in these regions leads to noticeable visual artefacts [4].

2.2 Spherical Parameterisations
Spherical light field rendering techniques overcome the problem of
discontinuities by parameterising rays using a spherical representation.

Ci Ci+1Ci-1 Ci Ci+1Ci-1

Image Plane Image Plane

Camera PlaneCamera Plane

Pcami
Pcami+1

Pobj

Pobj

Fig. 1. Depth correction of rays. Without depth correction, the intersec-
tion points observed from adjacent cameras do not necessarily corre-
spond to an identical object surface point. With depth correction, cam-
era rays passing through a common object surface point are used for
interpolation.

Spherical Sphere - Sphere Sphere - Plane

Fig. 2. Overview of the different variants of spherical light field param-
eterisation. Red and green show two different viewing ray intersection
situations for each variant.

Several flavors of spherical parameterisations have been published in
the past (see Figure 2).

Spherical light fields [10] use intersection with a positional sphere
(large circle) and a directional sphere placed at the positional intersec-
tion point. Using Sphere-Sphere parameterisation [4] rays are deter-
mined by intersecting the same sphere twice. Sphere-Plane parame-
ters are evaluated as the intersection with a plane perpendicular to the
ray positioned at the center and its normal direction yielding a position
on the surrounding sphere [4].

Spherical light fields avoid discontinuities by a uniform parameter-
isation. The virtual viewpoint can be chosen freely with 6 DOF. For
light field reconstruction the sphere is rendered as a smooth shaded
polygonal mesh applying camera images for bilinear interpolation. In
general, spherical reconstruction methods exhibit less ghosting arte-
facts compared to other parameterisations.

2.3 Unstructured Light Fields
Unstructured light field rendering techniques address the problem of
fixed camera-space parameterisation. During light field acquisition,
actual camera parameters are stored with every light field sample to
define the final parametrisation space. Image synthesis then is steered
by camera parameters to query image data and to establish camera
blending weights for interpolation.

Unstructured Lumigraph Rendering [3] is based on a variation of
the light slab setup as used in two-plane light field rendering. Com-
putational effort is spent to calculate per fragment blending weights
of different input cameras based upon a polygonal proxy representa-
tion of the scene for depth correction. The reconstruction underlies
the same restrictions as two-plane approaches concerning the freedom
of choice for the virtual viewpoint, the pre-processing complexity, the
rendering performance and the sampling uniformity.

Free Form Light Field Rendering [20] can be viewed as a general-
ization of the two-plane rendering approach. Here a camera mesh is
used for light field representation instead of a set of light slabs. For
acquisition, camera positions can be chosen to lie anywhere outside
the convex hull of the observed object. A camera mesh connecting the
camera positions used for acquisition is built in a computational chal-
lenging pre-processing step. For image synthesis, the smooth shaded
camera mesh is rendered by projecting each of its faces onto the image
planes of the n nearest cameras that contribute to that patch.

Schirmacher et al. [20] apply a depth correction for Free Form Light
Fields by successively subdividing the camera mesh at rendering time.
Subdivision is steered by evaluating per-vertex depth information. The
camera mesh is subdivided until a homogenous depth value is estab-
lished for all of the triangle’s vertices or the triangle’s area reaches
the size of a fragment. Depth evaluation is performed by applying
a raytracer for ray–object intersection, searching a binary volume or
searching in a per-pixel depth map. Rendering performance is de-
pendent on the method used for per-vertex depth estimation and the
object’s depth complexity which is the actuating variable for the sub-
division algorithm’s runtime. Using depth maps have been identified
to be the most effective solution to depth correction of rays by means
of rendering-performance.

Unstructured camera arrangements enforce an individual treatment
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RGB color depth value

Fig. 3. Left: The light field consists of a predefined set of camera positions uniformly distributed on a sphere around the object. Middle: Only the
opposing hemisphere is recorded for each camera. Right: The hemisphere is parameterised as parabolic environment map and stores both color
and depth values.

of every camera for every pixel. Further pre-processing steps are
necessary to generate the camera mesh and approximate a polygo-
nal proxy representation of the object recorded or to extract per view
depth maps for ray correction at rendering time. Rendering quality is
closely related to the uniformity of the camera mesh and the complete
covering of suitable viewing directions needed for reconstruction pur-
poses. Due to the nature of the unstructured arrangement chosen for
parametrisation, none of these two conditions can be guaranteed to be
incorporated satisfactory.

3 SPHERICAL LIGHT FIELDS WITH PER-PIXEL DEPTH

Our spherical light field rendering method with per-pixel depth cor-
rection of rays is inspired by ideas of Schirmacher et al. to use depth
maps for ray correction [20] and profits from the uniformity of spher-
ical parameterisations (see Section 2.2). Our approach directly works
on combined RGB and depth image data to realize an efficient light
field representation and high-quality light field rendering technique.
In the remainder of this paper we refer to combined RGB and depth
images short as RGBz images.

The parameterisation is outlined in Figure 3. We employ a uni-
form spherical parameterisation to avoid discontinuity artefacts and
guarantee full 6 DOF for virtual viewpoint selection. A virtual cam-
era is located at each vertex of a regular, uniform triangulation of the
sphere (left). For each camera an RGBz raster image of the opposing
hemisphere is stored using a parabolic parameterisation (middle). The
RGBz images for the individual cameras are stored on graphics hard-
ware by writing the depth value in the alpha channel with every pixel
(right). A standard color depth of 8 bit per RGBA channel is sufficient.
This data representation is open for commodity texture compression
algorithms. Light field reconstruction is performed by rendering the
smooth shaded spherical proxy using a customized fragment program
which performs effective per-pixel depth correction.

3.1 Spherical Camera Space Parameterisation

Our light field parameterisation is based on a spherical approximation
to benefit from the uniformity of the sphere. A good polygonal ap-
proximation has to be generated for efficient storage and rendering.
Platonic solids are known to be well suited for approximation of a
sphere [5]. The most complex platonic solid is the icosahedron, a 20-
sided polyhedron with identical faces and vertex valences, providing
an absolutely uniform distribution of vertices on the unit sphere. The
icosahedron is thus a good choice as generator of uniform spherical
approximations [4].

For further refinement we apply a recursive interpolatory subdivi-
sion scheme on the solid mesh (see Figure 4). With every iteration
each triangle is divided into four (nearly) equilateral spherical trian-
gles. As an optimization step we calculate the average length of all
edges and iteratively adjust the vertex positions to obtain a most iso-
metric tessellation.

Fig. 4. Spherical proxies are generated by successively subdividing the
20 faces of an icosahedron (left) into spherical approximations with 162
vertices (m = 2, middle) and 642 vertices (m = 3).

Applying the subdivision process m times, we obtain a spherical
approximation with 20 ·4m faces. In practice, we chose m = 3 or m = 4,
yielding 1280 or 5120 faces and 642 or 2562 vertices, respectively.

The quality of a spherical approximation can be evaluated by means
of the ratio of spherical surface area to approximated surface area.
Ideally a tessellation into n patches should produce elements whose
area is A = 4π

n . The icosahedron yields a surface area ratio of 76.08%
of A, improving to 92.83% for m = 1, narrowing to 99.52% using
m = 3 as shown in Figure 4. For a spherical light field representation
m≥ 3 is a good choice.

The spherical approximation is stored explicitly as an indexed face
set. With each vertex, a 4× 4 viewing matrix is stored which repre-
sents the transformation of world to camera coordinates. This matrix
is interpreted as extrinsic camera parameters for light field acquisition
as well as for reconstruction purposes.

3.2 Parabolic Image Space Parameterisation
For each camera, we store a 2D RGBz texture, which contains the
recorded object projected onto the opposite hemisphere. Most viewing
rays which hit the hemisphere centered around the camera will not hit
the geometry. We thus avoid storing a second parabolic map for this
hemisphere. As a consequence, the camera sphere must be larger than
the object’s bounding sphere by a factor of

√
2 (see Figure 3, left).

In Section 5 we will see that such a representation allows us to easily
generate synthetic light fields from a highly tessellated geometry.

Parabolic environment maps [9] provide the ideal solution for
recording the hemisphere. They consume less storage than cube
maps [8] and cause less distortion than both cube maps and spher-
ical maps [16]. In practice, we chose a resolution of 256× 256 or
512×512 pixels for each RGBz texture. The depth value is calculated
as the distance z′ from the camera point to the object divided by the
length of the ray secant zmax, according to Figure 5. This results in a
depth value between 0 and 1, which can efficiently be stored as 8 bit
alpha value. Storing the depth value as fractional part of the secant
length also allows an efficient calculation of the object intersection
point in the fragment program.
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Fig. 5. The depth value is obtained by dividing the camera-object dis-
tance z′ by the secant length zmax.

3.3 Texture Compression

To reduce the amount of graphics memory consumed by the parabolic
maps, commodity hardware-accelerated texture compression schemes
can be employed. S3TC texture compression [11] offers an effective
and easy way to compress the light field images. The DXT5 algorithm
works on RGBA textures and achieves a compression ratio of 4:1. In
our storage scheme, however, the alpha portion contains the depth val-
ues, which turn out to be sensitive to compression artefacts. To obtain
best results for light field reconstruction we used the DXT3 algorithm.
DXT3 works on RGBA data as well, but does not compress the alpha
portion. DXT3 still offers a compression ratio of 4:1.

A light field acquired using our spherical parameterisation with 642
images and a resolution of 512×512 pixels consumes 657 MB without
compression. In comparison, a DXT3 compressed light field of the
same dimensions consumes only 164 MB of memory. On commodity
graphics cards, texture compression is thus mandatory to render light
fields with 2562 cameras at interactive frame rates.

Images Resolution Uncompressed S3TC DXT3
162 256×256 41.5 MB 10.4 MB
162 512×512 165.9 MB 41.5 MB
642 256×256 164.4 MB 41.1 MB
642 512×512 657.5 MB 164.4 MB

2562 256×256 656.1 MB 164.2 MB
2562 512×512 2623.7 MB 656.1 MB

Table 1. Sizes of typical light fields with and without texture compression

4 LIGHT FIELD RENDERING

The light field is rendered using a customized fragment program
which requires a graphics processor that supports loop and conditional
branch instructions according to shader model 3.0. We have imple-
mented two different rendering techniques, both with per-pixel depth
correction. The first one is an iterative refinement technique, which is
more efficient in terms of runtime performance. The second one is a
ray casting technique which is less efficient but more accurate. Both
techniques will be outlined in the following.

In both techniques the light field is rendered by rasterizing the front
faces of the camera sphere with respect to the virtual viewpoint. The
viewpoint is restricted to be located outside the camera sphere to avoid
the vertices of the front faces being culled by frustum culling. Remem-
ber, each vertex corresponds to a pre-defined camera. For each triangle
the parabolic RGBz texture images and the viewing matrices M of the
three cameras are bound as uniform parameters to the fragment pro-
gram. In practice the RGB and depth information of the parabolic
map are bound as separate texture objects. While the RGB texture can
be linearly interpolated, noticeable render artefacts at the silhouettes
appear when interpolating the depth information. Using the nearest
neighbour texture lookup scheme ensures appropriate depth informa-
tion per pixel and avoids depth aliasing artefacts at object boundaries.

4.1 Iterative refinement
The iterative refinement technique is outlined in Figure 6. When a
triangle is rasterized, each fragment corresponds to a unique position
Peye on the camera sphere. In the first step, the fragment program
calculates the intersection point of the viewing ray with the camera
sphere to obtain a first estimate of the object intersection point P(0)

obj .
The superscript in this notation refers to the iteration count.

The calculated intersection point is transformed into the viewing
space of camera k according to

S(i)
k = Mk P(i)

obj with k ∈ {0,1,2}. (2)

This is done for each of the three adjacent cameras that correspond to
the original triangle’s vertices. The sphere intersection points Sk can
now be converted to parabolic texture coordinates (u,v) , according to
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. (3)

RGBz samples are obtained from the parabolic texture maps corre-
sponding to the three cameras. The depth value z is extracted form
the alpha portion and is used to calculate the camera’s local estimate
P(i)

cam,k for the object intersection point:

P(i)
cam,k = z ·Ck + (1− z) P̂(i)

cam,k (4)

with P̂(i)
cam,k being the object intersection point P(i)

obj projected onto the
sphere using Ck as center of projection. Note that Equation 4 is a sim-
ple linear interpolation, because z stores the depth value as fractional
part of the secant length (see Figure 5).

An improved estimate for the object intersection point Pobj can now
be found by projecting the three local camera distances onto the view-
ing ray and calculating the average, according to:

P(i+1)
obj = Peye +

1
3

2

∑
k=0

((P(i)
cam,k−Ck) · r) r (5)

with r being the normalized direction of the original viewing ray (red
line).

As illustrated in Figure 6 (middle), the iteration can be pursued sev-
eral times by projecting the updated object point P(i+1)

obj onto the sphere
using the camera vertices Ck as center of projection. The resulting
intersection points are successively transformed into camera coordi-
nates to establish depth values, to determine improved local estimates
according to Equation 4 and eventually calculate an improved inter-
section point according to Equation 5. The procedure terminates if
the desired accuracy is achieved or a maximum number of iterations is
reached. In practice a maximum number of iterations of 5 turns out to
be sufficient.

The final color of the fragment is calculated as a weighted sum of
the RGB values of the different cameras from the final iteration. The
weights for each camera correspond to the barycentric coordinates of
the fragment with respect to the original triangle. If the primary colors
red, green and blue are assigned at the three vertices during geometry
setup, the correct weights are automatically calculated through color
interpolation during rasterization.

Although this scheme allows the actual geometry intersection point
to be approached quite quickly, unfortunately, the iterative refinement
fails in certain situations. Such cases are illustrated in Figure 6, right.
Case A shows a situation where the geometry is hit inside a concavity
of the object, resulting in an intersection point that is not visible from
at least one of the adjacent cameras. Case B illustrates a situation
where the viewing ray does not hit the object at all, while at least
one adjacent camera reports an intersection. These cases cannot be
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Fig. 6. Left and Middle: First and second step of the iterative depth refinement. Right: Iterative refinement fails at silhouette edges and locations
where the correct object point is not visible from all adjacent cameras.

handled exactly and will inevitably result in visible ghosting artefacts
at the silhouette edges.

In order to extenuate such artefacts, we can examine the camera
estimates P(i)

cam,k after a few iterations. If the three estimates are still
highly divergent, we discard the point with the closest distance to the
camera and proceed with the residual two cameras. If no similar local
estimates can be achieved within the next few iterations, the averag-
ing in Equation 5 is replaced by a maximum operation. This proce-
dure, however, cannot completely eliminate the visual artefacts. If the
ghosting is still too strong the only effective measure is increasing the
number of cameras, or the image resolution.

4.2 Raycasting Approach
The raycasting approach represents a less efficient, yet a simpler and
more accurate solution to depth refinement. When a triangle is raster-
ized, the fragment program calculates the viewing ray, which corre-
sponds to the fragment. We then calculate the intersection point of the
viewing ray with the bounding sphere of the object.

C0

C1

C0

C1

C0

C1

Fig. 7. The raycasting approach samples the viewing ray stepwise at ad-
jacent positions starting at the intersection point with the object’s bound-
ing sphere.

From this position, we sample the viewing ray iteratively at a fixed
step size, as shown in Figure 7. At each step, we validate the as-
sumption that the current ray position is the actual object intersection
point Pobj. We project this point onto the camera sphere using the
adjacent camera positions Ck as center of projection. The resulting
three intersection points with the sphere are transformed into the view-
ing coordinate system of the corresponding camera and converted to

parabolic coordinates. Depth values are obtained from the correspond-
ing parabolic texture maps and local estimates Pcam,k are calculated for
each camera according to Equation 4. We then compare these points
to the position of the current ray sample. If one of the local estimates
is equal to the ray position within a given tolerance, we immediately
stop the ray sampling. This means that we have found at least one
camera that reliably observes an object intersection at exactly the ray
position.

We now compare the intersection points obtained by the other two
cameras. If they are also equal to the ray position within the given
tolerance, we can assume that all cameras observe the same point and
we use the barycentric weights of the fragment to calculate the final
color for that pixel as outlined above. However, if the intersection
point for one camera is far away from the ray position, we can assume
that we are in one of the situations outlined in Figure 6 (right). In this
case we discard the color information for the respective camera by
setting the corresponding barycentric weight to zero. Afterwards, we
normalize the weights again and calculate the final color as a weighted
sum.

5 LIGHT FIELD GENERATION

To obtain a light field from polygonal models, a virtual camera is ap-
plied at each spherical position determined by the camera space pa-
rameterisation. For synthetic light field acquisition based on 3D ge-
ometry, a given mesh is rendered once for each model camera. The
viewing matrix is obtained from the spherical parameterisation. It
transforms the scene such that the camera is placed at the position
C = (0,0,1)T , looking along the negative z-axis. In this setup, the
camera sphere is assumed to have unit radius. Hence, the entire scene
has to be scaled and translated to fit into the bounding sphere with
radius of 1√

2
centered around the origin.

The vertex processor in the fixed-function graphics pipeline multi-
plies each vertex with the modelview and projection matrices before
handing the primitives to the rasterization unit. The rasterizer assumes
vertices to lie inside the canonical viewing volume which is equivalent
to the unit cube [−1,1]3. For generation of synthetic light fields we
replace this vertex processing step by a customized vertex program,
which projects all vertices onto the unit sphere and converts the re-
sult to parabolic coordinates. This allows us to efficiently generate
synthetic light fields using commodity graphics hardware. Due to the
non-linear geometric distortions applied by our vertex program, how-
ever, it is mandatory to tessellate coarse geometry into small triangles
before light field synthesis. On modern graphics hardware this can
efficiently be achieved by a geometry shader program.

The steps performed by our customized vertex program comprise
the following.

1. Projection to the hemisphere.
Each geometry vertex V is transformed with the modelview ma-
trix and then projected from the camera point onto the opposite
unit hemisphere. This is computed by casting a ray from the
camera at position C = (0,0,1)T through the vertex and inter-
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secting this ray with the unit sphere. This amounts to solving a
simple quadratic equation and results in a projected vertex S.

2. Parabolic mapping of the projected vertices
As a result of the previous step, the projected vertex S is lying on
the hemisphere with z < 0. The vertex S is converted to parabolic
coordinates, according to Equation 3

3. Depth Adjustment
The depth value is calculated according to Figure 5, which leads
to

z =
‖V −C‖
‖S−C‖ (6)

4. Normal Transformation
We assume that lighting is calculated in world coordinates.
Hence, the normal vectors of the geometry must be transformed
with the transposed inverse of the modeling matrix, but not with
the viewing matrix. This, of course, is only necessary if the mod-
eling matrix is not the identity matrix.

As fragment shader to be used in combination with this customized
vertex program, we can employ arbitrary complex fragment programs.
The only modification necessary is that the fragment program must
write the interpolated depth value generated by the vertex shader into
the alpha portion of the final color.

For each sample position RGB and depth values are stored in a
parabolic map generated as described above. The alpha channel is
used to store per-pixel depth information. Each parabolic map is stored
as an interleaved array of RGBz values. Individual parabolic maps are
associated with a transformation matrix defined by the spherical pa-
rameterisation. To store the set of parabolic maps additional header
information is saved with the sample data for subsequent access and
rendering of the light field.

6 RESULTS AND DISCUSSION

The techniques described in this paper have been implemented us-
ing OpenGL and Cg under Windows XP. All images and performance
measurements have been created using an NVidia Geforce 8800 GTX
graphics board with 768 MB of local video memory build into an
AMD Athlon 64 X2 dual core processor with 2.21 GHz and 3.5 GB
main memory.

Figure 8 shows results of our light field rendering technique for
camera spheres with different number of vertices. The light fields used
to evaluate the system have been generated from highly tessellated
polygonal geometry, as outlined in Section 5.

The original polygonal geometry of the Stanford bunny is shown in
the leftmost image in the upper row. During light field generation a
surface shader with a high specular exponent was used to render the
geometry resulting in sharp specular highlights. As has been shown
in previous approaches [14, 7], specular highlights are critical to light
field rendering, thus providing an excellent challenge to evaluate the
accuracy of our implementation. All light fields in Figure 8 have an
image resolution of 512× 512. The remaining images in the top row
show the tessellated camera sphere with 162, 642 and 2562 vertices,
respectively.

The second to fourth rows show images of the reconstructed light
fields generated by our rendering techniques. Each row displays the
results for a fixed resolution of the camera sphere. The two leftmost
columns present example images created with our iterative refinement
technique, the rightmost columns show the results of our raycasting
technique. Each example image is supplemented by a difference im-
age, which displays the pixel difference from the original geometry
multiplied by a factor of 4 and inverted.

These examples demonstrate the image quality obtained by our ren-
dering technique. As expected, the iterative refinement technique pro-
duces noticeable ghosting artefacts at the silhouette edges, which are
clearly visible in the difference images. The light fields with 162 ver-
tices also show artefacts caused by the insufficient tessellation of the

sphere. The raycasting approach has significantly less ghosting ar-
tifacts at the silhouette edges. Note that for 642 and 2562 vertices,
the difference images for raycasting approach only show reconstruc-
tion errors at the sharp specular highlights, which are strongly view-
dependent.

The bottom row of Figure 8 shows a light field with 2562 cameras
reconstructed from the Lucy model. These images clearly demonstrate
the advantages of the raycasting technique for complex geometries
with fine details. The iterative refinement is not able to adequately
capture the arm and the torch of the model, while the raycasting ap-
proach demonstrates that the depth information can be reconstructed
accurately. This shows a clear weakness of the iterative refinement
technique: Geometry intersection points which are closer to the cam-
era than seen in any of the adjacent cameras cannot be determined with
this technique.

Table 2 shows the performance measured for rendering light fields
of different resolution. The iterative refinement technique is much
faster compared to the raycasting technique. This is not surprising,
since the number of texture samples obtained for depth refinement is
considerably smaller. The rendering process is clearly limited by the
memory bandwidth between GPU and local video memory.

Nevertheless, the results of our performance measurement show
some aspects that are surprising. The first one is that the rendering
speed is almost independent of the resolution of the texture images.
The second surprising fact is that texture compression does not play
a significant role to the runtime performance. This can be explained
by the fact that our rendering techniques require only a very small and
localized portion from each texture image, only a limited region seen
by the respective camera. This small part of the texture fits easily into
the texture cache.

An exact comparison of performance and image quality to pre-
viously published solution to IBR is difficult to accomplish without
access to the original implementations. To our knowledge the per-
formance of our approach is at least equivalent to previous solutions
reported in literature, even if we account for advances in hardware
performance. The image quality achieved with our solution is sig-
nificantly higher compared with previous solutions due to our per-
fragment depth refinement. The difference images prove that our so-
lution is considerably close to the original.

7 CONCLUSION

We have presented a novel GPU-based light field rendering technique
based on combined RGB and depth information. We have demon-
strated that this technique is capable of reconstructing light fields with
high accuracy at interactive frame rates.

For future development our aim is the possible acquisition of image-
based models using a hand-held camera with combined RGB and
depth sensors. Recent progress in sensor technology have lead to the
development of imaging devices which allow real-time measurement
of per-pixel depth information [18, 24, 17, 6] at moderate resolution.
In combination with RGB sensors these devices provide a promising
alternative for accurate hand-held light field acquisition [18, 21]. With
the direct usage of combined depth and RGB values as parabolic tex-
ture map, the presented approach is ready to be used for interactive
light field acquisition with such a sensor setup.

The next step towards the hand-held acquisition will be the im-
plementation of a rebinning technique to successively insert recorded
RGBz images into our light field representation. Since combined
depth and RGB are evaluated directly by our rendering technique, im-
mediate visual feedback will be available at acquisition time even for
incomplete light field data. We are confident that the combination of
spherical and parabolic parameterisation are ideal foundations to de-
velop such a system in the near future.
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Images Resolution Uncompressed Uncompressed S3TC DXT3 S3TC DXT3
Raycasting Iterative Refinement Raycasting Iterative Refinement

162 256×256 29.9 fps 60.4 fps 29.9 fps 60.4 fps
162 512×512 29.9 fps 60.3 fps 29.9 fps 61.7 fps
642 256×256 17.7 fps 58.7 fps 17.8 fps 59.0 fps
642 512×512 17.2 fps 58.3 fps 17.6 fps 58.8 fps

2562 256×256 10.7 fps 55.1 fps 10.8 fps 56.2 fps
2562 512×512 not applicable not applicable 10.4 fps 56.1 fps

Table 2. Rendering performance for our raycasting rendering algorithm and the iterative refinement approach applied to light fields of varying
resolution with and without texture compression.
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Fig. 8. Results of our light field rendering technique at different camera sphere resolutions. The first row shows the original geometry accompanied
by polygonal spherical approximations of different resolutions used to generate synthetic views as shown in the following rows. Rows two to four
display the rendering results for our iterative refinement rendering technique in comparison to the raycasting approach. Each synthetic view is
supplemented by a difference image showing the pixel difference from the original geometry multiplied by a factor 4 and inverted. The bottom row
presents a light field reconstruction of the Lucy model. It clearly shows the advantage of the raycasting technique for complex geometries with fine
details.


