Eurographics/ IEEE-VGTC Symposium on Visualization 2008
A. Vilanova, A. Telea, G. Scheuermann, and T. Moller
(Guest Editors)

Volume 27 (2008), Number 3

Raycasting of Light Field Galleries from Volumetric Data

Christof Rezk Salama, Severin S. Todt, and Andreas Kolb

Abstract

The paper describes a technique to generate high-quality light field representations from volumetric data. We show
how light field galleries can be created to give unexperienced audiences access to interactive high-quality volume
renditions. The proposed light field representation is lightweight with respect to storage and bandwidth capacity
and is thus ideal as exchange format for visualization results, especially for web galleries.

The approach expands an existing sphere-hemisphere parameterization for the light field with per-pixel depth.
High-quality paraboloid maps from volumetric data are generated using GPU-based ray-casting or slicing ap-
proaches. Different layers, such as isosurfaces, but not restricted to, can be generated independently and com-
posited in real time. This allows the user to interactively explore the model and to change visibility parameters at

run-time.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism

1. Introduction

In recent years, public web archives have become pop-
ular, which give anonymous access to free volume data
sets for a variety of different interests. A prominent ex-
ample is the Digimorph data archive at the University of
Texas [UTCO07] providing volumetric scans of biological and
geological specimen. Several other web sites allow us to
access data sets for medical [Rad07] or various other pur-
poses [Vol07, www07]. Most of these galleries, however,
provide only the raw volume data set with pre-rendered
thumbnail images. Some of the sites provide a free volume
rendering software in addition. Other sites have integrated
web-based slice viewers.

Although there are data sets open to the public, and we
know from personal conversations that a wide audience is in-
terested in viewing such data, the target audience for public
data archives, however, still is restricted to computer scien-
tists or technically versed people. The average visitor of such
web sites would hardly accept the burden of installing and
getting familiar with complex volume rendering software,
only to view a few data sets that he finds interesting. Look-
ing at pre-rendered images only, on the other hand, does not
convey the fascination of truly volumetric objects. The infor-
mation contained in volume data cannot be easily displayed
in a static image or video sequence. User interaction is cru-
cial in order to explore volumetric data.

(© 2008 The Author(s)

Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

To these ends we propose a solution, which combines
ease-of-use with the necessary means of interaction, while
hiding the complexity of most volume rendering software.
Light fields are image-based representations of virtual or
real scenes. The major benefit of light field rendering is that
the rendering complexity is almost independent of the scene
complexity. In this paper we propose a framework for gener-
ating and rendering of high quality light field galleries from
volumetric data.

We show how existing light field representations can be
enhanced to include means of interaction apart from sim-
ply changing the viewing position. We demonstrate that the
use of light field data instead of volume data as format for
archiving and exchanging visualization results has several
advantages. A light field data set generated with our frame-
work is more lightweight compared to the underlying vol-
ume data set with respect to storage capacity. Most volume
ray-casters can easily be adapted to generate light fields.
GPU-based ray-casting applications may generate light field
representations fast and efficiently. The light field data does
not contain the volume data itself, but the result of an en-
tire visualization session. Hence, light field representations
are ideal to store visualization results in a format that is easy
to exchange. This is an important benefit, as it gives scien-
tists at different places the ability to discuss data based on
the same interactive visualization. It allows visualization re-
sults to be archived for documentation without the usual loss

C. Rezk Salama & S. Todt & A. Kolb / Raycasting of Light Field Galleries from Volumetric Data

of interactivity that comes with videos or still images. We
also show that Monte-Carlo volume ray-casters, which are
not capable of providing images in real-time, can be used
to generate high-quality volume light fields. In this case the
light field approach allows volumes including translucency
and multiple-scattering effects to be displayed in real-time.

2. Related Work

In this section we will review related work on volume visu-
alization and light field rendering. Accounting for the vast
number of publications in both fields, we will restrict our-
selves to those papers which are most relevant to our ap-
proach. A more detailed review of the particular light field
representation which is fundamental to our approach is given
in Section 3.

2.1. Volume Visualization

A variety of real-time volume rendering techniques have
been presented in the past. GPU-based volume ren-
dering techniques for uniform grids either use a slic-
ing approach [WGW94, RSEB*00] or per-fragment ray-
casting [KW03, RGWEO03]. An overview of GPU-based
volume rendering can be found in the book by Engel et
al. [EHK™06].

Westermann and Sevenich have presented a hybrid
CPU/GPU raycasting system [WSO01]. The first solely GPU-
based implementations of volume raycasting have been pub-
lished by Kriiger and Westermann [KWO03] and Roettger et
al. [RGWEO03]. Recent implementations like this take ad-
vantage of the support for loops and conditional branches
of modern GPUs.

2.2. Light Field Rendering

Since its introduction by Levoy and Hanrahan in
1996 [LH96] light field rendering techniques have
continuously improved. The lumigraph [GGSC96] employs
a polygonal object approximation for depth correction of
rays to achieve improved light field rendering results. The
approach extends the two plane parametrization presented
by Levoy and Hanrahan by employing six light slabs in a
cubic arrangement. The virtual view can be chosen with six
degrees of freedom. Discontinuity artifacts, however, appear
at the edges of the cubic setup.

Unstructured lumigraph rendering [BBM*01] is targeted
at the free-hand acquisition of light fields from arbitrary po-
sitions. Uniformity, which is important to avoid discontinu-
ity artifacts, however, cannot be guaranteed with this ap-
proach. The polygonal approximation used for depth cor-
rection has to be generated and stored separately. Free-form
light fields [SVSGO1] replace the polygonal approximation
by per-pixel depth information. Here, depth is evaluated on a
per-vertex basis. A proxy mesh is successively subdivided at

run-time based on the depth. Rendering performance, how-
ever, is limited by the subdivision process. Non-uniform
sampling and insufficient depth information again lead to
ghosting artifacts.

2.3. Image-Based Volume Rendering

Image-based technqiues has been used to accelerate the
rendering of volumes [CS98, MSHC99, SLSMO06] and sur-
faces from volume data [CKTO1]. Unstructured lumigraph
rendering has been applied to volume data by Meyer
et.al. [MPHCO5] for interactive view synthesis. In practice a
high-tesselated polygonal representation and a high amount
of sample cameras (>500) is necessary for high-quality im-
age synthesis, resulting in increased memory consumption.
Visibility parameters cannot be adjusted during light field
rendering.

3. Spherical Light Fields

The light field rendering technique we utilize for building
volume rendering galleries is based upon recent advances in
image-based rendering technology [TRSKO07]. In the follow-
ing section we will explain the sphere-hemisphere parame-
terization and the employed raycasting technique for image-
based rendering. This technique is expanded in Section 5 to
account for volumetric data and different depth layers. We
chose this particular technique due to the following require-
ments:

e Arbitrary viewpoint selection (outside the object) without
any preferred viewing direction.

e Efficient light field storage based on parabolic maps with
8-bit per-pixel depth information.

e High-quality image reconstruction in real-time without
noticeable ghosting artifacts.

Camera Image
Sphere Hemisphere
P \ of current camera

current
camera

Object
Bounding
Sphere

Figure 1: Sphere-Hemisphere parameterization of the light
field. The volume object is enclosed in the blue bounding
sphere. Virtual cameras are positioned at the vertices of the
camera sphere (green). Each camera is recording the oppos-
ing hemisphere.

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.

C. Rezk Salama & S. Todt & A. Kolb / Raycasting of Light Field Galleries from Volumetric Data

Figure 2: Seven image samples taken for a spherical light field with 162 cameras. Each image represents a parabolic mapping

of the hemisphere for color (top row) and depth (bottom row).

3.1. Sphere Hemisphere Parameterization

In image-based rendering, the (4-dimensional) plenoptic
function is reconstructed from a set of 2D images. Light
field parameterizations differ in the location of the virtual
cameras and the way the camera images are discretized. In
our parameterization the cameras are located at the vertices
of a uniform tessellation of a sphere around the volumetric
object to be acquired. As displayed in Figure 1, the camera
sphere must be larger than the bounding sphere of the vol-
ume by a factor of v/2 to ensure that all rays from the current
camera through the object boundary sphere will intersect the
opposite hemisphere.

Examples of source images for the light field are dis-
played in Figure 2. For each camera we capture an image
of the hemisphere centered about the vector between cam-
era position and the center of the sphere. The image is pa-
rameterized as a parabolic map. For each image sample we
additionally store the depth of the first intersection with the
object (see Section 4). The depth is stored as fraction be-
tween the distance of the object intersection point from the
camera and the length of the entire ray secant, i.e. the dis-
tance between camera and intersection point with the image
hemisphere. This allows depth to be efficiently stored at 8-
bit fixed point precision.

3.2. Real-Time Light Field Ray-Casting

The ray-casting algorithm presented in [TRSKO7], directly
uses this light field representation for image-based render-
ing. The presented approach renders the smooth shaded
spherical approximation for light field reconstruction, with
the vertices being equivalent to the model camera positions.
The light field samples are bound as textures to their associ-
ated vertices. For each fragment a ray is cast into the scene.
The intersection point with the surface of the captured object
is established by subsequently evaluating the depth values
stored in the adjacent light field samples for the current ray

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.

sample position. For the final intersection point the fragment
color value is determined from the weighted sum of the light
field samples. Using the ray-casting approach and per-pixel
depth correction light fields are rendered without noticeable
ghosting artifacts.

4. Generation of Volume Light Fields

In this section we discuss the basic generation of light fields
from volumetric data. We can either employ a ray-casting
approach or a slice-based solution. The ray-casting approach
is easier to implement, in fact we only have to adjust the
ray directions to the sphere hemisphere parameterization and
render images for each vertex of the camera sphere. Ray-
casting directly allows us to determine the depth value of the
first hit with a voxel that exceeds a given opacity threshold.
Depth information is more intricate to obtain using a slice-
based solution.

4.1. Raycasting Approach

The source images for the light field data can be generated
by almost any ray-casting algorithm. For each pixel of the
final image, a ray is shot through the scene. In our case,
however, the image is not a traditional image plane, but an
image hemisphere, parameterized as a parabolic map to min-
imize distortion. For simplicity we assume that the camera
sphere has unit radius and the object bounding sphere ra-
dius 1/ v/2. We further define a camera coordinate system
with a virtual camera located at position ¢ = (0,0, —1)7 and
the image hemisphere centered around (0,0, l)T. A point
7= (rx,ry,rz)! on the hemisphere with (r; < 0) is parame-
terized in parabolic coordinates (u,v), according to:

u 1 Tx .
(v) = Tin (") with u,ve[-1,1] (1)

To perform the ray-casting, we translate and scale the vol-
ume to entirely fit into the object bounding sphere cen-
tered about the origin and rotate it to account for the current

C. Rezk Salama & S. Todt & A. Kolb / Raycasting of Light Field Galleries from Volumetric Data

camera position. Each pixel (u,v) of the parabolic image is
mapped back to the unit sphere, according to

1—u?—?

ol 4u2 2
Finally, a ray is cast from the camera position ¢ to the in-
tersection point with the hemisphere 7. The depth for each
viewing ray is determined at the first hit of the ray with the
volume, i.e. at the point p where the accumulated opacity
along the ray exceeds a small specified threshold. The depth
value d is calculated as the distance of the point 5 from the
camera divided by the length of the ray secant:

nn=u(l+r), rn=v(l+r) 2)

Iz

a=1P=8l 0 hca<h 3
[[7—ell

Most GPU-based ray-casting implementations can be
adapted to the above parameterization. The basic idea of
GPU-raycasting is to store the volume in a 3D texture and
cast rays in the fragment program. The fragment program
contains a large loop which successively samples the vol-
ume, applies the transfer function and computes the ray in-
tegral. A straight-forward approach for rendering parabolic
maps directly is to rasterize a screen-spaced quad into a
viewport mapped to [—1,1] x [—1,1]. A fragment program
interprets the screen coordinate as (u,v)-coordinate for the
parabolic map, calculates the intersection point 7 accord-
ing to Equation 2, and casts a ray from & = (0,0,—1)7 to
7 through the volume. While this approach is fairly easy to
implement, it will calculate several rays at the outer rim of
the map which do not intersect the volume at all.

Most GPU-based ray-casters rasterize the front faces of
the volume’s bounding box in order to generate valid start-
ing points for the rays. This idea can be adapted for the par-
abolic map. We employ a vertex program which completely
neglects the standard projection matrix. Instead, the vertex
program does the following:

1. transform each vertex v to viewing coordinates (using the
model/view-matrix)

2. calculate the intersection 7 of a ray from camera ¢ =
(0,0,—1)T to the vertex ¥ with the hemisphere. This in-
volves the solving of a simple quadratic equation.

3. transform the resulting intersection point 7 to parabolic
coordinates (u,v) as in Equation 1.

4. emit (u,v) as screen coordinates together with the 3D tex-
ture coordinate of the first hit and the ray direction from
step 2 transformed into texture space. Those values are
handed to the fragment program in available GPU regis-
ters.

From this information, the fragment program can calculate
rays which start at the first intersection with the bounding
box. Note, that the fragment program must calculate the cor-
rect depth value along the ray and replace the original frag-
ment depth generated by primitive rasterization. Since the
parabolic mapping does not preserve straight lines, how-
ever, the faces of the bounding box must be tessellated

into smaller quadrangles for piecewise linear approxima-
tion. Such a task can efficiently be performed by a geometry
shader, if supported by the graphics hardware. Otherwise,
the tessellation should be pre-computed and stored as vertex
buffer in local video memory for maximum performance.

After the ray-casting, the resulting color and depth values
are read back from the frame buffer and stored in the light
field data.

4.2. Slicing Approach

Adapting a slice-based GPU volume renderer to light field
creation is a little bit more intricate. Slices are rendered usu-
ally in back-to-front order either with 3D textures [WGW94]
or 2D Textures [RSEB*00]. Compositing, i.e the numer-
ical approximation of the ray integral, is performed after
the fragment program by the frame-buffer operations (al-
pha blending). For projecting the slice images onto the par-
abolic map, a similar vertex program described in the previ-
ous section can be applied with a slicing polygon tessellated
into small quadrangles to account for the parabolic distor-
tion of straight lines. The RGB part of the image is generated
by projecting the tessellated slice images onto the parabolic
map and blending the incoming fragments into the frame-
buffer in back-to-front order using alpha blending.

Rendering correct depth images requires a separate pass
with a modified vertex and fragment program. The vertex
program has to calculate the depth of the slice vertex with
respect to the sphere-hemisphere parameterization. This is
achieved by inserting an additional computation step into the
vertex program described in the previous section:

2a. calculate the depth value d of the vertex by dividing the
distance ||V — ¢|| by the ray secant length ||7— c|| (see also
Equation 3).

In step 4 the depth value is added to the per-vertex regis-
ters emitted to the fragment program. Depth values for each
fragment of a slicing polygon are thus interpolated from val-
ues calculated at the vertices. This is in accordance with the
piecewise linear approximation performed by the tessella-
tion of slice images into small quadrangles.

For rendering the depth image, a fragment program is em-
ployed which calculates the opacity value of the fragment,
by applying the transfer function to the scalar sample ob-
tained from the volume via texture lookup as usual. If the
opacity value exceeds a small threshold, the fragment emits
the depth value d calculated by the vertex program as RGB
triplet (luminance), and sets the alpha value (A) to 1. If the
opacity is smaller than the threshold, the fragment program
simply outputs an RGBA value of 0. For this depth pass, al-
pha blending can be replaced by a more efficient alpha test
to discard all fragments with alpha less than 1. The back-
to-front rendering of the slice images ensures that the color
value in the final image is set to the depth value closest to
the camera.

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.

C. Rezk Salama & S. Todt & A. Kolb / Raycasting of Light Field Galleries from Volumetric Data

Figure 3: Multi light field composed of different layers generated from the CT angiography data set: Separate light fields for
bone/vessels, skin and brain were generated. The individual layers are depth sorted at pixel level during compositing. The
user may interactively adjust the transparency of different layers. Light Fields generated fully automatically from a slice-based

volume renderer using semantics described in [RSKK06]

Compared to the ray-casting approach, the depth images
obtained by slicing are less precise, since the depth values
are not calculated per-fragment, but interpolated bi-linearly
from values computed at the vertices. For a fine tessellation
of the slice images this error may vanish, however, at the cost
of an increased vertex load and a reduced performance.

5. Multi Light Fields

With the above mentioned approaches light field data of sta-
tic volumetric objects can be efficiently generated using ei-
ther slice-based rendering or ray-casting. Rendering of the
resulting light field allows the user to view the volume from
arbitrary directions outside the boundary sphere. All the in-
teresting information contained in volumetric data, however,
cannot be conveyed in a static image or video sequence, and
the same holds true for a static light field representation.
As the performance of light field rendering is high enough
(see Section 8), and local video memory of current graphics
hardware is large, we can render several light fields for each
frame.

Simultaneous rendering of several light fields allows us
to add means of interaction to the light field representation.
The different possibilities will be outlined in the following
sections.

6. Separate Light Fields for Different Structures

Volume data sets usually contain different structural, func-
tional or anatomical entities. Depending on the purpose of
the visualization, light fields are generated separately for
each individual entity. If the different entities are not ren-
dered completely opaque (like isosurfaces), the color source
images must be extended to RGBA format and the accumu-
lated opacity value must be stored in the alpha portion of
the image. This will allow us to incorporate different entities

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.

contained in a volume data set, as long as these entities do
not intersect each other.

Each light field is rendered in a separate pass into an
off-screen render target including a separate depth buffer
(render-to-texture). In a final pass a compositing fragment
program reads the content of the off-screen targets and com-
putes the final color. The results from each separate light
field pass are handed to the compositing shader as color and
depth textures for a screen-filling quadrangle. The composit-
ing fragment program sorts the individual layers according
to their depth value using odd-even merge sort [Bat68] as
outlined in Figure 4. During light field rendering, the user
can interactively modify the opacity values of the different
layers. The compositing shader finally blends the different
layers with the modified opacity value in correct depth order.
Note, however, that if the volumetric structures contained in
the individual light fields intersect each other in 3D, the com-
positing will lead to incorrect results.

In combination with sophisticated visualization ap-
proaches providing semantic information [RSKKO06], the
light fields for different structures can be generated in a fully
automatic process, after an initial transfer function setup by
the user. Figure 3 shows a multi-light field generated from

!]

O = NWwhroo N
|4

Figure 4: Odd-even merge-sorting network for eight values.
Arrows represent compare-and-swap operations. For sorting
four values only the blue arrows are necessary.

C. Rezk Salama & S. Todt & A. Kolb / Raycasting of Light Field Galleries from Volumetric Data

v

I light field 0 light field 1 light field 2
do d1 a2 d3...

Figure 5: Light field data sets are generated separately for
different ray segments.

CTA data using the semantic information about anatomical
structures included in the transfer function model. The light
field comprises three layers, skin, brain and a combined layer
for bone and blood vessels. During light field rendering the
user may interactively fade the different structures in and
out. Note, however, that blending separate pre-rendered im-
ages does not provide the same results as a volume rendering
of the same structures, since absorption is not additive. Nev-
ertheless, this approach provides a valid means of interaction
and exploration for otherwise static volume renditions.

7. Multiple Depth Layers

Another possibility which exploits the capability to simulta-
neously render multiple light fields is the use of depth layers.
In this approach the ray is split into subsequent segments,
each of which is rendered into a separate light field as out-
lined in Figure 5. The depth values d; at which the ray is
split, can either be fixed, or data dependent. Fixed ray seg-
ments may only be useful to improve the rendering of highly
transparent volumes with varying color, where ghosting arti-
facts may occur due to depth discrepancies. In practice, how-
ever, volume data is rarely visualized this way. For data de-
pendent splitting of ray segments, there are two alternative
ways to generate the split points d;. We can split the ray at a
specified set of iso-surfaces or at the transition between seg-

Figure 6: Different layers generated from the chameleon
data set (512°,16 bit): High-quality isosurface of the skin
(left), Transparent skin with soft tissue and scattering (mid-
dle), bone structures isosurface (right). All renderings were
illuminated with an environment cube map and an ambient
occlusion term for soft shadows.

mented regions inside the volume data. This will allow the
user to selectively modify the transparency of different lay-
ers at run-time. Alternatively, we may split the ray if the ac-
cumulated opacity reaches a certain threshold. Such a tech-
nique may be used to resolve occlusion problems along the
ray, similar to opacity peeling [RSKO06].

As in the previous section, an alpha component must be
added to light field source images to store the accumulated
opacity for the ray segment. If the rays are split consistently,
the depth sorting step introduced in the previous section may
be omitted, since the light field images already are in the
correct depth order.

The result of a layered depth technique is shown in Fig-
ure 6 for the UTCT Veiled Chameleon data set. The first ray
segment starts from the eye and ends at the first hit of the
isosurface of the skin. The second layer comprises the re-
gion of soft tissue between the skin and the bone. The final
layer represents the bone structures. The light field was gen-
erated with the Monte-Carlo volume ray-tracing algorithm
described in [RSO7], which took about 1 second per source
image. The entire light fields consists of 162 cameras with
3 layers, resulting in an overall number of 486 images at
512 x 512 resolution. This data set was submitted with an
executable of the example viewer

8. Results and Discussion

The image quality for light field reconstruction of surface
data was thoroughly evaluated in [TRSKO7]. These results
are also valid for isosurfaces from volume data. For semi-
transparent volume rendering, the depth value stored in the
light field data does not necessarily correspond to the ob-
served color value along the ray calculated by the integral
along the ray. We have evaluated volume light field recon-
struction using camera spheres computed from successive
subdivison of an icosahedron, resulting in camera spheres
with 12, 42, 162 camera positions.

Subjective evaluation of the images show that camera
spheres with 162 cameras yield good light field reconstruc-
tion in practice. Lower resolutions may lead to visual arti-
facts due to the above mentioned depth discrepancies and to
errors at the silhouette of the volume. Even with 42 images
per light field, ghosting artifacts are not a major problem un-
less for highly transparent objects. However, in volume data
sets with complex internal structures, there may be concavi-
ties that are not captured by any of the 42 cameras. Resolu-
tions higher than 162 cameras, e.g. 642 cameras, can easily
be captured, but do not improve the image quality signifi-
cantly.

For an objective evaluation of the image quality, we have
compared the result images from light field reconstruction to
a ray-caster solution for a semi-transparent volume. The re-
sults are displayed in Figure 7 and Table 1, and support our
subjective evaluation. The upper row of Figure 7 shows the

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.

C. Rezk Salama & S. Todt & A. Kolb / Raycasting of Light Field Galleries from Volumetric Data

volume ray-casting

162 views DXT1/uncomp.

Figure 7: Chameleon data set with a transparent skin. Light field reconstruction for different camera resolutions and texture
compression schemes. The leftmost image represents the ground truth. The bottom row shows difference images from a ray-

casting solution. (Difference images are inverted)

num. cameras | RGB compression | depth compression size | size zipped pixel error | performance
12 uncompressed uncompressed 12MB | ca.1.5MB | 10.41 [4.08%] 38.42 fps
42 uncompressed uncompressed 43 MB ca.5 MB 7.84 [3.07%] 38.61 fps
162 uncompressed uncompressed 166 MB ca. 18 MB 6.34 [2.48%] 35.00 fps
162 S3TC RGB_DXT1 uncompressed 62 MB ca. 6 MB 6.47 [2.53%] 35.28 fps
162 S3TC RGB DXT1 | Luminance LATC1 41 MB ca. 5 MB 6.48 [2.54%] 35.46 fps
162 x 3 S3TC RGB DXT1 uncompressed 186 MB ca. 15 MB na 12.56 fps

Table 1: Evaluation of the light field data structure for different camera resolutions and texture compression schemes for source

images of 512 x 512.

images from light field reconstruction and difference images
to a reference image obtained by ray-casting. The pixel error
in Table 1 is the average error of one pixel color component
calculated respectively from 30 difference images with ran-
domized viewing directions. The remaining error of about
2.5% is not due to ghosting, but to a minor loss of high-
frequency details caused by texture filtering of the source
images.

The performance data displayed in Table 7 refers to ren-
dering a single-layer light field into a viewport of size 512 x
512 on an NVidia Geforce 8800 GTX board with 768MB
memory. The bottom row refers to a multi light field with
3 layers. Note that the performance does not significantly
depend on the number of camera images, which indicates
that light field rendering is not a bandwidth limited process,
but clearly fragment-limited. Light field rendering greatly
benefits from the unified shader model. A significantly re-
duced performance is observed on the previous generation
of graphics boards. There is no technical limit for the num-
ber of light fields to be displayed. The only limit is the target

© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.

performance. If three light fields are rendered instead of one,
the frame rate will be about one third and the time required
for compositing is negligible, as shown in the bottom row of
Table 1.

The 3 bottom rows in Table 1 show that standard tex-
ture compression techniques, such as S3TC RGB_DXT1 for
color and LATCI1 for depth images, significantly reduce the
file size of the light field data set with only very little influ-
ence on the image quality. The size entry refers to the light
field data in a format that can directly be read by the graph-
ics hardware. The current light field format still has some
potential to reduce the memory footprint. The zipped size
entry denotes the data size after standard zip compression to
be used in a web gallery.

The light fields presented in this paper are meant as sup-
plement, not as an alternative to volumetric data sets. A
drawback of the presented light field rendering technique is
that fly-throughs, such as virtual endoscopic views, are not
supported due to the view point being restricted to lie outside

C. Rezk Salama & S. Todt & A. Kolb / Raycasting of Light Field Galleries from Volumetric Data

the convex hull of the object. Compared to direct volume
rendering techniques the quality of the recorded light fields
are limited by the resolution of the acquired images, not by
the resolution of the original volume data. The individual
choice of image resolution for providing a web gallery of
volume data should this be determined with respect to the
intended image quality, performance and the available band-
width.

9. Conclusion

We have presented a versatile framework for the generation
of light field representations for volume data. It allows in-
teractive display of high-quality volumetric representations,
which cannot be rendered in real-time. We have shown that
light fields are suitable to present visualization results to the
public, where fast access is more important than explicit con-
trol over all rendering parameters. They allow visualization
results to be accessed and exchanged fast and easily, with-
out the necessity to give access to the original (possibly re-
stricted) volume data.

References

[Bat68] Sorting Networks and their Applications. In
Spring Joint Computer Conference, AFIPS Proceedings
(1968), vol. 4, pp. 307-314.

[BBM*01] BUEHLER C., BOSSE M., MCMILLAN L.,
S.GORTLER, COHEN M.: Unstructured lumigraph ren-
dering. In Proc. ACM SIGGRAPH (2001), pp. 425-432.

[CKTO1] CHEN B., KAUFMAN A. E., TANG Q.: Image-
based rendering of surfaces from volume data. In Volume
Graphics (2001), pp. 279-295.

[CS98] CHo1J., SHIN Y.: Efficient image-based render-
ing of volume data. In Proc. Pacific Graphics (1998).

[EHK*06] ENGEL K., HADWIGER M., KNISS J., REZK-
SALAMA C., WEISKOPF D.: Real-Time Volume Graph-
ics. AK Peters, Ltd., 2006.

[GGSC96] GORTLER S., GRZESZCZUK R., SZELISKI
R., COHEN M.: The lumigraph. In Proc. ACM SIG-
GRAPH (1996), pp. 43-54.

[KWO03] KRUGER J., WESTERMANN R.: Acceleration
Techniques for GPU-based Volume Rendering. In Proc.
IEEE Visualization (2003), pp. 287-292.

[LH96] LEvVOY M., HANRAHAN P.: Light Field Render-
ing. In Proc. ACM SIGGRAPH (1996), pp. 31-42.

[MPHCO5] MEYER M., PFISTER H., HANSEN C.,
C.R.JOHNSON: [mage-Based Volume Rendering with
Opacity Light Fields. SCI Institute Technical Report
UUSCI-2005-002, University of Utah, 2005.

[MSHC99] MUELLER K., SHAREEF N., HUANG J.,
CRAWFIS R.: IBR-Assisted Volume Rendering. In Proc.
IEEE Visualization, Late Breaking Hot Topics (1999).

[Rad07] RADIOLOGY.UIOWA.EDU: Volume Archive
at the Dept. of Radiology, University of Iowa, USA.
http://radiology.uiowa.edu/downloads/, 2007. last visited
12/01/2007.

[RGWEO03] ROTTGER S., GUTHE S., WEISKOPF D.,
ERTL T.: Smart Hardware-Accelerated Volume Render-
ing. In Procceedings of EG/IEEE TCVG Symposium on
Visualization VisSym 03 (2003), pp. 231-238.

[RSO7] REzZK-SALAMA C.: GPU-Based Monte-Carlo
Volume Raycasting. In Proc. Pacific Graphics (2007).

[RSEB*00] REZK-SALAMA C., ENGEL K., BAUER M.,
GREINER G., ERTL T.: Interactive Volume Rendering
on Standard PC Graphics Hardware. In Proc. Graphics
Hardware (2000).

[RSK06] REZK-SALAMA C., KOLB A.: Opacity Peeling
for Direct Volume Rendering. Computer Graphics Forum
(Proc. Eurographics) 25, 3 (2006), 597-606.

[RSKK06] REZK-SALAMA C., KELLER M.,
KOHLMANN P.: High-Level User Interfaces for Transfer
Function Design with Semantics. In Proceedings of IEEE
Visualization (2006).

[SLSM06] SHAREEF N., LEE T.-Y., SHEN H.-W,,
MUELLER K.: An image-based modelling approach to
gpu-based rendering of unstructured grids. In Volume
Graphics (2006), pp. 31-38.

[SVSGO1] SCHIRMACHER H., VOGELGSANG C., SEI-
DEL H.-P., GREINER G.: Efficient Free Form Light Field
Rendering. In Proc. Vision Modeling and Visualization
(2001), pp. 249-256.

[TRSKO7] Tobpt S., REZK-SALAMA C., KOLB A.:
Fast (Spherical) Light Field Rendering with Per-Pixel
Depth. Tech. rep., 2007. http://www.cg.informatik.uni-
siegen.de/Publications.

[UTCO07] UTCT: Volume Archive at the Texas Advanced
Computing Center, University of Texas at Austin, USA.
http://utct.tacc.utexas.edu/, 2007. last visited 12/01/2007 .

[Vol07] VOLVIS.ORG: Volume Data Repository at
the WSI/GRIS, University of Tiibigen, Germany.
http://www.volvis.org/, 2007.
12/01/2007.

[WGW94] WILSON O., GELDER A. V., WILHELMS
J.: Direct Volume Rendering via 3D-textures. Tech.
Rep. UCSC-CRL-94-19, Univ. of California, Santa Cruz,
1994.

[WS01] WESTERMANN R., SEVENICH B.: Accelerated
volume raycasting using texture mapping. In Proc. IEEE
Visualization (2001).

[www07] WWW.CG.TUWIEN.AC.AT: Volume Archive
at the Vienna University of Technology, Austria.
http://www.cg.tuwien.ac.at/research/vis/datasets/, 2007.
last visited 12/01/2007.

last visited

(© 2008 The Author(s)
Journal compilation (©) 2008 The Eurographics Association and Blackwell Publishing Ltd.

