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ABSTRACT

In this paper a novel clustering algorithm is proposed, namely Vari-
ational Multilevel Mesh Clustering (VMLC). The algorithm incor-
porates the advantages of both hierarchical and variational (Lloyd)
algorithms, i.e. the initial number of seeds is not predefined and
on each level the obtained clustering configuration is quasi-optimal.
The algorithm performs a complete mesh analysis regarding the un-
derlying energy functional. Thus, an optimized multilevelcluster-
ing is built.

The first benefit of this approach is that it resolves the inher-
ent problems of variational algorithms, for which the result and the
convergence is strictly related to the initial number and selection
of seeds. On the other hand, the greedy nature of hierarchical ap-
proaches, i.e. the non-optimal shape of the clusters in the hierarchy,
is solved. We present an optimized implementation based on an in-
cremental data structure. We demonstrate the generic nature of our
approach by applying it for the generation of optimized multilevel
Centroidal Voronoi Diagrams and planar mesh approximation.

Index Terms: I.3.5 [ Computer Graphics]: Computational Geom-
etry and Object Modeling —Geometric algorithms; I.5.3 [ Pattern
Recognition]: Clustering—Algorithms

1 INTRODUCTION

Due to technological advances, 3D model acquisition or genera-
tion systems become faster and more precise. Thus tools for fast
and reliable geometry processing are required. In most cases the
models are represented by a polygonal surface mesh, i.e. notonly
geometry information but also connectivity (topology) information
is available. For clustering this kind of shape representation, there
are two major classes of methods which are frequently employed:
Hierarchical andVariational.

Hierarchical methods produce a hierarchy, i.e. a binary tree, of
clusters. Each cluster represents a set of faces that aggregates a
specific criteria. The main advantage of such an approach is that it
does not require any additional parameters or any intervention from
the user. Despite the simplicity and wide range of applications, hi-
erarchical clustering is yet a greedy approach, i.e. an assigned face
can no further be reassigned to other clusters although thatmay re-
sult in a more appropriate configuration. This drawback limits the
applicability of hierarchical clustering in many situations, e.g. gen-
erating Centroidal Voronoi Diagram (CVD) for mesh coarsening.
Applying a greedy hierarchical approach on base of a CVD does
not yield a valid solution, i.e. the result is not a CVD.

In contrast, variational methods do provide an optimal clustering
(in the sense that at least a local minimum is reached) for an a-priori
specified number of clusters. The determination of an appropriate
number of clusters involves in general manual user intervention.
Additionally, the choice of initial seeds, i.e. starting positions and
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starting representatives, affects the convergence and thefinal result.
Usually a random initialization is used, thus two consecutive exe-
cutions of the algorithm produce in general different results. In [2]
some heuristics like incremental insertion and deletion ofregions
and region teleportation were proposed. Despite their efficiency, it
is still an open question when and where to apply them.

In this paper we propose a novel algorithm which incorporates
the advantages of both methods, i.e. hierarchical and variational,
and consequently overcomes the drawbacks of both. The result
of the algorithm is an optimized multilevel clustering. Thealgo-
rithm neither uses any heuristics to obtain the final result nor a-
priori user specified parameters. Since a brute-force combination
of variational and hierarchical methods would be rather expensive
regarding computational effort and storage requirements,we pro-
vide a very efficient implementation and an optimized data structure
which allow a fast and complete mesh analysis.

We also show the generic nature of this algorithm by applyingit
to different tasks, i.e. planar fitting and the generation ofa multi-
level Centroidal Voronoi Diagram (MLCVD).

The paper is organized as follows: After discussing relatedwork
(Sec. 2), some notations and definitions are provided in Sec.3,
followed by the algorithm overview (Sec. 4). Sec. 5 presentsthe
energy minimization algorithm. In Sec. 6 a detailed description of
the algorithm is provided. Sections 7 and 8 present results of the
proposed algorithm and draw some final conclusions.

2 RELATED WORK

In this section we give an overview of approaches which constitute
building blocks for our algorithm. For a more detailed description
of the first two algorithms see for example [8].

2.1 Hierarchical Face Clustering (HFC)
HFC was introduced by Garland et al. [3] for planar approximation
of polygonal meshes. The algorithm starts by creating a dualgraph
of the mesh, i.e. each face is assigned to a node in the dual graph. A
dual edge (DE) between two nodes is created if the corresponding
mesh faces are adjacent. Using a priority queue (PQ) all created
DE are sorted according to their contraction cost. At each step, a
DE with highest priority is popped from the queue and collapsed.
Additionally, the PQ is updated for all DEs incident to the newly
created node. In the contraction operation corresponding nodes of
the DE are merged into a new node, i.e. two clusters are merged
into one representative cluster. As a result one obtains a hierarchy
(a binary tree) of clusters.

In [1] Attene et al. employed a HFC technique for fitting a family
of primitives such as planes, spheres and cylinders. In thatcase the
cost of collapsing a DE is the minimum of the approximation errors
computed against all primitives.

2.2 Variational Clustering (VC)

Cohen-Steiner et al. [2] presented VC as an extension of Lloyd’s
algorithm for piecewise approximation of the input polygonal sur-
face. The algorithm works in two phases:partitioning andfitting,
both repeated alternately to minimize the total energy, i.e. the ap-
proximation error. A notion of a shape proxy is introduced inorder
to describe the region’s local representative. In the partitioning step



a global PQ is used to assign each triangle to the best fitting proxy.
As a result, a new clusterization of the surface is obtained.In the
fitting step for each cluster the proxy is re-computed in order to find
the best representative for their associated faces. The algorithm is
executed until some convergence criteria is met or a specified num-
ber of iterations is executed. For a user specified number of clusters
k, the algorithm provides ak partitioning of the input mesh.

In [2] the algorithm was applied for the extraction of planarre-
gions. Different works like [11] and [12] extended this approach to
other proxy shapes like spheres, cylinders, rolling-ballsand general
quadric. In [5] the algorithm was adapted for identifying quasi-
developable surfaces.

VC is an extension of Lloyd’s algorithm (sometimes referredas
k-means) and requires a user specified number of clusters and, in
general, only a local optimum is reached. To obtain a better clus-
tering results, i.e. a further reduction of the energy, heuristics such
as incremental insertion and deletion of proxies, or regiontelepor-
tation can be used [2]. In the context of data clustering, there were
attempts to overcome the problem of choosing the number of clus-
ters fork-means[7] or to obtain better clustering results (see [4] for
an overview and comparison).

2.3 Approximated Centroidal Voronoi Diagram (CVD)

Vallette and Chassery [9] introduced a new algorithm for creating
an approximated CVD for uniform mesh coarsening. In [10] this
algorithm was extended to adaptive mesh coarsening. The main
idea is to minimize the CVD energy functionalE by iteratively up-
dating the clusters on the boundaries between clusters, which leads
to a very efficient algorithm. For each boundary edge betweentwo
clustersC1 andC2 a local test is performed, i.e. the energies for
three cases are computed:Einit (initial configuration),E1 (C1 grows
andC2 shrinks),E2 (C1 shrinks andC2 grows). The case with the
smallest energy is chosen and the cluster configuration is updated
accordingly. Thus, the energy functional is iteratively decreased
and the final clustering is obtained when no further energy reduc-
tion is achieved.

The main advantage of this approach over the classical varia-
tional (Lloyd) method is that it solves the same problem, i.e. con-
structing an approximated CVD, in a more efficient manner. Itdoes
not require any global priority queue and there is no explicit proxy
fitting step in the algorithm. We will use this algorithmic concept in
our algorithm (see Sec. 5.1) and we will show in Sec. 6.5 that this
kind of algorithm can be extended to other energy functionals.

3 NOTATIONS AND DEFINITIONS

Notations: Suppose that an input polygonal meshM with m faces
Fj is provided. A halfedge data structure [6] is used for mesh repre-
sentation. LetF denote the set of all faces ofM. ClusteringM into
k non-overlapping clustersCi means that each clusterCi consists of
a union ofni mesh facesF i

j .
Definition 1. A boundary loop (BL)is a closed sequence of all

boundary half edgesof a 1-connected set of faces.
In Fig. 2 theBL is represented by a dashed line. If a clusterCi has

more than one component, then each component will have its own
boundary loop. Any change in the cluster configuration changes the
BLsof the affected clusters (see Fig. 2 (a)-(c)).

Definition 2. A dual edge (DE)between two clustersCk andCl
can be created if and only ifBLk andBLl share at least one common
edge.

A collapse of aDE can be seen as a merging of two correspond-
ing clusters into one representative cluster (see Fig. 1 (a)-(b)).

4 OVERVIEW OF THE ALGORITHM

We aim at building a multilevel clustering where for each level l
the obtained clustering is optimized w.r.t. an underlying energy
functional.

The proposed algorithm can be summarized by the following
three steps:

Initialization: Each mesh face is assigned to an individual cluster,
i.e the total number of clustersk is equal tom.

Merging: Identify and collapse a dual edge with the smallest cost
(see Sec. 6.2). Here the total number of clusters is decreased
by one.

Optimization: The newly obtained configuration is optimized (see
Fig. 1 (b)-(c)), i.e. the total energy is minimized. TheEnergy
Minimization by Local Queries (EMLQ)algorithm (see Sec.
5.1) is applied in this case.

After the initialization, the algorithm iteratively executes the
merging and optimization steps until the final number of clusters
is equal to one. This way an optimized multilevel clusteringis built
which fulfills the proposed objective. Fig. 1 shows an example of
the two main stages of our algorithm.

This approach can be seen as a complete mesh analysis. For each
level, i.e. each specific number of clusters, an optimized instead of
a greedy clustering is provided. The initialization problem of varia-
tional clustering is also solved, because the merging of twoclusters
is always done according to the least energy cost. The following
optimization step will provide a better initial configuration for the
next level.

In general, the VMLC algorithm doesnot generate a nested hi-
erarchy, i.e. the lower level clusters are not completely contained
in a single upper level cluster as in the case of the HFC algorithm.
The multilevel construction is a nested hierarchy only whenno opti-
mization takes place. Thus, in general navigating between different
levels of the multilevel representation is a non trivial task. We show
in Sec. 6.4 that our proposed data structure provides an easyway of
navigating between levels.

Here we should emphasize the versatility of our algorithm. If the
optimization step is deactivated the algorithm will perform exactly
as a hierarchical face clustering (HFC). Vice versa if the level l is
fixed, i.e. the number of clusters is fixed, one performs a variational
optimization (VC).

The approach of combining hierarchical and variational methods
has several challenges, which will be addressed in Sec. 6:

Efficiency: the variational clustering is an iterative approach
where partitioning and fitting steps are alternated until anop-
timal partitioning regarding an energy functional is obtained.
Using this approach in the optimization step is computation-
ally too exhaustive.

Using variational clustering in conjunction with hierarchical
clustering will require, in general, two priority queues: one
for all DEs and the second one for the priority of faces in the
partitioning step.

Validity of dual edges: someDEsmay get invalid (see Fig. 1(b)-
(c)) or newDEsappear after optimization (see Fig. 1(c)). This
is in contrast to the standard HFC algorithm, where only DEs
incident to a newly created node need to be updated. Hence,
special care must be taken for a correct update.

Tracking of cluster faces: applying the optimization step after
each dual edge collapse will reassign some of the faces to dif-
ferent clusters. Thus, all such changes must be tracked and
represented in an appropriate date structure.

5 CLUSTER OPTIMIZATION AND DUAL EDGE COST

For cluster optimization we require a more efficient optimization
approach compared to variational clustering. Thus we propose to
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Figure 1: A single step of the algorithm. (a) Initial configuration, the solid line represents the Dual Edge (DE) to be collapsed. (b) The new
configuration after the DE was collapsed. The solid lines represent DEs which will not be valid after the optimization step. (c) The resulting
configuration after the optimization step. The solid lines represent newly created DEs.

use a technique that is more suitable for that, i.e.Energy Minimiza-
tion by Local Queries (EMLQ). We also describe how to compute
the merging cost of a dual edge for a given energy functional.

5.1 Energy Minimization by Local Queries (EMLQ)

This approach is a generalization of the approximative CVD algo-
rithm proposed by Vallette and Chassery [9].

Suppose that anenergy functional Eis provided:

E = ∑
i∈{0,...,k−1}

Ei = ∑
i∈{0,...,k−1}

∑
Fj∈Ci

Ei
j . (1)

Ei
j is the positive semi-definite cost of assigning the faceFj to the

clusterCi . Note, that in generalEl
j 6= Em

j if l 6= m, e.g. see the CVD
energy functional in Sec. 6.5.

The value ofE in Eq. (1) dependsonly on a given clustering of
the meshM into k clustersCi , where each clusterCi contains a set
of faces{F i

j }. Thus the process of minimizing the energyE, i.e. the
cluster optimization, can be seen as a clustering problem inwhich
the mesh faces are reassigned to different clusters in such away that
the energy functionalE is minimized.

Given an initial configuration, the algorithm iteratively reduces
the energy functionalE as follows:

Loop until no configuration changes
Forall ClustersCi
Forall BLs b ofCi
Loop over boundary edges e∈ b

Compute energies E0, E1, E2

Choose case with smallest energy
Update cluster configuration

Where the energiesE0, E1 andE2 (see Fig. 2(a)-(c)) are defined
as follows:

E0 = ∑
i′

Ei′ + ∑
Fj∈Cq

Eq
j + ∑

Fj∈Cp

Ep
j .

E1 = ∑
i′

Ei′ + ∑
Fj∈Cq∪{Fn}

Eq
j + ∑

Fj∈Cp\{Fn}

Ep
j .

E2 = ∑
i′

Ei′ + ∑
Fj∈Cq\{Fm}

Eq
j + ∑

Fj∈Cp∪{Fm}

Ep
j .

with i
′
∈ {0, . . . ,k−1}\{q, p}

Because the energy functionalE is supposed to be positive semi-
definite and any modification in the cluster’s configuration reduces

E, the algorithm converges. As a result an optimized clustering is
obtained for which the functionalE is minimal. In general, there is
no guarantee that the global minimum will be reached.

Observe that the first term is irrelevant when comparingE0, E1

andE2. Thus the three energies to be compared can be simplified:

D0 = ∑
Fj∈Cq

Eq
j + ∑

Fj∈Cp

Ep
j . (2)

D1 = ∑
Fj∈Cq∪{Fn}

Eq
j + ∑

Fj∈Cp\{Fn}

Ep
j . (3)

D2 = ∑
Fj∈Cq\{Fm}

Eq
j + ∑

Fj∈Cp∪{Fm}

Ep
j . (4)

The energy minimization is done only by applying local queries on
theBL. For each edgee in BL the query is done only for two ad-
jacent clusters and basedonly on this information the cluster con-
figuration is changed, i.e. functionalE is minimized. That makes
the algorithm very fast and efficient compared to the standard VC
optimization.

Taking this algorithm by itself, it requires the initial number of
seeds to be specified, just as variational clustering. The conver-
gence and the final result is also strictly related to the starting con-
figuration, i.e. the initial cluster configuration.

5.2 Dual Edge Cost

The cost of merging the clustersCq andCp into one representative
clusterCr , i.e. the collapse cost of the DE which connectsCq and
Cp, are defined as:

Cost= ∑
Fj∈(Cq∪Cp)

Er
j − ( ∑

Fj∈Cq

Eq
j + ∑

Fj∈Cp

Ep
j ). (5)

Observe that, this cost definition is different from the one used
in [1], where only the cost for the merged cluster, i.e. the first term,
is used. However, our cost definition ensures that the collapse oper-
ation is done only for clusters which will give the smallest increase
in the total energyE, i.e. the selected collapse has the least negative
impact on the overall energy. Additionally, this cost definition leads
to a very compact energy representation and makes our algorithm
even more efficient (see Sec.6.5).

6 VARIATIONAL MULTILEVEL CLUSTERING ALGORITHM

In this section we present a more detailed description of thealgo-
rithm outlined in Sec. 4. The standard HFC approach (see Sec.
2.1) starts with the creation of thedual graph (DG)of the mesh
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Figure 2: (a)-(c) Local tests performed for a given boundary edge e (solid line) of two adjacent clusters Cq and Cp where corresponding faces Fm

and Fn are checked. The Boundary Loop (BL) of the cluster is represented by a dashed line. (a) Case 0: Fm still belongs to Cq and Fn still belongs
to Cp, configuration energy is equal to E0. (b) Case 1: Cq grows and Cp shrinks, i.e. Fm and Fn belong to Cq, configuration energy is equal to E1.
(c) Case 2: Cq shrinks and Cp grows, i.e. Fm and Fn belong to Cp, configuration energy is equal to E2. (d) An Optimal Dual Edge (ODE) for cluster
Cq is identified. A DE is represented by an arc with corresponding collapse cost. A loop over BLq is done and all possible DE are checked. One
with the smallest cost, i.e. cost= 10, is stored.

M. However, in Sec. 4 we already mentioned that after optimiza-
tion step some DEs in the DG may no longer be valid (see Fig. 1
(b)-(c)). These DEs should be removed from their corresponding
nodes. In some situations new DEs must be created and added to
the corresponding nodes. This makes the DG structure ratherinef-
ficient, because additional expensive operations are required in this
case:

• each affected cluster, i.e. node, should be checked for possible
changes in its DE list (resulting in a varying number of DEs)
with corresponding DG and PQ updates

• the cost of all DEs of the affected clusters should be updated
in the PQ

• all changes to the DG must be tracked in order to reconstruct
each level

To solve these problems, we depart from the standard HFC ap-
proach and propose a new and more efficient method.

6.1 Initialization
In the initialization step each faceFj ∈ F is assigned to an individ-
ual clusterCi , i.e. the total number of clustersk is equal tom. An
array of fixed lengthm is used to store all created clusters. We call
this array aCluster Array (CA).

At this step no dual edges (see Sec. 3) are created, we only flag
each cluster in the CA as been unchangedc.changed=false,
i.e. the cluster configuration has not changed, and with non-updated
Optimal Dual Edge (ODE)(see Sec. 6.2)c.ODE=invalid, i.e.
the ODE of this cluster is no longer valid due to some cluster con-
figuration change or not determined, as in the initialization.

6.2 Dual Edge Collapse
At this step an ODE with minimal cost is identified in the CA and
the collapse operation is applied to this ODE.

Each cluster has is own ODE which represents the dual edge with
the smallest cost (see Eq. (5)) out of all dual edges of this cluster.
In Fig. 2(d) an example is provided. As an ODE is an attribute of
a specific cluster, it has only a reference to the opposite cluster, i.e.
c.ODE.opposite, to which it is connected.

The major idea is to store only this optimal dual edge for each
cluster, thus the number of current DEs is equal to the current num-
ber of clusters. To identify the cluster with the smallest cost regard-
ing it’s ODE, we apply a single step ofbubble sortto the CA to
move this cluster to the end of the cluster array.

Note, that we only need to identify the minimal cost DE out of
all currently valid DEs. Using a PQ to keep a sorted list of allDEs

will result in O(nlogn) complexity, because each optimization step
forces an additional validity check for all affected DEs. Instead,
we do not track the validity of the DEs or the appearance of new
DEs during optimization. We rather indicate, that there hasbeen a
change to a cluster and consequently it’s ODE is probably no longer
valid or optimal, i.e. we setc.ODE toinvalid. Using a CA with
all cluster ODEs and a single step of the bubble sort is an efficient
solution to identify the minimal cost DE.

If the cluster’sc.ODE identifier is set toinvalid, a new ODE
is identified and the respective cost is used for comparing the clus-
ter in the CA. In the case of two clusters having the same cost,the
cluster with smallest number of faces is in general promoted. That
reduces the number of operations in the merging step and the infor-
mation that needs to be stored for the multilevel representation.

A dual edgecollapse operationis applied to the clusterc_min
in the CA with the least cost ODE and to the opposite cluster
c_opp = c_min.ODE.opposite. In this merging operation
the cluster’s data and faces are reassigned to the new representa-
tive clusterc_opp. Because the configuration of this cluster has
changed we set its identifierc_opp.changed=true. The last
clusterc_min in CA is invalidated, thus the number of valid clus-
ters is reduced by one.

6.3 Optimization

The optimization is executed as repeated processing of all
changed clusters. If the clusterc is marked as being changed,
i.e. c.changed==true, then the cluster configuration needs
to be optimized (see Sec. 5.1). After optimization we set
c.changed=false andc.ODE=invalid for this cluster. Any
change in the cluster configuration during energy minimization
flags the opposite cluster as changed, thus in the next optimiza-
tion loop these clusters are also handled. This process repeats un-
til no cluster configuration change occurs, i.e. all clusters have
c.changed=false. Remember, that the optimization always
converges since the overall energy always decreases.

Observe that the energy minimization always starts with theclus-
ter most affected by the collapse operation, i.e. cluster optimization
is always applied in the merged cluster first, followed by a propa-
gation of that change to the neighboring clusters.

After the optimization step the neighbor clusters of each clus-
ter withc.ODE=invalid are also set as having non-valid ODE.
This is required for a correct identification of an ODE with mini-
mal cost for the neighboring clusters. Additionally, all changes in
the clusters configurations are saved for multilevel representation
(see Sec. 6.4).
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Figure 3: An example of stored information for each step of the algorithm applied to a simple mesh. step0 is the initial configuration, here the
cluster ID corresponds to the face ID. step7 is the final clustering.

6.4 VMLC Data Structure

In this section we describe a very fast and efficient differential data
structure to store the multilevel representation. In general, this pro-
vides an easy way for reconstructing any level and for computing
any additionally required cluster information using differential in-
formation.

After each optimization step, the information of faces which
have moved from one cluster to another, i.e the difference between
two consecutive clusterings, is stored. For each such a faceFmoved

j
with ID = a we store a triplet(a,b,c), whereb is the ID of the clus-
ter to which the face has moved andc is the ID of the initial cluster
from which this face has been removed. Even though a face can be
moved to different clusters during a full optimization step, we store
only the final cluster ID. Fig. 3 shows an example of the differential
data storage; here only the final situation after the complete opti-
mization steps is stated.

To reconstruct levell from level l −1 using the stored informa-
tion at levell and the differential data{(al

1,b
l
1,c

l
1), . . . ,(a

l
n,b

l
n,c

l
n)},

all addressed faces withID = al the cluster ID needs to be changed
to bl . Taking the example in Fig. 3, going fromstep1 tostep2 will
assign the face withID = 5 to the cluster withID = 4. Vice versa,
if going from l + 1 to l all faces withID = al+1 the cluster ID is
changed toID = cl+1. Thus going fromstep4 to step3 in Fig. 3
requires to change the cluster ID to theID = 1 of the face with
ID = 1.

The core algorithm does actually not store any intermediatein-
formation like energy for any level in the multilevel representation.
However, for some applications it may be important to have this
kind of information to justify or compare individual cluster levels
or to compute the cluster energy.

The energy of each level (see Sec. 6.5) can be computed using
the stored triplets(a,b,c). Suppose that each clusterCi in the ini-
tialization step, i.e. the cluster consists of one face only, has some
initial valuesC0

i {mi} for different measuresmi (see Tab.1). The
measuresmi may represent any cluster data such as the centroid
γi for a CVD, the normalni for planar fitting or the areaρ j (see
Sec. 6.5). In this case, indexa refers to the measurema of the
clusterC0

a. Index b indicates that the measurema should be “in-
serted” into the clusterCb and at the same time indexc indicates
thatma should be “removed” from the clusterCc. “Insertion” and
“removal” may include various mathematical operations depending
on the measure. For example for the cluster area the insertion op-
eration is a simple addition and the removal operation a subtraction
of the terms. A detailed example which refers to Fig. 3 is presented
in Tab. 1.

It should be noted, that based on this principle arbitrary measure
can be tracked throughout the multilevel construction.

6.5 Sample Energy Functionals
Approximated CVD: In [9] it has been shown that the energy

functional for building an approximated Centroidal Voronoi Dia-
gram (CVD) can be expressed as:

ECVD =
k−1

∑
i=0

( ∑
Fj∈Ci

ρ j‖γ j‖
2−

‖∑Fj∈Ci
ρ j γ j‖

2

∑Fj∈Ci
ρ j

). (6)

whereγ j andρ j is the centroid and the weighted area of the face
Fj , respectively.

For the EMLQ approach (see Sec. 5.1) the initial configuration
is represented by

D0
CVD = −

‖∑Fj∈Cq
ρ jγ j‖

2

∑Fj∈Cq
ρ j

−
‖∑Fj∈Cp

ρ jγ j‖
2

∑Fj∈Cp
ρ j

, (7)

D1
CVD andD2

CVD are computed in a similar way (see Eq. (3), (4)).
The cost of a dual edge collapse is then computed as follows:

CostCVD = −
‖∑Fj∈(Cq∪Cp) ρ jγ j‖

2

∑Fj∈(Cq∪Cp) ρ j
−D0

CVD. (8)

Observe that this form of energy functional leads to a very fast
and efficient energy computation. For each cluster only the val-
ues∑ρ j γ j and∑ρ j need to be stored and a fast cluster update is
possible in this case. For each faceFj the values ofρ j γ j and ρ j
are computed only once at the beginning, thus making the overall
computational cost very low.

Planar Approximation: In [2] a new shape metricL2,1 was
introduced which in the discrete case can be written as:

L2,1 = ∑
Fj∈Ci

ρ j‖n j −ni‖
2. (9)

where n j is the normal of the facesFj and ni is the opti-
mal proxy normal, i.e. the cluster normal in our case:ni =
∑Fj∈Ci

ρ jn j/‖∑Fj∈Ci
ρ jn j‖.

In the following, we derive a very efficient formulation from
Eq. (9) which can be used not only for the EMLQ algorithm but
also for the classical VC approach. The overall energy is given by

EPlanar =
k−1

∑
i=0

L2,1 =
k−1

∑
i=0

2( ∑
Fj∈Ci

ρ j −‖ ∑
Fj∈Ci

ρ jn j‖). (10)

Applying similar arguments as for Eq. (7), the energy of the initial
configuration for planar cluster approximation is:

D0
Planar = −‖ ∑

Fj∈Cq

ρ jn j‖−‖ ∑
Fj∈Cp

ρ jn j‖. (11)



step0 step1 step2 step3 step4 step5 step6 step7
C0

0{m0} m0 m0 m0 m0⊕m1 (m0 ⊕ m1) ⊕
m2

(m0 ⊕ m1 ⊕
m2) ⊖ m2 ⊕
m4⊕m5

(m0 ⊕ m1 ⊕
m4 ⊕ m5) ⊖
m0 ⊖ m1 ⊖
m4⊖m5

C0
1{m1} m1 m1 m1 m1⊖m1 x x x

C0
2{m2} m2 m2 m2⊕m3 (m2⊕m3) (m2 ⊕ m3) ⊖

m2⊕m6⊕m7

(m3 ⊕ m6 ⊕
m7)⊕m2

(m3 ⊕ m6 ⊕
m7 ⊕ m2) ⊕
m0 ⊕ m1 ⊕
m4⊕m5

C0
3{m3} m3 m3 m3⊖m3 x x x x

C0
4{m4} m4 m4⊕m5 (m4⊕m5) (m4⊕m5) (m4⊕m5) (m4 ⊕ m5) ⊖

m4⊖m5

x

C0
5{m5} m5 m5⊖m5 x x x x x

C0
6{m6} m6⊕m7 (m6⊕m7) (m6⊕m7) (m6⊕m7) (m6 ⊕ m7) ⊖

m6⊖m7

x x

C0
7{m7} m7⊖m7 x x x x x x

Table 1: The data refers to the multilevel representation example in Fig. 3. It shows how cluster data can be obtained for different steps. The
operator ⊕ indicates an insertion operation and ⊖ an removal operation, i.e. a given measure m is inserted or removed from the cluster. The
flag x in the table indicates that the cluster at that step is no longer valid.

D1
Planar andD2

Planar are computed in a similar way; see Eq. (3), (4).
The cost of a dual edge is then calculated as follows:

CostPlanar = −‖ ∑
Fj∈(Cq∪Cp)

ρ jn j‖−D0
Planar. (12)

The functionalEPlanar provides the same advantages as the CVD
energy functional. For each cluster only the value∑ρ jn j needs to
be stored. Again, these values can easily be updated and thusa fast
energy computation is possible.

Remark: The EMLQ algorithm is morepreferablyto be used
with energy functionals which can be represented in an incremen-
tal energy formulation as in Eq. (6) and Eq. (10), i.e. only local
queries are required to compute the energy. This kind of repre-
sentation results in an efficient simplification as in Eq. (7), (8) and
Eq. (11), (12). Other energy functionals like the ones used in [1]
require to store the cluster’s faces explicitly and to solvean eigen-
system to compute the energies for each step. This is, in general,
possible but very inefficient. In our further work we will address
this limitation, e.g. by defining alternative energy functionals or by
adapting the algorithm so that it supports existing energy function-
als at acceptable computational cost.

6.6 Variations of VMLC algorithm
We already mentioned in Sec. 4 that our algorithm is very flexi-
ble, i.e. the merging and optimization steps can be altered in an
arbitrary sequence or even deactivated if required. Thus, different
variations of the algorithm are possible. As a result the user can
choose between faster execution of the algorithm or higher quality
or accuracy of the results.

At the beginning, when the clusters are composed of only one
face the algorithm most likely merges only two by two of these
single neighboring clusters (see in Fig. 3step1 to step4). Thus,
depending on the addressed problem, it may be adequate to skip
the optimization step for the firstp% of the merging steps.

Based on this observation the following variation of VMLC has
been implemented:

1. Initialization step. The initialization is done like in VMLC
algorithm.

2. Merging of p% of clusters. Apply only merging step, i.e.
optimization deactivated, forp% of clusters.

3. Apply VMLC. Continue with the standard VMLC algorithm.

Thus, after initialization in the merging step, sequentially for
each valid clusterc in the CA an ODE is identified and directly col-
lapsed if thec.ODE.opposite cluster was not already involved
in another merging operation. This step is repeated untilp% of
clusters are merged. Doing so allow us a further reduction ofthe
computational cost (see Tab.2) without any substantial influence on
the obtained results, e.g. in case of the CVD energy functional (see
Fig. 8).

7 RESULTS AND DISCUSSION

Fig. 4 shows a comparison between the results of the hierarchical
face clustering and of the proposed VMLC algorithm, appliedto
the Bunny model using the CVD energy functional. The VMLC
algorithm provides a valid CVD construction at each level with well
shaped clusters, HFC algorithm, in general, gives an invalid CVD,
i.e. the centroids are not the cluster generators.

Fig. 5 shows the results of the planar clustering, i.e. using
Eqs. (11), (12), applied to the Fandisk model. Observe, thatfor this
model the results of both algorithms are approximatively similar.
This is due to the fact that in regions with zero Gaussian curvature
the hierarchical approach adequately merges regions in principal
directions of zero curvature. In the case of nonzero Gaussian cur-
vature this is no longer true; see for example Fig. 6 and Fig. 7.
Observe that the VMLC algorithm provides a better planar approx-
imation in these cases. For shapes with non-zero Gaussian cur-
vature the VMLC algorithm will in general provide better results
compared to the hierarchical clustering.

In Fig. 7 another clustering result for the horse model is pre-
sented, using the planar energy functional. Observe that incase of
the VMLC algorithm the clusters are better shaped, resulting in a
higher overall fitting quality.

In Fig. 8 we show the dependency between the total CVD en-
ergy (Eq. (6)) and the number of clusters for different clustering
algorithms, applied to the Fandisk model. For the VC algorithm
random initializations have been used. To obtain the energyvaria-
tion limits, the algorithm was applied 50 times for the same number
of clusters with different random seeds. Thep factor refers to the
algorithm proposed in Sec. 6.6, i.e. the firstp% of the merges have
been applied without any optimization. The cluster range between
1k to 400 from the total range[13k;1] is picked to show the general
energy behavior. Observe that the energy of the VMLC algorithm



Model # Faces Energy Functional p Time
(input mesh) % (sec.)

Fandisk 13k CVD - 14
Fandisk 13k CVD 50 3
Fandisk 13k CVD 75 1
Fandisk 13k CVD 90 1
Fandisk 13k CVD 95 1
Fandisk 13k planar - 13
Bunny 70k CVD - 463
Bunny 70k planar - 435
Bunny 70k CVD 50 167
Bunny 70k CVD 90 38
Horse 97k CVD - 988
Horse 97k planar - 852
Horse 97k CVD 50 398
Horse 97k CVD 90 107

Table 2: Clustering time for VMLC algorithm on a 2.21GHz AMD
Athlon PC

is always smaller than that of the HFC or VC algorithms. Thus the
VMLC algorithm performs better in this example. This behavior
has been observed with similar quality for other models .

In Fig. 8 we also depicted the energy behavior when applying a
variation of the VMLC algorithm for different values of the param-
eter p. Observe the energy jump forp = 95%. It appears at the
point where 95% of the merging steps are done, so the total energy
is higher than that of HFC algorithm. Because after this point the
optimization is also applied, the energy starts to decreaseapproach-
ing the energy of the VMLC algorithm, i.e. forp = 0%. We ob-
served, that for CVD and plane fitting the energy always rapidly ap-
proaches the optimal path after the optimization is activated. Thus,
the curves for, e.g.p= 50%, is nearly coincident withp= 0% after
a few loops of merging and optimization.

Table 2 provides the timing results for different meshes. The
second column gives the number of faces for the input model. The
third one specifies the energy functional used, i.e. CVD or planar.
The fourth one gives the value forp in the case of a variation of the
VMLC algorithm (see Sec. 6.6). The last column shows the time
for performing the complete VMLC-based clustering.

8 CONCLUSION AND FUTURE WORK

We have presented a novel and versatile algorithm for the compu-
tation of an optimized multilevel mesh clustering. We showed that
the VMLC algorithm performs better than hierarchical clustering
or standard variational clustering. We have provided a veryeffi-
cient implementation and data structure for this algorithm. As part
of this algorithm the generalization of the approximated CVD al-
gorithm was presented. We showed that different variationsof the
algorithm are possible, thus allowing the user to choose between
faster execution or higher quality of the final result.

We also have shown the generic nature of this approach by ap-
plying it to different tasks like planar cluster approximation or for
constructing a CVD. TheL2,1 metric was simplified to a form which
allows a very efficient energy computation using our approach.

We already pointed out (see remark in Sec.6.5) that there areno
fundamental limitations regarding the choice of the energyfunc-
tional to be used with our VMLC algorithm. However, one should
be always aware of the computational cost involved with the en-
ergy functional. In future we plan to design alternative energy
functionals which allow for efficient local energy computations like
for CVD (see Eqs. (6)- (8)) or like for planar approximation (see
Eqs. (10)- (12)) in order to apply the VMLC algorithm to different
tasks.
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(a) (b)

Figure 4: The CVD clustering results using the HFC algorithm (top)
and the VMLC algorithm (bottom) for the Bunny model. (a) Hierarchy
level=500. (b) Hierarchy level=200.

Figure 5: The planar clustering results using the HFC algorithm (top)
and the VMLC algorithm (bottom) for the Fandisk model at the level
of 50 clusters.

Figure 6: The planar clustering results using the HFC algorithm (left)
and the VMLC algorithm (right) for a sphere model at a level of 100
clusters.

Figure 7: The planar clustering results using the HFC algorithm (left)
and the VMLC algorithm (right) for the horse model (top view) at a
level of 500 clusters.
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Figure 8: CVD Energy versus # of clusters for Fandisk model. HFC
(hierarchical face clustering). VC (variational clustering) with 50 ran-
dom initialization for the given number of clusters. (p:) applying a
variation of the VMLC algorithm for p%.


