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ABSTRACT

In this paper a novel clustering algorithm is proposed, Hgivieri-
ational Multilevel Mesh Clustering (VMLC). The algorithmdor-
porates the advantages of both hierarchical and varidt{biayd)
algorithms, i.e. the initial number of seeds is not predefiard
on each level the obtained clustering configuration is gapsimal.
The algorithm performs a complete mesh analysis regartimgr-
derlying energy functional. Thus, an optimized multilecklster-
ing is built.

The first benefit of this approach is that it resolves the inher
ent problems of variational algorithms, for which the résud the
convergence is strictly related to the initial number aniéc®n
of seeds. On the other hand, the greedy nature of hieratapea
proaches, i.e. the non-optimal shape of the clusters inidrarchy,
is solved. We present an optimized implementation baseah am a
cremental data structure. We demonstrate the genericenatur
approach by applying it for the generation of optimized rfeuel
Centroidal Voronoi Diagrams and planar mesh approximation

Index Terms: 1.3.5 [ Computer Graphics]: Computational Geom-
etry and Object Modeling —Geometric algorithms; 1.5.3 [tBat
Recognition]: Clustering—Algorithms

1

Due to technological advances, 3D model acquisition or igene
tion systems become faster and more precise. Thus toolaigor f
and reliable geometry processing are required. In mosischse
models are represented by a polygonal surface mesh, i.eanhot
geometry information but also connectivity (topology)damhation
is available. For clustering this kind of shape repres@nmathere
are two major classes of methods which are frequently enepltoy
Hierarchical andVariational.

Hierarchical methods produce a hierarchy, i.e. a binary, toé
clusters. Each cluster represents a set of faces that aggseg
specific criteria. The main advantage of such an approadfaistt
does not require any additional parameters or any inteiefrom
the user. Despite the simplicity and wide range of applicetj hi-
erarchical clustering is yet a greedy approach, i.e. agasdiface
can no further be reassigned to other clusters althoughrtaptre-
sult in a more appropriate configuration. This drawbacktbrtte
applicability of hierarchical clustering in many situatg) e.g. gen-
erating Centroidal Voronoi Diagram (CVD) for mesh coarseni
Applying a greedy hierarchical approach on base of a CVD does
not yield a valid solution, i.e. the result is not a CVD.

In contrast, variational methods do provide an optimalteltisg
(in the sense that at least a local minimum is reached) for@ioai
specified number of clusters. The determination of an apiaiap
number of clusters involves in general manual user intéiwen
Additionally, the choice of initial seeds, i.e. startingsiions and
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starting representatives, affects the convergence arfthtieesult.
Usually a random initialization is used, thus two consesugxe-
cutions of the algorithm produce in general different ressuh [2]
some heuristics like incremental insertion and deletionegfons
and region teleportation were proposed. Despite theirieffoy, it
is still an open question when and where to apply them.

In this paper we propose a novel algorithm which incorparate
the advantages of both methods, i.e. hierarchical andtiara,
and consequently overcomes the drawbacks of both. Thetresul
of the algorithm is an optimized multilevel clustering. Thlgo-
rithm neither uses any heuristics to obtain the final resoitax
priori user specified parameters. Since a brute-force auatibn
of variational and hierarchical methods would be rathereasfre
regarding computational effort and storage requirememéspro-
vide a very efficient implementation and an optimized datacstre
which allow a fast and complete mesh analysis.

We also show the generic nature of this algorithm by applyting
to different tasks, i.e. planar fitting and the generatiom ofiulti-
level Centroidal Voronoi Diagram (MLCVD).

The paper is organized as follows: After discussing relateck
(Sec. 2), some notations and definitions are provided in Sec.
followed by the algorithm overview (Sec. 4). Sec. 5 preséms
energy minimization algorithm. In Sec. 6 a detailed desitnipof
the algorithm is provided. Sections 7 and 8 present resfiltiseo
proposed algorithm and draw some final conclusions.

2 RELATED WORK

In this section we give an overview of approaches which st
building blocks for our algorithm. For a more detailed dgstern
of the first two algorithms see for example [8].

2.1 Hierarchical Face Clustering (HFC)

HFC was introduced by Garland et al. [3] for planar approxiara
of polygonal meshes. The algorithm starts by creating a giagdh
of the mesh, i.e. each face is assigned to a node in the dymd.gta
dual edge (DE) between two nodes is created if the correspgnd
mesh faces are adjacent. Using a priority queue (PQ) altextea
DE are sorted according to their contraction cost. At eaep,st
DE with highest priority is popped from the queue and cokahs
Additionally, the PQ is updated for all DEs incident to thevhe
created node. In the contraction operation correspondiatg® of
the DE are merged into a new node, i.e. two clusters are merged
into one representative cluster. As a result one obtainsratthy
(a binary tree) of clusters.

In [1] Attene et al. employed a HFC technique for fitting a fgmi
of primitives such as planes, spheres and cylinders. Inctesd the
cost of collapsing a DE is the minimum of the approximatiomes
computed against all primitives.

2.2 Variational Clustering (VC)

Cohen-Steiner et al. [2] presented VC as an extension ofddoy
algorithm for piecewise approximation of the input polygbaur-
face. The algorithm works in two phasggartitioning andfitting,
both repeated alternately to minimize the total energy,the ap-
proximation error. A notion of a shape proxy is introducedider
to describe the region’s local representative. In the pamning step



a global PQ is used to assign each triangle to the best fittimgyp
As a result, a new clusterization of the surface is obtainedhe
fitting step for each cluster the proxy is re-computed in ptdéind
the best representative for their associated faces. Tloeithligy is
executed until some convergence criteria is met or a spécifien-
ber of iterations is executed. For a user specified numbdusters
k, the algorithm provides Rpartitioning of the input mesh.

In [2] the algorithm was applied for the extraction of planer
gions. Different works like [11] and [12] extended this apgeh to
other proxy shapes like spheres, cylinders, rolling-katiid general
quadric. In [5] the algorithm was adapted for identifyingagit
developable surfaces.

VC is an extension of Lloyd’s algorithm (sometimes referasd

k-mean} and requires a user specified number of clusters and, in

general, only a local optimum is reached. To obtain a better-c
tering results, i.e. a further reduction of the energy, tstigs such
as incremental insertion and deletion of proxies, or reggdepor-
tation can be used [2]. In the context of data clusteringetheere
attempts to overcome the problem of choosing the numberust cl
ters fork-meang7] or to obtain better clustering results (see [4] for
an overview and comparison).

2.3 Approximated Centroidal Voronoi Diagram (CVD)

Vallette and Chassery [9] introduced a new algorithm foating

an approximated CVD for uniform mesh coarsening. In [10% thi
algorithm was extended to adaptive mesh coarsening. The mai
idea is to minimize the CVD energy functioralby iteratively up-
dating the clusters on the boundaries between clustershvdmds

to a very efficient algorithm. For each boundary edge betveen
clustersC; andC, a local test is performed, i.e. the energies for
three cases are computes;;; (initial configuration),E (C; grows
andC, shrinks),E2 (C; shrinks andC, grows). The case with the
smallest energy is chosen and the cluster configurationdatad
accordingly. Thus, the energy functional is iterativelycidased
and the final clustering is obtained when no further energyce
tion is achieved.

The main advantage of this approach over the classical-varia
tional (Lloyd) method is that it solves the same problem, ¢en-
structing an approximated CVD, in a more efficient mannetols
not require any global priority queue and there is no exipficdxy
fitting step in the algorithm. We will use this algorithmicraept in
our algorithm (see Sec. 5.1) and we will show in Sec. 6.5 thiat t
kind of algorithm can be extended to other energy functnal

3 NOTATIONS AND DEFINITIONS

Notations: Suppose that an input polygonal meédhwith m faces
Fj is provided. A halfedge data structure [6] is used for mephere
sentation. LeF denote the set of all faces bf. ClusteringM into

k non-overlapping clustes means that each clust@r consists of
a union ofn; mesh face$:j'.

Definition 1. A boundary loop (BL)s a closed sequence of all
boundary half edgesf a 1-connected set of faces.

In Fig. 2 theBL is represented by a dashed line. If a clu§enas
more than one component, then each component will have its ow
boundary loop. Any change in the cluster configuration ckarge
BLsof the affected clusters (see Fig. 2 (a)-(c)).

Definition 2. A dual edge (DEpetween two cluster§, andC
can be created if and onlyBLy, andBL, share at least one common
edge.

A collapse of &DE can be seen as a merging of two correspond-
ing clusters into one representative cluster (see Fig.-bjd)

4 OVERVIEW OF THE ALGORITHM

We aim at building a multilevel clustering where for eachelelv
the obtained clustering is optimized w.r.t. an underlyimgrgy
functional.

The proposed algorithm can be summarized by the following
three steps:

Initialization: Each mesh face is assigned to an individual cluster,
i.e the total number of clusteksis equal tom.

Merging: ldentify and collapse a dual edge with the smallest cost
(see Sec. 6.2). Here the total number of clusters is dedease
by one.

Optimization: The newly obtained configuration is optimized (see
Fig. 1 (b)-(c)), i.e. the total energy is minimized. TBaergy
Minimization by Local Queries (EMLQIgorithm (see Sec.
5.1) is applied in this case.

After the initialization, the algorithm iteratively exe®s the
merging and optimization steps until the final number of s
is equal to one. This way an optimized multilevel clusteiisbuilt
which fulfills the proposed objective. Fig. 1 shows an exayl
the two main stages of our algorithm.

This approach can be seen as a complete mesh analysis. Ror eac
level, i.e. each specific number of clusters, an optimizetead of
a greedy clustering is provided. The initialization prablef varia-
tional clustering is also solved, because the merging ofclwsters
is always done according to the least energy cost. The foilpw
optimization step will provide a better initial configurati for the
next level.

In general, the VMLC algorithm doesot generate a nested hi-
erarchy, i.e. the lower level clusters are not completeiyt@ined
in a single upper level cluster as in the case of the HFC dlyuri
The multilevel construction is a nested hierarchy only wheopti-
mization takes place. Thus, in general navigating betwéésrent
levels of the multilevel representation is a non triviakta#/e show
in Sec. 6.4 that our proposed data structure provides arnveaspf
navigating between levels.

Here we should emphasize the versatility of our algorithithe
optimization step is deactivated the algorithm will penfioexactly
as a hierarchical face clustering (HFC). Vice versa if thellé is
fixed, i.e. the number of clusters is fixed, one performs aatiarial
optimization (VC).

The approach of combining hierarchical and variationahoés
has several challenges, which will be addressed in Sec. 6:

Efficiency: the variational clustering is an iterative approach
where partitioning and fitting steps are alternated untibn
timal partitioning regarding an energy functional is obh&ad.
Using this approach in the optimization step is computation
ally too exhaustive.

Using variational clustering in conjunction with hieraicl
clustering will require, in general, two priority queueseo
for all DEs and the second one for the priority of faces in the
partitioning step.

Validity of dual edges: someDEsmay get invalid (see Fig. 1(b)-
(c)) or newDE sappear after optimization (see Fig. 1(c)). This
is in contrast to the standard HFC algorithm, where only DEs
incident to a newly created node need to be updated. Hence,
special care must be taken for a correct update.

Tracking of cluster faces: applying the optimization step after
each dual edge collapse will reassign some of the faces-to dif
ferent clusters. Thus, all such changes must be tracked and
represented in an appropriate date structure.

5 CLUSTER OPTIMIZATION AND DUAL EDGE COST

For cluster optimization we require a more efficient optiatian
approach compared to variational clustering. Thus we Fepo
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Figure 1: A single step of the algorithm. (a) Initial configuration, the solid line represents the Dual Edge (DE) to be collapsed. (b) The new
configuration after the DE was collapsed. The solid lines represent DEs which will not be valid after the optimization step. (c) The resulting
configuration after the optimization step. The solid lines represent newly created DEs.

use a technique that is more suitable for that,Eeergy Minimiza-
tion by Local Queries (EMLQ)We also describe how to compute
the merging cost of a dual edge for a given energy functional.

5.1 Energy Minimization by Local Queries (EMLQ)

This approach is a generalization of the approximative C\{o-a
rithm proposed by Vallette and Chassery [9].
Suppose that aenergy functional Hs provided:

E=—
i€{0,k—1}

E= S E}. @)
i€{0, - k—1} F€G;

Eij is the positive semi-definite cost of assigning the fegéo the

clusterC;. Note, that in generd‘:"j #+ Ejm if | #m, e.g. see the CVD
energy functional in Sec. 6.5.

The value ofE in Eq. (1) dependsnly on a given clustering of
the meshM into k clustersC;, where each clust&?; contains a set
of faces{F]-' }. Thus the process of minimizing the enefgyi.e. the
cluster optimization, can be seen as a clustering problewhinh
the mesh faces are reassigned to different clusters in swealy that
the energy functiondt is minimized.

Given an initial configuration, the algorithm iterativelgduces
the energy functiondt as follows:

Loop until no configuration changes
Forall CustersC;
Foral|l BLs bof G

Loop over boundary edgeseeb
Comput e ener gi es EC, EL, E?
Choose case with snall est energy
Update cluster configuration

Where the energie&?, E1 andE? (see Fig. 2(a)-(c)) are defined
as follows:

0_ q p
i Fie FieCp

E1:ZEi/+ El+ EP.
i FjeCqu{Fq} FeCp\{Fn}

2 _ q P
i FieCq\{Fm} FjeCpU{Fm}

withi' € {0,... . k—1}\ {q, p}
Because the energy functioriais supposed to be positive semi-
definite and any modification in the cluster’s configuratieduces

E, the algorithm converges. As a result an optimized clusgeis
obtained for which the functiond is minimal. In general, there is
no guarantee that the global minimum will be reached.
Observe that the first term is irrelevant when compafifigE?®
andEZ2. Thus the three energies to be compared can be simplified:

DO — chE}u zc EP. 2)
Fie FieCp

D! = EJ+ EP. (3)
FjeCqu{Fn} FeCp\{Fn}

D? = Z El+ S E 4)
FieCq\{Fm} FjeCpU{Fm}

The energy minimization is done only by applying local gasrmn
the BL. For each edge in BL the query is done only for two ad-
jacent clusters and basedly on this information the cluster con-
figuration is changed, i.e. function&lis minimized. That makes
the algorithm very fast and efficient compared to the stahd¥&@
optimization.

Taking this algorithm by itself, it requires the initial niver of
seeds to be specified, just as variational clustering. Tiheero
gence and the final result is also strictly related to thaistacon-
figuration, i.e. the initial cluster configuration.

5.2 Dual Edge Cost

The cost of merging the cluste@y andCp, into one representative
clusterG;, i.e. the collapse cost of the DE which conneCgsand
Cp, are defined as:

Cost= El—(Y Ef+ EP). (5)

Observe that, this cost definition is different from the osedi
in [1], where only the cost for the merged cluster, i.e. th& fierm,
is used. However, our cost definition ensures that the csdlaper-
ation is done only for clusters which will give the smallestriease

in the total energ¥, i.e. the selected collapse has the least negative

impact on the overall energy. Additionally, this cost defor leads
to a very compact energy representation and makes our tgori
even more efficient (see Sec.6.5).

6 VARIATIONAL MULTILEVEL CLUSTERING ALGORITHM

In this section we present a more detailed description oatbe-

rithm outlined in Sec. 4. The standard HFC approach (see Sec.

2.1) starts with the creation of ttdual graph (DG)of the mesh
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Figure 2: (a)-(c) Local tests performed for a given boundary edge e (solid line) of two adjacent clusters Cq and C, where corresponding faces Fp,
and F, are checked. The Boundary Loop (BL) of the cluster is represented by a dashed line. (a) Case 0: F, still belongs to Cq and F, still belongs
to Cp, configuration energy is equal to EC. (b) Case 1: Cq grows and Cp, shrinks, i.e. Fy and Fy belong to Cq, configuration energy is equal to EL
(c) Case 2: Cq shrinks and C, grows, i.e. F and F, belong to Cp, configuration energy is equal to EZ. (d) An Optimal Dual Edge (ODE) for cluster
Cq is identified. A DE is represented by an arc with corresponding collapse cost. A loop over BLg is done and all possible DE are checked. One

with the smallest cost, i.e. cost= 10, is stored.

M. However, in Sec. 4 we already mentioned that after optimiza
tion step some DEs in the DG may no longer be valid (see Fig. 1
(b)-(c)). These DEs should be removed from their corresimgnd

will result in O(nlogn) complexity, because each optimization step
forces an additional validity check for all affected DEs.stead,
we do not track the validity of the DEs or the appearance of new

nodes. In some situations new DEs must be created and added td®Es during optimization. We rather indicate, that there lesn a

the corresponding nodes. This makes the DG structure riabier
ficient, because additional expensive operations arenesdjin this
case:

e each affected cluster, i.e. node, should be checked foitppess
changes in its DE list (resulting in a varying number of DEs)
with corresponding DG and PQ updates

e the cost of all DEs of the affected clusters should be updated
in the PQ

e all changes to the DG must be tracked in order to reconstruct
each level

To solve these problems, we depart from the standard HFC ap-
proach and propose a new and more efficient method.

6.1 Initialization

In the initialization step each fadg < F is assigned to an individ-
ual clusterC;, i.e. the total number of clusteksis equal tom. An
array of fixed lengthmis used to store all created clusters. We call
this array aCluster Array (CA)

change to a cluster and consequently it's ODE is probablpngér
valid or optimal, i.e. we set. ODEtoi nval i d. Using a CA with
all cluster ODEs and a single step of the bubble sort is anigffic
solution to identify the minimal cost DE.

If the cluster’sc. ODE identifier is set td nval i d, a new ODE
is identified and the respective cost is used for compariaglins-
ter in the CA. In the case of two clusters having the same tst,
cluster with smallest number of faces is in general promotérht
reduces the number of operations in the merging step andfibre i
mation that needs to be stored for the multilevel represienta

A dual edgecollapse operatiorns applied to the clustez_mni n
in the CA with the least cost ODE and to the opposite cluster
c_opp = c_m n. ODE. opposi te. In this merging operation
the cluster’'s data and faces are reassigned to the new eefaes
tive clusterc_opp. Because the configuration of this cluster has
changed we set its identifier_opp. changed=t r ue. The last
clusterc_nmi nin CAis invalidated, thus the number of valid clus-
ters is reduced by one.

6.3 Optimization

At this step no dual edges (see Sec. 3) are created, we only flag

each cluster in the CA as been unchanged¢hanged=f al se,
i.e. the cluster configuration has not changed, and withupatated
Optimal Dual Edge (ODEjsee Sec. 6.%). ODE=i nval i d, i.e.
the ODE of this cluster is no longer valid due to some clusterc
figuration change or not determined, as in the initializatio

6.2 Dual Edge Collapse

At this step an ODE with minimal cost is identified in the CA and
the collapse operation is applied to this ODE.

Each cluster has is own ODE which represents the dual edbe wit
the smallest cost (see Eq. (5)) out of all dual edges of thistet.
In Fig. 2(d) an example is provided. As an ODE is an attribdte o
a specific cluster, it has only a reference to the oppositteiyi.e.
c. ODE. opposi t e, to which itis connected.

The major idea is to store only this optimal dual edge for each
cluster, thus the number of current DEs is equal to the cimam-
ber of clusters. To identify the cluster with the smallesttecegard-
ing it's ODE, we apply a single step tlubble sortto the CA to
move this cluster to the end of the cluster array.

Note, that we only need to identify the minimal cost DE out of
all currently valid DEs. Using a PQ to keep a sorted list of#s

The optimization is executed as repeated processing of all
changed clusters. If the clusteris marked as being changed,
i.e. c.changed==t rue, then the cluster configuration needs
to be optimized (see Sec. 5.1). After optimization we set
c. changed=f al se andc. ODE=i nval i d for this cluster. Any
change in the cluster configuration during energy mininizat
flags the opposite cluster as changed, thus in the next @gatimi
tion loop these clusters are also handled. This processtiepe-

til no cluster configuration change occurs, i.e. all clusteave

c. changed=f al se. Remember, that the optimization always
converges since the overall energy always decreases.

Observe that the energy minimization always starts witlchhe-
ter most affected by the collapse operation, i.e. clusténopation
is always applied in the merged cluster first, followed by appr
gation of that change to the neighboring clusters.

After the optimization step the neighbor clusters of eacfs<l
ter withc. ODE=i nval i d are also set as having non-valid ODE.
This is required for a correct identification of an ODE withrini
mal cost for the neighboring clusters. Additionally, albciges in
the clusters configurations are saved for multilevel remregion
(see Sec. 6.4).
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Figure 3: An example of stored information for each step of the algorithm applied to a simple mesh. stef® is the initial configuration, here the

cluster ID corresponds to the face ID. stef¥ is the final clustering.

6.4 VMLC Data Structure

In this section we describe a very fast and efficient difféedidlata
structure to store the multilevel representation. In gainénis pro-
vides an easy way for reconstructing any level and for comgut
any additionally required cluster information using diéfetial in-
formation.

After each optimization step, the information of faces vishic
have moved from one cluster to another, i.e the different@den
two consecutive clusterings, is stored. For each such a:r,@eéed
with ID = awe store a tripleta, b, c), wherebis the ID of the clus-
ter to which the face has moved ani@ the 1D of the initial cluster
from which this face has been removed. Even though a faceean b
moved to different clusters during a full optimization stee store
only the final cluster ID. Fig. 3 shows an example of the défdial
data storage; here only the final situation after the corapbeti-
mization steps is stated.

To reconstruct level from levell — 1 using the stored informa-
tion at levell and the differential daté(a}, b}, c}), ..., (ah,bh,ch) },
all addressed faces with = a the cluster ID needs to be changed
to b'. Taking the example in Fig. 3, going frosted to ste® will
assign the face wittD = 5 to the cluster withD = 4. Vice versa,
if going from | +1 to | all faces withID = a*1 the cluster ID is
changed tdD = ¢ 1. Thus going fromstept to ste|8 in Fig. 3
requires to change the cluster ID to tHe = 1 of the face with
ID =1.

The core algorithm does actually not store any intermediate
formation like energy for any level in the multilevel repeesation.
However, for some applications it may be important to have th
kind of information to justify or compare individual clustievels
or to compute the cluster energy.

The energy of each level (see Sec. 6.5) can be computed using

the stored triplet$a, b,c). Suppose that each clus@rin the ini-
tialization step, i.e. the cluster consists of one face,dmg some
initial vaIuesClo{mi} for different measurem; (see Tab.1). The

6.5 Sample Energy Functionals

Approximated CVD: In [9] it has been shown that the energy
functional for building an approximated Centroidal Voromia-
gram (CVD) can be expressed as:

k-1
Ecvp =
VP i;(FjG ]

wherey; and pj is the centroid and the weighted area of the face
Fj, respectively.

For the EMLQ approach (see Sec. 5.1) the initial configunatio
is represented by

ERPLE: Pivill?
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D¢y p andD3,, are computed in a similar way (see Eq. (3), (4)).
The cost of a dual edge collapse is then computed as follows:

I ZRecucy Vi |12
2Fie(CalCy) P

Observe that this form of energy functional leads to a vesy fa
and efficient energy computation. For each cluster only tide v
uesy pjy; andy pj need to be stored and a fast cluster update is
possible in this case. For each faégthe values ofpjy; and p;

are computed only once at the beginning, thus making theathver
computational cost very low.

Planar Approximation: In [2] a new shape metrit2! was
introduced which in the discrete case can be written as:

S pjlnj >

Fj €Ci

L21

9)

where n; is the normal of the face$; and nj is the opti-
mal proxy normal, i.e. the cluster normal in our case: =

measuresn; may represent any cluster data such as the centroid 3, cc, Pjn;j/|l Y Fec; PjNjll-

y for a CVD, the normah; for planar fitting or the arem; (see
Sec. 6.5). In this case, indexrefers to the measunm, of the
clusterCy. Indexb indicates that the measune; should be “in-
serted” into the cluste€, and at the same time indexindicates
thatmg should be “removed” from the clust€. “Insertion” and
“removal” may include various mathematical operationsesheing
on the measure. For example for the cluster area the inseyio
eration is a simple addition and the removal operation aractibn
of the terms. A detailed example which refers to Fig. 3 is @nésd
in Tab. 1.

It should be noted, that based on this principle arbitrarpsnes
can be tracked throughout the multilevel construction.

In the following, we derive a very efficient formulation from
Eqg. (9) which can be used not only for the EMLQ algorithm but
also for the classical VC approach. The overall energy isrgly

k—1 k—1

L2,l: 2 o — pinil)).
i; i;ﬁ (F;Q i HFjei inil)

Applying similar arguments as for Eq. (7), the energy of thigal
configuration for planar cluster approximation is:

0
Dpianar = — |l pinjll |l ZC pinjll-
Fie FieCy

EPIanar _ (10)

(11
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Table 1: The data refers to the multilevel representation example in Fig. 3. It shows how cluster data can be obtained for different steps. The
operator & indicates an insertion operation and & an removal operation, i.e. a given measure m is inserted or removed from the cluster. The

flag x in the table indicates that the cluster at that step is no longer valid.

D3| anar aNAD3,, .., are computed in a similar way; see Eq. (3), (4).
The cost of a dual edge is then calculated as follows:

>

Fe(Guc,)

Cosbianar = —|| pinj |- Dglanar' (12)

The functionaEP'2"a" provides the same advantages as the CVD
energy functional. For each cluster only the vajugjnj needs to
be stored. Again, these values can easily be updated and thet
energy computation is possible.

Remark: The EMLQ algorithm is morereferablyto be used
with energy functionals which can be represented in an mere
tal energy formulation as in Eqg. (6) and Eq. (10), i.e. onlgalo
queries are required to compute the energy. This kind oferepr
sentation results in an efficient simplification as in Eq, (8) and
Eqg. (11), (12). Other energy functionals like the ones usefd]i
require to store the cluster’s faces explicitly and to s@wmesigen-
system to compute the energies for each step. This is, irr@glene
possible but very inefficient. In our further work we will adds
this limitation, e.g. by defining alternative energy funcidls or by
adapting the algorithm so that it supports existing eneoggtion-
als at acceptable computational cost.

6.6 Variations of VMLC algorithm

We already mentioned in Sec. 4 that our algorithm is very flexi
ble, i.e. the merging and optimization steps can be altarezhi
arbitrary sequence or even deactivated if required. Thiffereht
variations of the algorithm are possible. As a result the gsa
choose between faster execution of the algorithm or highalitg

or accuracy of the results.

At the beginning, when the clusters are composed of only one
face the algorithm most likely merges only two by two of these
single neighboring clusters (see in Figste to stepl). Thus,
depending on the addressed problem, it may be adequatepto ski
the optimization step for the firg% of the merging steps.

Based on this observation the following variation of VMLCsha
been implemented:

1. Initialization step. The initialization is done like in VMLC
algorithm.
2. Merging of p% of clusters. Apply only merging step, i.e.

optimization deactivated, fqu% of clusters.

3. Apply VMLC. Continue with the standard VMLC algorithm.

Thus, after initialization in the merging step, sequehtibr
each valid clustec in the CA an ODE is identified and directly col-
lapsed if thec. ODE. opposi t e cluster was not already involved
in another merging operation. This step is repeated yntil of
clusters are merged. Doing so allow us a further reductiotihef
computational cost (see Tab.2) without any substantialénite on
the obtained results, e.g. in case of the CVD energy funati(see
Fig. 8).

7 RESULTS AND DISCUSSION

Fig. 4 shows a comparison between the results of the hiecatch
face clustering and of the proposed VMLC algorithm, applied
the Bunny model using the CVD energy functional. The VMLC
algorithm provides a valid CVD construction at each levehwiell
shaped clusters, HFC algorithm, in general, gives an idv@WD,
i.e. the centroids are not the cluster generators.

Fig. 5 shows the results of the planar clustering, i.e. using
Egs. (11), (12), applied to the Fandisk model. Observe ftindhis
model the results of both algorithms are approximativefyilsir.
This is due to the fact that in regions with zero Gaussianature
the hierarchical approach adequately merges regions fitipail
directions of zero curvature. In the case of nonzero Gaunssia
vature this is no longer true; see for example Fig. 6 and Fig. 7
Observe that the VMLC algorithm provides a better planaraspp
imation in these cases. For shapes with non-zero Gaussian cu
vature the VMLC algorithm will in general provide better uits
compared to the hierarchical clustering.

In Fig. 7 another clustering result for the horse model is pre
sented, using the planar energy functional. Observe thzdse of
the VMLC algorithm the clusters are better shaped, regyitina
higher overall fitting quality.

In Fig. 8 we show the dependency between the total CVD en-
ergy (Eq. (6)) and the number of clusters for different @tisig
algorithms, applied to the Fandisk model. For the VC algaonit
random initializations have been used. To obtain the eneaigg-
tion limits, the algorithm was applied 50 times for the saramber
of clusters with different random seeds. Tpéactor refers to the
algorithm proposed in Sec. 6.6, i.e. the fip8 of the merges have
been applied without any optimization. The cluster rangevben
1k to 400 from the total rangL.3k; 1] is picked to show the general
energy behavior. Observe that the energy of the VMLC algorit



Model # Faces Time

Energy Functionall p
(input mesh) % | (sec.)

Fandisk 13k CVvD - 14
Fandisk 13k CVvD 50 3
Fandisk 13k CVvD 75 1
Fandisk 13k CVvD 90 1
Fandisk 13k CVvD 95 1
Fandisk 13k planar - 13
Bunny 70k CVD - 463
Bunny 70k planar - 435
Bunny 70k CVvD 50 [ 167
Bunny 70k CVD 90 38
Horse 97k CVvD - 988
Horse 97k planar - 852
Horse 97k CVvD 50 [ 398
Horse 97k CVvD 90 [ 107

Table 2: Clustering time for VMLC algorithm on a 2.21GHz AMD
Athlon PC

is always smaller than that of the HFC or VC algorithms. Thugs t
VMLC algorithm performs better in this example. This belwavi
has been observed with similar quality for other models .

In Fig. 8 we also depicted the energy behavior when applying a
variation of the VMLC algorithm for different values of theymm-
eter p. Observe the energy jump fgr= 95%. It appears at the
point where 95% of the merging steps are done, so the totaggne
is higher than that of HFC algorithm. Because after this {pttia
optimization is also applied, the energy starts to decrappeoach-
ing the energy of the VMLC algorithm, i.e. fgg= 0%. We ob-
served, that for CVD and plane fitting the energy always fg@ig-
proaches the optimal path after the optimization is a@naf hus,
the curves for, e.gp = 50%, is nearly coincident with = 0% after
a few loops of merging and optimization.

Table 2 provides the timing results for different meshes.e Th
second column gives the number of faces for the input modsd. T
third one specifies the energy functional used, i.e. CVD anat.
The fourth one gives the value forin the case of a variation of the
VMLC algorithm (see Sec. 6.6). The last column shows the time
for performing the complete VMLC-based clustering.

8 CONCLUSION AND FUTURE WORK

We have presented a novel and versatile algorithm for thepaem
tation of an optimized multilevel mesh clustering. We shdwleat
the VMLC algorithm performs better than hierarchical chustg
or standard variational clustering. We have provided a \efiy
cient implementation and data structure for this algorittda part
of this algorithm the generalization of the approximatedBCa-
gorithm was presented. We showed that different variatafribe
algorithm are possible, thus allowing the user to choosedxat
faster execution or higher quality of the final result.

We also have shown the generic nature of this approach by ap-
plying it to different tasks like planar cluster approximoat or for
constructing a CVD. The21 metric was simplified to a form which
allows a very efficient energy computation using our apgnoac

We already pointed out (see remark in Sec.6.5) that theracare
fundamental limitations regarding the choice of the endtgyc-
tional to be used with our VMLC algorithm. However, one shbul
be always aware of the computational cost involved with the e
ergy functional. In future we plan to design alternative rgge
functionals which allow for efficient local energy compiars like
for CVD (see Egs. (6)- (8)) or like for planar approximatiseé
Egs. (10)- (12)) in order to apply the VMLC algorithm to diféat
tasks.
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Figure 4: The CVD clustering results using the HFC algorithm (top)
and the VMLC algorithm (bottom) for the Bunny model. (a) Hierarchy
level=500. (b) Hierarchy level=200.

Figure 7: The planar clustering results using the HFC algorithm (left)
and the VMLC algorithm (right) for the horse model (top view) at a
level of 500 clusters.
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Figure 5: The planar clustering results using the HFC algorithm (top)
and the VMLC algorithm (bottom) for the Fandisk model at the level
of 50 clusters.
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Figure 8: CVD Energy versus # of clusters for Fandisk model. HFC
(hierarchical face clustering). VC (variational clustering) with 50 ran-
dom initialization for the given number of clusters. (p:) applying a
variation of the VMLC algorithm for p%.

Figure 6: The planar clustering results using the HFC algorithm (left)
and the VMLC algorithm (right) for a sphere model at a level of 100
clusters.



