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Abstract

Typically, flow volumes are visualized by defining their boundary as iso-surface of a level set function. Grid-based

level sets offer a good global representation but suffer from numerical diffusion of surface detail, whereas particle-

based methods preserve details more accurately but introduce the problem of unequal global representation. The

particle level set (PLS) method combines the advantages of both approaches by interchanging the information

between the grid and the particles. Our work demonstrates that the PLS technique can be adapted to volumetric

dye advection via streak volumes, and to the visualization by time surfaces and path volumes. We achieve this

with a modified and extended PLS, including a model for dye injection. A new algorithmic interpretation of PLS

is introduced to exploit the efficiency of the GPU, leading to interactive visualization. Finally, we demonstrate the

high quality and usefulness of PLS flow visualization by providing quantitative results on volume preservation and

by discussing typical applications of 3D flow visualization.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling - Curve, surface, solid, and object representations

1. Introduction

Today, large flow data sets are routinely generated by nu-

merical simulation (computational fluid dynamics, CFD) or

by experimental techniques such as PIV (particle imaging

velocimetry). These data sets often need to be analyzed and

explored visually for a good understanding of the data. Typ-

ical application areas include the aerospace and automotive

industries, other engineering disciplines, and sciences. This

paper addresses the challenge of visual mappings for un-

steady 3D flow. We follow the strategy of dye advection—a

well known and popular metaphor from experimental flow

visualization. Dye advection facilitates user-centered explo-

ration in the form of interactive control over seed points, and

it can provide information about global flow behavior.

The goal of this paper is to improve the accuracy of in-

teractive 3D dye advection and similar flow visualization

techniques. Fig. 1 compares previous dye advection tech-

niques with the technique of this paper. Most previous work

on interactive dye advection [JEH02, vW02] is based on

a b c

Figure 1: Dye advection of a spherical volume in a time-

dependent sine wave. The injection volume is marked in red.

The flow spreads the dye over time and the resulting trace

depends on the computation of this process. Diffusive advec-

tion (a), level set advection (b), PLS advection (c) – (643

grid, 262,144 particles, rendering speed: 78.2, 55.9, 36.6

FPS).

semi-Lagrangian advection on regular grids, which is af-

fected by numerical diffusion due to repeated re-sampling

via tri-linear reconstruction (Fig. 1a). The extension to level
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set based dye advection (Fig. 1b) eliminates the diffusion

problem, but leads to inaccuracies in the form of loss of dye

volume. To overcome these problems, we propose a particle

level set (PLS) method for 3D advection (Fig. 1c). The orig-

inal PLS method [EMF02] combines a grid-based level set

with particle-based tracking to reduce numerical diffusion

and volume loss. Marker particles placed near the interface

are used to correct the level set representation.

This paper provides the following contributions. First, we

adopt the PLS method for the visualization of 3D unsteady

flow by extending it to the representation of streak volumes,

path volumes (3D analogues to streak lines and path lines),

and time surfaces. Streak volumes correspond to the advec-

tion of dye. Second, we introduce a fast dye injection mech-

anism for the hybrid grid/particle representation of PLS.

Third, we present an efficient GPU mapping of the PLS ap-

proach by utilizing a fine-grained parallelization of the algo-

rithm. Fourth, a new sub-voxel description of the interface

can be used to reduce the volume loss of the traditional PLS

method. The main benefit of our method is the interactive,

accurate visualization of unsteady 3D flow inspired by well-

known metaphors like dye advection.

2. Related Work

An early example of stream volumes—the volumetric equiv-

alent to stream lines—is described by Max et al. [MBC93],

who use an explicit representation of the volume based on

tetrahedra. Unfortunately, explicit representations are diffi-

cult for intricate flow because adaptive removal and addi-

tion of vertices and changes of topology need to be con-

sidered. Even the simpler problem of stream surfaces al-

ready requires advanced algorithms to handle these issues

[Hul92,GTS∗04]; point-based representations of stream sur-

faces and path surfaces avoid issues of mesh connectivity

but still require complicated point generation and removal

[STWE07]. In contrast, implicit representations easily allow

for topology changes and do not require control of vertex

density. Examples include implicit stream surfaces by Van

Wijk [vW93], the particle travel time method by Wester-

mann et al. [WJE00], and the application of direct volume

rendering to visualizing implicit representations according

to Xue et al. [XZC04]. Texture advection is the most pop-

ular example of implicit representations for flow visualiza-

tion due to its high visualization speed, efficient mapping

to GPUs, and easy implementation. Texture advection trans-

ports dye or similar visual information stored on a regular

grid (i.e., the texture) and uses that information for visualiza-

tion; the information on the texture is typically displayed “as

is”, without an explicit reconstruction of the implicit surface.

Basic texture advection [MB95] can be modified in the form

of 2D Image Based Flow Visualization (IBFV) [vW02] and

2D Lagrangian-Eulerian Advection (LEA) [JEH02], which

both support texture-based dye advection in order to gen-

erate streaklines. Texture advection can be extended to fast

3D GPU algorithms [TvW03,WSE07] for 3D flow visual-

ization. For example, 3D dye visualization can be employed

to highlight features [SJM96]. One issue of most texture ad-

vection methods is numerical diffusion due to resampling

(see discussion in [Wei04]). LEA [JEH02] addresses this

problem by frequently restoring the contrast of the trans-

ported dye. An alternative approach is the use of distance-

field level sets in combination with level set reinitializa-

tion, which leads to a non-diffused dye–background inter-

face but is affected by volume loss [Wei04]. For an overview

of texture-based flow visualization in general, we refer to

Laramee et al. [LHD∗04].

Generic level set methods are often applied in the field

of visualization and image processing. The first GPU im-

plementation of the level set equation is due to Rumpf and

Strzodka [RS01]. Lefohn et al. [LKHW04] additionally in-

corporate an adaptive memory model for narrow band tech-

niques. An iterative solution to the level set equation is

presented by Griesser et al. [GRNG05]. In these applica-

tions, numerical dissipation is no problem because, in fact,

a smooth boundary of 3D regions is desirable. In contrast,

our goal is to minimize numerical diffusion and volume loss

in order to achieve high quality visualization of crisp streak

volumes, path volumes, and time surfaces. To this end, we

include a particle-based correction of the level set accord-

ing to the PLS idea. The original PLS technique is described

by Enright et al. [EMF02]; a method to reduce the order of

the advection scheme is presented by Enright et al. [ELF04],

which is available in an open source library [MF06]. The

main goal of this paper is to extend PLS to allow for dye

advection and similar flow visualization methods, which es-

pecially requires a dye injection mechanism. In addition, we

aim at making PLS interactive by utilizing an efficient GPU

mapping.

PLS methods employ a reinitialization of the level set

function, which requires the construction of a Euclidean 3D

distance field. Distance field computation is a well studied

problem (see [Cui99] for an overview). Depending on the

initial object representation (using a regular grid or an ex-

plicit geometric representation), different approaches have

been proposed. Propagation methods for regular grids itera-

tively propagate the distance information to the neighboring

grid points, either by spatial sweeping or by contour propa-

gation. Different parallel approaches for the computation of

a distance transform for a set of sites have been proposed,

for 2D pixel sites [ST04,RT06] and for 3D polygonal input

data [SPG03, SGGM06]. For our PLS framework, we em-

ploy a 3D variant of the jump flooding approach [RT06] that

relies on hierarchical propagation to balance speed and ac-

curacy [CK07].

3. Particle Level Set Method

In this section, the original particle level set method by En-

right et al. [ELF04] is explained. The key idea of the level
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set method is the representation of the lower dimensional

interface I in a domain D by the iso-contour I(φ) := {x ∈
D|φ(x) = 0} of the level set function φ : D→ R. The inter-

face is moved by evolving φ within a velocity field. Typi-

cally, φ is initialized to be a signed distance field. However,

after advection, this property might be lost, and φ needs to

be reinitialized, i.e. the distance field is recomputed.

Enright et al. [ELF04] use a fast first order accurate semi-

Lagrangian method to evolve φ in a grid. At first this leads

to an accumulation of numerical diffusion, resulting in a

considerable volume loss (see Fig. 6, middle). Their PLS

method aims to prevent this by Lagrangian tracing of cor-

rective particles placed nearby the interface I(φ). Positive
particles are located in the φ > 0 region and negative parti-

cles in the φ < 0 region. Each particle is defined as a sphere

around xp with radius rp ∈ [rmin,rmax] touching the inter-
face, thus rp = spφ(xp), where sp is the sign of the particle.
The correction step involves the definition of a temporary

level set function φp around each particle:

φp(x) = sp(rp−‖x−xp‖). (1)

After level set and particle advection, escaped particles,

i.e. those that are further away than their radius on the wrong

side of the interface, are used for the level set correction.

Each escaped particle p contributes to the eight surround-

ing grid points through intermediate level set functions φ+

and φ− that are initialized to φ and updated according to the

formulas:

φ+(x)←max(φp(x), φ+(x)),

φ−(x)←min(φp(x), φ−(x))
(2)

After processing all escaped particles, a new (corrected) φ

is constructed according to the following operation and then

reinitialized in order to restore a signed distance function.

φ(x) =

{

φ+(x) if
∥

∥φ+(x)
∥

∥≤
∥

∥φ−(x)
∥

∥

φ−(x) else
(3)

The PLS method is known to produce good results even

when performing a first order semi-Lagrangian level set ad-

vection. The algorithm according to Enright et al. [ELF04]

is summarized below. Note that the level set correction is

performed twice.

Algorithm 1 (PLS algorithm)

1. Definition of the interface location and velocity field

2. Initialization of the level set based on the interface

3. First order semi-Lagrangian level set advection

4. Second order Runge-Kutta particle advection

5. Correction of the level set function using the particles

6. Level set reinitialization

7. Correction of the level set function using the particles

8. Particle reseeding

9. Go to 3

4. Flow Volume Particle Level Sets

The task of applying PLS to interactive flow visualization

poses several challenges:

• Fast parallel algorithms are necessary for level set reini-
tialization, particle reseeding, and the interchange of data

between grids and particles.

• There is a trade-off between speed and accuracy. Ac-
curacy in the context of PLS means no volume loss, a

smooth surface, and the preservation of surface features.

• Time surfaces, path, and streak volumes require different
handling of the grid and the particle structure and thus

have to be considerated separately.

• Streak volumes (i.e. dye advection) require special atten-
tion in order to synchronize the grid and the particle struc-

ture.

These tasks are addressed in the following sections. As

our modifications remain in the spirit of the original PLS, we

will refer to the steps in Alg. 1. We assume some familiarity

with the use of graphics hardware. For an introduction to

GPU programming, see [Buc05,Har05].

4.1. Data Structures

The level set reinitialization algorithm used in our approach

(Sec. 4.2) produces a distance transform (DT). On the one

hand, the use of a DT is motivated by our propagation-based

reinitialization itself, on the other hand, the references stored

in the DT can be used for a simple yet efficient particle re-

seeding (Sec. 4.4) with sub-voxel accurate radii. These ad-

vantages compensate the higher memory consumption for

storing the reference data.

The DT dt(x) = (dtd(x),dtδ(x)) is stored in a grid. For
each point x, dtd(x) = φ(x) is the signed distance and dtδ(x)
is a reference to the nearest interface location. Note that in

some stages of the algorithm, e.g. after the level set advec-

tion, the grid may not represent a precise or complete dis-

tance transform.

Internally, we represent dt as a tiled 4-component 2D float

texture. We use frame buffer objects for render-to-texture

functionality. Double buffering is used to separate input from

output data in the data parallel GPU processing. The velocity

field can be given in any form that allows arbitrary sampling,

e.g. in a 3D texture. The particle system is held in a 2D float

texture (preferably in 32-bit format), storing the position xp
and the radius rp of each particle p.

The data flow with the corresponding steps of Alg. 1 is

outlined in Fig. 2. In- and outgoing edges represent data in-

put and output, respectively. The error correction (step 5)

involves two passes and is split into two separate entities 5a

and 5b. We omit the repeated particle correction (step 7) to

improve performance with negligible loss of overall accu-

racy.
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~v particles

p

dtinterface

Figure 2: The data flow in the GPU-based PLS framework.

The use of double buffering is marked by cyclic, blue arrows.

Numbers indicate steps in Alg. 1. (Step 7 is omitted.)

4.2. Level Set Reinitialization

Enright et al. [ELF04] solve the problem of level set reini-

tialization (Alg. 1, steps 2 and 6) via the fast marching

method [Set99]. There is no feasible way to do this on the

GPU efficiently. Instead, we use a propagation method based

on a DT, which is sufficiently fast for per-frame reinitializa-

tion.

Before reinitialization, dt contains only the interface,

which is given by means of the grid-based classification (in-

terior/exterior) or by a gray-level function (e.g. the advected

dtd , defining the interface on a sub-voxel level).

First, the interface needs to be identified, i.e. references

are assigned to interface grid points. Those points are iden-

tified by searching neighbor points x and y with a different

sign in the distance: sign(dtd(x)) 6= sign(dtd(y)). This check
is performed for each point x in a fragment program, where

y is a point in a 6-neighborhood of x containing all direct

non-diagonal neighbors. If one point y is found, the refer-

ence dtδ(x) is updated by moving along the gradient n̂ at
position x:

dtδ(x)← x−dtd(x) · n̂ (4)

The gradient is computed by central differences in the 6-

neighborhood of x. The level set value dtd(x) is set to the
distance between x and dtδ(x), multiplied by the sign previ-
ously stored at position x. The sub-voxel references in dtδ(x)
can now be used for the reinitialization of dt(x).

We do the reinitialization using the fast hierarchical algo-

rithm proposed in [CK07], which extends the jump flood-

ing algorithm [RT06]. Reference propagation can be imple-

mented as a fragment program, where dt(x) is updated by
computing distances according to the reference points of

neighboring grid points.

4.3. Particle Reseeding

For an efficient PLS correction (Alg. 1, step 5), all particles

should be located near the interface (see Sec. 3). This, how-

ever, is difficult to achieve in parallel on the GPU, since one

cannot iterate over the interface neighborhood and place par-

ticles accordingly. Moving the particles to the interface is not

only necessary during the initialization in the beginning, but

also occasionally during the execution of the algorithm, be-

cause more and more particles will drift away from the inter-

face with time evolving. Frequent particle reseeding has the

negative side effect that inaccuracies in dtδ are constantly

transferred into the new set of particles, thus annihilating

the advantage gained by the particle correction. According

to [EMF02], a reasonable trade-off is to reposition the par-

ticles every 20 time steps on average, e.g. to reposition 5

percent of all particles in each iteration.

Thanks to the level set representation as a DT, the inter-

face location is known at any volume position. First, the ini-

tial location xp for each particle p is chosen randomly within

[0,1]3. Afterward, the particle is pushed towards the inter-
face by following the reference and adding a random offset:

xp← dtδ(xp)+ ε · v̂rand, (5)

where v̂rand is a normalized random vector pointing in an ar-

bitrary direction and ε is a predefined small constant scalar

value. This way, we produce inner and outer particles sur-

rounding the interface. In our implementation, conforming

with [ELF04], we choose ε such as to place particles around

the interface within a band that is a few grid cells wide. The

random vector can be fetched from a texture with precom-

puted random values.

Pushing the particles towards the interface according to

the above scheme can lead to sparsely populated regions,

especially in areas with high curvature. In our experiments,

this effect could always be sufficiently reduced by using a

higher number of particles, as the surface represented by the

level set is bound by the number of discrete grid points.

4.4. Particle Radius

During reseeding, the radius rp of each particle p must be

determined. Two methods for radius sampling have been

tested. The first one samples the distance stored in dtd(xp)
by doing tri-linear interpolation. The other approach looks

for the nearest reference in a neighborhood N consisting of
8 grid points around xp:

rp← sp · min
x′∈N (xp)

{
∥

∥dtδ(x
′)−xp

∥

∥}, (6)

The sign sp of the particle is determined by the sign dtd for

the corresponding grid point. Note that there is no obvious

way to obtain the sign on a sub-voxel level as it is the case

for the radius.
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Fig. 3 (left) shows different results for both methods af-

ter 8 rotations involving 100 advection and reseeding steps.

One can observe a much higher volume loss when interpo-

lating the distance, while the nearest reference (Eq. 6) leads

to a more fluctuating, less smooth surface. With no parti-

cles at all, the volume completely disappears after 6 rotations

due to numerical diffusion. In Fig. 3 (middle and right), the

grid points (red points) contain the length of the normals (red

lines) to the interface (blue). In Fig. 3 (2a, 2b), the distance

at the particle position (black point) is computed with a bi-

linear interpolation of the cell distances. In case of a convex

interface the resulting distance (green circle) is too small,

because distances corresponding to very different normals

are averaged. In Fig. 3 (3a, 3b), the nearest of the reference

points is taken (yellow points). Here, we also commit an er-

ror, as the selected reference point is not exactly the closest

point on the interface to the particle (black point), but for

highly convex interface parts, this is more accurate than the

interpolation. For (almost) flat interface parts the interpola-

tion is better because all normals point in (almost) the same

direction.

In [ELF04], the radii of the particles are reset after level

set reinitialization while Mokberi and Faloutsos [MF06]

omit this step. The reason for this is similar to the expla-

nation why particle reseeding after each frame should be

avoided: as particle radii have to be reset with information

stored in the level set, inaccuracies of the level set are prop-

agated into the particle model. Thus, it is reasonable to wait

until the next particle reseeding before the radii are updated,

and we follow this approach.

4.5. Level Set Advection and Particle Tracing

Level set (LS) advection (Alg. 1, step 3) is easily ported to

the GPU due to its parallel nature. New level set values dtd
are computed according to a semi-Lagrangian approach. For

particle tracing (Alg. 1, step 4), the same time step is used in

a second order accurate Runge-Kutta integration.

As particle tracing is an operation on all particles, this

is a good opportunity for choosing the subset of particles

that will correct the level set. Those particles are marked by

changing the sign of the first component of the position xp.

As the volume is bounded by [0,1]3, it is then easy to distin-
guish the position and the marker bit. In contrast to the orig-

inal PLS approach (Sec. 3), we refine the particle correction

by involving more particles in the level set correction: a par-

ticle contributes if its radius is greater than its distance to the

interface. Following this rule, fewer particles are necessary

in order to produce satisfactory results in our examples.

4.6. Level Set Correction

For level set correction (Alg. 1, step 5), we need a way to se-

lect particles marked as escaped and, based on this selection,

to construct the intermediate level set functions φ+,φ−. To

1a

1b

1c

2a 3a

3b2b

Figure 3: Comparing particle radii using tri-linear distance

interpolation and neighborhood-sampling the nearest refer-

ence point. Left: A notched sphere (1a) is rotated 8 times,

with reseeding 5 percent of the particles in each step using

interpolated radii (1b) and nearest reference (1c). Middle

and right: Two (2D) cases where interpolation (2a and 2b)

leads to a larger error than nearest reference (3a and 3b).

reduce bandwidth requirements we do this differently than in

the original formulation, postponing the combination with φ

until the final update.

The construction of φ+,φ− requires particle-to-grid cou-

pling by scattering into the grid data structure. The key idea

is to render a marker-geometry at the particle positions to

trigger a computation for the 8 grid cells around the particle.

In order to process all particles, the particle texture contain-

ing xp and rp is copied into a Vertex Buffer Object. Then, all

particles are sent through the graphics pipeline and a vertex

program detects whether a particle p has escaped by check-

ing the marker bit (see Sec. 4.5). If the particle has not es-

caped, it does not contribute to the level set correction and is

discarded by moving it outside of the volume.

Point scattering approaches are known to be rather time-

consuming, e.g. Kolb and Cuntz [KC05] could handle only

a few thousand particles at interactive rates, when using rel-

atively large point sprites. After evaluating different types

of marker-geometries, i.e. point sprites, quads, and individ-

ual points, we conclude that rendering four individual points

into two subsequent slices of the grid turns out to be the most

effective variant in our situation.

The intermediate level sets φ+ and φ− given in Eq. 1 are

stored in a two-component grid p = (φ+,−φ−). The accu-
mulation of particle contributions in p uses min-max blend-

ing. Initially, p is set to (−∞,−∞) for all grid cells. Storing
−φ− instead of φ− allows a single pass update of p using

maximum blending only.

A second pass rasterizes the complete level set, comput-

ing the corrected level set dtδ using p according to Eq. 3,

including the postponed combination with φ.
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PLS

LS

Figure 4: Left: A path volume is pushed into a tight band

around a flow source. Due to numerical diffusion, the LS

volume disappears . In contrast, PLS maintains the volume.

Right: A difficult case where the streak volume reaches the

injection volume. Both: The injection is marked in red.

4.7. Time Surfaces

So far, the algorithm includes all steps required for the visu-

alization of time surfaces, i.e. a bounded volume moving in

a flow while possibly changing its topology.

4.8. Path Volumes

Path volumes can be interpreted as the accumulation of the

volume left behind by a time surface. This idea fits well into

the presented PLS algorithm. We accumulate the path vol-

ume in an additional step after step 6 in Alg. 1 into a separate

grid dtacc. The accumulated grid is the result of a minimum

operation on the distance component of the previous dtacc

and of the current dt, taking the according reference dtδ. The

result of this operation is a union of the negative distances,

thus of the inner regions of both level sets. An example is

given in Fig. 4.

4.9. Streak Volumes

Streak volumes are produced by repeatedly injecting a vol-

ume dtinj = (dt
inj
d

,dt
inj

δ
) to the current level set. The injection

dtinj is generated analytically using implicit geometries. The

volume injection involves an update of both the grid and the

particle representation of the level set.

The grid update is similar to path volume accumulation.

A minimum of dtinj and dt computes the union of both vol-

umes after step 5 of Alg. 1. After step 6, the particle set is

extended in order to cover the new interface added by the in-

jection. Two methods have been tested: 1. explicitly adding

new particles at the injection’s interface or 2. relying on the

standard particle reseeding. In both cases, the scheme pre-

sented in Sec. 4.3 can be adapted by binding the appropriate

DT texture. The second approach yields nearly as good re-

sults as the first one in our examples, despite the fact that the

particle density near the injection is lower. The reason is that

the injected volume is less susceptible to numerical diffusion

because it is re-emitted in each frame.

Both injected particles and old particles can disturb the

injection

advected

particles

wrong particles

a b

Figure 5: Two cases (in 2D) where particles must be re-

moved or reseeded when generating streak volumes ((a): in-

jected particles, (b): old particles).

PLS correction. In Fig. 5, those wrong particles are marked

in red. The green circle stands for the injection volume,

which partly overlaps the advected volume (blue circle) cre-

ated in the last level set advection step.

Fig. 5a shows the situation when injecting new particles.

Wrong particles are those with dtd(xp) < rp. They can be ef-

ficiently reseeded during the injection step by using the uni-

fied DT. Fig. 5b shows wrong particles coming from the last

PLS step. They can be identified by checking dt
inj
d

(xp) < rp
in a separate pass over all particles. The identified particles

are either removed or reseeded. Removing them is cheaper

and can be achieved by moving them out of the volume,

However in some examples, too many particles might be lost

in this approach.

Fig. 1 and Fig. 8 show examples of streak volumes. The

right side of Fig. 4 shows that our reseeding scheme even

handles the difficult case where the streak volume reaches

the injection area.

4.10. Rendering

The volume renderer is based on a back-to-front slicing tech-

nique using view-aligned polygons. Only fragments within

a small iso-value range [−ε,ε] around the interface are col-
ored in a shader using Phong lighting. Applying alpha blend-

ing makes internal structures visible, which is important

e.g. for complex flow volumes. This approach is similar

to semi-transparent interval volume rendering [FMST96].

When using appropriate semi-transparent transfer functions,

the visual results of rendering PLS resemble those of il-

lustrative techniques that highlight 3D flow structure, such

as [SJEG05], which supports the spatial perception of flow

volume boundaries.

5. Results

In the following, our flow PLS is evaluated by presenting

some examples as well as performance and volume preser-

vation results. The hardware used for testing is a PC with

an AMD Athlon 64 X2 Dual Core Processor 4200+ (2.21

GHz), 4 GB RAM with a GeForce 8800 GTS graphics chip.

For evaluation, we took Zalesak’s sphere (Fig. 6), which is a

3D version of the disc used in [ELF04]. Our evaluation in-

volves grids up to 1283 and max. 4 million particles due to

limited GPU memory.
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Figure 6: 360◦ rotation of Zalesak’s sphere (100 advec-

tions): initial, LS, and PLS. 524,288 particles, 1283 grid,

14.74 FPS.
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Figure 7: Comparison of traditional PLS (trad.) and our

method (enh.) for Zalesak’s sphere (same logarithmic scale

for both) – 643 grid, no particle reseeding

We compare our GPU method with the PLS li-

brary [MF06] using exactly the same Zalesak’s sphere (see

Fig. 6) and with equal parameters for both implementations.

The test consists of 100 evolution steps in a vortex flow field

to a total of 360◦. Fig. 7 shows the resulting frame-rate and

relative volume loss as function of the number of particles.

Following prior work (e.g. Enright et al. [ELF04]), the re-

sulting volume loss is measured by counting the number of

interior grid points of the object.

Table 1 lists the time consumption for all steps of our

GPU-based algorithm separately for Zalesak’s sphere. One

can see that, depending on the resolution, the level set reini-

tialization and correction are the most time-consuming steps

of the application. Due to the large size of the kernel used

in the propagation method, the level set reinitialization is

texture-fetch-bound. The additional reseeding for streak vol-

umes is in the same range as general reseeding. Dye injec-

tion takes about 5 percent, dye reseeding about 2 percent of

the time for the overall algorithm in the example shown in

Fig. 1c.

Fig. 8 shows the results of a time surface and a streak

volume in an unsteady flow representing a typhoon. The data

set (courtesy of DKRZ Hamburg) is stored in 32 time steps

as 106× 53× 39 textures. Both rows compare the pure LS
and our PLS method, showing the advantage of PLS when

using the same grid resolution.

The typhoon data set exhibits prominent swirling features,

1a 1b 1c 1d

2d2c2b2a

Figure 8: Top row: Time surface after 190 evolutions. Start-

ing geometry (1a), ground-truth using 1283 LS (1b), 643 LS

(1c), our enhanced 643 PLS (1d), 262,144 particles (FPS

for 1b–1d: 10.6, 19.1, 16.5, time without rendering (in ms):

51.6, 11.1, 22.1). Second row: Streak volume after 275 ad-

vections, same parameters (FPS for 2b–2d: 12.5, 28.2, 22.1,

time without rendering (in ms): 52.1, 10.1, 19.7). Both: The

starting/injection shape is marked in red.

Table 1: Run-time of the steps involved in the PLS algorithm.

Object: Zalesak’s sphere (see Fig. 6), 262,144 particles. In

each frame, 5 percent of the particles are reinitialized.

step grid / time (ms) grid / time (ms)

framework 643 / 1.3 1283 / 1.3

LS advection 643 / 0.15 1283 / 1.15

particle tracing 643 / 0.05 1283 / 0.25

LS reinitialization 643 / 5.83 1283 / 40.65

LS correction 643 / 10.8 1283 / 12.88

particle reseeding 643 / 0.65 1283 / 0.475

which can be depicted by both time surfaces and streak vol-

umes. The latter are particularly useful because they resem-

ble the well known dye advection metaphor from experi-

mental flow visualization and they show the temporal evolu-

tion of the flow. Figure 8 demonstrates that the high quality

and volume preservation of the PLS approach is critical for

showing all details of the swirling features, whereas LS fails

to depict those details.

6. Conclusions

We have presented a modified and enhanced GPU-based

PLS method for flow volumes. The presented method shows

that surface evolution can be performed efficiently and accu-

rately on the GPU. We achieve convincing performance and

superior quality of results over both, CPU-based PLS meth-

ods and grid-only GPU-methods. Examples of accurate and

interactive flow visualizations, including time surfaces, path

volumes, and streak volumes, have been presented. Our eval-

uation involves both analytical flows as well as the typhoon

data set as an example of a realistic unsteady flow.
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