
AUTOMATIC POINT TARGET DETECTION FOR
INTERACTIVE VISUAL ANALYSIS OF SAR IMAGES

Martin Lambers and Andreas Kolb

Institute for Vision and Graphics, University of Siegen, Germany
{lambers,kolb}@fb12.uni-siegen.de

ABSTRACT

Point target analysis is an important tool to analyze the qual-
ity of SAR images. To permit interactive visual analysis,
visualization applications need to automatically detect point
targets in a SAR image and estimate associated quality mea-
surements such as the peak sidelobe ratio (PSLR). This task
is computationally expensive.

In this paper, we propose methods for automatic point
target detection that work on hierarchical data structures and
process the image data on the graphics processing unit (GPU)
to allow interactive use. For each detected point target in the
currently visualized area of the image, the visualization ap-
plication can then display color-coded quality measurements,
thus providing the user with an overview of the point targets
in the scene as well as an immediate impression of the SAR
image quality. Detailed point target analysis results can be
displayed on demand.

Index Terms— Synthetic aperture radar, Visualization,
Image analysis

1. INTRODUCTION

Images from Synthetic Aperture Radar (SAR) systems consist
of the amplitude values from single look complex (SLC) data
files, which contain information of the combined reflectivity
(amplitude and phase) in each resolution cell. Point scatter-
ers in the scene result in characteristic patterns in such SAR
images. See Fig. 1 for an example. The analysis of point tar-
get responses is an important tool to analyze the quality of
the image and the SAR processing technique. Quality mea-
surements associated with a point target response include the
estimated width of the mainlobe and the peak sidelobe ratio
(PSLR), which measures the ratio of the peak sidelobe ampli-
tude to the peak mainlobe amplitude.

Interactive visualization applications should allow inter-
active visual analysis of SAR images. For this purpose, the
application must automatically detect point targets in the cur-
rently visualized area of the image and compute associated
quality measurements such as the PSLR. This allows to mark
point targets in the image and provide color coded quality in-
formation at the same time, thus providing the user with an

overview of the point targets in the scene as well as an imme-
diate impression of the image quality. More detailed analysis
results, such as those provided by the RAT radar tools [1], can
then be displayed if the user clicks on a point target mark.

In this paper, we present methods for automatic point tar-
get detection that work on a hierarchical representation of
the SAR image and process the image data on the graphics
processing unit (GPU) to achieve the processing speed that
is necessary for interactive use. The methods are integrated
in our GPU-based framework for interactive visualization of
SAR images [2].

2. FRAMEWORK

Our GPU-based framework for interactive visualization of
SAR images uses a combination of hierarchical data struc-
tures and GPU-based data processing to achieve the process-
ing speed that is necessary to allow interactive exploration
of large SAR images and provide the user with immediate
feedback on changes of visualization parameters [2].

The basic data structure is a tiling pyramid (see Fig. 2). To
build a tiling pyramid, the SAR image is divided into tiles of
fixed size at different resolution levels. Each higher pyramid
level halves the resolution of the image.

To display a region of the SAR image in a view area of a
given resolution, only a subset of the pyramid tiles from a sin-
gle pyramid level is required. The application determines the
required subset of tiles from the current view area resolution
and the current region of interest (ROI), which is the region of
the image that the user currently wants to display, and loads
these tiles into graphics memory.

The data is then processed on the GPU according to the
current visualization parameters, such as the despeckling
method and the method to transfer amplitude values to gray
levels [3].

Additional borders around each tile ensure that local
neighborhoods (with a fixed maximum size) can be accessed
for every relevant pixel of a tile without the need to fetch data
from neighboring tiles.



Fig. 1. A typical point target response (simulated).

3. AUTOMATIC POINT TARGET DETECTION

The same subset of tiles that is used to display the current
ROI is also used to detect point targets, in order to reduce the
computational costs associated with point target detection. As
a consequence, point target detection methods must be able to
handle tiles at different resolution levels.

The required tiles are already in GPU memory, and the
search for point targets is a highly parallelizable task that is
well suited to be executed on the GPU. Point target detec-
tion methods must examine each pixel in an input tile together
with its local neighborhood, and decide whether the pixel is
the center of a point target or not. Using the GPU’s fragment
shader to make this decision, the results can be written to an
output tile of the same dimensions [2]. Each pixel in this
output map then indicates the presence or absence of a point
target center at the respective position. The value zero means
that there is no point target center. A value greater than zero
can additionally store properties of the point target that were
detected during its examination.

Often the sidelobes of a point target extend in azimuth
and slant direction, orthogonal to each other, but this is no
general rule, since the angle between them depends on the
squint angle [4]. To reliably detect point targets, the directions
in which the sidelobes extend have to be estimated.

For this purpose, we use 12 fixed masks of size 7×7, as
shown in Fig. 3. The masks represent the angles 0◦, . . . , 165◦

in steps of 15◦. The masks that generate the two highest val-
ues likely correspond to the sidelobe directions. The masks
are generic enough to work for point targets of different sizes
and in different pyramid resolution levels. However, at high
pyramid levels, when the ROI spans a large area of the origi-
nal SAR image which is then displayed in a very low resolu-
tion, point targets may become undetectable. They will only
appear once the user zooms in to specific regions.

For each pixel in a tile, the following series of tests is per-
formed to determine whether it is the center of a point target:

1. If the amplitude value is lower than 15% of the maxi-
mum amplitude value in the SAR image, then it is con-
sidered too low. A zero is written to the output tile, and
no further tests are performed.

Fig. 2. A tiling pyramid for a 2D data set.

2. If the amplitude value is not the maximum value in its
7×7 neighborhood, then it cannot be the center of a
point target. A zero is written to the output tile, and no
further tests are performed.

3. Mean values are computed using the 12 masks for the
directions 0◦, . . . , 165◦. The two highest mean values
whose directions differ by at least 45◦ are chosen. If
one of these two values is lower than a threshold t mul-
tiplied with the arithmetic mean of all amplitude values
in the 7×7 neighborhood, then the pixel is not consid-
ered to be a point target center, and a zero is written to
the output tile. Otherwise, the two direction estimates
(from {1, . . . , 12}) are encoded in an 8bit value using 4
bits for each direction. This value is then written to the
output tile, which therefore only needs to provide 8bit
of information per pixel.

The result of this decision step is a map of point target lo-
cations for the currently processed tile. This map must then be
transformed into a list of point targets for further processing.

One way to do this is to read the map back to main mem-
ory and scan it using the CPU. However, this approach is
too slow to be used in interactive applications because large
amounts of data have to be transferred and scanned.

In the context of general purpose computations on GPUs
(GPGPU), the task of selecting a subset of elements from a
data stream is called stream filtering [5]. Because the number
and location of elements to be filtered is not known a priori,
stream filtering was a complex problem on previous genera-
tions of GPUs and required multiple render passes [6].

The latest generation of GPUs includes a geometry shader
unit. This unit can be used to perform stream filtering on
the GPU in a straightforward and parallelizable manner [7]:
the geometry shader scans the input data stream and, using
OpenGL’s transform feedback extension, writes one geomet-
ric primitive per filtered element to an output buffer. To par-
allelize the task, the geometry shader can be started multiple
times, each time for a different subregion of the input data.

This technique allows to transform the point target map to
a list of point targets directly on the GPU, without the need
to transfer the map. The resulting reduced data set is then
transferred to main memory for further examination.



4444444

2 2 2 2 2 2 2

2 2 2 2 2 2 2

1

1 1 1 1 1 1 1

1 1 1 111

4

4

4

4

4

4

42

2

2

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

4

4 4 4

4 4

4

2 2

2 2 2

2 2

2

222

22

1 1

1 1 1

1 1

2

1 1

1 1 1

1 1

4

4 4

4

4 4

4

2

22

2

22

2

2 2

2

2

2 2

2

1

11

1

11

1

1 1

1

1 1

Fig. 3. The detection masks for 0◦, 15◦, 30◦, and 45◦. The
masks for the directions 60◦, . . . , 165◦ are analogous.

4. POINT TARGET ANALYSIS

The result of the point target detection step is a list of point
targets in the current ROI. Each point target in this list has
to be examined in more detail in order to compute associated
quality measurements. Since typically not too many point tar-
gets are visible in a scene at one time, this task can be per-
formed on the CPU.

As a first step, the original amplitude data at the point tar-
get location is gathered from the lowest pyramid level, to have
access to the full original information. This data is then up-
scaled for further processing, using a magnification factor of
10 and bicubic interpolation. This resampled neighborhood
is then recentered around its maximum value, which does not
necessarily lie in the middle of the neighborhood due to inter-
polation effects.

The sidelobe directions of the point target were estimated
on the GPU in steps of 15◦. These coarse estimates can now
be used as starting points for a refinement process. Profiles
through the data can be computed using angles from -8◦ to
+8◦ around each coarse estimate, in steps of 1◦. The ampli-
tude values along these profiles are summed up, and the an-
gle that is associated with the highest amplitude sum is taken
as the refined direction. Alternative methods are described
in [4].

Once profiles in the refined sidelobe directions are avail-
able, some points of interest are computed both in left and
right direction for each profile:

• The first point where only half of the amplitude is left
compared to the mainlobe peak. This point can be used
to compute the -3db width of the mainlobe.

• The first local amplitude minimum. This point can

Fig. 4. Screenshot of the application. The detected point tar-
gets are marked with a circle, a cross that indicates the profile
directions (0◦ and 90◦), and a color coded quality measure-
ment. The upper right part of the image shows a closeup of
the area enclosed in the white rectangle.

be used to compute an alternative width value for the
mainlobe.

• The first local amplitude maximum, which is the peak
of the first sidelobe. This value is used to compute the
PSLR.

All of the computed data is stored in a cache so that it does
not have to be recomputed when a point target re-enters the
ROI at a later time.

5. INTERACTIVE VISUAL ANALYSIS

At this point, the application has a list of point targets in the
current ROI, and it has access to detailed information about
each of them.

With this information, it can mark the point targets and
display color coded quality measurements for them. An ex-
ample is shown in Fig. 4. Each point target is marked with a
circle. The cross indicates the sidelobe directions, in this case
0◦ and 90◦. The bar below the circle indicates the mean PSLR
of the point target: a full green bar indicates a high PSLR, and
a nearly empty red bar indicates a low PSLR.

This information provides the user with a quick overview
of point targets in the ROI as well as their main characteris-
tics.



Fig. 5. Example of a more detailed point target analysis, dis-
played on user demand. In this example, the sidelobe direc-
tions are 0◦ and 75◦.

A click in a point target circle opens a window that dis-
plays the cached analysis results in more detail. The example
shown in Fig. 5 displays the results for a point target with the
profile directions 0◦ and 75◦.

If the sidelobe directions of point targets in the SAR im-
age are known in advance, this information can be used to
further speed up the detection and analysis steps: only two
7×7 masks have to be used for detection, and the direction
refinement step can be omitted from the analysis.

The threshold parameter t steers the sensitivity of the de-
tection process. Higher values result in less detected point
targets. In our tests, a value of t = 1.5 delivered good results.

6. CONCLUSION

Interactive visual point target analysis provides the user with
an overview of the point targets in the visualized scene as well
as an immediate impression of the SAR image quality and/or
the quality of the SAR processing technique.

The techniques for automatic detection of point targets
described in this paper are implemented in our GPU-based
framework for interactive visualization of SAR data [2].

Results show that real-time detection and analysis of point
targets is possible when using hierarchical data structures and
the data processing features of the latest generation of GPUs.

Acknowledgement
This project is partially funded by grant KO-2960-3/1 from
the German Research Foundation (DFG).

7. REFERENCES

[1] A. Reigber and O. Hellwich, “RAT (radar tools): A free
SAR image analysis software package,” in Proceedings
of EUSAR, 2004, pp. 997–1000.

[2] M. Lambers, A. Kolb, H. Nies, and M. Kalkuhl, “GPU-
based framework for interactive visualization of SAR
data,” in Proc. Int. Geoscience and Remote Sensing Sym-
posium (IGARSS) 2007, July 2007.

[3] M. Lambers, H. Nies, and A. Kolb, “Interactive Dynamic
Range Reduction for SAR Images,” Geoscience and Re-
mote Sensing Letters, 2008, accepted for publication.

[4] Z. Fan and H. Wen, “Analysis of squint angle in point
target assessment,” in Int. Conf. on Radar 2006. CIE ’06.,
2006, pp. 1–4.

[5] John D. Owens, David Luebke, Naga Govindaraju, Mark
Harris, Jens Krüger, Aaron E. Lefohn, and Timothy J.
Purcell, “A survey of general-purpose computation on
graphics hardware,” Computer Graphics Forum, vol. 26,
no. 1, pp. 80–113, 2007.

[6] D. Horn, GPU Gems 2, chapter Stream Reduction Oper-
ations for GPGPU Applications, pp. 573–589, Addison-
Wesley, 2005.

[7] F. Diard, GPU Gems 3, chapter Using the Geometry
Shader for Compact and Variable-Length GPU Feedback,
pp. 891–907, Addison-Wesley, 2007.


