GPU-Based Responsive Grass

Diploma Thesis in Computer Science

submitted by

Jens Orthmann

born on February 22, 1981 in Hachenburg, Germany

Written at

Computer Graphics and Multimedia Systems Group
Faculty 12
University of Siegen, Germany.

Advisors:
Prof. Dr. A. Kolb (University of Siegen, Computer Graphics Group)

Dr. C. Rezk-Salama (University of Siegen, Computer Graphics Group)
Started on: December 01, 2007
Finished on: April 30, 2008

Eidesstattliche Erklarung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Bengtanderer als der ange-
gebenen Quellen angefertigt habe und dass die Arbeit in gleichetabdécher Form noch keiner
anderen Rifungsbebrde vorgelegen hat und von dieser als Teil einé@fifrgsleistung angenommen
wurde. Alle Ausfihrungen, die wrtlich oder sinnget@R tibernommen wurden, sind als solche ge-
kennzeichnet.

Siegen, den 01. Februar 2008

iii
Ubersicht

GrofRe und naturgetreue Umgebungen stellen oft einen unverzichtBastandteil der heuti-
gen Computerspiele dar. Um die Erwartungen der Spieler an lebendigea8pielizu efillen und
eine tohere Immersion zu bewirken wird daher viel Wert auf die Implementierury Iuterakti-
onsniglichkeiten mit der Spielumgebung gelegtirFeine niglichst realiaitsnahe Simulation der
Grasfche wurden bislang vor allem Adigze beiglich Animation und Rendering entwickelt. In
diesem Zusammenhang stellt meine Diplomarbeit eine effiziente Methode zur Smuwan de-
formierbarem Gras vor, die in Echtzeit auf moderner Graphikhardwargesetzt wird. Die einzel-
nen Grashischel werden bei dieser Implementierungsstrategie in zwei unterbchedkollisions-
abhangig ausgeahlten Typen von Gras- Billboards approximiert. Erstmalig in der neuenhikap
hardware vorhandene Stufen in der Rendering-Pipelinégliaihen dabei eine Kollisionsbehandlung
direkt auf der GPU. Die Reaktion auf Szeneobjekte erfolgt auf BasisDistance Maps. Wird an-
hand der Auswertung dieser Daten eine Kollision des Szeneobjekts mit emshemnmehreren Gras-
Billboards erkannt erfolgt die Verformung der betroffenen Billboailds Fall einer Kollision und
der daraus resultierenden Verformung der Billboards wird eine uimsehteUberdehnungen mit
Hilfe von entfernungsatidngigen Federn zwischen den Vertices unterbundeithréhd des darauf
folgend ablaufenden Regenerationsprozesses, der im RahmenAtiesi¢reigens entwickelt wurde,
wird die urspiingliche Form der Billboards wieder hergestellt. Dieser Regeneratioress stellt eine
gute Performanz sicher. Die zu rendernden Primitive des Billboardsawexdst vidhrend der Rende-
ringphase zusammengesetzt. Ein auf Ambient-Occlusion basierendkarioe-Volumen eriglicht
die dynamische Beleuchtung der Vertices. Das letztendliche Erschebilshdsr Gras-Ebene wird
schliel3lich anhand des Blendings auf Basis von Alpha-to-CoveraggiggnAbgesehen von der Vor-
stellung der theoretischen Konzepte, die diesen Techniken zugrunda,li®gd im Rahmen dieser
Ausarbeitung abschlieBend auch die Performanz der auf der GPU dtitfen Prozesse besprochen.

Abstract

Often large natural environments are essential for todays computer gam@sction with the
environment is widely implemented in order to satisfy the player's expectatioadiving scenery
and to help to increase the immersion of the player. Therefore every isffoade towards the imple-
mentation of options for interaction with the game-environment. However, gr eodachieve a grass
simulation as realistic as possible mainly animation and rendering approachgads have been
researched so far. Within this context my work describes an efficiepttavaimulate a responsive
grass layer with todays graphics cards in real-time. Using the implementatiéegsrantroduced
by this diploma thesis clumps of grass are approximated by two billboard ezpations. Newly
introduced stages of the rendering pipeline, first existing on the nevhigeapardware, allow the
collision handling to take place on the GPU. Distance maps are employed todespscene ob-
jects. If the analysis of the distance maps indicates a collision of the scerw wiije one or more
gras billboards the deformation of the concerned billboard takes plagaskof collisions and the
resulting deformation of the billboards, length constraints preserve tipe sti@leformed billboards.
The recovering process developed throughout this thesis takes fieictha deformation caused by
colliding with the scene object and restores the original that is to say théanrmbl shape for each
of the billboards. Additionally, this regeneration process garantees titeaye@rall performance. The
primitives of the billboards are assembled during the rendering procésst Viertices are dynami-
cally lit within an ambient occlusion based irradiance volume. Alpha-to-Gmeeis used to create the
final appearance of the grass layer. Besides the presentation of tinetite concept that provides
the basis of the above-mentioned techniques, the performance cogadmiGPU based handling is
discussed within the latter part of the examination thesis.

Acknowledgements

First of all, | would like to thank my supervisors Prof. Dr. Andreas Kolld &r. Christof Rezk-
Salama of the Computer Graphics Group of the University of Siegen, Ggyfioatheir support and
their supervision of my work. It is a privilege to be educated by suchrépeed experts in computer
graphics. Furthermore, | would like to thank Dr. Christof Rezk-Salamahait Keller for their
always valuable advise.

| would also like to thank Mechtild Brenner and Marcel Piotraschke whereff their spare time
to proof-read this paper.

Finally and above all | would like to express my deep gratitude to my parentssAgmnd Anton
Orthmann and my girlfriend Danica Brenner for their love and extraorgiearotional support. They
helped me throughout all of the difficult time.

Jens Orthmann

Vi

Preface

This diploma thesis describes the results achieved during my diploma thesist prbjeh was
enabled by my supervisors Dr. Christof Rezk-Salama and Prof Dr.e&sdfolb, Computer Graphics
Group of the University of Siegen. The subject of my work was choseefpersonal interest and is
not affiliated to any university project.

Within the project work | extended a standard approach concerningrthdagion of grass uti-
lizing research on the area of cloth simulation and hardware based colligiatiitg to simulate
responsive grass. The workload of the collision handling is shifted to #id {® order to achieve
real-time frame rates. | implemented the system onto the basis of a modern grapgiice working
on DirectX 10.

The work consists of 8 chapters. The first chapter starts with an exjgarat the motivation
and gives a short overview of the system. Chapter 2 deals with the psewiank in the field of grass
simulation, collision detection and cloth simulation. The potentialities of todays GRUwasented
in brief in Chapter 3. The basic components of the grass layer are dsganilChapter 4, including
the animation of the grass billboards. Being the main component of this diplonia @lespter 5
tells how to achieve the responsiveness to dynamic objects which are moronghithe grass layer.
Chapter 6 presents the rendering process which utilizes a global illuminatidel marder to achieve
a realistic shading of the grass primitives. The description of the resfgogisiss layer is concluded in
Chapter 7 by a presentation of the visual results. In addition the perfas@amcerning the collision
system and the rendering system is analyzed. The last chapter sumntiagizigsloma thesis main
matters and closes with a preview of future work. Finally, the appendixittesdGPU-based distance
maps as they are utilized throughout the system.

1D

2D

3D

GPU
CPU
API
AABB
MSAA
T

&

[]

X

Id]

a
maxa, b)
min(a, b)
floor(a)
ceil(a)
norm(z)
dist(x)
vol(x)
envt, dt,, dt,)

Abbreviations and Symbols

One Dimensional

Two Dimensional

Three Dimensional

Graphics Processing Unit

Central Processing Unit
Application Programming Interface
Axis Aligned Bounding Box
Multisample Anti-Aliasing

matrix filled in column-major order
component based vector multiplication
scalar product between two vectors
cross product between two vectors
length of a vector

amount of scalar value

maximum of aand b

minimum of aand b

next smaller integer of a

next higher integer of a

the normal at coordinate € [0, 1]?
the distance at coordinatec [0, 1]

look up into a 3D volume at coordinatec [0, 1]3
derivative based sampling function at coordin@ate [0, 1]

Vii

Contents

Primitive Based Programmingo 16
eaming Architecture 16
nified Shader Model e 17

CONTENTS 2

CONTENTS 3

List of Figures

LIST OF FIGURES 5

List of Code Samples

Chapter 1

Introduction

State-of-the-art 3D games demonstrate the power of currently availagkigs hardware for render-
ing exciting natural sceneries in real-time. In recent years this task haedtout to be difficult due
to the huge number of plants. Therefore, most research applied to Irstareries focused on the
rendering and animation of a great number of plants (blades of gragbssirees etc.) in real-time.
Static level design used in many previous implementations is more and more tepladgnamic
environments that can be modified in real-time throughout the gaming prdoassto the fact that
natural behavior is better approximated in the game, the player feels a highersiomehile play-
ing [McMO3]. The more of the player’s expectations are satisfied the merestlism of the scene
is effected. Furthermore, the dynamic environment is becoming more andanpae of the game
logic: Trees are chopped to obstruct the path, soldiers are creepihdisgriised in the bushes and
objects like boxes need to be moved in order to follow up the path. Following #hid tthis work
takes dynamic environments one step further by integrating responaiviéme simulation of grass.
Besides the more natural look-and-feel, responsive grass will signi§cimprove the challenges in
game play and tactics of modern games.

An efficient technique for rendering and animation of responsivesgsagdeveloped, which inte-
grates well into existing game engines. The implementation targets Shader Mgdgihics boards,
including geometry shaders and stream output. Collision detection with dynaarie ®bjects, re-
sponse and recovering are handled directly by the GPU. The systenmisestie following compo-
nents:

e Procedural Generation of Billboard Sets:
For a given terrain mesh, billboards for grass blades are generdtedaically by a geometry
shader using a set of texture images which define the extent, directioovathgaind the amount
of randomness for the plant cover. This geometry shader is executedareach tile of terrain,
and the results are stored in local video memory using the stream-out capabilitie

e Dynamic Objects:
Dynamic objects capable of colliding with the plant cover are representdefiith cube maps

CHAPTER 1. INTRODUCTION 8

for efficiency. These cube maps are computed by projecting the objedtsaonéo the faces of a
bounding cube. They are updated for each frame to account for adlimigjects. Additionally,
for coarse collision tests, the objects are represented as a union odl aixeer of bounding
spheres.

e CPU Predecision:
At run-time a coarse pre-test for collision is performed by the CPU. Theadmlistribution of
the complete plant cover is represented as an octree of axis-alignedibgoxes. The CPU
checks whether or not the collider objects intersect with an octree naderding to the results
of this test, detailed collision detection, reaction and recovering is perfoométe GPU.

e Collision Pass:
If a collision is possible, a geometry shader first performs a boundingreghst, and even-
tually a detailed collision test against the cube-map representation of elidmgmbject. If
a collision is detected, cloth simulation techniques based on spring models dyethfor
collision reaction.

e Recover Pass:
After a collision has occurred the plant cover will smoothly recover. @toee, a tile of bill-
boards will stay active for a fixed amount of time after collision. A separatargetry shader
moves the grass blades back to their original position. After the recover eselapsed, the
billboards will be again handled as simple quads.

¢ Runtime Tessellation:
Depending on the outcome of the collision test, a billboard is represented inypke uad
or tessellated into a small mesh to account for possible deformations (collisiresavering
phase).

e Rendering: To integrate ground vegetation into a dynamic global lighting environment, a pre-
computed irradiance volume is employed. These technique is adapted Ifsticeandering
of dynamic ground vegetation. To avoid expensive depth-sorting ofaimé-gsansparent bill-
boards, Alpha-to-Coverage allows order-independent rendenirtiigeoGPU while maintaining
a consistent visual appearance.

Chapter 2

Related Work

Previous research in simulating interactive grass or plants tends to fitteersan realistic rendering or
on real-time animation as cited in Sect[on]2.1. The lack of grass-interaction maleegssary to go

through a more general range. Therefore studies of hardward balision detection are employed
as revealed in Sectign 2.2. Furthermore, the cloth models that have infiirecgesign of the grass
structure are outlined in Sectibn P.3.

2.1 Grass Simulation

In general, previous work on grass simulation deals with representaéahtime animation, and
illumination aspects. All three subjects which made up the research on geadssaribed throughout
this section.

2.1.1 Representation

As nature scenes often include a lot of plants (blades of grass, shrebs etc.) the rendering of
a high number of them is still challenging. Furthermore, they cannot be gepblaith complex
geometry in real time. Therefore two main strategies have been applied tals®lpmblem:

Since vegetation is visible from near to very far distances, many of th@agpes make use of
level of detail (LOD) techniques to preserve the real-time constraint. hitpkare close to the camera,
lit and shadowed geometry [GPR3,[BPB06], a 3D volume representation [PC01], or a cluster of
billboards [BCF 05,[FS04] are used to display them. If the distance increases, theybatiiged by
vertical and horizontal slices of 2D textures. Bakay et al. [BH02] marihg complexity without any
LOD approach. They render displaced maps with semi-transparent shglserate the illusion of
grass. Even so itis not easy to apply collision detection or reaction in reabtirgeass blades that are
approximated by these volume rendering approaches. Guerraz etwakvdr, presented an approach
to tread on the grass layer. A primitive is moved along the character’s trgjegtule affecting the
procedural animation process of the grass [GBB. Nevertheless there still is no possibility to react

CHAPTER 2. RELATED WORK 10

to collision, based upon the object’'s geometry. Additionally, depending oartree where grass is
planted, a great amount of memory is consumed by such volume rendegrmpapes. Hence an
aperiodic tiling scheme is used to solve the problem [BA%;[FS04, BPB(O6]. In such a scheme, the
vegetation is arranged by randomly repeated tiles which store the requ®dlata for a chunk of
plants. Thus, the reuse of data amplifies the problem of collision respoadedal tile.

Another approach to render complex geometry, especially grass withitiepdetail, is image
based rendering. Therefore, view-aligned quads with a semi-trargp2d texture, so called bill-
boards, represent an amount of complex geomeétry [MH99]. Thus.etidering based on images
is much more efficient than using classical geometry and accordingly, i®aoresponse is even
easier to implement. Former suggestions use randomly distributed [ICO2kaddfigned billboards
[PCO1] in order to approximate grass blades, but this leads to a lack alfgpaeffect. They are
arranged view aligned [WhaD05] and crossed [Pel04] in order to ersietter volumetric illusion,
depending on the line of sight. All vertices are stored in one large buff¢rcn be rendered in one
single draw call[[WhaQ5].

2.1.2 Animation

So far, there exist various techniques to animate grass billboards dffgctéind on the GPU. Almost
all of them project the grass vertices onto a two dimensional grid. Aftelsyégonometric functions
produce one or more positions depending on periodic values for eatpant. Ramraj[[Ram(5]

even extends the model by a wave propagation model, common for watecesirin addition to the
result determined by the function, each grid point is affected by its neighbdthe result is used
to either rotate or bend the stalk of grass. [In [Pel04] the time and position gptite’s vertex are

taken into account as a parameter to the trigonometric function. Afterwaedsitlstion’s output is

used to translate the vertex along the wind direction. Additionally a blend wisigissigned to each
vertex premultiplied with the resulting bend value before the displacement er twdsimulate the

grass being more or less rigid [Wha(05, Bat06]. A further elaboration @faibproach is delivered
by Tiago Sousd [Sou07]: A texture stores a bending sensitivity for eatbx. To receive the final
displacement of a vertex, the shader sums up triangle waves to generdtsplaeement direction
which finally is multiplied by the per vertex stiffness as well.

2.1.3 Rendering

The rendering of vegetation is a complex task. The research affectspaitts of physically correct
illumination models namely the global illumination, the local reflection properties tleadorrect
simulation of the semi-transparent nature of grass as a part of the material.

CHAPTER 2. RELATED WORK 11

2.1.3.1 Global lllumination

Dynamic and global illuminations of natural sceneries are rather difficulouttven considering the
great number of plants. The equation for global illumination [Kai86, GTCRa#not be evaluated
for complex scenes in real-time. Nonetheless, many approximation technigiceggod results.

In [BCET05] the vegetation is lit by precomputing the radiance transfer for each: pks
spherical harmonics define an ortho-normal basis over the spheneritéering equation, which is
parametrized over the hemisphere, can be projected onto the so calledadiermonics near the
object’s surface. As a result, a transfer vector filled with lighting coefiisiés determined. Such a
vector on the surface defines how the surface reacts to incident ligifattgtoint and consequently can
be used for fast illumination during run-time: The lighting environment is ptegeonto the spherical
harmonics basis as well. In the diffuse case, a dot product of the twiticieet vectors results in a
realistic illumination based upon the current lighting situation [SKS02]. Bettren al. [BCF 05]
note that natural environments are illuminated by a low-frequency lightingis Bhly two or three
bands are needed to pre-process their plants, which results in leBsieoef per vertex.

Moreover, an approach called ambient occlusion is used to precompltision information for
a static natural scene [BPB06]. ambient occlusion was first introducetappden Landis [Lan02]. In
a preprocessing step, an accessibility value as well as an averagatrigjiedirection is computed
for each point of the model. The accessibility value describes the fradtibe bemisphere above the
point which is unoccluded by other parts of the model. At runtime an envirahmap is sampled
along the reflected average incident light direction and the resulting imeeligalue then is attenu-
ated by the accessibility value. Ambient occlusion therefore is an extreme soafdifi of spherical
harmonics lighting, but is much easier to implemént [PG04]. However, only olgjiects are covered.
This may lead to artifacts in case grass billboards are deformed. BunoelDtB treats the polygon
mesh as a set of surface elements in order to apply dynamic ambient occlusieach frame the
rendering equation is performed over these elements, without testingdioided directions. Instead
of this, a shadow approximation function is used to solve the elements adlitgsgitrertain number
of iteration passes over all surface elements are necessary in ordabitizs the results. An addi-
tional rendering of indirect lighting in real-time is possible, but the appraatho time-consuming
to apply it to all grass billboards. Instead of just computing an ambient doolusap, Cadet and
Lécussan [CLO7] precompute a static ambient occlusion Volume for the wtehe s The visibility
information for dynamic objects in the scene is then interpolated across thme/slsample points
near the object. A similar volume based approach for approximating the inlia made by Oat
[Cat06)].

2.1.3.2 Reflectance Model

In order to simulate reflection properties of grass applying the BRDF (Riilireal Reflectance Dis-
tribution Function) model [MH99] is unsuitable. Boulanger et. al. [BPBO@&duan approximation
to BRDFs, so called BTFs (Bidirectional Texture Function), for their vollrased approach to sim-

CHAPTER 2. RELATED WORK 12

ulate the varying conditions between view direction and incident directiotheR#han using one
semi-transparent image of the grass the texture includes more images ahgaitesl/with another
constellation of view to the incident light direction. Green [Gle04] usedognaach to overcome the
subsurface scattering problem of a light map shaded skin. Insteadnof aisly one light map, an
additional diffused version is added. Applying both the scattered and thentigp itself, an illusion
of scattering is produced. Kharlamov et. al. [KC507] used a simple twal$gling model to illu-
minate leaves that are lit from behind. When the view direction and the lighttidineare opposing
a linear interpolation between the transmitted color and the material color m®tue final shaded
color with respect to the angle between both directions. This model comesawitktira textures and
it works for grass as well as for leaves.

2.1.3.3 Blending

Without visual blending between more or less transparent grass billbtadatural appearance es-
pecially of the grass edges is unpleasant. Alpha blending is a common algtoithlend between
semi-transparent objects, but due to the required depth sorting it isofariffeal. Instead, a more
elaborated algorithm, the so-called screen-door-transparency aasetdo avoid sorting [Wha05].
The alpha channel of a semi-transparent grass texture is modulated wotbeatexture. Then the
alpha test eliminates pixels from rendering and the human eye fills in the gapsapediscrete sam-
ples. The Alpha-to-Coverage feature of modern graphics cardsecasdu to implement a similar
effect. The resulting alpha value is used in a multisample resolution of therreardet to decide
how many subpixels will be written. Afterwards the blending occurs betwleeaubpixels during the
downsampling to the final resolution [My€06].

2.2 Collision Detection

As the collision detection based on grass is less explored, collision detelgmitrans on a wider
range are examined in order to simulate interactive reaction based on abjggtsy through the
scene. On a global scope many more or less specialized techniques comith Wipe problems
of interference and collision detection. Several surveys to collision tieteexist [LG98, Eri04,
TKZ™04]. The collision detection usually consists of two phases due to the comaleserof the
colliding set: The so-calledbtoad phasketo exclude non colliding objects on a coarser but also
much faster scale and a so-callethrrow phaséwhere pairs of objects are checked for collision.
Most of the latter techniques are using bounding volume hierarchies. ddwumolumes have been
proven to be very efficient in the case of rigid objects. Several of theare been explored, the most
appropriate ones are spheries [Hub96], axis aligned bounding pa&&8) [Ber97,[LAMO1], object
oriented bounding boxes [GLM96] and discrete orientation polytopesMKB8,[Zac98]. In case of
deformable objects they have to be updated every frame. However,sheegreat number of grass
billboards which are stored and processed completely on the graphics ynamibthese cannot be

CHAPTER 2. RELATED WORK 13

transferred to the main memory each frame to be tested against such voluondbatFcase GPU
accelerated techniques do solve the collision tests faster with bounding ®ldrhese are mainly
based either on render targets or occlusion culling. Consequently, tioeiragy is limited to the
image resolution.

Sathe[[Sat06] uses cube maps to approximate the shape of an objectepr@pssing step the
cube map is filled with distance values. These are distances from the cetitemoesh to the outer
shape in each direction. The vertices of one object are tested agaiosbtmap distances of another
object and vice versa during run time. On the one hand, all the tests d&oenpee on the GPU; on
the other hand texture memory is heavily used. Both, the vertex buffertharaibe maps, must be
available on graphics memory to be loaded in the shader process. Additideiie’s approach is
only useful for rigid objects.

In [KPO3] the stencil buffer is used to test intersections. In the style ofllaglow volume ap-
proach, at first, the penetrated object is rendered by writing the deffdr.blihen the penetrating
object is rendered twice, the first time with active front faces and incrémgthe stencil buffer and
the second time the back faces are rendered while decrementing the stéfiecil Bubsequently, the
rendered stencil values are tested: if the stencil value is not zero, aferatee has occurred. The
main drawback of this method is that each stencil buffer value needs toelsgethand therefore a
GPU memory read-back is necessary every frame.

A further approach is given by Heidelberger et. @l. [HTGO03, HTGU4Eky perform the collision
testin three stages. In the first stage the axis aligned bounding boxesotetsection of two or more
objects are computed. Furthermore, if an AABB exists the Layered Depthelsn@DI) for such a
box are evaluated. This is done in an iterative process which is determyribé depth complexity
of the object. Hence, a LDl is an array of depth-textures that repief®nvolume approximately. A
LDI consists of a number of sorted depth values where each one bdtmagsagment of the object
projected onto the texel. In a last step, the LDIs then can be used to detérmivertex penetrates
an object or if two objects collide. However, they require some buffed-teecks: The first copy is
made to obtain the depth complexity and after generating the LDI there is abofferrread-back to
sort the depth values.

Govindaraju et. al. evaluate a top down approach. Initially, they compute atgdiecolliding
set of objects with the aid of the graphics hardware. At the beginningjakttsbelong to the colliding
set and then they are sequentially pruned away. The exclusion of gee zbbased upon hardware
accelerated occlusion queries against the rest of the current colliglingf an object is fully visible
to one of the view directions along the world-space axes, it is not collidinigsanwill be pruned
away. Finally, an exact triangle to triangle intersection test is performedec@mJ for the remaining
objects to check whether collision occurs to them or hot [GRLMO03, GLM®%pwever, the final
collision test in this approach is realized on the CPU which leads to perfomtasges.

Kolb et. al. [KLRS04] and Vassilev et. al. [VSCO01] also offered an apph to collision detection
using depth maps which are fully generated and accessed on the GPilurmber of depth maps are

CHAPTER 2. RELATED WORK 14

representing the outer shape of an object. At least each depth mapdistaese values and normals.
The collision test then is realized in the shader: At first the vertex positioraisfiormed to the
projection space of the depth map. After that a lookup into all depth mapssocAifterwards the
depth of the transformed vertex is tested against the depth map distancésrioigke their position,
inside or outside of the object. Similar to Govindaraju et. al., the vertex is assuntedoutside if
at least one test is positive. The distance map approach seems to fibiotbst ¥ery reason that all
computations, including the reaction, are done on the GPU.

2.3 Cloth Simulation

Techniques are necessary for simulating deformable objects in ordeetooove the problems of
elongation on the trot of external forces which are applied to the grasednitle. Especially the cloth
models are of interest. Therefore, Hauth et.|al. [HBE] give a good overview of the physical model
that underlies most cloth-based simulations. In addition, they weigh up tkeaprbcons of several
methods of numerical integration. They also offer a method to render clothcositiplex materials.
The cloth model mostly consists of a spatial coined network of point masseh fair of adjacent
masses is linked by different stiff springs. These springs are elongatditiched with regard to the
existence of external forces like collision or wind. In dependence orstifiness of the springs a
more or less strong reaction force tries to bring them back to an equilibriunextdinal and internal
forces are integrated over the time. In case of large time steps the stabilitysyfstieen is determined
by the integration method applied.

Baraff and Witkin published a cloth simulation model based upon an implicit nuai@niethod to
overcome the stability problems. A scalar energy function is used to accurthadteces. Then the
implicit Euler integration generates a linear system which is solved using the etbddnjugate gra-
dients method [BW98]. Even if GPU accelerated methods exist to solve thaatians [BEGSQO3],
the additional computational burden is unnecessary since other methmodtefactive real-time ap-
plications are more practical.

Xavier Provot explicitly integrates the external and internal forces e with the aid of the
forward Euler method. He noticed a less realistic result in small regions aldkie due to less stiff
springs. A post processing step is made to correct their lehgth [Pro@siiér to avoid an increase
of the stiffness of springs which would result in more costly iterations. Fuhinned. al. replace the
cloth forces by several length constraints along the connection of twiclparin order to overcome
the problem of large time steps. Hence, only the post correction stepsjun&o by Provot, are
needed. Then a few iterations over all constraints are performed, alsafagion of one of the springs
affects neighboring springs as well [FGIL03]. Zellner simulates a similarogmh to Fuhrmann et.
al.. He uses the stream output stage to recurse over the springs. Aft thesonstrained based cloth
simulation is entirely offloaded to the GPU [Zel07].

Chapter 3

Modern Graphics Hardware

Graphic Processing Units (GPUSs) are highly efficient parallel dataegsmrs. They have major ad-
vantages compared to current Central Processing Units (CPUs) vétenassive data can be par-
allelized and flow control mechanisms are less frequently used. In addafiien,many transitions
over the recent years, the Single Instruction Multiple Data processdh® @fraphics cards are now
offering many programming capabilities of current CPUs and the rendpijiedine architecture has
been evolved as well.

The techniques which are applied for the solving of responsive gegsthe potentialities of the
fourth generation of graphics cards. A short summary of the innovatwithsespect to the previous
generations is presented in this chapter.

3.1 Graphics Pipeline

The upper part of Figure_3.1 shows the rendering pipeline which is gethim several subsequent
stages, with specific input and output restrictions. Following the prior pipdtime yellow parts in
Figure[3.1) the input assembler gathers vertex data form several stagantisen the programmable
vertex shaders projects them to the so-called clip space. The rasteildsnip fragments with regard
to the declared primitive type and the projected vertices. Afterwards thaegménts are processed
in the programmable fragment shaders. Finally the output merger writesstliéng pixel values to
their frame buffer location, after passing several so-called fragnparatons.

Although the previous version of the rendering pipeline can still be usedeahy introduced
programmable geometry shader stage (see Sdction 3.1.1) and the streainstagip (see Figure 3.1)
both offer possibilities that are rather important especially for the implementafitime collision
system and the rendering system of the grass layer.

! For a more detailed description of the previous graphics pipeline, hawkatdMHI9[WNDS99[Gral3]

15

CHAPTER 3. MODERN GRAPHICS HARDWARE 16

S g Rasterizer E>
Input E:) Vertex Geometry Fragment E:) Output
—]

Assembler Shader Shader Shader Merger
g Stream Out
L4 Ly
—"' K ~~s Tl
-
R A «~ ma
. . ~ ~
” (N ~ Sy,
s’ S, S Seas
R . - .~.._

Buffer

0000 |

4 Vertices LineAdj List 3 Triangle Strips 12 Triangles 36 Vertices

Figure 3.1: The rendering pipeline. The yellow path shows the prior remgipipeline and the green
parts are the newly added extensions. The geometry shader has tidliposs generate the final
topology. In addition, the number of vertices might be amplified. The primitiveslmectly written
to the graphics memory whenever the stream output stage is used.

3.1.1 Primitive Based Programming

The programmable geometry shader stage (see Higure 3.1) offersagnarmpming possibilities based
on primitives. The whole primitive is passed to the shader as an input [[Pés€ the line adjacent
primitive (LineAdj) in Figure 3.1l). Moreover, the input assembler is exjgaruly new primitive types
in order to hand over adjacent information to the geometry shader forpeewhive [Bly06,[BLOE].
The geometry shader has the ability to operate on its vertices and finally angplihgmumber of
primitives by emitting more than one of them at each invocation [BL06]. Thiblesa handling of
six vertices (in the case of a triangle adjacency list) in one shader invocaiighin certain limits,
the geometry shader offers the possibility to create a multiple of the vertice8GBIin addition, it
is possible to write out a primitive type differing from the one passed on the mtpthe same time.
This enables a creation of the final topology at this stage of the pipeline tmoteiangle strips in
Figure[3.1). This opens the possibility to refine mesh topologies during tlieniag pipeline, for
instance.

Furthermore the geometry shader is able to distribute the primitives to eiglgrremdets simul-
taneously when using the rasterizer back-end. This allows the projedteach primitive to eight
projection spaces in one single render call.

3.1.2 Streaming Architecture

Since the prior data flow does start with 1D vertex buffers and ends wgriting to 2D textures,
a conversion is necessary due to the fact that the output and inputtfoamadifferent from each

CHAPTER 3. MODERN GRAPHICS HARDWARE 17

other. Consequently the update of vertices or 1D data on the graphics mettosyt the expensive
read-back to the CPU has often been achieved by several rend2iléextures([Sch06] because
the internal processing was strictly bound to fragments. Furthermoreaatyall number of frame
buffers can be used as render targets at once which limits the size ai@aich to one render call.

The stream output stage can be used in order to overcome these limitatiamefdimensional
data as for example vertex buffers: The vertices are written to a 1D vauféer which resides on the
graphics memory. This can be done directly after they are processethby the vertex shader or
the geometry shader without even using the rasterizer back-end [NXB@&her clipping, projec-
tion, primitive setup and rasterization nor the pixel operations take plags.shbrtens the updating
process and allows an efficient update of the vertex data which requitgsa minimum of CPU
handling. The stream output stage supports much richer output formatthéhautput merger and
additionally, the stream output buffer is much more flexible and larger tlraneibuffers. However,
the streamed data is restricted to a size of sixteen tuples of one or four datafatemeample float4
which meand6 x 4 x 4 bytes [Bly06]. Furthermore, the so-called transform feedback [V} Gfifie
records the streamed data which can be queried by the CPU or can bdinesgly to process the
streamed data in the next GPU pass without any extra CPU intervention veiQwéuffer cannot be
bound to both the input assembler and the stream output stage at the same time.

The output merger, a common technique for the blending of semi-transpéjents based on the
fragment operations. Therefore an algorithm on the CPU has to sodmailteansparent objects in
the scene before rendering them. In contrast to this alpha-to-coveshgs the problem without ex-
pensive depth sorting [NX006]. Furthermore depth sorting algorithméeavoided if no absolutely
correct blending between semi-transparent objects is necessarglphaevalue is used to determine
the number of subpixels that will be filled with the current pixel color. Thathleg between the sub-
pixels is performed while resolving the multisample resolution to the final imag&uteso|Mye06].
Even if alpha-to-coverage is a feature provided by the API it uses the amjiéng capabilities of
todays graphics hardware.

3.2 Unified Shader Model

Prior programmable pipeline stages were built with a fixed number of streaoegsors which are
designed to operate either on vertices or pixels. Thus, there was a f@thaof vertex pipelines
and a relatively large but although fixed number of pixel pipelines due ttatliehat pixels are more
frequent than vertices. If the stages are fixed they can only attain aspatfohmance as shader units
are available for the pipeline stage [NV0O06] as illustrated in Fifure 3.2(a).

The GPUs dispatch logic of the least graphic card generation can asstgr,\geometry or pixel
tasks dynamically to the available general purpose streaming proceBsm@7]. That is possible
because all streaming processors have the same instruction set [(NpO@)6]. As a consequence,
the implemented unified shader model is useful in cases where a heavyloadrks assigned to

CHAPTER 3. MODERN GRAPHICS HARDWARE 18

Vertex Shader
Unified Shader

)
Fragment Shader Av1 Vertex Workload I—

idle hard) 2 ! i £
L — | Heavy Geometry Heavy Geometry
Workload Perf=4 Workload Perf=11

Vertex Shader

Fragment Shader Pixel Workload ‘\“
HHEHEEEEN . [

Heavy Pixel Heavy Pixel
Workload Perf=8 Workload Perf=11

(@) (b)

-

Figure 3.2: The advantage of a unified shader model. As can be seeniig[Big(d), heavy workload
on one streaming processor can not be offloaded to the other typecebgms. Instead when a unified
instruction set is offered the workload can be distributed over all avaitatdaming processors as is

illustrated in Figuré¢ 3.2(b).

one certain programmable stage. The other programmable stages aresssieedeently (see Fig-
ure[3.2(0)), for example while streaming a large number of vertices by tisingtream output stage
as the back-end. In this case the fragment shader is not needed attaegBently, the distribution
of the computation is dynamit [NV006] and thus, the balancing of the shialine is displaced to

the dispatch unit.

In addition, the shader model supports texture arrays which yield moibifitgxto the addressing
of the texture memory: Textures stored in a linear arranged array aesigally indexable in the
shader{[Bro0B]. Rather important is the ability to bind each texture of a tegtuay as a render target
in the output merger. However, tri-linear interpolation is not supportethfem and in addition there
is the restriction that at up tb024 textures can be stored which have to be of the same resolution
[NXX006].

Chapter 4

The Animated Grass Layer

This chapter focuses on structural aspects of how the waving grasartitrary terrains is realized on
the GPU. Therefore, four mayor topics have to be discussed: At fig&étiori 4.1, the grass billboards
which are the base element of the responsive grass layer are intdododée next step, the spatial
structure which divides the grass layer into more manageable tiles of ghdsais is presented
in Section 4.2. As it is not handy to model each clump of grass separatedy)eaation process is
applied which procedurally generates grass billboards in respect tathm®shape and some user-
definable parameters. All this will be described in detail in Se¢tionh 4.3. Firgdigtior 4.4 describes
the animation process which treats a basic property of grass or meadmaalyrihe response to wind.

4.1 Grass Billboards

Since a large area of the terrain is covered by grass objects and sigcapitear quite frequently,
it is not convenient to model each blade of grass separately. Henogy<lof grass are represented
by semi-transparent decal textures which are projected onto quadiiilabgects similar to [Pel04],
which results in the final look of the grass objects. Streaming respectietiering each grass bill-
board in a separate render call overwhelms the CPU. That is why thelghagsards are stored across
two large point lists as the GPU works best on data that can be procegsmahiie!.

4.1.1 Grass Objects

Figure[4.1(d) illustrates that a grass object can have two mesh reptesenta order to account
for deformations which are caused by colliding scene objects. If namefiion has occurred, only
a single quad forms the grass object as it can be seen on the left sideucé[Bid(d). This quad
consists of four edge vertices o, vs3 o, vo2, andvs o [Pel04]. Whenever a collision occurs, the
deformed representation is necessary (for more information see Sektidmérefore, the mesh is
subdivided into & x 4 grid of verticesv; ; € R? with j € {0,1,2} andi € {0, ..., 3}, as shown on
the right side of Figurg 4.1(a). In addition to the edge vertices the mesh @xloder vertices. Itis

19

CHAPTER 4. THE ANIMATED GRASS LAYER 20

M
V3,0 V32 -ml
N7 111
@m i\\ 11/‘" I
Nl i
PontiistA | | | | | PRI [[1 [[1] N [
Pointiist® [[[111 [[IR | B
H)
V0,0 V0,2 D current billboard data
undeformed deformed D obsolete billboard data

(@) (b)

Figure 4.1: The grass billboards. Figlire 4.]L(a) shows both représestaf a grass billboard. In
Figure[4.1(0) their memory layout is shown. All billboards of the grass layerstored across two
buffers on the graphics memory. A billboard only exists in one point list at a time

important that all the vertices; ; are defined in world coordinate system. Furthermore, the vertices
V0,0, Vo,1 @andvg o are fixed to the terrain. Consequently, only the vertices with{1, 2, 3} are able
to respond to any type of force.

4.1.2 The Memory Layout

In general a vertex shader works on a single vertex at a time, and thugpts ds also just a single
vertex. The goal is to retrieve a mesh which consists of the billboard’sx\veotgtions. The geometry
shader is used to create the final mesh of the grass object during tlegingndlhis means that the
complete grass layer is accessed by the graphics pipeline as a large firEdish point-element
contains the whole information of one single billboard which is defined by thiices as well as
some state information described throughout the following sections. Ttos&wf such an element
is shown in code samplé 1.

As it is not allowed to bind a buffer to both the stream output stage and to thie asgembler
during the same render call (see Section 3.1.2) a second buffer ofrtleesize is necessary. Both
buffers are created on the graphics memory. If the collision system t@agsdate the billboard data,
one buffer is bound to the input assembler and the other is bound to thesitgput stage. As a
consequence of the streaming process one billboard exists only in ong wiatbuffers at each point
in time. The other buffer contains obsolete data at the location of the billbseedRiguré 4.1(b)).

Moreover, the grass billboards are grouped into clusters which aral gattess tiles due to the
spatial octree layout described in short.

10ther primitives than points are able to manage the data for each billboesellas

CHAPTER 4. THE ANIMATED GRASS LAYER 21

/1 Billboard Data Definitions

struct BI LLBOARD.DATA

{
float3 Vtx00 . VERTEXO;
float3 Vtx01 . VERTEXZ;
float3 Vtx02 . VERTEX2;
float3 Vtx10 . VERTEX3;
float3 Vtx11l . VERTEX4;
float3 Vtx12 . VERTEX5;
float3 Vtx20 . VERTEXG6;
float3 Vtx21 . VERTEX7;
float3 Vtx22 . VERTEXS;
float3 Vtx30 . VERTEX9;
float3 Vtx31 . VERTEX10;
float3 Vtx32 . VERTEX11;
float3 GrowDir ;. GROND R;
float3 SpringlLens : SPRI NGLENGTH;
float RecTine . RECTI ME;
float |nageld ;| MAGEI D

+

Code Sample 1: The data layout. Vertex informatiqry, grow directiond,,.w, the initial spring
lengthss, recover time,.. of the billboard and an index;,.s. addressing the decal texture are stored
in a single element. Two point lists which are filled with these elements are storé @maphics
memory. By using this structure the maximum spread (sixteen tuples of floatislataupied for an
element which is bound to the stream output stage.

4.1.3 Grass Textures

Color Layer ﬁ ﬁ ﬁ
Color Mask

Quadrilateral Mesh Final Grass Shape

(b)

Figure 4.2: The grass textures. Each grass object has an index intxtine tarray as displayed
in Figure[4.2(d). The semi-transparent decal images are randomly distribuer the grass layer.
Figure[4.2(0) shows how the final shape of the clump of grass is obtained.

A semi-transparent decal texture is planar projected onto the billboardtritpteral mesh, in
order to vield the final apperance of a clump of grass. The 2D texturaiosna number of grass

CHAPTER 4. THE ANIMATED GRASS LAYER 22

blades. Therefore, the color layer provides the material propertieseajréiss whereas the alpha
layer is used as a mask during the blending process (see Section 6rpadnent parts of the texture
are used to cut off irrelevant areas of the color layer, as displayedyimdf4.2(b). Several grass
textures are randomly repeated over all grass billboards of the plaett icoerder to achieve a sort of
randomness. Thus, a texture array is applied (review Sdctibn 3.2) witicles an RGBA texture at
each level. Additionally, each of the grass objects stores an iiatlgx.. into this texture array which
is used to address the final decal texture at run time (see 4.2(a))

4.2 Grass Tiles

Due to the fact that some billboards are not affected by collisions or thantight be invisible, the
rendering of a entire array of the billboards turns out to be not efficiérgrefore, the grass billboards
are organized in tiles which are constituted by a spatial octree structugebotimding box of a tile is
tested before the collision handling and rendering passes. This imprevesrtormance enormously.
However, the batch size of grass tiles has to be taken into account.

4.2.1 The Octree Structure

@ﬂ@]
sl o

Buffer A L I I ‘_[I | I D current billboard data
Buffer B |— | | | I I | I D obsolete billboard data

Figure 4.3: The octree structure. The grass billboards are assigneddotibe’s leaf nodes.

It is important to process as many grass billboards as possible duringpassion the GPU for
maximum efficiency. Thus, the grass layer is divided into disjunctive tilesasgbillboards by using
an axis aligned grid which encloses the grass layer. In detail, the grid iseddfly a hierarchical
axis aligned octree structurie [MH99]. Eaakis aligned bounding bo§AABB) of an octree level is
subdivided recursively int@ x 2 x 2 subsequent child AABBs in order to build the hierarchy. It is
important that each AABB of the tree, if it is not a leaf node, encloses its &MNBBs. Each leaf
node has an index range addressing those billboard’s covered bytimate as shown in Figure 4.3.
That is why the grass billboards are sorted by a pre-process withdrégdhe octree’s structure.

CHAPTER 4. THE ANIMATED GRASS LAYER 23

All leaf nodes are stored in a linear memory structure to enable hash indeputations [[Eri04].
This octree hierarchy is necessary during the viewport culling of théergprocess (see Sectionl6.3).
Additionally, the leaf node’s size is restricted to be at least as large as gestiarbject handled by
the collision system including the grass billboards. This prevents the colliggters from missing a
collision between the grass layer and the scene objects as describetiomSégt

4.2.2 Minimizing Render Calls

Pointlist A

i

Pointlist B

1 Render Call

Pointlist A

o

11
1

Pointlist B

2 Render Calls [o | 1 |

D current grass tiles Pointlist A
D obsolete grass tiles

i

[|
| 1 [2]3]

Figure 4.4: The batching process of grass tiles. Grass tiles that aremtjagraphics memory can
be combined to batches of greater size. As a result those batches sedesgisystem calls due to
the GPU based handling as each of them can be passed to the GPU in aesidglecall. The data
is spread over both buffers. In all cases there are less render dadicifes are passed to the GPU
instead of rendering each tile separately.

Pointlist B

rendered grass tiles

o

D rendered batches 4 Render Calls

During runtime the octree structure is used to decide which of the grass tieklsie processed.
Furthermore, the billboard data is spread over both buffers as a résist prior collision handling:
Some billboards do exist in the swap buffer while others exist in the other However, it is not
suitable to perform a single render call for each of the grass tiles. Thisleaayto a bottleneck
caused by too many render calls.

Subsequently, ranges of billboards which are adjacent in graphics menearganized to batches
of grass tiles. These batches are passed to the GPU in a single drivaes shtbwn in Figure 4.4. The
more grass tiles can be grouped, the less system calls occur. The geagiile cannot be arranged
to a coherent index range still have to be rendered in separate callsbathisprocess is applied
whenever grass tiles should be handled by the GPU.

CHAPTER 4. THE ANIMATED GRASS LAYER 24

4.3 Procedural Generation

The grass layer often covers a large area of the terrain. Consequectiytains thousands of grass
billboards, each consisting of a simple geometry. It is thus obvious to appiycagural technique
on the GPU to generate the grass layer. Diffeiafitence mapsare used to control the procedural
technique to allow some user-defined design choices.

4.3.1 The Influence Maps

Grow Plan Grow Direction Map Messiness Map

Figure 4.5: The influence maps. The texture images for the grow-planroedirection and the
deviation, and the resulting plant cover.

Even if the grass layer is procedurally generated, though, it is negessaontrol some local
visual properties while maintaining the generation as user-friendly asbpmsd herefore, a set of
2D maps is used to manage some of the design goals. Unique texture coardirgaspread over the
vertices of the terrain’s mesh in order to provide a unique value for etttederrain’s primitives.
These are used to sample the maps at the location of the mesh'’s vertices.

The map which is applied first is called grow plan and as diplayed in the udpef Eigure[4.5.
The texture defines local scalar densities of the grass layer which waerlsimilar manner like the
density map used by Boulanger et. [al.[BPB06] but without the restriction tppked at runtime.
The higher the density, the more grass billboards are planted on the tile ofrthie.teMoreover,
the sampled values of the grow plan are used to fade out the amount eflithsards in order
to simulate a crossing between fertile and barren ground. A secondcatar-snap called grow-
direction map provides normalized 3D directions which define the orientatiogaith of the grass
billboards. Furthermore, another scalar map called messiness-map, i® ygedide an amount for

CHAPTER 4. THE ANIMATED GRASS LAYER 25

the randomness in terms of the grow direction. This map influences the anfeankg@rowth. Since
the geometry shader creates the plant cover all the maps are coarselgdsatitpe positions of the
terrain’s vertices. The resulting plant cover which is based on the mapewssn Figurd 4.b.

4.3.2 The Generation Pipeline

®

Grow Plan Octtree Messiness Map

Grow Direction Map

o0 X Vo
(o] » (o] b
D8 o Be oV B
059 o C 0 ,o¢ o
OO ©) (o) OO o (o)
° o o o
Terrain Mesh Grow-Points Tiled Grow-Points Grass Billboards

Figure 4.6: The generation pipeline. In the first pass the grow plan istasgeherate base points
on the terrain’s mesh. Next, the octree structure is set up. Finally, the lgithmards are planted on
each base point. Furthermore, the grow-direction map and the messingssensampled in order to
align the crossed billboards.

The generation pipeline is shown in Figlirel4.6. As the number of billboardst isnown when
starting the procedural process the first step is the evaluation of thenfindder of grass billboards
and their positions in respect to the user defined grow map. This set®foa#s is computed on
the GPU and finally read-back to the CPU after each primitive of the terrairocepsed. Based on
this information the final hierarchical octree structure is build. The basgspare distributed over
the octree’s leaf nodes. As a result each of these nodes contain®fabsste points. Afterwards,
a geometry shader creates a set of crossed billboards on each offthede& base points. The
procedurally generated grass billboards are then streamed to the graymwory.

4.3.2.1 Plant Cover Information

In a first step of the generation the final number of grass billboards Hsasvéheir positions are
obtained. Therefore, the grow plan is sampled for each triangle of ttartermesh. According to
the sampled value a series of base points is randomly placed on each trigngimdp barycentric
interpolation between the triangle’s edge vertices. Furthermore, a texiardiwate is interpolated
for each base point. The base points are streamed to the graphics menaatgition, the number of
streamed points is recorded by the graphics hardware and can be dhigiaestream output query
(see Sectio 3.7.2). Since the final number of billboards is known, two psistwhich store the

CHAPTER 4. THE ANIMATED GRASS LAYER 26

billboard data (view Sectidn 4.2.2) are allocated on the graphics memory.

The size of the terrain’s primitives influences the density of the plant case¢he operation is
applied on the basis of triangles. As a consequence the grow plan hadi@ttinmpact on the
density. This is because the same density value may result in a denseayes®rca small primitive
and a sparse cover for a large primitive. However, the generation pfahecover information yields
good results in case of planar areas where the size of the triangles is atmifostn.

4.3.2.2 Spatial Clustering

After the base points are read-back to the CPU the hierarchical octuetusé is constructed. Each
leaf node of the tree should at least be as large as the largest objdidag the collision system.
Therefore, either the maximum size of the responsive grass billboarité vehdefined at startup
or the maximum size of the dynamic collision objects determines the size of the lde$.nds a
consequence, the size of the scene objects must be available at thisfgbhageneration pipeline.
Furthermore, the size of the octree is determined by the number of noddsavlinecessary to cover
the whole grass layer.

In the next step the base points are distributed over all the leaf nodeh. Idgdmode receives
those base points that are covered by their bounding box. As a reshltezd node has a list filled
with the covered base points. Afterwards, each of those lists is agairl $toaevertex buffer on the
graphics memory in order to generate the final billboards on the GPU. Ruwdhe&ran index into the
billboard buffers is assigned to each leaf node. During runtime this indeyermakes it possible to
address the grass billboards that are covered by a node.

4.3.2.3 Procedural Grass Billboards

The final generation of the grass billboards is executed on the GPU.deas#$tile is generated in a
separate geometry shader pass. As a result a set of crossedilfpassds is built at each of the leaf
node’s base points. Figure 4.7 illustrates the required steps. Furthetimgenerated information
of each billboard is streamed directly to one of the point lists which are ug@wduntime.

For each of the base points the normalized directign,, in which the billboard should be ex-
tended is looked up into the grow-direction map. The messiness-map is alstedamprder to
obtain the deviation angle to the grow-direction. The higher the sampled messalge is, the more
the grow-direction is rotated. Therefore, a randomized rotation dwig, orthogonal to the grow
directiondg,. is determined. Both the new grow-direction and the orthogonal rotation afirsed
the orientation of the billboard (see step three in Figure 4.7). The billboaidis eertices are com-
puted with regard to a randomly determined widttand height: (see step four in Figufe 4.7). The
inner vertices are necessary to define the deformed representatidhegnake not computed until
a deformation becomes possible (see sdction5.2.3). Nevertheless, theeititial of a deformed
quad is stored in order to allow for shape preserving computations aftellision response (see
Section[5.2.8). Therefore the widty, the heights; and the diagonal lengtk, of a quad of the

CHAPTER 4. THE ANIMATED GRASS LAYER 27

dgrow dgrow

o ¢) ¢ ¢ ¢ "

dortho dortho

Figure 4.7: The procedural billboard generation. For each baseagmotv-direction is looked up in
the grow-direction map. The messiness value determines the deviation obtieigection. Finally,
the crossed billboards are generated along the grow direction.

billboards deformed mesh are stored within the billboard data. As the fina¢ sifathe clump of
grass is achieved due to the projected semi-transparent decal textaneloan texture indexd;yage
addressing the texture array is also assigned (Please note the billaetadsyout shown in code
sampléTL).

As the flat structure of the billboards is easy to estimate when viewing the billdam their
side, for each plant position three grass billboards are generated@sstd([Pel04] as illustrated
in the last step of Figure_4.7. As a consequence the illusion of depth iesteBl®wever, for large
regions where only a small number of grass billboards is planted, the flatugte is still estimated.
After all three billboards are arranged their data is streamed through theguoay stored on the
graphics memory.

4.4 Wind Animation

As it is the movement of the grass blades in the wind what gives grass itahatd vivid look,
a major key feature to all grass simulations is the way they react to wind fokeeping in mind
that thousands of billboards have to be animated, the animation technique slobidd too time
consuming. Therefore, a sum of sinus approximations along the windidirggelds a translation
vector which is applied to the upper vertices of each billboard. This reswdtpémiodically movement
along the wind direction which takes local differences over the grassila@geaccount. Furthermore,
the wind animation is applied either during the collision handling or during theerargl process
which are described throughout the following chapters.

4.4.1 The Wind Translation

For the periodic movement an approximation to the sine function is used intordehieve a realistic
animation. The so-called smooth triangle wave function [Sbu07] is used tlupeoca translation
vector which is applied to the upper vertices of the grass billboards.

CHAPTER 4. THE ANIMATED GRASS LAYER 28

Ar 4

triangle() Function r smooth() Function

1 1 Smooth Triangle Wave Functions

Frq 1.975 Frq 0.793 Frq 0.375 Frq 0.193

0 1 0 1 \A/
. D

smooth(triangle()) Function

1 Final Wave Function

o
\ 4

(@) (b)

Figure 4.8: The periodic wind function. Figure 4.8(a) shows how the ¢wipthe triangle wave
function is redirected as an input to the smooth function to yield the final veigare[4.8(0) displays
the final wave function\(x) as the result of summarizing four of this concatenated functions.

The approximation of sine waves is achieved by concatenating two funstioostl{z) € [0,1] €
R and triangléx) € [0,1] € R. The periodic property is satisfied by the triangle function as can be
seen in the upper left graph of Figlre 4.8(a):

triangle(x) = |frac(f -« +0.5)-2—1] , (4.1)

with = € R as the time-dependent parameter. The frgdunction returns the fractional part ofand
f € R is the frequency. The range of the periodic repetitiopxis f, (z + 1) * f] with z € Z. Even
if the function is periodic, though, the passage from high to low values medversa is not smooth
at all. Therefore, the returned value is used to look up the final value uibia tunction as shown in

Figure[4.83):
smooth(z) = 3z — 22° . (4.2)
As a result the gradient of the triangle function is smoothed. So, the smowtllipgfunction is
obtained by concatenating Equation|4.1 and Equatidn 4.2:
stw(x) = smooth(triwave(z)) .

Even if it is only an approximation to the sine function it is less time consuming[Howdr a
better understanding the function is plotted in Figure 4]8(a).

CHAPTER 4. THE ANIMATED GRASS LAYER 29

Summing up four of the smooth triangle wave functions, while providing foderint static
frequenciesf € {1.975,0.793,0.375,0.193} to each of them, yields the final periodic wave function

provided by[[SouQ7] (see Figure 4.8(b)):

3
ANz) = Z stwg(z) , (4.3)
k=0

wherez depends on several parameters:

:L‘(ty W, p) =1* Swind + dwind *p. (44)

As a first parameter the current time R is passed. The second parameter is the wind feree
R3 to account for the wind directiodlyi,q = ﬁ € R? and the wind strength,ing = ||[w|| € R. So
far, using only these parameters leads to an identical animation over thegrateelayer, since the
parameters, dyinq andsying are shared for all the grass billboards. The posifion R? is added in
order to incorporate local differences to the grass layer. The posifiensfor each billboard. There
is still a less noticeable symmetry along the wind direction. However, this caedleated as it is
hard to identify.

Finally, the concatenation of Equatibn 4.3 and Equdtioh 4.4 yields the trans$atemyth which
then in combination with the wind direction is used for the animation:

wind(t, p) = Az(t,w, p)) - dwind - (4.5)

4.4.2 The Billboard’'s Animation

Figure 4.9: The billboard’s wind animation. By using the grow direction the kaltds upper edge
vertices are waving along the wind direction with respect to the translatiomgstre The directed
translation strength wir(d, v ;) is shown in orange.

The animation is reduced to a translation of the billboard’s vertices along the difaction.
Only the undeformed billboards are involved in the animation process. Ifardation occurs the
recovering process takes over the animation of the deformed billboaeSection 5.213). Thus, if
no deformation happens just the vertisgg andvs» are subject to wind forces, as the vertisgg
wherei = 0 are fixed to the ground.

CHAPTER 4. THE ANIMATED GRASS LAYER 30

inline
fl oat4 Smooth(float4 x)
{
return x * x * (3.0 - 2.0 *x X);
}
inline

float4 Triangle(float4 x)

return aby frac(x + 0.5) = 2.0 - 1.0);

}
inline
float3 Wind(in float3 p)
{
/1 Conpute the phase shift for the position p with respect to
/'l the current wind strength and direction
float phase = (Time * WndStrength) + dot(Wnd, p);
/| Conpute the four translation strengths.
float4 ts = Smooth(Triangle(Frequenci es * phase));
/'l Conpute the nean of the four val ues and
/'l return the translation vector.
return Wnd * dot(ts, 0.25);
}
inline

voi d ApplyWindForce(inout float3 Vtx[VIXCNT], in float3 Gowbir)

/'l move the upper vertices of the undeformed bill board
WVt x[1 DX-30] = Vtx[IDX00] + Gowbir + Wind(Vtx[|DXO00]);
VEx[I DX32] = Vix[IDX02] + GowDir + Wind(Vtx[IDX02]);

Code Sample 2: The wind animation. The wind animation moves the upper two edpes along
the wind direction by summing up four translation strengths. The vaied , WindStrength, Time
and Frequenciesare constant for each framd=requenciesis a float4 which stores four different
frequencies.

In order to translate the upper two vertices of the undeformed repréisentéthe billboard, the
initial grow directiond,,. Of the billboard is required. The grow direction was stored for each bill-
board as an additional information due to the procedural generatioagw¢gee Section 4.3.2.3). The
grow direction and the fixed ground vertices enable the restoring of thd miéish of the billboard.
The reconstructed mesh then is animated with regard to the current winkhti@amat the time € R
(see Figuré 4]9):

V3 = Vo, + dgrow + Wind(t, V07j) , (4.6)

with ;7 € {0,2}. As a result different translations for both of the upper vertices aplieab
The code samplel 2 shows the implementation of the wind animation. Note that thetvéingtls
used for functiod_4]5 has to be choosen carefully. A translation which isttomg causes visual
unpleasant distortions. Length preserving constraints are applicalbiiéento overcome the problem
of distortions.

CHAPTER 4. THE ANIMATED GRASS LAYER 31

As a result the animation varies over the time with regard to the wind force anfixétklo-
cal ground positions of each billboard. Moreover the animation is indegveirid prior translations
applied to the upper vertices of each billboard. As a consequence thitesraareconstruction of
the billboard’s shape after a deformation (see Se¢tion]5.2.3). It shouldnb@rked that the wind
animation is applied to each grass billboard separately without consideriogosed alignment.

Chapter 5

The Collision System

The collision handling of the billboards is the key feature to enhance immaesige The grass should
yield a good reaction to dynamic collision objects. In addition, the processdshalso not be too time
consuming. The billboards are solely processed on the GPU as the grassidas not affect any
scene object. Due to this fact the objects which cause the deformationwohavstored on the GPU
as well. That is one of the reasons why implicit models are employed to reptbsecollider objects
during the collision handling as described in Secfion 5.1.

The collision system is a cooperation between a CPU based "broad phadearig on the spatial
organized grass tiles and a GPU based "narrow phase” working orrdle billboards whenever a
grass tile is affected. The leaf nodes of the octree structure are usediicerthe collision handling
based on the GPU side. In addition, a recovering process is controlledtbyphases as well. The
pipeline is describe in detail throughout Secfiod 5.2.

The billboards are deformed by the collider object if a collision occurss&uiently, a recovering
process brings deformed billboards back to their original shape. Theditlguads which are not
affected by a collision can directly be rendered. In consequence,vralbperformance of the
animated grass layer is preserved dependent on the current réicogeand the current collisions
occurred. The implementation of the billboard’s collision handling is desciib&ectior 5.2.13.

5.1 Implicit Collider Object Representations

The collision detection and its reaction based on the polygonal represastaficomplex objects
causes computations which are far from ideal. As a consequence thecobjgcts are represented
by implicit image based models as they are optimal to be handled on the GPU.Vdgrigoplicit
representations have the advantage that distances are directly gikdmspheds up the penetration
tests with the grass billboards.

Two different types of implicit objects are common: At first, bounding spbere used to avoid
unnecessary collision tests. After pre-decision, subtle tests are mag@ lysn so-called depth
cubes. These depth cubes consist of six maps which store relativecdisias well as surface nor-

32

CHAPTER 5. THE COLLISION SYSTEM 33

mals of the collider object. The depth cubes are generated by applying acoemser polygonal
representation which is called collision mesh in order to prevent the grassasdi from unnatural
reactions.

5.1.1 Bounding Spheres

Bounding spheres completely enclose the object’s geometry which thegsesptr Thus, they are
used to speed up the collision handling. The efficiency is based upon ith@iesmplicit formula
which can be used to check for collisions between objects [MH99]. Tirout the collision pipeline
they prevent further collision handling for grass billboards that argoraetrated by any bounding
sphere (see Section 5.2.3). Furthermore, they are available to the GRihyconstant registers as
described in Sectidn 5.2.1.1.

5.1.2 Depth Cubes

As the bounding spheres are only usable for coarse preclusionsgeasutiter implicit representation
of the object is employed. The implicit representation is more efficient orhgrsymardware due to
the high parallel architecture of the GPU. Therefore, a coarser méist callision mesh is used to
generate the implicit distances in order to overcome the problems which aeddayi fine structures
of the dynamic collision object. The collision mesh is projected to each of the fd#des bounding
box. As a result a set of six maps is generated, each one providinyeeliigtances from its near
plane to the surface of the collision mesh. In addition they store the surfeweals of the projected
primitives. The information is required for a proper collision detection artismn response as
described in Sectidn5.2.3. This set of textures is called the depth cubeaifjéee [KLRS04].

LY)

Scene Object Collision Mesh

@)

Figure 5.1: The collision mesh. Figyre 5.1(a) shows the scene object@rdrifesponding collision
mesh. On the left of Figufe 5.1(b) the response with the mesh of the scjeeistshown. The object
is moved away from the viewer. On the right the response is shown if time stgect is replaced by
its coarser collision mesh. Note the clearly perceptible reaction in contrast tealetion which is

caused by the mesh of the scene object.

CHAPTER 5. THE COLLISION SYSTEM 34

5.1.2.1 The Collision Mesh

The deformed mesh of the billboard is still coarse in contrast to the fine stegatd the collision
objects, for example, thin extremities of characters. Possibly, the collisiudlihg based upon the
vertices of the billboard (see Sectibn 5.213.4) computes an unnatural rea¢tierefore, the cube
map is created upon a coarser polygonal mesh, called collision mesh,vas sh&igure[5.1(3).
Although, the sphere-like mesh is much coarser the results of the collisjpornss are more pleasant
as illustrated in Figurg 5.1(p).

The depth cube of dynamic objects is updated in each frame. In case thaitaation is applied
to the scene object it is also necessary to animate the collision mesh. Howihehe restriction
of a much higher memory usage these maps can be precomputed if the animekisacg known
[VSCO1].

5.1.2.2 The Distance Maps

(a) (b) (©)

Figure 5.2: The depth cube. The parameters to generate a distance nshpvarein Figur¢ 5.2(a)
for the projection directionl,,,; = (1,0,0). Figure[5.2(B) shows the resulting normal information
mapped to the RGB color range. The resulting distances are shown in Darker areas are
closer to the projection planes than bright areas

The six distance maps of the depth cube are generated on the GPU by sirolyg plaorthogonal
camera to the center of each face of the object’s axis aligned boundingltvabetail, the distance
maps are the result of the projection of the mesh onto each face. The permmiich are necessary
to define the projection are shown in Fighire 5.2(a). For each of the sixs2&8nde map® M,,, m =
0,...,5 the projection plane is set to the near fagg... The near face is determined with regard

CHAPTER 5. THE COLLISION SYSTEM 35

to the distance map’s projection directions. In addition, the far clipping plasetito the far face
frace- Each projection directiod is one of the six normalized directions along the world space axis.
Furthermore, width and height of the projection plane are set to the widthand heighti, .. of the
current bounding box face. The origin of the projection spageg is located at the center of the near
plane. These parameters yield an orthographic projection transformiBgien.py; € R*** (the
transformation is described in detail in apperdix]A.1) which is applied to the&gsrof the collision
mesh:

!
v =vTwc-pMm -

As a result of the projection, the vertices= (v, vy, v, 1) € R* are transformed from the world
space to the projection space of the distance map. Thereaftegﬁ thé0, 1] coordinate is the relative
distance of the vertex ' = (v, v,,v,,1) to the face of the bounding box. The value is written to
the distance map in respect to the coordinatg'svy’) € [~1,1]? (The projection of a single distance
map on the GPU is described in detail in apperidix| A.2). The distance maps dépiie cube are
shown in Figur¢ 5.2(¢).

In addition to the relative distances which are important for an appropralsian test, the
surface normals are stored for each distance map (see 5THe3k surface normals are used
to respond to collision$ [KLRS04] (see Section 5.2.3). Defining the triangtatjves of the collision
mesh by their edge verticag), vi andvy the normam for each primitive is computed by a cross

product between the triangle’s edges:

n=(vy—vg) X (vi —vq),

wherev; ,i = 0,1,2 are the world coordinates of the primitive’s edge vertices. In addition,
they are normalized in order to avoid different lengths which may lead toedigiable reactions.
Accordingly, a lookup at pixel coordinater,y) into a distance map of the depth cube returns a
surface normal with unit length = n/ |n|| € [-1,1]%.

The distance maps are updated every frame in order to account fdslp@smations or rotations
of the collider objects. As the geometry shader can distribute primitives to msgter targets, one
single render call is sufficient to update the depth cube. The depth cstmeasl using a texture array
which is bound as a render target during projection.

5.2 The Collision Pipeline

The collision pipeline is split into two phases which are working on differerdleof the grass layer
as can be seen in Figure 5.3. Several processes divide the collisidlinigaof the grass billboards
into subsequent passes. These avoid unnecessary computationdasishaf each billboard. On the
top level the collision handling on the CPU is based on each leaf node of titee atructure (see the

CHAPTER 5. THE COLLISION SYSTEM 36

| collision possible? | recover time left? no
directly render
=y > the billboards with
reset leaf node’s decrement leaf node’s wind animation
recover time

recover time

) L
apply wind animation apply wind animation
refine mesh refine mesh
recover time left? recover time left?
interpolate interpolate
vertex positions vertex positions
0o for recovering oo for recovering
test collision of | decrement recover time |_
bounding spheres
collision possible? no >| decrement recover time T
@

update
billboard data
via
stream-out

test collision of
billboard vertices
against depth cube

iy :l/l\ LN
collision detected? no | decrement recover time t 1, >
T

calculate collision
reaction for each vertex

cloth simulation LN
spring model >| reset recover time | >

Figure 5.3: The collision pipeline. The collision handling is splitted into a CPUdpae& working
on grass tiles respectively octree’s leaf nodes and two GPU basedhaadie collisions for the grass
billboards. The decisions made on the CPU affect the rendering of thedillbo

dark grey box in Figure 51 3).

The GPU handles collisions on the basis of each billboard. In detail this\dega the decisions
which are made by the CPU: The grass tiles which collide are updated by Ittsioaopass high-
lighted by the left green box in Figute 5.3. Those tiles which still have to mcare updated by a
separate recover pass. The recover pass is highlighted by the darklmpx on the right in Figute 5.3.
Both passes are covering the billboard’s collision handling as describ®edior 5.213. The grass
billboards of the affected tiles are updated via the stream output stagee Wich are not updated
in any of the two GPU passes are directly rendered. In that case the colligitem does not have
any effect on them.

5.2.1 CPU-Based Predecision

At the beginning of the collision pipeline, a coarse pre-test for the collisipreformed on the CPU.
This test is highlighted by the dark grey box on the top in Figuré 5.3. Thes dmger is tiled by the

octree structure and thus, each leaf node is tested to be affected by aradlfijelct (see Sectidn 4.2).
According to the results of this test and the current remaining recover tinmais marked either as
colliding, non-colliding or recovering. For the colliding nodes the recowee is reset. Furthermore,
a detailed collision detection, reaction and recovering on the basis of teelgjlidoards is performed

CHAPTER 5. THE COLLISION SYSTEM 37

PointlistA | [] [| L1
1 4> 4>
Pointlist B | [] [| [11
mf]l] h o
“[m PointlistA | [T e [] HE
wﬁh H Pointlist B | [] [| [| |
B 1 P N A O
Pointlist A | [1 [] [1]
Pointlist B | [] [] HE

D current affected grass tiles
D current billboards

l_-I D obsolete billboards
(@) (b)

dl

S —

Figure 5.4: The CPU-based handling. Figure 5]4(a) shows the colliday &nd recovering (green)
leaf nodes. The data of the corresponding grass billboards is updatétevstream output stage as
shown in Figurg 5.4(b). Both buffers swap their affected grass bilttsoar two subsequent steps.
During the data streaming the billboards are updated via the geometry shader.

during the GPU based collision pass. Those non colliding leaf nodes whighdome recover time
left are marked as recovering. As a consequence, some billboardsle&fmodes might be deformed
and so still need to recover. These tiles are updated by the GPU basgdrrpass. If a leaf node is
not subject to any further collision handling, it can be directly rendered.

5.2.1.1 Colliding Grass Tiles

The spatial octree structure of the grass layer is used to avoid collisiorbtestd on the GPU. The
centroids of the collider objects are used to determine those grass tiles whichbmipfluenced.
Due to the arrangement of the octree’s leaf nodes the search fotealffieades is reduced to a
single lookup in the octree. A hash index of the leaf node is computed witecetpthe position
of the object’s centroids. The hashed leaf node is marked as collidingitiéwhlly, their adjacent
nodes are marked as colliding. These nodes are shown in SHifa)ly, a minimal set of
colliding grass billboards is found. This is explained by the fact that all takriedes are created
in a size that leads back to the maximum size of either the collision object’s bausyplreres or the
maximum extent of the grass billboards (see Sedfion 4]3.2.2). All gatheaed tiles are streamed
throughout the collision pass by using as few as possible render cailswr8ectior 4.2]1). Before

CHAPTER 5. THE COLLISION SYSTEM 38

they are updated, their recover time is reset.

During the collision pass the current scene object representationscarieed (see Section 5.1).
For each of the batches of colliding grass tiles the corresponding delpéis emd bounding spheres
are collected. Each depth cube as well as bounding sphere is passed3BUthbefore the batch of
grass tiles is streamed. In addition, for each collider object the size of ihaleggned bounding box
and each of the six projection transformations are passed. The bolbukrgize is used to map the
relative distances of the depth cubes to world space distances whichgaieed at the time of the
collision response.

5.2.1.2 Recovering Grass Tiles

The grass tiles that have to be updated as well. As long as a grass tile hasuerrand does not
collide any longer it will be streamed through an additional recovering paske GPU. A recover
time is assigned to each leaf node in order to know which of them needs tadesred. This time
is reset whenever a collision object intersects with the node or still is a r@igiilan affected node
as described in the previous section. Consequently, the recovering time le&f nodes is decreased
when no collision occurs. After the recovering time has elapsed it is estimaeeédhh billboard
which is covered by that leaf node has been recovered as well. Aaeg\grass tile is illustrated in

Figure{5.4(d).

5.2.2 Updating Grass Tiles

The recovering and colliding grass tiles are updated via the stream outget atdhe rendering
pipeline. The GPU receives data on the input and writes the results to a fodatibe graphics
memory. However, the input buffer has to be different from the outpfieb(see Section 3.1.2). That
is why the update of a grass tile involves a transfer of the data from ofer boifanother. The buffer
which contains the current grass tile is bound to the input assembler anthéreébaffer receives the
updated data via the stream output stage. The grass tiles are procesagt tivo steps as displayed
in Figure[5.4(0). In each step the grass tiles are grouped to batche=atéigsize to minimize render
calls as already mentioned in Section4.2. All covered billboards are streartteglr corresponding
location in the opposite buffer.

5.2.3 The Billboard’s Collision Handling

If a grass tile is subject to an intersection, its billboards are updated by aawoliandling process
which performs different steps, as displayed in Figuré 5.5. As long @slfision occurs, nothing is
done. Whenever a collision becomes possible a refined mesh is appliedtttrie collisions which
results in a deformed billboard. If the collision is finished the billboard completdgvers to the
undeformed shape. The transition of the unaffected mesh to the defornséxdame: finally returning
to the undeformed mesh is made by performance considerations. Thuslligierchandling allows

CHAPTER 5. THE COLLISION SYSTEM 39

O—) O—)
(H (H
Runtime Collision Collision Recovering Simplification
Tessellation Detection Reaction

Figure 5.5: The billboard’s states. Collision detection, reaction and reéogv®r a single billboard.

the grass to respond to collisions. It saves computation resourcescaenatt undeformed grass
billboards are not as time consuming as the deformed billboards. Furtherther€PU does not

have any information of the current billboards, thus, all these stepsacegsed by the GPU, which
uses the geometry shader and the stream output stage. Moreovercissagy to have the ability to
operate on a whole grass billboard at each invocation.

Two different types of grass tiles are handled. The tiles which are hdubgi¢he collision pass
have to go through the whole collision handling process. Those tiles thatithigave to recover
are handled by a separate pass on the GPU. This avoids computatioean/éon the recovering
grass tiles which is caused by the collision tests. Only the parts which compuwtertbat shape are
executed in order to update the billboards (see Figuie 5.3).

If collisions occur or the recovering of tiles is required, the quad mesheobiitboards is not
sufficient for an adequate reaction. The curremnt 4 vertices of the refined mesh is computed (see
the first transition in Figure_5.5). Two cases are possible: On the one tidhd billboard has not
been involved in the collision process, the already wind animated quad isded® described in
Sectior[5.2.3]1. On the other hand, if the billboard still recovers, an intéiggolamong the vertices
of the wind animated mesh and the vertices of the deformed mesh yields thatahape. The
recovering process is outlined in Section 5.2.3.2. The GPU recoverisgepas at this point of the
collision pipeline. Subsequently, the billboards are streamed to the graphioergnby using the
stream output stage.

The next steps are applied for those billboards that might be affecteccblision object (see
the collision handling and the collision response states in Figufe 5.5). Pleteséha bright green
box on the left in Figure 5]3. The collision test is split into two subseques. pArpre-test for each
billboard shows if the grass billboard is influenced by a scene object. Bggatistances among the
bounding spheres of the grass billboard and of the scene objectakef/éne grass billboards can
be excluded from subsequent handling as described in Séction b.2t® dillboards, as long as no
collision affects them, are streamed via the stream output stage withoutrfbehéling. Thus, for

CHAPTER 5. THE COLLISION SYSTEM 40

such obviously non-affected billboards only the wind animation and thevegicq is applied during
the collision handling.

Whenever the pre-test is passed an index is returned which specifiesllis®n object whose
bounding sphere intersects the bounding sphere of the grass billbdaedefined mesh of the bill-
board is then tested for collisions with the depth cube of the indexed colligectolizach vertex of
the billboard is tested separately, as described in detail in Séction 5.2.3x. df @s vertices is found
to be inside of the collision mesh, the vertex is translated along the surfavalnairthe mesh. This
normal is stored in the depth cube in order to resolve the penetration athddsa Section 5.2.3]5.
However, moving each vertex of the billboard separately may lead to visugbhgasant distortions.
Thereby, a cloth model based on spring constraints (see the collisidioremcFigure[5.5) is evalu-
ated in order to preserve the overall shape of the clump of grass atheesa Section 5.2.316.

Whenever a collision occurs, the recover time will be reset. As long as thednitlis penetrated
it is not allowed to recover completely. The undeformed state which is soligtadl by the wind
animation is restored when the penetration has finished (see last transitimuie[B.5). After the
collision handling, the updated data of the billboard is streamed as a point primidithe stream
output stage. As a result, the tile’s billboards exist in the buffer which imtéda the stream output
stage, and thus, they are obsolete in the input buffer.

5.2.3.1 Refinement

inline
voi d Refing inout float3 Vtx[VERTEX.COUNT])
{
float3 intVtx[2];
float horVal, verVal;
float horStep = 1.0/ float (VIX.CNT_HORI ZONTAL-1);
float verStep 1.0/ float (VTX.CNT_VERTI CAL-1);
/'l refine nesh
int idx = 0;
for(float v=0; Vv<VIXCNT_VERTICAL; v+=1.0)

verVal = v * verStep;
for(float h=0; h<VTX.CNT_HORI ZONTAL; h+=1.0)
{

horVal = h * hor St ep;

//'I nterpol ate anong the horizontal edge

intVtx[0] = lerp(Vtx[IDX00], Vtx[lDXO02], horVval);
intVtx[1] = lerp(Vtx[1DX30], Vtx[IDX32], horVal);
/Il nterpol ate anong the vertical edge

VEx[idx++] = lerp(intVtx[0], intVtx[1], verVal);

Code Sample 3: The refinement. The positions of the mesh’s inner verteagenpolated bilinear
among the mesh’s edge vertices.

Each time a collision becomes possible (see Se€tion 5.2.3.4) or the billboardcstilers (see

CHAPTER 5. THE COLLISION SYSTEM 41

Section 5.2.3]2), the refinement mesh of the billboard is necessary. Asithatiam is a stateless
process (see Sectign 4.4), it is possible to compute the original shapedibfirthe wind, without
considering the current state which might be deformed by previous co8isi8n, at first the wind
animation described in Sectibn 44.2 computes the current upper edgestertieeresulting vertices
V0,0, Vo2 @andvs g, v3 o (see Equation 416) are bilinear interpolated to obtain the refined mesh:

vij=(1-=08)((1—-a)voo+aves)+ B((1 —a)vso+avsa),

wherej € {0,1,2} andi € {1, ...,3}. The blending terms = j/2 andj = i/3 preserve the network
structure of the refined mesh. The interpolation is shown in Code Samnple &.résilt, thed x 4
mesh is obtained as needed throughout the subsequent stages of tlendwdiniling.

5.2.3.2 Recovering

wind animated

000

current

deformed

000

E>o@o

000

000

Figure 5.6: The billboard’s recovering. The linear interpolation betweenéitices of the deformed
mesh and the vertices of the wind animated mesh results in the representatierbdfoibard with
respect to the recover time left.

After a collision has occured, the grass billboard from now on will smootidpver as long as
there is recover time left. The refined mesh which is affected by the wind thasvihe previously
deformed mesh forms the basis of the recovering phase. The linear iatepdetween the deformed
vertices and their wind animated positions with respect to the recovet tipleft results in the current
shape of the grass clump (see Fidure 5.6):

vij— (L=t)Wij + thevij (5.1)

wherei € {1,...,3} andj € {0, ...,2}. Furthermorew; ; € R? are the vertices obtained by the
previously described refinement step and € R? the last respectively the current recovered vertices
of the billboard. The recover timg.. € [0, 1] is handled as a relative recover time in respect to a
constant defined maximum time for recovering. € R which maps to the relative time Instead
of the linear decreased recover time the cubic functjpn € [0, 1] is used for the interpolation in
order to yield a smoother recovering which starts slow and then recasrs The recovering of a
billboard is shown in Code Samyilé 4

CHAPTER 5. THE COLLISION SYSTEM 42

inline

voi d Recove(
i nout float3 Vtx[VIXCNT],
in float3 W x[VIX_CNT],
in float RecTinme)

{
/] Cubic transfer function to yield a snoother recovering
float CubRecTime = RecTinme * RecTinme * RecTing;
/'l Interpolate all vertices
for(int idx=VIX.CNT_-HORI ZONTAL; i dx<VTXCNT; ++idx)
VEx[idx] = lerp(Vtx[idx], Wx[idx], CubRecTine);
}

Code Sample 4: The recovering. A linear interpolation among the previoe&yrded mesh and the
current subdivided mesh affected solely by the wind animation yields therdwishape of the grass
billboard in respect to the current remaining recover time. To smooth theaw®ig process a cubic
transfer function is applied to the recover time.

After each recover step the recover time is linearly decreased with tasfke elapsed timg,,,,
which has passed since the last recovering process:

te a]
— tree — 2P (5.2)

rec
tnlax

trec

If the recover time falls below zero and no collision occurs the animation ofrésesdpillboard at that
time will again be handled solely based upon the wind animation. The completeregpis very
important for the overall performance.

After each recovering step a collision test (see Settion 512.3.4) with trentbiiboard’s vertices
v;; is made. As already mentioned, whenever a collision occurs the recover fithe affected
billboard is reset to the previous defined recover ttmg;, which yieldst,e. = 1.

5.2.3.3 Bounding Sphere Based Preclusion

Only for a small number of the grass billboards penetrations take placet prieclusion step prevents
computation for the major part of the grass billboards. The bounding spbstrreturns the index of
the first object a collision is detected with. If no valid index is returned it ismesl that no penetration
takes place.

Based on the current deformed or undeformed mesh of the billboardyéhnage position of the
mesh’s edge vertices is assumed to be the cegjgiof the sphere that encloses the current shape of
the billboard:

1
Chill = E(Vo,o + Vo2 +V3o+Vso).

Even if only the edge vertices are used without considering the innere®dfdhe billboard, their
mean point is accurate enough to test for collisions. Therefore, the lehgtle initial undeformed
billboard ||dgovw || is used as the sphere’s radius. Although the billboard’s length is anxipation

CHAPTER 5. THE COLLISION SYSTEM 43

to the exact current bounding sphere’s radius it still encloses the gitlsoard as it is important.
That is why in the undeformed state the span of the billboard is enlarged to itsaraxength.

A billboard is not colliding if (||cbin — cob;l|)? > (||dgrowl|l + Tobj)? [EF04]. cop; is the center
andr,y,; is the radius of the scene object’s bounding sphere.

5.2.3.4 Collision Detection

Collision Mesh

— ‘o 1T
\\0 i / 1;] G nﬁ L
U4 00 1 2

Figure 5.7: The depth cube based collision detection. For each of thgeoiramer vertices a collision
is detected. (Left) The collision mesh penetrates the grass billboard. (Mwldéht) The depth
tests for the billboard’s vertices are shown in the depth map’s projectiares@@ach of the three
depth constellations represents the depth cube at a different heighée Rlei@ that only the orange
vertices are occluded from all sides of the depth cube.

Since a collision is likely to come after the BS test is passed, the refinedfuedar undeformed)
mesh of the billboard goes through a more exact collision test similar to the pédistsl detection
described by [KLRS04]. Therefore, each vertex is tested separately

A collision occurs if the vertex is occluded by the collision mesh along all sipeption directions
of the depth cube. The test for the penetration is performed in each akthegection spaces. Thus,
the vertexv = (v,, vy, v;, 1) of the grass billboard is transformed:

v =v Twc_pu (5.3)

wherev ' = (v,,v,,v,,1) is the transformed vertex of the billboarflyyc_pay is a transformation
from the world coordinate space to the projection space of the curréahdesmap (see Section 5]1.2).
The transformation is done for all the six distance nmaps.

After the transformation the coordinat§ of the billboard’s vertex is the distance to the projection
plane of the current distance map. The coordinagéandv; are used to look up the distangento
the distances map. The vertex is not penetrating along the projection dirédtiensampled value

d of the current distance map is greater than the relative dish@'n(me appendix_Al3 for a detailed

LA single transformation to the normalized view volume of the depth cube wildesas well. In that case the tests are
performed in respect to the collider object’s coordinate system [KLIRS04

CHAPTER 5. THE COLLISION SYSTEM 44

Code Sample 5: The collision detection. The depth cube based collision detettiee billboard.
The HLSL code fragment shows the collision handling for the billboard’shm@&ke collision test is
based upon a distance comparison between the transformed vertex alistahee which is looked
up into the distance maps. For each of the scene objects a separate methodneirtgdieas the
dynamic assignment of texture slots to samplers at runtime is not supporteel GPtH.

description of distance comparisons). If so, the other distance mapstdested. An collision occurs
if all distance values are smaller thazr'l. In formal terms the following computations are made:

!

r=v, —d, (5.4)

wherer € [0, 1] is the distance between the collision mesh’s shape and the billboard veirieke
distance map’s projection space.rlt> 0 the vertex is occluded along the projection direction. The

CHAPTER 5. THE COLLISION SYSTEM 45

vertex collides if all distance maps report the vertex to be occluded as shown in Figure 5.7:

rm >0 Vm (5.5)

wherer,, is the result of Equation 3.4 for theth distance map M,,, ,m = 0, ..., 5.

The Equatiom 515 is applied for each vertex of the billboard. For each afdltider objects the
six depth cube transformations as well as the depth cube texture are pagise shader. As texture
slots are not interchangeable after the compilation of the shader coddlisiercaletection is divided
into separate function calls, one for each scene object. The index whietuised by the bounding
sphere test is used to identify the correct branch. The shader fragoreerning the depth test for a
single object is outlined in Code Sample 5.

5.2.3.5 Resolving Collisions

Projection Space World Space Collision Mesh

08):/ /7

4

1

Figure 5.8: The collision response. First the distances of the projectame spre transformed to world
space distances which form the local AABB of the collision mesh. The reagtiection is looked up
into that distance map which stores the smallest distance between the vertar antlision mesh’s
surface. Then, all world space distances along the reaction direcé@uarmmed up in order to yield
the reaction strength. Finally, the vertex is translated along the reactiotialirec

If a collision has been detected for a vertex of the grass billboard, its posstimoved in the
direction of the shortest way out of the object’s shape. The directioneofgiction depends on the
normal information which is stored in the distance maps of the depth cube [BARB addition, the
reaction strength is obtained in respect to the local bounding box of ttexverhe local bounding
box is formed by the six distances along each of the world space axis aaldmgseach of the distance
maps projection directiond,,,.

At first, the relative distances,, € [0,1] ,m =0, ..., 5 (see Equation 514) are weighted with the
Sizes = (8z,5y,5,) € R? of the depth cube’s axis aligned bounding box in order to map them to
their corresponding world space distances:

Wiy, = Ty - (dyy @8) (5.6)

wherew,, is the world space distance from the vertex to the collision mesh’s surfaespect to

CHAPTER 5. THE COLLISION SYSTEM 46

the projection directionl,,, ,» = {0, ..., 5}. Those values then form the local axis aligned bounding
box of the collision mesh in respect to the position of the billboard’s verteRlease note the second
image of Figuré 5]8.

The vertex is translated along the normal veetgy,.; € R? of the surface. Therefore, the normal
information of the distance malpis used which provides the shortest distance of the vertex to the
collision mesh’s surface:

wi < wyp Vm e {0,....5 Am#k . (5.7)

inline
voi d ResolveCollisiorf i nout fl oat3 Wt X,
in float3 BoxSi ze,
in float4 MapVal ue[6])
{
/1 Find the m ninmal distance between the vertex and
/1 the collision nesh’s surface in order to receive the
/'l normal which directs along the shortest way out of the
/| object.
float WorldDist[6];
Worl dDi st[0] = (MapVal ue[0] . w * BoxSi ze. X) ;
Worl dDi st[1] = (MapVal ue[1].w * BoxSi ze. X) ;
Worl dDi st[2] = (MapVal ue[2] . w * BoxSi ze.y);
Worl dDi st[3] = (MapVal ue[3] . w * BoxSi ze.y);
Worl dDi st[4] = (MapVal ue[4] .w * BoxSi ze. z) ;
Worl dDi st[5] = (MapVal ue[5] . w * BoxSi ze. z) ;

int Norm dx = O;
for(int nmEl; nmk6; ++m)
if(WrldDist[mi < WrldbDi st[Norm dx])
Norm dx = m

/] Conpute the reaction strength. Therefore sumup the
/'l distances along the normal with respect to

/1 the six axis aligned projection directions.

float ReactStrength = 0.0;

React Strength += max(Worl dDi st[0] * MapVal ue[Norm dx].x, 0);
React Strength += max(-WrldDist[1] * MapVal ue[Norm dx].x, 0);
React Strength += max(WorldDist[2] * MapVal ue[Norm dx].y, 0);
React Strength += max(-WrldDist[3] * MapVal ue[Norm dx].y, 0);
React Strength += max(Worl dDist[4] * MapVal ue[Norm dx] .z, 0);
React Strength += max(-WrldDist[5] * MapVal ue[Norm dx] .z, 0);
React Strength *= 0. 5;

/'l Translate vertex al ong the surface nornal
/1 the reaction strength.

Vt x += MapVal ue[Nor m dx] . xyz * React Strengt h;

with respect to

Code Sample 6: The collision response. The collision reaction for eatdxvetirst the shortest of
the world space distances is found and then the reaction strength is coritpotddr to translate the
vertex in respect to the surface normal.

In simple terms, the distance majs identified by the distance which is smaller than the distances
obtained by the other maps. The normaln,...; of the distance mag is looked up by using the
pixel coordinate$v;, v;) of the vertex in the distance map’s projection space which were computed

CHAPTER 5. THE COLLISION SYSTEM 47

during the collision detection.
As the normals all have unit length (see Secfion 5.1..2.2), the reaction strehgth means the
magnitude of the translation is evaluated, as also illustrated in the third step ie[Bigur

5
Sreact = Z max(nreact o (dm : wm)a 0) . (58)

m=0
The reaction strengtfie.t € R is the total of all the world space distances projected to the surface
normal. As opposite directed vectors yield negative values they are geecftom the computation.
For this purpose thewax() function prevents the reaction strength from being influenced by negativ
distances that are directed contrary to the surface normal.
Finally, the vertexv is translated along the surface normal with respect to the reaction strength
(see function 518) as shown in the last step of Fifurk 5.8:

V <= V + Sreact Dreact - (59)

However, the computation does not translate the vertex to the edge of thedacaing box since
no quadratic function of the world space distances is applied in furlctibrifs&ad of this it is just
guaranteed that the vertex is translated out of the local bounding bois @&g@&nded. The information
of the collision response is shown in Code Sariple 6.

5.2.3.6 Preserving the Grass Shape

Structural Springs g:; Shear Springs @

Figure 5.9: The spring relaxation. After a collision response two typegrofgs are used to preserve
the distances between linked vertices. In Fiduré 5.9 a single recursioovig gbr the upper right
quad which has been distorted. Please note that if the reponsiventhes\afrtices are equal each
spring translates both of the connected vertices along the direction of theigén

Since the translation of the vertices is done separately, the shape of $sehgsato be taken into

CHAPTER 5. THE COLLISION SYSTEM 48

consideration. Therefore, a post correction step is applied. This s#eprpes the overall shape of the
grass billboard [FGL0O3, Zel07]. In contrast to the previous collisiondling steps, this correction
step accounts the billboard as a networl8 of 4 vertices. Moreover, the network is expanded by a set
of virtual linear springs. Each of the springs takes care of the distatesbn two vertices. Whenever
such a spring is compressed or stretched, which means the connetiebwdiverge or converge, the
resulting spring force affects their vertices. The vertices are moved #heir connected direction in
respect to the spring’s stiffness.

Thus, the spring forcg ; ., € R3 between two vertices; ; andvy; with i, k € {0,...,3} A j,l €
{0, ...,2} is defined as:

d; ik
i jrall’

whered, ;1 = Vi — Vi is the direction of the connection between both vertiu:@’?’,k’l is the
natural length between the both billboard vertices. The natural lengtindspa the type of spring.

£kt = Kigea (i jrall — d5j1r) (5.10)

Furthermorek; ; ., € [0, 1] is the stiffness of the spring. A value diresults in a conservative spring
in contrast to a value df which has no effect.

The evolution of the force between the two vertices that have been dedriggca spring results
in a translation for each of the vertices. The linear spring constraintsiraetlg applied to each of
the two connected vertices [Zel07] instead of summing up all spring foecesath vertex and finally
adjusting the vertex position [Pra95]. The formula for the adjustment of bertiex positions is:

Vij < Vij+rij L and
Vil — Vg — Tkl fijeg

wherer; ; is the responsiveness for vertex; andry; is the responsiveness for vertey;. The
responsiveness is added in order to distinguish between fixed and imeeatices. In addition, the
restrictionr; ; + r; = 1 is made to preserve the strength of the spring force. As a fixed vertex
should not be moved the responsiveness is set to zero, whereas thielengertex then is completely
responsive. If both vertices are not fixed they have the same reggoess and thus; ; = r;,; = 0.5.
An example of this type of constrained based forces is given in Code SEmple

As the linkage through springs is built up between neighboring verticestypes of springs are
applied for that purpose. Referring {0 [Pro95], the first type is aadledstructural springwhich
takes care of the compression and stretching of the grass billboard.rnalfterms, the vertices
v;; andv,q ; are connected with a verticatructural springand the vertices; ; andv; ;1 are
connected by a horizontal structural spring. Their natural Iengt‘l‘iji’%’l = s¢ for the horizontal
aligned spring and id?’j’m = s for the vertical aligned springs is the width ands; is the height of
the billboard’s refined quads. Both lengths in addition with a diagonal lesygtine stored during the
procedural generation process (see Se¢tidn 4.3). As the groutickser, ; are fixed the horizontal
structural springs are not applied among them. The second type is sh#lad springand takes care

CHAPTER 5. THE COLLISION SYSTEM 49

inline
voi d LenConstraint(i nout float3 VtxO0,
in float RespO,
inout float3 Wtx1,
in float SpringlLen,
in float SpringStiff)

/'l Conpute the distance information
float3 DistVec = Vtxl - VtxO;
fl oat D stance = length(Di st Vec);
/| Conpute the spring force
float3 SpringForce =
(SpringStiff = (Distance - SpringLen) * (DistVec/Distance));
/1 Apply the spring force
Vt x0 += Resp0 * SpringForce;
Vtx1l -= (1-Resp0) * SpringForce;

Code Sample 7: The length constraints. The length constraint functioarpessthe distances be-
tween two vertices with respect to the stiffness of a spring and the strésis adcurs to the spring.
The produced stress then is solved by translating both vertices.

of shear stresses affecting the grass billboards. These springs lin&rtieesy; ; andv; 1 ;1 and
the verticesv; 1 ; andv; ;1. Their natural length is equal to the diagonal lengglof the refined
billboard quad. Both types of springs are shown in Fidure 5.9.

Since the execution of one spring force affects the neighbouring spaimgvell, more iterations
over all springs have to be applied to get a good result due to the stifet@fstiff springs. For less
stiff springs a single iteration also yields visually pleasant results due to tHersmaer of vertices.
The implementation is shown in Code Sangle 8.

CHAPTER 5. THE COLLISION SYSTEM 50

Code Sample 8: The spring network. The HLSL code shows how the vepting network is satisfied

in order to preserve the grass shape after collisions. First the spfitiys fixed ground vertices are
resolved. Afterwards the springs among the movable vertices are rel@RedstiffnessSpringStiff

of the springs therefore is passed as a constant to the shader. Natetsigfer the springs the more
recursions over all springs have to be executed because each affeicts neighboring springs as
well.

Chapter 6

The Rendering System

Rendering of natural sceneries is a complicated subject especially iftieglisbal illumination is
applied. In addition the process should take as little time as possible and bffgr degree of detail.
Nevertheless, lighting quality has a high influence on the performancey kahniques are often
working together to create a convincing illusion of grassy fields, for exastpadow mapping, local
illumination model and screen door transparency [Wha05]. The remdefinatural environments
respectively grass turns out to be an arrangement of approximatiorts/sicgl phenomena. The
rendering dealt with in this chapter applies a more physically based global itdigintechnique to
the grass layer. However, the approximation used is still coarse: Arpoegs computes irradiance
information affected by static scene objects. At runtime this information is us#ldriunate each
vertex of the two sided grass billboards. Finally, the alpha channel ofeme-tsansparent decal
texture which covers the billboard is giving the clump of grass its correxesh

6.1 The Billboard’'s Rendering Equation

Figure 6.1: The global illumination. The rendering equation is approximateeaich vertex of the
billboard. Scene geometry absorbs some of the environmental light. Aslg sesooth shadows are
cast on the grass billboards. The light that reaches the billboards isteefl® the viewer.

51

CHAPTER 6. THE RENDERING SYSTEM 52

For real-time rendering local illumination based upon the object’s surfadteis applied. Effects
like transparency, reflections and shadows caused by other objects@lly not covered. These
effects come with their costs. Global illumination which is applied among scenetsligecompu-
tationally expensive. Thus, objects are lit by approaches which ajppat global environmental
lighting in order to improve the realism of the scene. Such a technique is ugkoitimate the grass
billboards.

Before the detailed rendering techniques are handled, the rendeuatjagwhich is approxi-
mated by the render process is explained in short. The equation is diearethe global illumination
model introduced by [GTGB84] and [KajB6]:

Lo(p, wo) = /ﬂ p(p s, o) &(Drwr) Li(p, i) dov; 6.1)

whereL,(p, w,) is the radiance at poimi traveling in directiorw,. L;(p, w;) is the light directed
alongw; to pointp. p(p,w;,w,) is the reflectance term defining the relationship between incoming
and outgoing light relating to the surface at point Finally, the occlusion terng(p,w;) € {0, 1}
defines whether or not the point is reachable for the incoming ligt, w;). When it is not obscured
the term returns one and otherwise zero. The Equatidn 6.1 computes thg #oe between the
surfaces of all scene objects. In other words, the total amount of ingdigint intensity at a point of
a surface depends upon the sum of all light intensity reaching that pomtdther surfaces.

Besides, the equation applied to the grass billboards is less complex andataescount for
indirect light transport. As a consequence the incoming light is alwayisoemaental lighting. As the
environment is assumed to be far away, the incoming light for each locatiiole ithe grass layer only
depends on the direction. Therefdig(p, w;) is rewritten asL.,,(w;) which is the environmental
light coming from directionv;. However, the equation still covers the second major aspect of global
illumination. That is the occlusion of the environment caused by scene ggometr

Lo(pawo> = /§2p<p7wiyw0> g(pvwi) Lenv(wi) dwi . (62)

The influence caused by other objects is reduced to the occlusion teem bs seen in Figufe 6.1.
In a pre-process the irradiance is integrated for a fixed set of pointiwiith grass layer’'s bounding
volume (see Sectidn 6.2). The irradiance is defined as:

E(p) = /ﬂg(pawi) Lenv(wi) dw; . (63)

The only term which is missing compared with Equafiod 6.2 is the reflectance tieich sannot
be pre-computed as the vertex normal is required for the reflectanceutatiop. During runtime
Equation 6.P is approximated for the billboard’s vertices by sampling the grgpated irradiance
and computing the reflectance as described in Selction 6.3.2.

CHAPTER 6. THE RENDERING SYSTEM 53

6.2 The Irradiance Volume

As the integration of Equation 6.2 on the basis of polygonal objects carndbbe in real-time,
the parts which account for interobject occlusion must be pre-predeSherefore, dynamic global
illumination throughout the grass layer is achieved by pre-computing irreglisrfiormation within
a volume. This approach is similar to the ambient occlusion volume presenteédUOV][The
irradiance for each voxel is determined by sampling an environment map itaidhof additional
ambient occlusion information. The captured irradiance samples are stoted texture arrays.
Shifting the irradiance computation into a relatively expensive pre-psowgallows fast dynamic
global illumination. The irradiance volume is used to dynamically shade the biiflssards in a
static scene at runtime.

6.2.1 Volume Set-Up

YA 1
A

Ambient Occlusion Information

Z 7

F/|
I -
Irradiance Information
ya v 4
- L v

“—Jp Zaxis

Figure 6.2: The setup of the irradiance volume. The scene is coveredexyube slices along the y
axis. Each slice stores ambient occlusion quantities as well as irradianceation for each voxel.

The irradiance volume covers the whole grass layer. Therefore it leasatime extent as the
grass layer’s bounding volume. The volumetric data is distributed in two teatuags: The ambient
occlusion quantities and the irradiance information are stored in differdntés. Each array contains
niwer € IN layers (with the restriction that,., < 1024 as described in Secti¢n 8.2). Each of the two
dimensional layers summarizes a slice of voxels inith@lane of the world coordinate system. The
slices are oriented along the world spgaxis as is shown in Figute 6.2. The number of slicgs as
well as the resolution of the volume has an influence on the accuracy oftiaenitally interpolated
data.

6.2.2 Ambient Occlusion Information

Ambient occlusion indicates how much of the positive hemisphere is occlu@degant in the scene.
Additionally, the average incoming light direction is provided. The informatibrisibility is ob-
tained by employing hardware-based shadow maps. Each of thesevsimaghs is generated in re-

CHAPTER 6. THE RENDERING SYSTEM 54

spect to a random light direction pointing to the hemisphere above the gyassTae iteration over
all shadow maps respectively light directions finally results in the accumuéatdslent occlusion
information stored for each voxel of the volume.

6.2.2.1 Occlusion Term

The occlusion terng(p, w;), being a part of Equation 6.2, returns whether a point in the scene is
occluded along a direction; or not. Conceptually, in order to test for occlusion, a ray starts at the
pointp € R3 for which the occlusion has to be determined and is directed to the positivepiesres
above the grass layer. If the ray hits a static scene object the directiariusied and as a consequence
g(p,w;) returns the value zero. If no object is hit, the returned value is one:

e(p,w;) = 0 if p occluded alongy; 6.4)
1 else

Casting a ray for each point respectively voxel inside the volume is toerske. Therefore
GPU based distance maps respectively shadow rmaps [Wil78] are empR8d]. Such a distance
map stores distances of all shadow emitters with respect of the light dire&lmndistance of the
shadow emitters is received as a consequence of the transformatiorobfebeto the distance map’s
projection space. The projection space is determined by the projectiotiatireg and the extent
of the scene’s axis aligned bounding box. So the distance map is coveeinghtiie scene. This
enables to determine occlusion for all voxels of the ambient occlusion volutheut recomputing
the distance map for each voxel: A distance comparison in the distance mgjp&tion space is used
to determine if a voxel is occluded or not (see appehdix A for a more detdgisctiption of distance
maps).

Distance maps therefore are very efficient to test occlusion along dgidirelt should be remarked
that the resolution of the maps and the grass layer’s extremities determinetiacyoof the test.

6.2.2.2 Occlusion Quantities

Ambient occlusion is a technique which is often used for real-time environhudring of diffuse
surfaces[Lan02, PG04]. In general the ambient occlusion data ofrd provides two quantities:
First it supplies how much of the environment is visible at that point. This imé&tion is called the
accessibilitya € [0, 1] of a point. Second, the average direction of incoming light so called bend
normalb € R? is provided [PG04]. Both are used to approximate global illumination effeatctn
otherwise only be attained by costly computations.

The ambient occlusion quantities for the volume are obtained by an iterativcegs over all light
directions. Each light direction is randomly oriented towards the positive ipbietie above the grass
layer. The key part of the computation is the visibility tegp, w;). Therefore, a distance map for
each light directions; € R? is employed (see the previous Section 6.2.2.1). After projecting all

CHAPTER 6. THE RENDERING SYSTEM 55

= Ty

Figure 6.3: The ambient occlusion information. Each voxel of the irradiartume is tested to
be visible along each light direction. The occlusion test is based upon ckstaaps. As a result,
the average unoccluded light directibnis determined for each voxel. In addition, the quantity of
unoccluded directionsg is retrieved.

scene objects a lookup with respect to the voxel position determines if thed igoabscured or not
along the projection direction (see apperdix]A.3). Whenever the directioroiscluded it affects the
bend normal as well as the accessibility value for that voxel. More formiagdch voxel at position
p € R? the accessibility is averaged over all directions:
T
a=— Z g(p,wi) (6.5)

n -
=1

wheren is the number of random directions agtb, w;) is the distance map based occlusion term
from Equatio 6.4. In addition, for each voxel the bent normal is caladdate

b=> gp,w) - wi (6.6)
=1

The distance maps, each of which summarizes occlusion information forehe atong a random
direction, are iteratively applied to the voxels of the volume. This procedspsagied in Figuré 6]3.
As only eight render targets can be bound in one single render call, lnm&as refined in batches
of eight slices. Each of these batches then is updated separately by shgider. As a result for each
voxel of the volume the average amount of the unoccluded area witlctesplee positive hemisphere
and the bent normal is computed.

The objects serving as occluders must be static. Whenever the constddkiieen them and the
grass layer is modified the ambient occlusion quantities have to be recomputiee Wwhole volumg.

*Another useful approach is described by [CLO7]: The occlusiorrinétion is stored by using a spatial tree structure
over the scene. The ambient occlusion quantities are dynamically rexedyhenever a scene object has moved out of a
tree’s node.

CHAPTER 6. THE RENDERING SYSTEM 56

6.2.3 Irradiance Information

ty
A

P> tx
(a) (b)

Figure 6.4: The irradiance information. The hemisphere above the gsessisacovered by an en-
vironment map. The map is sampled by employing a spherical parameterizatios lént normal
b. The number of unoccluded light directionsdetermines the sampled area of the map (see Fig-
ure[6.4(d)). Both quantities define the cone of incoming light for eachladxbe irradiance volume

(see Figuré¢ 6.4(Db)).

For each voxel of the volume the incoming irradiance is approximated by tlstngmbient oc-
clusion information of the voxel. As mentioned in Section 6.1, the irradianceliscesl to environ-
mental lighting. Thereforel..,,(w;) is represented by a single environment map which covers the
whole hemisphere over the grass layer (see Figuie 6.4). A blurredgdokm the environment map
approximates the irradiance for a point [PG04] within the bounding volurtieeajrass layer. This re-
sults in a coarse approximation to the irradiance funétioh 6.3 but it is evalomatekl faster and can be
computed on modern graphics hardware. The ambient occlusion quanitiéastovoxel determines
the irradiance (see Figurg 6.4(b)):

E(b,a) = a-en(t,dt,,dt,) , (6.7)

wheredt, = dt, = a* € [0,1] are the derivatives in each direction of the texture. The derivatives
are determining the area respectively the mip-map level of the environmeninmveamch texture
filtering occurs (see Figufe 6.4(a)). The greater the derivativesradigher is the interpolated mip-
map level and the more blurred is the returned value. In addition, the sarnmgilesl i8 multiplied

by the accessibility: in order to darken areas that are more occluded than others. Thatderiv
based sampling function efivbi-linearely interpolates among the texels at coordinates [0, 1]2

of the mip-map. The environment map is defined in the latitude longitude formatbé&rtenormal

b = (bs,by,b.) € R? is used to address a point in the environment map (see Higure]6.4(a)). The
mapping to the environment coordinate space is handled by sphericalgiar&zation:

CHAPTER 6. THE RENDERING SYSTEM 57

t = <2i(arctan(2—y) +7), 1 arccos(bz)> : (6.8)

i z T
Similary to the creation of the ambient occlusion information a pixel shader despight texture
levels of the irradiance volume in one single render call. The precompuéeiieince does not account
for dynamic lighting environments. In that case the computation of the irragliafermation has to
be done during runtime as described by [PG04]. However, this caarse®ofe computations for each
fragment of the grass billboards.

6.3 The Rendering Process

apply culling
techniques

do not
leaf node visible? render the

@ grass tile

Octree
Level
Billboard - —
Level apply wind animation sample irradiance

for each

sample irradiance
P vertex

for each
vertex

per vertex
illumination

per vertex
illumination recover time left?

S 2 Sroz Sy

assemble assemble assemble
single single six
quad quad quads

generate final generate final
shape shape

Figure 6.5: The render process. The process is divided into twogawsseler to speed up rendering
for those grass tiles that are not affected. Beforehand invisible ciusterculled.

The rendering process is split into two separate render passes witl teghe outcome of the
collision pipeline as can be seen in Figlrg 6.5. Some grass tiles might havaffesed by collisions
while others have not been updated yet. Before rendering a cullingisititesgrass tiles takes place.
The main difference between both render passes is that the billboardshavie not been updated by
the collision system still have to be animated during the rendering. The graswhiieh are updated
by the collision pipeline might contain deformed billboards. Those deformedhiitts go through a
finer tessellation.

CHAPTER 6. THE RENDERING SYSTEM 58

6.3.1 Culling Grass Tiles

Octree Hierachy

. il
/- W@&mmﬂ

[culled grass tiles

[visible grass tiles
(@) (b)

Figure 6.6: The culling techniques. Each node which is not covered byighefrustrum (see Fig-
ure[6.6(a)) or is occluded by other geometry (see Figure 6.6(b)) is duliedrendering.

Often only a small portion of the grass layer is visible. The majority of grassdbaittis can be
omitted from rendering. Two culling techniques are applied on the CPU asisigksl in Figuré 616.
The visible set of grass tiles is determined by an intersection calculation bagbd bounding boxes
of the hierarchical octree structure and the view frustrum. Afterwatusyviewed leaf nodes are
further tested for occlusion by employing GPU based occlusion querfess. oth culling techniques
have been applied the remaining set of grass tiles is rendered.

6.3.1.1 Viewport Culling

As the grass clusters which are outside of the view-frustrum are clipptigckthe rasterizer stage of
the rendering pipeline (see Section]3.1), they can be culled beforeB@d]. The occlusion test
is based upon the hierarchical octree structure of the grass layerachsoé the nodes encloses its
children, the tree can be efficiently traversed in order to cull the invisibllesoStarting at the root
node all eight child nodes are tested to be outside of the view frustrum.dE#oh child nodes which
are at least partially visible is traversed. Then its eight child nodes dteefuested for intersection
with the view-frustrum. A branch of the recursion ends if a leaf node ishegor a node is completely
outside or inside of the view-frustrum. All the visible leaf nodes which ardaining grass tiles are
further tested for occlusion as described in the next section.

Before computation it is important to enlarge each bounding box by the maximigmséons of
the grass billboards. That is necessary as wind animation as well as cotésiponse might have
moved the billboards out of the bounding box. This situation especially sdoubillboards which
are planted near to the boxes border.

CHAPTER 6. THE RENDERING SYSTEM 59

6.3.1.2 Occlusion Queries

The axis aligned bounding boxes of the leaf hodes are used to test whedhs tiles are occluded.
Therefore, the hardware based occlusion query [Sek04] is us@fulbcclusion query returns the
number of pixels of the render target influenced by the mesh'’s rastérampdents[[CG03]. Whenever
no pixel is influenced the object is fully occluded, as is the case if all fraggrfailed the depth test.
Therefore, as a first step the occluders, for example the terrairerzalened to the depth buffer which
as a result fills the depth buffer with the depth values of the occludersedeadr bounding box that
encloses grass billboards and has passed the viewport culling anionausry is performed. Again,

each box is extended by the maximum size of a grass billboard. All grass tiesaiounding box

influences at least one pixel of the final image are still rendered.

6.3.2 Shading Grass Billboards

O

o
o O

P @) P O
©) ©)

BENERE >
O C\ VoY O O O

o
OO0 OO0
Irradiance Per Vertex Primitive Final Shape
Sampling lllumination Assembly Generation

Figure 6.7: The billboards shading. The process is splitted into a per \lbu@ination and a pixel
based shape generation. The rasterized primitives are assembledttaniagdering.

The shading process of the grass billboard uses a series of subksigps to generate the visual
appearance of grass as shown in Fidguré 6.7. As a first step, the nafreeth vertex is derived to
allow for illumination computations: The irradiance at each vertex is combinedtidheflection
properties of the grass material. Then the billboard’s primitives are assenffitelly, the material
color and the shape of the corresponding clump of grass are applieddbrasterized fragment. The
shaded semi-transparent appearance is a result of the blendingpbased on multi-sampling.

6.3.2.1 Dynamic Irradiance Sampling

In case the collision system did not update the grass tile before the regpdmnwind animation
described through Sectién 4.4 is applied to each of the undeformed bilthdditinately, during the
dynamic sampling, the vertices of the billboard have to be up to date regaodie$®ther they are
handled through the collision system or not.

CHAPTER 6. THE RENDERING SYSTEM 60

pa 7
4 V4
pa 7
L V4
pa 7
p4 v 4
4 | | 7
L
L
I, (K1)
. AwEEE _
Si+1 / LW B
/ g
\
. | A 11 ZLLLE AN\ RRE Y
SI 1] AT 4 [
I 11
pa 7
L v 4

Figure 6.8: The dynamic sampling. The irradiad€as well as the bent normal are interpolated
for each vertex of the billboards within the irradiance volume. The two cldseture slices are
interpolated bi-linearily. Afterwards, a shader based linear interpolat@dsythe final samplev.

For each vertex of the deformed or undeformed billboard the global illumination information
is sampled within the pre-computed irradiance volume. A tri-linear combinationeogitjht clos-
est voxels of the volume vyields the desired information. As texture arra&ysised, only bilinear
interpolation among the slices is supported (see Seciion 3.1.2). That is sod rehy the tri-linear
interpolation is done in the shader. The information is interpolated betweeartipes of the closest
texture slices as shown in Figurel6.8. Furthermore, the slices must be dndiezetly. As the array
is spanned along the y axis, the indices of the upper slicec IN and the lower slice; € IN are:

S; = floor(cy - nge) and
siy1 = Ceil(cy - nges) ,

whereny., € IN is the number of texture slices of the volume= (c;, ¢y, c;) € [0,1]% is the
relative position of the vertex within the vqurEeAs the interpolation is done in the shader, the
interpolation factor between both slices is defined as:

Q= Nteg " Cy — Sj -
The implementation is shown in Code Sanigle 9.
Finally, the tri-linear interpolation within the volume turns out to be:
w = (1 — a) vol(cg, ¢z, 8i41) + aVol(cyg, s, si) (6.9)

wherew is the tri-linear sampled volume data. Wl y, s) is the bilinear sampling function among
the slices. For each vertex both the irradiaficand the bent normab are interpolated within the

2As the volume covers the whole grass layer the vertex of the billboard &yallecated within the volume.

CHAPTER 6. THE RENDERING SYSTEM 61

inline
fl oat 4 GetRelativeCoord| in float3 Vtx)
{
float4 c;
/'l Conpute the relative coordinate within the vol une
c = (Vtx - Vol uneM nPos) * 1.0/ Vol uneSi ze;
/] Conpute the index of the |ower slice
float LowerSlice = floor(Nunflices * c.y);
/] Conpute the interpolation factor between both slices
c.w = (c.y * Nunflices - LowerSlice);
/1l Alter the relative coordinate to the index of the |ower slice
c.y = LowerSlice;
return c;
}

Code Sample 9: The relative coordinate. The vaMa@ameMinPos andVolumeSizeare passed to
the shader. They define the bounding volume of the grass layer. Platasthat only the index of the
lower slice is computed. The adjacent slice is found at the following index.

volume (see Sectidn 8.2). As the interpolation of unit length vectors doawenessarily yield a unit
length vector the interpolated bent normal is normalized after interpolatianinfjplementation of the
irradiance information is shown in Code Samplé 10. As a result the samplingsatboslynamically
obtain global illumination information per vertex.

inline
fl oat 3 Getlrradiance(in float4 c)
{
float3 irradi ance[2] ;
/'l receive the bi-linearly interpolated irradiance val ue of both slices
i rradi ance[0] = Irradi anceArray. Sanpl eLevel (LinearMrrorSam c.xzy, 0);
c.z += 1.0;
i rradi ance[1] = Irradi anceArray. Sanpl eLevel (LinearMrrorSam c.xzy, 0);
/1 return the value received by tri-linear interpolation
/'l between the two cl osest slices
return lerp(irradiance[0], irradiance[1l], c.w);
}

Code Sample 10: The irradiance sampling. The relative coordinate insidieatience volume is
used to sample the irradiance information. The closest slices of the textayeaae addressed by the
y-coordinate. For the sampling of the ambient occlusion information anathetion is called.

As the irradiancéE approximates all the incoming light relating to the amount of occlusion and
with respect to the cone of incoming light the last term which is missing in Equiaiibis Ghe re-
flectance termp(p, w;, w,). The illumination computation is based upon this information.

6.3.2.2 Per-Vertex lllumination

Due to the complex illumination computations and the massive amount of grass tuifilqmer pixel
lighting is avoided. Instead of this, Gouraud shading is implemented which #héftarork to the
geometry shader. Each normalis set up with regard to all adjacent facets of the vertexll the

CHAPTER 6. THE RENDERING SYSTEM 62

O o) o o)
o P~ P9 O\ o
o \ O/ ': O
\ O Sre) O O O--.... 'e)
(O o Y (OZRTS 'O ------ O O o I
@) O
o R) o M g S— o o)
(@) O @) Paiff Pspec Prefr

(@) (b) (©) (d)

Figure 6.9: The per vertex illumination. In Figure 6.9(a) the assembly of tiexveormals is shown.
Each vertex normal is setup with regard to the adjacent triangles of the.vErtem Figuré 6.9(b) up
to Figurg 6.9(d) the components of the billboard’s reflectance term arealtedtr

normalsn; of the triangle primitives that contribute to the normal are integrated as caeeneirs

Figure[6.9(3):

k
— M (6.10)

wherek is the number of the triangles that surround the vertext he resulting normals lead to a
smooth Gouraud shading all over the surface.

Within this step, the reflectance term can be computed as the irradiaand the bent norma
are obtained for each vertex The term constitutes the local reflection properties of grass and is split
into several components as presented in Figure 6.9:

P = pdiff + Pspec t Prefr - (6.11)

The first component is the diffuse term which is affected by the nomaaid the sampled average
incoming light directiorb (see Figur¢ 6.9(b)):

paiff = (Ineb|-0.7+0.3) - (1,1,1),

wherepg; s € [0.3,1]* is the amount of diffuse reflection for all channels RGB. It is constituted by
the angle between the incoming light direction and the normal of the vert€ke more the directions
differ, the smaller the value of the diffuse term. If both directions are petipalar respectively the
surfaces faces away from the light the contribution is minimal. As the billbcaedifiat the backfaces
are visible as well. Therefore, the absolute value of the diffuse term iswi@ohn order not to darken
the back faces by mistake. The quad of the billboard should also not tutadibit is being viewed

CHAPTER 6. THE RENDERING SYSTEM 63

from the side as this causes an unnatural appearance. Thereéorangie of the diffuse terio, 1] is
mapped to the randé.3, 1] by an additional ambient amount.
The specular term adds highlights in respect to the view direction (see=f8c(c)):

pspec = (1 — f) maxn e h,0)* - (1,1,1),

wherepgpe. € [0, 1]? is the amount of specular reflection for all channels RGB= ﬁ is the
normalized halfway vector between the view directigrand the average light directidn The effect

of this so-called Blinn-Phong lighting is that brighter highlights are added-evtiee view direction

and the light direction are closely aligned. The maximum is reached if bothrgastimcide. Because
grass tends to have great highlights over its surface the exponent snkaih The interpolation factor

f € [0,0.5] which accounts for the semi-transparent nature of grass blades sighédipercentage of
refracted light described in short: The more refracted light affectsitteard, the more reduced is

the contribution of the specular component and the higher is the valfielofcases where the grass
billboards are lit from behind and viewed from ahead the refracted lightributes to illumination.
Therefore the ternf is determined relating to the angle between the halfway vector and the average

incoming light directiorb:

f=maxhe—b,0)-0.5.

The max) function prevents the term from falling below zero and the factor redineeimfluence
of back face lighting. This term is similar to the Fresnel Term [MH99].

The more the refracted light affects the illumination the more the material cola toigrellow as
is for plants modeled through a color shift s, = (1.0,0.9,0.3) [KCSO7]:

Prefr = f * Srefr s

wherep,. s, € [0,0.5] is the refracted light.

Combining all components as a result yields the reflectance pjeemR3. p is a variation of
the so-called Blinn-Phong model common to computer graphic applications 9MHAS a result of
combining both, the global irradiance and the local reflectance propat@srse approximation to
function[6.2 is computed. However, the final color is evaluated per pixed.r&ason for the divided
process is that the surface matetigl,; € [0, 1]2 is stored in the semi-transparent decal texture which
is necessary for the final shape generation. So, the reflectance temaftiigied with the irradiance
in order to interpolate as few parameters as possible throughout thézersstage:

€refl = P ® e.

The implementation is shown in Code Saniple 11. After all illumination computationsoééoh
guad primitives are assembled as described next.

CHAPTER 6. THE RENDERING SYSTEM 64

inline
float3 llluminate(in float3 Vtx, in float3 Norm)
{

/] Conpute the relative coordinates.

float4 c = GetRelativeCoord Vtx);

/] Sanple the bend normal and the irradiance
/] for the vertex

float3 b = GetBendNormall ¢);

float3 E = Getlrradiance(¢);

float3 viewDir = EyePos - Vtx;

float3 h = normalize(viewbDir + b);

/1 How nmuch of the light is transmtted?
float f = saturate(dot(h,-b)) * 0.5;

/1 Evaluate the diffuse term
float diff = abg dot(Normb)) * (1-ANMBI ENT_.AMOUNT) + ANMBI ENT_AMOUNT;
float3 diffColor = diff;

/] Evaluate the specular term

fl oat spec = saturate(dot(Normh));
spec *= spec;

spec *= spec;

float3 specColor = (1-f) * spec;

/'l Evaluate the color shift which sinulates transmtted |ight
float3 refrColor = f*Col orShift;

/'l Return the reflected irradi ance
return E * (diffColor + specColor + refrColor);

Code Sample 11: The illumination. The illumination function is called for each vertesh is part
of an assembled quad primitive. The val@sorShift andEyePosare constant for each frame.

6.3.2.3 Primitive Assembly

As the grass billboards are stored in a single point list the final triangle prasitive created during
the geometry shader. Either the deformed or the undeformed represemtiatiee billboard exists
depending on whether recovering time is left or not. For each billboard sjxtguadrilaterals are
created depending on its deformation state. When the undeformed statelesecta single quad
Q(vo,0,V3,0, V0,2, vV3,2) is streamed. Six quads are streamed in case that recover time is left:

Q(Vv,h7 Vo+1,hs Vo,h+15 Vv+l,h+1) Vo= {07 17 2} N h= {07 1} .

The primitive assembly is shown in Code Saniple 12.

After that, each of the vertices receives a texture coordinate. Thigioabe is used for projecting
the decal image onto the assembled primitives respectively rasterized frege the whole image
is addressed through the texture coordinate rafge?, the coordinates are equidistantly distributed
over the billboard’s vertices; ;:

J .
ti,j = (77 5) Zdimage) € Rg 5

CHAPTER 6. THE RENDERING SYSTEM 65

whereid;qqe IS the procedural assigned index into the texture array containing the seraparent
images (see Section 4.3.2.3 and Sediion #.1.3). Streaming the previously cbmpytealue and
the texture coordinates per vertex allows to compute the final appeanamcear pixel level.

inline
voi d StreamDeformedBillboardQuadg
inout Triangl eStream<Bl LLBOARD.VTX> Bil | Vt xSt ream
in float3 Vt X[VTX_CNT] ,
in f 1 oat | magel d)
{
Bl LLBOARD.VTX Bi | | Vt x[4] ;
/1 1.)... Conpute the texture array coordinates
/1 into the decal inmage (inmageld is used)
/] 2.)... Conpute the illumnation for each vertex
/1 3.) Assenble and stream each quad of the deforned
/1 bi | | board
int 1dx[4];
for(int v = 0; V<(VIXCNT_VERTICAL-1); v+=1)
{
for(int h = 0; h<(VIXCNT_HORI ZONTAL-1); h+=1)
{ /I Select the current vertices
I dx[0] = v * (VTX_CNT_HORI ZONTAL) + h;
ldx[1] = (v+1) * (VTX.CNT_HORI ZONTAL) + h;
ldx[2] = v * (VITX_.CNT_HORI ZONTAL) + (h+1);
1dx[3] = (v+1) * (VITX_.CNT_HORI ZONTAL) + (h+1);
/1 Conpute the projection space coordi nates.
for(int g=0; g<4; ++q)
bi Il Vtx[q].ndcPos = mul(float4(Vtx[ldx[q]l]l, 1),
Vi ewPr oj ection);
/'l Stream the quad
Bi I | Vt xStream Append(BillVtx[0]);
Bi | | Vt xStream Append(BillVtx[1]);
Bi || Vt xSt ream Append(BillVtx[2]);
Bi || Vt xSt ream Append(Bill Vtx[3]);
Bi | | Vt xSt r eam RestartStrip() ;
}
}
}

Code Sample 12: The primitive assembly. The illumination is computed and the tertnginates
are assigned for each vertex. Afterwards, the function assemblesddepgmitives of the deformed
billboards. These quads are passed through the rasterizer as aofdriasgle strips. In case the
undeformed billboard is rendered, another function is called which ordgsis the quad made up by
the edge vertices.

6.3.2.4 The Final Shape

Even then all the work done so far is based on vertices the final shaihe girass as well as the
application of the illumination is done on the base of each pixel: As each clumms$ dplades is
represented by a semi-transparent decal texture, as mentioned in Setitnnow for each pixel
of the quadrilateral primitives the decal texture is sampled. The textureioates and the reflected
irradiance are computed for each vertex throughout the primitive assetestyibed in the previous

CHAPTER 6. THE RENDERING SYSTEM 66

Alpha Layer

Figure 6.10: The edge smoothing. The edges of the grass billboardsaothed by a slight transi-
tion between opaque alpha values and transparent alpha values. iitagieat the multi sampling
resolution determines the final image quality (compare the result of 2xMSAAthéthesult achieved
by 8XMSAA).

section. As a result of the sampling the material caigy; € [0,1]® as well as the transparency
amat € [0,1] are obtained. The final colars;,, for each pixel is computed by multiplying the
material color with the reflected irradiance:

Cfinal = Cmat & €refl

The pixel shader is outlined in Code Saniplé 13.

fl oat 4 FinalShapg Bl LLBOARD.VTX Pix) : SV_.TARGET
{
/'l Sanple the decal texture
float4 Decal Col or = Decal Text ures. Sanpl e(Ani sotropW apSam Pi x. Texcoord);
/| Conbine the grass color with the reflected irradi ance
Decal Col or. xyz *= Pix. ERef| ;
return Decal Col or;
}

Code Sample 13: The final shape. The sampled color for each pixel is nexdiwih the reflected
irradiance. This results in the final color for the pixel. The alpha valueeo$@impled color is returned
in order to allow for blending.

The thin surface of grass blades does also provide the ability to look thtbegn. That is noticed
best if the viewer is near the grass blade. This semi-transparent natheegrass is simulated with
the aid of the alpha-to-coverage feature (see Settion 3.1.2). The lijeretineen billboards is done
without the necessity of performing expensive depth-sorting whettlegafiewer’s position changes.
Sub pixels are filled by grass billboards with respect to the transparetegay,,... The higher the
value of the grass billboard’s pixel the more sub pixels of the renderttargdilled with the pixel’s

CHAPTER 6. THE RENDERING SYSTEM 67

color. The blending occurs during downsampling of the multisample resolutitimetfinal image

resolution [MyeO0B]: All subpixels are summed up to the final pixel color.aAgstriction only the

most recently rendered grass billboards affect the sub pixels whicimdeðe final image. But due
to the chaotic nature of grass this is not easy to notice and thus, does/earhaffect on the visual
results.

The shape of the final grass is also set up by the alpha layer of theichacm. At every pixel of
the quad where the sampled transparency is zero no pixel is rendemtdermore, the edges of the
grass billboards are smoothed. This is a consequence of the slight trabsiticeen transparent areas
where no blades are placed and opaque areas where blades defhapghef the clump of grass as
shown in Figuré 6.10.

Chapter 7

Results

This chapter presents the results of GPU-Based Responsive Giftssoutlining the visual quality
of the collision system and the rendering system, the performance of batitisgled. Furthermore,
the application to modern real-time engines is expressed.

7.1 Visual Quality

Throughout this section the visual results of the collision handling and thdering process are
described. Example images of different scenes are used to illustratalsmraponents of this system.
In addition, some unpleasant side-effects of the techniques are poirtted o

7.1.1 The Collision Handling

The collision response has the most important influence on the percepttbe ofsponsive grass
layer. Therefore this section shows some example images concerninguakresults of the collision
response and recovering.

The first images Figure 7.1{a) and FigQre 7.JL(b) show the response gfdlss after the scene
object has moved through the meadow. The scene is rendered with 6G fpmeecond by using
fourfold multi sampling anti aliasing (4xMSAA). The grass layer containB0@6grass billboards.
The whole grass on the line of movement is pushed to the side or stampedNoterF{gure 7.1(3)).
The space between the legs of the collision mesh has left a trail in the tranmgsesdagrcan be seen in
Figure[7.1(0). Figurg 7.1(c) shows the scene object which is resting mittdie of the meadow. As
can be seen by observing Figlire 7.1(d) the object has left a clearlyeablicimprint on the grass.
The collision mesh’s shape is easy to estimate within the grass. The resultseflering process
are presented in Figure 7.2: The scene object is moved along a straigfaflmetion) in the dense
meadow. After the collision has taken place, until the shape is not fully eeedwthe flattened grass
billboards smoothly rise back to their original form. The response and toeeeng yield nice results
in case of chaotic and dense meadows.

68

CHAPTER 7. RESULTS 69

(a) (b)

(©) (d)

Figure 7.1: The collision response in a dense meadow. The images shoestiieof the collision

handling in a dense field of grass. In Fig{ire 7]1(a) and Figure 7.1(yakision mesh has left a
clearly visible track in the grass. In Figure 7.1(c) and Fidure 7.1(d) theimingf the scene object is
shown.

The collision response provoked in areas of sparsely planted grassabiltbis displayed in Fig-
ure[Z.3. The images show the scene object which is slowly grabbing somathing grass. The
arm which collides first produces an undesired response: Instgagbing the grass in the direction
of the movement the grass is being pushed to the sides. That situation becatse the arm of the
collision mesh has not a sphere-like but rather a longish shape. Fophereslike shapes, sometimes
the wrong reaction direction is looked up in the depth cube. This results inexpacted response.
The scene object has to be approximated by a series of coarser-pbeneshes in order to avoid
such unnaturally reactions. In addition, the angular appearancearfiksd grass billboards is clearly

CHAPTER 7. RESULTS 70

@) (b) ()

Figure 7.2: The recovering of tramped grass. In this figure the pradfabe recovering is shown.
The scene object has left a clearly visible line of movement in the meadow &\tdile the grass
smoothly recovers. Note that the grass is darkening when it is tramped down

(@) (b)

Figure 7.3: The squared look. The figures show a sparsely planties régom the left Figurg 7.3(g)
to the right Figuré 7.3(¢) the object is moved toward the grass clumps on tii¢Rigase note that the
object is in a unnatural way beyond the terrain in order to make the movermssibfe). The longish
shape of the arm causes an unnatural reaction: The billboards &edioshe side of the arm instead
of being pushed in the direction of the movement. In addition, the squaredial@formed billboards
is easy to estimate.

visible. However, these unpleasant reactions are only noticeable in bgisas of the grass layer
where grass billboards are sparsely planted.

7.1.2 The Rendering System

The visual appearance of the grass billboards is very important. Thestaspdetermined by closely
planted grass and realistic illumination. In this section the results of each cempafithe rendering
process are shown.

In Figure[7.4(d) all components of the reflectance term are visible at the sme. On the left

CHAPTER 7. RESULTS 71

(a) (b)

(©) (d)

Figure 7.4: The visual results of the rendering process. In Figurajt# grass is shown from the top
view. The results of the reflectance term are visible: from the left to the tlighspecular term is re-
placed by the refraction term. In Figdre 7.4(b) the scene object shimmeugththe semi-transparent
grass billboard. In Figure 7.4{c) and in Fig{ire 7.4(d) the outcome of tHeabibumination applied
to the grass layer is visible.

the specular term is visible. Please note the bright highlights in contrast tadabs ghown in the
middle of the figure. On the right side the effect of the transmitted light is shdive grass is slightly
shifted to a more yellowish color. The semi-transparent nature of the bitdfszards is visible in
Figurg 7.4(0). The viewer is close to a grass blade and the scene dhjenters through it as a result
of the Alpha-to-Coverage feature.

In both, Figurd 7.4(¢) and Figufe 7.4(d), the global illumination becomesleisibhe random
directions used to create the occlusion information for the grass layer &méy mancentrated along

CHAPTER 7. RESULTS 72

a single direction. The smooth transition between shadowed and lit areas gfass layer creates
an idea of the overall illumination of the scene. In the left half of Fiure J # grass is darkened
by a hill which is located in front of it. From the left to the right side the grasmaése and more
illuminated. This makes it easy to identify the light direction. In Figure 7]4(d) th Igydirected to
the viewer. The rock in front of the viewer casts smooth shadows to thehddtof the grass area.

The dynamic illumination is visible if the grass is pushed down as can be seamipadng the
images shown in Figuife_7.2. Whenever the scene object moves througtasise thhe grass tramped
down is darker as can be seen in Figure 7]2(a). That is because tamidysampling described in
Sectior 6.3.2]1 interpolates values between the closest slices of the ireda@nme. The more the
grass is tramped down, the more raise the influence of the lower slice. Thstlelice in general is
occluded by the terrain. Hence, a grass billboard receives less ircadifait is tramped down. That
simulates the shadow which is caused by neighboring blades. The moreatizergeovers the less
it is affected by the lowest slice of the volume. However, this effect relatdsto those billboards
which are located on the lowest level of the grass layer.

7.2 Performance Analysis

Achieving a high performance is one of the major aims of real-time applicatidhgais concerning
the grass layer are designed to reduce the workload of the CPU as mpoksitsle. Therefore the
handling of the billboards is almost completely shifted to the GPU. That is why irsduson the
performance of responsive grass is analyzed with aid of the NVididi-IEkE]@ tool. This tool helps to
identify performance bottlenecks on the GPU. All the tests are made on a AMIDrA64 3500+ 2.2
GHz processor and a GeForce 8800 GTX graphics card with 768 MBIDD&Mory.

7.2.1 Collision Handling

The performance analysis of the collision handling is done by observirgathe scene with different
collision conditions. Only a single collision object is used during the tests. €ligdrshows the four
constellations of the same scene running at 30-80 frames per seconue[#i§ shows how much
time is consumed in each GPU pass (of either the collision pipeline or the reggedoess). The

scene contains approximately 37000 billboards which requires 12 MByephics memory. Each
time the image is rendered with Alpha-to-Coverage enabled and 4xMSAA.duithg techniques

prune away all grass tiles that can not be seen at all.

In Figure[7.5(8) the grass layer which smoothly waves in the wind is redidétle 80 frames per
second. Referring to the diagram 7.6(a) the only pass that causestetions; is the rendering pass of
the unaffected grass tiles (RN). The scene is pixel bound as can bedbyiobserving the utilization
graph in Figuré 7.5(%). The graph shows the workload balancing ofrdgzgmmable stages of the

The NVIDIA performance monitor tool is a copyright of the Nvidia Comgtion and comes for free with the restriction
of usage only for the NVidia products. The tool makes it possible to aadhe video cards performance at real-time.

CHAPTER 7. RESULTS 73

(b)

(d)

Figure 7.5: The collision conditions. The figure shows four images with @&&sing number of
deformed grass billboards. In addition, the colliding (green) and rermyéred) leaf nodes of the
octree are displayed in the scene. In Fidure 7]5(a) no deformation besexdt at all. From Fig-

ure[7.5(b) to Figurg 7.5(d) the number of deformed billboards incredsesgraph on the left corner
in all the figures displays the shader utilization. Each bar shows the pagesof workload caused by
the corresponding shader unit during the last frames: The blue basghe utilization of the pixel

shader unit and the green bar shows the utilization of the geometry shatdekecordingly a red bar

determines the workload caused by the vertex shader.

rendering pipeline: The unified streaming processors are utilized to wopkxels with about 75 per
cent (the blue bar) whereas the geometry shader unit of the pipelineve agtapproximately ten
per cent (the green bar). As the vertex shader (red colored) osepdhe points to the geometry
shader it has no influence on the performance at all. Hence, the vhadgrsdoes not even demand
the streaming processors. The remaining workload is caused by frafeedpdrations. In all scenes
approximately 16 million pixels are processed within the fragment shaddtimgsim many read as
well as write accesses to the frame buffer. These are amplified by the -fdpbaverage feature
which requires a multisample resolution that in this case is four times higher as the iesolution.

CHAPTER 7. RESULTS 74

@)

() (d)

Figure 7.6: The performance of the collision handling. The series of aliagishow the time con-
sumed throughout the different scenes of Fiduré 7.5. Figure 7.6(&) &ure[7.6(d) show the
performance consumed throughout the scenes shown from Figuag @pbio Figuré 7.5(d). For each
GPU pass a performance bar is shown. These are the update of theriegagrass tiles (R), the
update of the colliding grass tiles (C), the rendering of the affected tiles$RD), and the rendering
of the unaffected grass tiles (RN). Each duration is given in milli-seconds.

In the second constellation shown in Fig{ire 7.b(b) the grass layer igeafféy the collision
object. The nine grass tiles respectively leaf nodes that are tested hhtfoeigollision pass are
displayed by red wireframe boxes. Hardly any of the grass billboaelaféected except those that
are near the collision object. The utilization graph in Figure 7]5(b) showsntiba¢ workload is
caused by other parts of the pipeline as the percentage of the pixek sbadduced in contrast to
the previous case (note the 20 per cent decrease of the blue bar edmytr Figurg 7.5(&)). This
time is consumed in the stream output stage which is the back-end of the collé&gen fass can be
noticed by looking at the diagranim 7.§(b) three passes are executed®RtheThe nine grass tiles
are processed by the collision pass (C) which takes the least of all cainpatdime. In the second
pass (RD) those tiles are rendered. The rendering of the rest ofdke lgiyer (RN) is consuming the
most time as it envolves most of the grass billboards. The scene is rermd&@drames per second.

In Figure[7.5(d) more leaf nodes of the octree are affected. The d@es show the recovering
grass tiles which are updated by the recover pass. In addition, moelghsards are deformed.
Consequently, the performance of the render pass which covers dla¢edpgrass tiles (RD) is de-
creased. As shown in diagrgm 7.6(c) the consumed time for rendering #fifested billboards is
much higher than the time which is necessary to render the undeformedRidesThis time over-
head is caused by the primitive generation in the geometry shader as wegltlas fendering of the

CHAPTER 7. RESULTS 75

high count of primitives. The collision pass (C) in this case stays nearlgtaohbecause only one
single collision object effects the grass layer. The number of collision tests ot increase. The
overall performance is still pixel bound.

The last constellation which is shown in Figlire 7.5(d) comes up with nearlyathe sumber of
grass tiles that are updated during the collision handling. But almost eiltryalod which is part of
the recovering tiles (the green boxes) is deformed. As a result theresicaimpance loss because the
geometry shader has to assemble much more quad primitives (Note the idgpeasentage of the
green bar of the utilization graph in respect to the prior cases). In additierdeformed billboards
cause more workload on the geometry shader as more primitives are crEaitedan be discovered
by observing the high duration of the render pass (RD) of the collidedesalering grass tiles in
the diagran 7.6(¢l). Furthermore, the primitives are cached on graphrosmevhich leads to many
read and write operations. In such cases where a great amount ofhilibis deformed the frame
rate decreases to 30 frames per second.

To summarize, the performance of collision handling depends on the numpemitives that
are generated and passed through the rasterizer back-end. Bothertiay operations as well as
the work that has to be done in the geometry shader stage, are affeciegl tthe rendering. Con-
sequently it is necessary to setup a low recovering time in order to prebereserall performance.
The computational time which is necessary for the collision handling remairssagdr{compare the
diagrams in Figuré_716) and depends on the number of scene objectsvetpotive performance is
still bound by the rasterizer back-end and the frame buffer accesses$eared to in the following
section.

7.2.2 Rendering Process

The rendering system is designed to obtain good global illumination at minimalwtatignal costs.

Therefore the global illumination is done in a preprocessing step. Durimire the computation
is reduced to the dynamic sampling described in Se€fion 613.2.1. In this sectimult e shown

that the illumination does not have significant influence on the overall ped#ioce. Furthermore,
the performance bottleneck is pointed out. Therefore, a scene contantireythan 46000 grass
billboards is regarded with different settings.

In Figure[7.7(8) this scene is rendered with global illumination and 8xMSAXAr&mes per sec-
ond are rendered. The raster operations as well as the frame lndémsas are as busy as the shader
units. This can be noticed by observing the utilization diagram 7.8(a) whiolvsshow busy each
unit of the rasterizer back-end was during a single draw call. In additientotal frame time (FT)
is displayed (50 frames per second). In cases where global illuminattb8x@SAA are enabled,
the billboards cause a great amount of workload in the rasterizer matKrbe streaming processors
(which in total require the time of the USH bar in the diagrams of Figuie 7.8) alcoospletely work
on the pixel level as displayed by the blue bar of the utilization graph in Figdi{@). Consequently,
it is absolutely necessary to implement a per vertex illumination due to the high aofqixel work-

CHAPTER 7. RESULTS 76

(b)

(d)

Figure 7.7: The results of different settings. In Figure 7]7(a) the siserendered with global illu-
mination and 8XxMSAA antialiasing. In Figure 7.7(b) the illumination model is replagea simple
diffuse term. In Figurg 7.7(t) the multisample resolution is reduced to 4xMS#A@Figurd 7.7(d)
the resolution is further reduced to 2xMSAA. The utilization of the progranenabits is shown in
the lower left of the figures. The blue bar represents the utilization of tred gitrader. The green bar
shows the utilization of the geometry shader.

load. In Figuré 7.7(B) the illumination model is reduced to a simple diffuse teriohwhplaces the
global illumination model described in Section 6.312.2. This has no affect aovirall performance
as can be made out by comparing diagfam 7.8(a) with diagram7.8(b). iadmech 7.8(8) displays
the utilization of the units while the diffuse term is used. The span of time consintbd shader
unit (USH) as well as the time which is spent on the per pixel operations (REB) remains almost
unchanged. Since illumination is implemented on a per vertex level and the main tioresiseed in
the rasterizer back-end the performance (see the frame time) is not odtlien

The pixel shader code of the render process is kept as short siblpgsee Sectidn 6.3.2.4). As
the pixel operations are utilized with almost the same amount as the pixel stied®iultisample res-
olution of the Alpha-to-Coverage feature is reduced next: In Figur€}t@é scene is rendered with

CHAPTER 7. RESULTS 77

8xMSAA Local lllumination 4xMSAA 2xMSAA

@) (b) (©) (d)

Figure 7.8: The utilization of the rendering pipeline units. The diagrams sheuirtte consumed
by the most utilized units during the rendering of Figure 7]8(a) (8xMSAMue[7.8(b)(Local Illu-

mination), Figuré¢ 7.8(€¢) (4xMSAA) and Figure 7.8(d) (2xMSAA). In batiagram the utilization of
the unified shader (USH), the raster operations (ROP) (for exampleepith test), the frame buffer
accesses (FB) and the overall frame time (FT) are displayed in milli-secdkgl€an be noticed,
the frame time significantly depends on the multisample resolution instead of whidluthimation

model does not have an effect on the overall performance (comparee[7.8(d) with Figurg 7.8(p)).

4xMSAA which results in an increased frame rate (FT) (80 frames pe@ns@c Both the rasterizer
operations (ROP) and the frame buffer accesses (FB) are redsi@ahde seen in diagrdm 7.8(c).
In addition, the multisample resolution is further reduced which results in atiadd performance
enhancement of 20 frames (Note the diagram 7].8(d)).

As already shown throughout the diagrams in Fiduré 7.8 the workload sigmilfy depends on
the multisample resolution whenever a great amount of billboards is rendérfitd respect to the
multisample resolution, the performance can be significantly improved. Hoywbeemultisampling
determines the visual quality of the blending process as already desiriBedtior 6.3.2)4.

7.3 Embedding

Most real-time applications employ scene graph engines in order to managentipéexity of large
scenes. The grass layer is embedded in such an engine to improve thigyusathe presented
techniques. A DirectX 10 version of the Nebula 2 engine therefore kmmiMendeE. The engine
consists of different layers each of which builds an abstraction to itsefijevel. This is acommon
way to build up a manageable structure on the top of the graphics API as tasinaFigurd 7.9(a).
All components of the scene graph are modularly built. Objects respectiméties are managed by

2The nebula engine is a copyright of Radon Labs GmbH.

CHAPTER 7. RESULTS 78

~®
—®)
=@
-®

API Abstraction Ohject @ @ ‘5239
Scene Graph Layer

(@) (b)

Figure 7.9: The scene graph layout. In Figure 7]9(a) the common lay@uengine is shown. The
scene graph structure into which the grass layer is embedded is preisefigare] 7.9(0).

a scene graph hierarchy. Each of those entities is represented hbyeagsaph node.

As illustrated in Figuré 7.9(b) the grass layer is implemented as a scene grdplaswell. This
node comprises all parts which are required by the grass system. Usiegegraph enables to dy-
namically extend or replace components of the system. The leaf nodes aftbe are implemented
in form of independent child nodes of the grass layer. These childsnadealso part of the scene
graph. This structure allows the leaf nodes to be looked up within the scepk.dn addition, scene
objects that are able to influence the grass layer are easily referemgegdttout the scene graph tree
as well. All the interfaces are well-defined. This makes it possible to offigglzer abstraction of the
supported functionality. The modularity of the components is further inetedse to the distributed
implementation. The CPU makes predecisions on the base of the octree nddhe &PU handles
each grass billboard (see Section 5.2 and Sectidn 6.3).

Chapter 8

Conclusion

This chapter is a conclusion of the provided diploma thesis concerning GB&Hlyesponsive grass
containing a short summary and further considerations. Some limitations amd &nhancements
are finally presented.

8.1 Summary

Real-time applications such as computer games do more and more simulate larglesoanes. Aside
from the need of real-time rendered trees, bushes and water thegss adweademand for responding
grass. To be able to meet the demands thousands of billboards are usedtéoan illusion of
dense grass vegetation. In combination with wind animation nice visual reselechieved. But
the visual perception is compromised by lack of interactivity: Objects are mahitough the grass
without leaving a trace. Due to prior hardware constraints a visually plgasilision reaction for a
large area of grass was unachievable. However, exploiting the poteritimidays GPUs, real-time
collision reaction can be achieved as presented in this diploma thesis.

The results of the research in grass simulation are used in order to composss layer on the
base of simple quadrilaterals. During the procedural generation protéise grass billboards they
are tiled to allow a better handling during runtime. Those billboards are madetdedo the GPU
as point lists. Furthermore, an animation technique for vegetation is employkd grass layer in
order to simulate wind movement. The resulting animated grass layer is preseokegpter four of
this diploma thesis.

Since prior research based on the simulation of grass is limited to rendedragémnation aspects
implementation strategies from other fields of research are consultedodqbms concerning particle
based collision handling as well as real-time cloth simulations are employed intorgeplement
a collision system as introduced in chapter five. The collision pipeline is splitwiicsubsequent
passes: A CPU-based process excludes grass tiles that are obviouaffected by any object colli-
sion. Within the geometry shader, implicit object representations are emplogedect penetrations
and compute a collision response on the base of each vertex. As thateqpacessing of individual

79

CHAPTER 8. CONCLUSION 80

vertices may lead to visually unpleasant distortions, a cloth model is evalugteeksterve the overall
shape of the grass. After a collision has taken place, the GPU-basedibadiiendling recovers the
simple quad shape of the deformed billboards. The restrictions of the strefmut stage make it
necessary to spread out the billboards data over two point lists.

lllumination as a major element of every realistic landscape-imitation was prdsartikeaptef 5.
To integrate the grass layer into a dynamic global lighting environment, pragechpradiance vol-
umes are employed. Tri-linear interpolation inside the volume allows a computétiocident light
for each vertex of the grass billboards approximating global illuminationgoh @ertex. The Gouraud
shading is applied during the assembly of the quad primitives. Semi-transshiaded pixels are
accomplished by multiplying the decal color with the reflected incident light. Atph@overage
blending concludes the process.

The results presented in chapter seven proof that the generation ob&4#ld responsive grass
(in real-time) is no longer an insolvable challenge. The visual quality in dadense vegetation and
the good performance achieved give a proof of the great suitability dfrtheementation strategies
for achieving large responsive grass layers in todays real-time appfisatio

8.2 Further Considerations

This diploma thesis presents a collision pipeline which swaps data from ofeg tminother while
responding to collisions. The collision test as well as the response is bpsedeach vertex. A
subsequent step restores the shape of the mesh. This processilyaneeastended as described in
the following section. Additionally, the used techniques might be applicabletfar plants such as
bushes, herbs and crop.

The clearly separated and modular design allows the techniques to beteddgta a large range
of real-time applications. Furthermore, as the billboard-based approactoimmon way to model
grass layers in todays computer games, these implementations can easilystedadjlowever, ap-
plications that are already GPU bound will not profit from this approach.

8.3 Limitations and Future Work

The approach presented throughout this diploma thesis grants the availahiggponsive grass for
dense covered landscapes. The results are demonstrating that colisponse works fine for regions
where the flat structure of the grass billboards is hardly made out (sgier€€.1.1). However, in
areas where grass is planted sparsely, for example at the bordeesgrfls layer, due to the coarse
tessellated mesh of the billboard the visual impression of the deformed bilkbisardufficient. Two
different approaches, which might also be combinable, might be promigieg wying to solve this
problem: On the one hand the collision handling could be made independdre data available
for a single primitive. In that case the collision handling for each billboardld/be distributed over

CHAPTER 8. CONCLUSION 81

several streaming passes which allow for more refined meshes. On thédatitethe quad mesh of
the deformed billboard can be improved by using an interpolation of a higlyzed.

8.3.1 Distributed Spring Relaxation

The billboard’s collision response essentially works on each vertexcdlligion occurs, the topology
information is absolutely necessary in order to preserve the shape ofab® (gee Sectidn 5.2.8.6).
However, as a spring affects only neighboring vertices, the collisiqmorese can be distributed to
several passes:

Initially, the collisions are resolved during a vertex shader Ed&sa result of the per vertex based
collision response unpleasant distortions of the shape may occur. dbeinsly, the cloth simulation

model is applied similar ta [Zel07]:

Figure 8.1: The primitive independent spring relaxation. The figure shbe relaxation steps for
the quads of a billboard. During a shader pass no relaxed quad mayasshartex with it's adjacent
quads. As a consequence four relaxation steps for a billboard adedhee

Four index lists are covering all spring constraints of a billboard as shoviAigure[8.1. The
spring mesh of a billboard is relaxed in four streaming passes based ds. gDaring a geometry
shader pass a vertex is only subject to a single quad (one line with adjacenother words, those
quads are relaxed in a render call that does not share a vertexedqi@mily, the springs are relaxed
in four steps covering disjunctive quads. After the application of edelxaton pass the unaffected
vertices have to be streamed in order to avoid a distribution of the currerddnitilvertices over both
vertex buffers. Finally, the collisions are resolved and the shape oféss gillboard is preserved.

It needs to be pointed out that this process causes some additionalmibek©@PU. The index lists
have to cover all distorted grass billboards in order to avoid a sepafakatien for each billboard.
Thus, the lists have to be created dynamically as the amount of collided biltheariés. Moreover,
the number of system calls is enlarged.

CHAPTER 8. CONCLUSION 82

Figure 8.2: The curve based assembly. The figure shows the interpotatieme for an Bzier
surface adopted for the grass billboard. The grass billboard regliffesent degrees of interpolation
along different directions: First each of the six quads is interpolated katilge The two resulting
guads are interpolated bi-linearly as well. A linear interpolation between thdtirey points yields
the final interpolated vertex.

8.3.2 Curve based Primitive Interpolation

The billboard’s deformed mesh consists of six quads (see Séction 6.3f th@)assembled primitives
are rendered directly, the billboard’s shape looks unnaturally anguBezier interpolation between
the mesh’s vertices might obtain smoother results, as is shown in [Eiglire &2:xXT8 control points
require different degrees of interpolation among each of the billboaidiensions[[MH99]. The
parameter range is partitioned into numbers of quads which are necémstmy resolution desired.
As a result the mesh regarding to the number of quads is much smootherreTestudinates and
irradiance information are interpolated as well.

As the angular look of the deformed billboards is only visible from a veryeclossition, an
additional distance based level of detail technique should be applied iiriadeoid interpolation of
the billboards further away from the viewer.

Note that some information has to be stored per vertex. E.g. the indeg wéttex is needed in order to compute the
wind animation with respect of the vertex location in the mesh.

Appendix A

GPU-Based Distance Maps

As GPU-Based distance maps, sometimes called depth maps, are used fibrebathision test as
well as for the occlusion term during the generation of the occlusion volimthjs section a short
overview of them is presented. Further information can be found in [KAAR8r [VSCO1]. Implicit
representations like distance maps provide distances to any point within theogisnaps unit view
volume. Hence, the distance information can directly be used for penettatitmrespectively oc-
clusion tests among objects. Moreover distance maps are especially of ingeoftet GPU based
computations. On the one hand the GPU offers the advantage to easilatgetiem during one
single render call; On the other hand the GPU is optimized for texture lookups.

As a first step the projection space is defined as described in sectibn Aeldidtance values
are obtained by transforming objects to the distance map’s projection sgesdctio Al2). The
distance map then allows for distance comparisons as described in the slesiiogl A.3.

A.1 The Projection Transformation

For the generation of the distance map a projection matfixo_py; € R*** is required which
transforms world space positions into the distance map’s projection splaeefdre, the near and far
clipping plane, the width and height of the projection as well as the origin dfii€ space are com-
puted in world coordinates in order to build the transformation matrix. Initiallyptiegection basis is
specified in world space coordinates= (zg, 1, z2) andy = (yo,y1,y2) andz = (2o, 21, 22) with
the restriction that all vectors have unit length and yield an orthonorma.@&en almost one single
projection directiorz is specified. The setup is shown for a random basis in figure A.1. Aftdeya
the center of the projection plamehas to be defined in world space coordinates. If the whole object
or scene is covered, the center then is the closest point to them withtrespiee projection direction
z and can be determined using bounding volumes. As no point is closer todjeetpn plane, in
that case the near plane value is set to Ee#kx:cordingly the far clipping plang then is equal to the
distance of the projection center to the farthest point of the object résglgscene. The far plane is

INote that orthographic projection is necessary to do so. Perspeatieziion expects a value greater zero

83

APPENDIX A. GPU-BASED DISTANCE MAPS 84

Figure A.1: The distance map setup. The transformation for the orthagramjection is setup by
the bounding volume and the projection directioriThe generated map then stores relative distances
to the scene geometry with regard to the projection space.

set in order to account for the accuracy of the distance values [MHR®thermore the widtlhvy and
heighth of the projection plane is computed. This can be done on the basis of aibgwatlime as
well, e.g. a bounding box, and is necessary when the whole mesh orlsaete be covered as it is
done normally. By using all parameters, the projection matrix is set up (a%it RifectX):

220 Yo 20 0
2
T ZY1 Z1 0
Twe—pym = .) ; (A.1)
T2 Y2 722 0
—xec —yec —zec 1

where Ty o py can be thought of as a concatenation of two matrices, a viewing matrix and a
orthographic projection matrla(.Both then define a view volume in the world space which encloses
the object respectively scene.

A.2 The Projection

After the projection transformatiol'yy-_. pas is computed, as is described throughout the prior sec-
tion, the verticesr = (z, y, 2, 1) of the objects then are projected by employing the graphics hardware.
Each vertex of those meshes that should be contained in the distance nedgprthisrtransformed us-

ing the following transformations:

/

v =v Tocowec Twe—pm (A.2)

2refer to [MH99] for a overview of viewing matrices and projections

APPENDIX A. GPU-BASED DISTANCE MAPS 85

wherev' = (v,,v,,v,,1) is the vertex which is transformed from the mesh’s object space to the
world space by usind oc_.w¢ and then transformed to the depth map’s projection space using the
transformatioriCyw c— pas.

In the depth map’s NDC space the coordinate of the transformed vertex then corresponds to
the relative distance of the vertex to the projection plane. Thus, the smallaltieeof=" the smaller
the distance of the vertex is to the projection plane. Next, the vericésnsformed to the unit cube
are rasterized. The resulting fragments then are used to assign relatargcds to each pixel of the
2D distance map at the end of the rendering process. Thereatfter, téngcdisnap can be used to read
relative distance value&st(x, y) € R at the pixel coordinateis, y) as used during the distance tests

as described in the following section.

A.3 The Distance Comparison

After the distance map is filled, the map in combination with the orthographic prajetcaosfor-
mation can be used to test for occlusion respectively penetration. Thaatistdormation is looked

up using thgz,y) € [0, 1]2 coordinates in the distance map’s projection space. Therefore, the point
which should be tested either for collision or occlusion is transformed usinggtime projection trans-
formation applied during the creation:

p =p Twe_pum , (A.3)
wherep ' = (p,.p,,p.,1) is the projected point any ¢ pas is a transformation from the world
coordinate space to the projection space with respect of the projectiatiatire Please note that
the point already has to be defined in world space coordinates. Nowpedahcan be tested for
penetration: The point penetrates or is occluded whenever the followindjton turns out to be
true:

p. > dist(p,.p,) - (A.4)

Before the lookup, the coordinates of the transformed p(q)jgtp;) € [~1,1]? has to be mapped to
the distance map’s coordinate spéeel |2.

Besides, each point that is inside the view volume of the distance maps pnojeptce (see
sectior A1) after transformation is located in the unit c{ibg, 1] of the distance map’s projection
spac@ Points that are outside of the view volume before projection mapped to theadigtzap’s
border. Sampling the border returns an initial background value. Thigbaund value is an extreme
large value which does not satisfy equafion]A.4, thus, the point is notaed]u

3Note that DirectX maps the coordinateto [0, 1] instead of —1, 1]

Bibliography

[BCFT05] S. Behrendt, C. Colditz, O. Franzke, J. Kopf, and O. Deusse@alistic real-time ren-
dering of landscapes using billboard cloudSomput. Graph. Forum24(3):507-516,
2005.

[Ber97] G.vd. Bergen. Efficient collision detection of complex deformabbelels using AABB
trees.Journal of Graphics Tools: JGT2(4):1-14, 1997.

[BFGS03] J. Bolz, I. Farmer, E. Grinspun, and P. Sclar. Sparse matrix solvers on the gpu:
conjugate gradients and multigrid. 8iIGGRAPH '03: ACM SIGGRAPH 2003 Papers
pages 917-924, New York, NY, USA, 2003. ACM.

[BHOZ2] B. Bakay and W. Heidrich, editorkeal-Time Animated Grasg002.
[BLO6] P. Brown and B. Lichtenbelt. Géxt. geometryshader4, 2006.
[Bly06] D. Blythe. The direct3d 10 systerACM Trans. Graph.25(3):724—734, 2006.

[Bot06] A. Botorabi.Shader X5chapter Animating Vegetation Using GPU Programs, pages 141
—175. Charles River Media, 2006.

[BPB0O6] K. Boulanger, S. Pattanaik, and K. Bouatouch. Renderiagsgin real-time with dy-
namic light sources and shadows, 2006.

[Bro08] P. Brown. Glext.texturearray, 2008.

[Bun05] M. Bunnel. GPU Gems 2chapter Dynamic Ambient Occlusion and Indirect Lighting,
pages 223-233. Addison-Wesley, 2005.

[BW9S] D. Baraff and A. P. Witkin. Large steps in cloth simulation SIGGRAPHpages 43-54,
1998.

[CGO3] M. Craighead and D. Ginsburg. @tb occlusionquery, 2003.

[CLO7] G. Cadet and B. écussan. Fast approximate ambient occlusionSHBGRAPH '07:
ACM SIGGRAPH 2007 postensage 191. ACM, 2007.

86

BIBLIOGRAPHY 87

[Dog07]
[Eri04]

[FGLO3]

[FS04]

[GLM96]

[GLMO5]

[GPR'03]

[Gra03]

[Gre04]

[GRLMO3]

[GTGB84]

[HEE+02]

[HTGO3]

[HTGO04]

M. Doggett. Radeon hd 2900. Graphics Hardware 20072007.
C. Ericson.Real-Time Collision DetectiorMorgan Kaufmann, December 2004.

A. Fuhrmann, C. Grof3, and V. Luckas. Interactive animatibolath including self
collision detection. INWSCG 2003.

D. Fellner and S. Spencer, editdRendering Forest Scenes in Real-Tjrd@04.

S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hiefacal structure for
rapid interference detectionComputer Graphics30(Annual Conference Series):171—
180, 1996.

N. K. Govindaraju, M. C. Lin, and D. Manocha. Quick-cullidéast inter- and intra-
object collision culling using graphics hardware. 'R '05: Proceedings of the 2005
IEEE Conference 2005 on Virtual Realitgages 59-66, 319, Washington, DC, USA,
2005. IEEE Computer Society.

S. Guerraz, F. Perbet, D. Raulo, F. Faure, and M.-P. Cani, sdit®rocedural Approach
to Animate Interactive Natural Sceneri¢EEE Computer Society, 2003.

Kris Gray. Microsoft DirectX 9 Programmable Graphics PipelineMicrosoft Press,
Redmond, WA, USA, 2003.

S. Green. GPU Gems chapter Real-Time Approximations to Subsurface Scattering,
pages 263 — 278. Addison-Wesley, 2004.

N. K. Govindaraju, S. Redon, M. C. Lin, and D. ManochdJIZIDE: Interactive col-
lision detection between complex models in large environments using graphits ha
ware. In W. Mark and A. Schilling, editor®Rroceedings of the 2003 Annual ACM
SIGGRAPH/Eurographics Conference on Graphics Hardware (EGG}pages 25—
32, Aire-la-ville, Switzerland, July 26-27 2003. Eurographics Asdimria

C. M. Goral, K. E. Torrance, D. P. Greenberg, and Bt&ke. Modeling the interaction
of light between diffuse surfaceSIGGRAPH Comput. Graphl8(3):213-222, 1984.

M. Hauth, O. Etzmuss, B. Eberhardt, R. Klein, R. Sarlette, M. SattleDaubert, and
J. Kautz, editorsCloth Animation and Rendering — Eurographics 2002 Tutorial Notes
volume T3, Saarlircken, Germany, September 2002. Eurographics.

B. Heidelberger, M. Teschner, and M. H. Gross. Real-timametric intersections of
deforming objects. In Thomas Ertl, editvMV, pages 461-468. Aka GmbH, 2003.

B. Heidelberger, M. Teschner, and M. H. Gross. Detectibreallisions and self-
collisions using image-space techniquesWBCG pages 145-152, 2004.

BIBLIOGRAPHY 88

[Hub96] P. M. Hubbard. Approximating polyhedra with spheres for timgeal collision detec-
tion. ACM Trans. Graph15(3):179-210, 1996.

[IC02] J. R. Isidoro and D. Card. Animated grass with pixel and vert@dsrs. In Wolfgang
Engel, editor,Direct3D ShaderX: Vertex and Pixel Shader Tips and Tritdsrdware,
Plano, Texas, 2002.

[Kaj86] J. T. Kajiya. The rendering equation. Rroceedings of Siggraph '8®ages 143-150,
1986.

[KCS07] A. Kharlamoy, |. Cantlay, and Y. Stepanenk8PU Gems 3chapter Next-Generation
SpeedTree Rendering, pages 69-92. Addison-Wesley, 2007.

[KHM +98] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. ZikaEfficient col-
lision detection using bounding volume hierarchies of k-dofiSEE Transactions on
Visualization and Computer Graphic$(1):21-36, 1998.

[KLRS04] A. Kolb, L. Latta, and C. Rezk-Salama. Hardware-based lsitiotn and collision detec-
tion for large particle systems. HWWS '04: Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS conference on Graphics hardwaeges 123-131, New York, NY, USA,
2004. ACM.

[KPO3] D. Knott and D. K. Pai. CindeR: Collision and interference d&bedn real-time using
graphics hardware. I&raphics Interfacepages 73-80, 2003.

[LAMO1] T. Larsson and T. Akenine-Moller. Collision detection for contously deforming bod-
ies, 2001.

[Lan02] H. Landis. Production-ready global illumination. Siggraph Course Note2002.

[LG98] M. C. Lin and S. Gottschalk. Collision detection between geometric lsodesurvey.
In Robert Cripps, editoiRroceedings of the 8th IMA Conference on the Mathematics of
Surfaces (IMA-98)volume VIII of Mathematics of Surfacepages 37-56, Winchester,
UK, September 1998. Information Geometers.

[McMO03] A. McMahan. Immersion, Engagement, and Presence - A Method for Analysing 3-D
Video Gameschapter 3, pages 67—85. Routledge Taylor & Francis Group, 2003.

[MH99] T. Moller and E. HainesReal-Time RenderingA. K. Peters Limited, 1999. In press.

[Mye06] K. Myers.Shader X5chapter Alpha-to-Coverage in Depth, pages 69 — 74. Charles River
Media, 2006.

[NVO06] Nvidia geforce 8800 gpu architecture overview. Technieglort, Nvidia Corporation,
2006.

BIBLIOGRAPHY 89

[NX006]

[0at06]

[PCO1]

[Pel04]

[PGO04]

[Pro95]

[RamO05]

[Sat06]

[Scho6]

[Sek04]

[SKS02]

[Sou07]

[TKZ+04]

[VSCO1]

[WC08]

Microsoft directx10: The next-generation graphics api.hrecal report, NVidia Corpo-
ration, 2006.

C. Oat. Shader X5chapter Irradiance Volumes for Real-time Rendering, pages 333 —
357. Charles River Media, 2006.

F. Perbet and M.-P. Cani, editofmimating prairies in real-timg2001.

K. PelzerGPU Gemschapter Rendering Countless Blades of Waving Grass, pages 107
—121. Addison-Wesley, 2004.

M. Pharr and S. GreenGPU Gems chapter Ambient Occlusion, pages 279 — 292.
Addison-Wesley, 2004.

X. Provot. Deformation constraints in a mass—spring model taidestgid cloth be-
havior. InGraphics Interface '95pages 147-154, May 1995.

R. RamrajGame Programming Gems &hapter Dynamic Grass Simulation and Other
Natural Effects, pages 411 — 419. Charles River Media, 2005.

R. SatheShader X5chapter Collision Detection Shader Using Cube-Maps, pages 533
—542. Charles River Media, 2006.

T. Scheuermann. Render to vertex buffer with d3d9SIBGRAPH 2006 Course 3:
GPU Shading and Renderingugust 2006.

D. SekulicGPU Gemschapter Efficient Occlusion Culling, pages 487 — 503. Addison-
Wesley, 2004.

P.-P. J. Sloan, J. Kautz, and J. Snyder. Precomputed cadiansfer for real-time render-
ing in dynamic, low-frequency lighting environmentACM Trans. Graph21(3):527—-
536, 2002.

T. SousaGPU Gems 3chapter Vegetation Procedural Animation and Shading in Crysis,
pages 373 — 407. Addison-Wesley, 2007.

M. Teschner, S. Kimmerle, G. Zachmann, B. Heidelberger, L. Raaf A. Fuhrmann,
M.-P. Cani, F. Faure, N. Magnetat-Thalmann, and W. Strasser. Colligtattibn for

deformable objects. IfProc. Eurographics, State-of-the-Art Repopages 119-135,
Grenoble, France, 2004. Eurographics Association.

T. I. Vassilev, B. Spanlang, and Y. Chrysanthou. Fast eatmation on walking avatars.
Comput. Graph. Forun0(3), 2001.

C. Woolley and N. Carter. Giv_transformfeedback, 2008.

BIBLIOGRAPHY 90

[Wha05] D. Whatley.GPU Gems 2chapter Toward Photorealism in Virtual Botany, pages 7-25.
Addison-Wesley, 2005.

[Wil78] L. Williams. Casting curved shadows on curved surfac@&GRAPH Comput. Graph.
12(3):270-274, 1978.

[WNDS99] M. Woo, J. Neider, T. Davis, and D. Shrein@penGL Programming Guide: The Official
Guide to Learning OpenGL, Version 1 &ddison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

[Zac98] G. Zachmann. Rapid collision detection by dynamically aligned cegs1r1998.

[Zel07] C. Zeller. Cloth simulation. White paper, NVidia, 2007.

	Introduction
	Related Work
	Grass Simulation
	Representation
	Animation
	Rendering
	Global Illumination
	Reflectance Model
	Blending

	Collision Detection
	Cloth Simulation

	Modern Graphics Hardware
	Graphics Pipeline
	Primitive Based Programming
	Streaming Architecture

	Unified Shader Model

	The Animated Grass Layer
	Grass Billboards
	Grass Objects
	The Memory Layout
	Grass Textures

	Grass Tiles
	The octree structure
	Minimizing Render Calls

	Procedural Generation
	The Influence Maps
	The Generation Pipeline
	Plant Cover Information
	Spatial Clustering
	Procedural Grass Billboards

	Wind Animation
	The Wind Translation
	The Billboard's Animation

	The Collision System
	Implicit Collider Object Representations
	Bounding Spheres
	Depth Cubes
	The Collision Mesh
	The Distance Maps

	The Collision Pipeline
	CPU-Based Predecision
	Colliding Grass Tiles
	Recovering Grass Tiles

	Updating Grass Tiles
	The Billboard's Collision Handling
	Refinement
	Recovering
	Bounding Sphere Based Preclusion
	Collision Detection
	Resolving Collisions
	Preserving the Grass Shape

	The Rendering System
	The Billboard's Rendering Equation
	The Irradiance Volume
	Volume Set-Up
	Ambient Occlusion Information
	Occlusion Term
	Occlusion Quantities

	Irradiance Information

	The Rendering Process
	Culling Grass Tiles
	Viewport Culling
	Occlusion Queries

	Shading Grass Billboards
	Dynamic Irradiance Sampling
	Per-Vertex Illumination
	Primitive Assembly
	The Final Shape

	Results
	Visual Quality
	The Collision Handling
	The Rendering System

	Performance Analysis
	Collision Handling
	Rendering Process

	Embedding

	Conclusion
	Summary
	Further Considerations
	Limitations and Future Work
	Distributed Spring Relaxation
	Curve based Primitive Interpolation

	GPU-Based Distance Maps
	The Projection Transformation
	The Projection
	The Distance Comparison

	Bibliography

