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Übersicht

Große und naturgetreue Umgebungen stellen oft einen unverzichtbarenBestandteil der heuti-

gen Computerspiele dar. Um die Erwartungen der Spieler an lebendige Spielräume zu erf̈ullen und

eine ḧohere Immersion zu bewirken wird daher viel Wert auf die Implementierung von Interakti-

onsm̈oglichkeiten mit der Spielumgebung gelegt. Für eine m̈oglichst realiẗatsnahe Simulation der

Grasfl̈ache wurden bislang vor allem Ansätze bez̈uglich Animation und Rendering entwickelt. In

diesem Zusammenhang stellt meine Diplomarbeit eine effiziente Methode zur Simulation von de-

formierbarem Gras vor, die in Echtzeit auf moderner Graphikhardwareumgesetzt wird. Die einzel-

nen Grasb̈uschel werden bei dieser Implementierungsstrategie in zwei unterschiedlichen kollisions-

abḧangig ausgeẅahlten Typen von Gras- Billboards approximiert. Erstmalig in der neuen Graphik-

hardware vorhandene Stufen in der Rendering-Pipeline ermöglichen dabei eine Kollisionsbehandlung

direkt auf der GPU. Die Reaktion auf Szeneobjekte erfolgt auf Basis von Distance Maps. Wird an-

hand der Auswertung dieser Daten eine Kollision des Szeneobjekts mit einemoder mehreren Gras-

Billboards erkannt erfolgt die Verformung der betroffenen Billboards. Im Fall einer Kollision und

der daraus resultierenden Verformung der Billboards wird eine unerwünschteÜberdehnungen mit

Hilfe von entfernungsabḧangigen Federn zwischen den Vertices unterbunden. Während des darauf

folgend ablaufenden Regenerationsprozesses, der im Rahmen dieserArbeit eigens entwickelt wurde,

wird die urspr̈ungliche Form der Billboards wieder hergestellt. Dieser Regenerationsprozess stellt eine

gute Performanz sicher. Die zu rendernden Primitive des Billboards werden erst ẅahrend der Rende-

ringphase zusammengesetzt. Ein auf Ambient-Occlusion basierendes Irradiance-Volumen erm̈oglicht

die dynamische Beleuchtung der Vertices. Das letztendliche Erscheinungsbild der Gras-Ebene wird

schließlich anhand des Blendings auf Basis von Alpha-to-Coverage generiert. Abgesehen von der Vor-

stellung der theoretischen Konzepte, die diesen Techniken zugrunde liegen, wird im Rahmen dieser

Ausarbeitung abschließend auch die Performanz der auf der GPU stattfindenden Prozesse besprochen.
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Abstract

Often large natural environments are essential for todays computer games. Interaction with the

environment is widely implemented in order to satisfy the player’s expectations of a living scenery

and to help to increase the immersion of the player. Therefore every effort is made towards the imple-

mentation of options for interaction with the game-environment. However, in order to achieve a grass

simulation as realistic as possible mainly animation and rendering approaches for grass have been

researched so far. Within this context my work describes an efficient way to simulate a responsive

grass layer with todays graphics cards in real-time. Using the implementation strategie introduced

by this diploma thesis clumps of grass are approximated by two billboard representations. Newly

introduced stages of the rendering pipeline, first existing on the new graphics hardware, allow the

collision handling to take place on the GPU. Distance maps are employed to respond to scene ob-

jects. If the analysis of the distance maps indicates a collision of the scene object with one or more

gras billboards the deformation of the concerned billboard takes place. Incase of collisions and the

resulting deformation of the billboards, length constraints preserve the shape of deformed billboards.

The recovering process developed throughout this thesis takes place after the deformation caused by

colliding with the scene object and restores the original that is to say the undeformed shape for each

of the billboards. Additionally, this regeneration process garantees the good overall performance. The

primitives of the billboards are assembled during the rendering process. Their vertices are dynami-

cally lit within an ambient occlusion based irradiance volume. Alpha-to-Coverage is used to create the

final appearance of the grass layer. Besides the presentation of the theoretical concept that provides

the basis of the above-mentioned techniques, the performance concerning the GPU based handling is

discussed within the latter part of the examination thesis.
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Preface

This diploma thesis describes the results achieved during my diploma thesis project which was

enabled by my supervisors Dr. Christof Rezk-Salama and Prof Dr. Andreas Kolb, Computer Graphics

Group of the University of Siegen. The subject of my work was chosen out of personal interest and is

not affiliated to any university project.

Within the project work I extended a standard approach concerning the simulation of grass uti-

lizing research on the area of cloth simulation and hardware based collision handling to simulate

responsive grass. The workload of the collision handling is shifted to the GPU in order to achieve

real-time frame rates. I implemented the system onto the basis of a modern graphics engine working

on DirectX 10.

The work consists of 8 chapters. The first chapter starts with an explanation of the motivation

and gives a short overview of the system. Chapter 2 deals with the previous work in the field of grass

simulation, collision detection and cloth simulation. The potentialities of todays GPUs are presented

in brief in Chapter 3. The basic components of the grass layer are described in Chapter 4, including

the animation of the grass billboards. Being the main component of this diploma thesis Chapter 5

tells how to achieve the responsiveness to dynamic objects which are moving through the grass layer.

Chapter 6 presents the rendering process which utilizes a global illumination model in order to achieve

a realistic shading of the grass primitives. The description of the responsive grass layer is concluded in

Chapter 7 by a presentation of the visual results. In addition the performance concerning the collision

system and the rendering system is analyzed. The last chapter summarizesthe diploma thesis main

matters and closes with a preview of future work. Finally, the appendix describes GPU-based distance

maps as they are utilized throughout the system.
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Abbreviations and Symbols

1D One Dimensional

2D Two Dimensional

3D Three Dimensional

GPU Graphics Processing Unit

CPU Central Processing Unit

API Application Programming Interface

AABB Axis Aligned Bounding Box

MSAA Multisample Anti-Aliasing

T matrix filled in column-major order

⊗ component based vector multiplication

• scalar product between two vectors

× cross product between two vectors

‖d‖ length of a vector

|a| amount of scalar value

max(a, b) maximum of a and b

min(a, b) minimum of a and b

floor(a) next smaller integer of a

ceil(a) next higher integer of a

norm(x) the normal at coordinatex ∈ [0, 1]2

dist(x) the distance at coordinatex ∈ [0, 1]2

vol(x) look up into a 3D volume at coordinatex ∈ [0, 1]3

env(t, dtx, dty) derivative based sampling function at coordinatet ∈ [0, 1]2
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Chapter 1

Introduction

State-of-the-art 3D games demonstrate the power of currently available graphics hardware for render-

ing exciting natural sceneries in real-time. In recent years this task has turned out to be difficult due

to the huge number of plants. Therefore, most research applied to natural sceneries focused on the

rendering and animation of a great number of plants (blades of grass, shrubs, trees etc.) in real-time.

Static level design used in many previous implementations is more and more replaced by dynamic

environments that can be modified in real-time throughout the gaming process.Due to the fact that

natural behavior is better approximated in the game, the player feels a higher immersion while play-

ing [McM03]. The more of the player’s expectations are satisfied the more the realism of the scene

is effected. Furthermore, the dynamic environment is becoming more and morea part of the game

logic: Trees are chopped to obstruct the path, soldiers are creeping well disguised in the bushes and

objects like boxes need to be moved in order to follow up the path. Following this trend, this work

takes dynamic environments one step further by integrating responsive real-time simulation of grass.

Besides the more natural look-and-feel, responsive grass will significantly improve the challenges in

game play and tactics of modern games.

An efficient technique for rendering and animation of responsive grass is developed, which inte-

grates well into existing game engines. The implementation targets Shader Model4 graphics boards,

including geometry shaders and stream output. Collision detection with dynamic scene objects, re-

sponse and recovering are handled directly by the GPU. The system comprises the following compo-

nents:

• Procedural Generation of Billboard Sets:

For a given terrain mesh, billboards for grass blades are generated automatically by a geometry

shader using a set of texture images which define the extent, direction of growth and the amount

of randomness for the plant cover. This geometry shader is executed once for each tile of terrain,

and the results are stored in local video memory using the stream-out capabilities.

• Dynamic Objects:

Dynamic objects capable of colliding with the plant cover are represented bydepth cube maps

7
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for efficiency. These cube maps are computed by projecting the object’s mesh onto the faces of a

bounding cube. They are updated for each frame to account for animated objects. Additionally,

for coarse collision tests, the objects are represented as a union of a fixed number of bounding

spheres.

• CPU Predecision:

At run-time a coarse pre-test for collision is performed by the CPU. The spatial distribution of

the complete plant cover is represented as an octree of axis-aligned bounding boxes. The CPU

checks whether or not the collider objects intersect with an octree node. According to the results

of this test, detailed collision detection, reaction and recovering is performedon the GPU.

• Collision Pass:

If a collision is possible, a geometry shader first performs a bounding sphere test, and even-

tually a detailed collision test against the cube-map representation of each colliding object. If

a collision is detected, cloth simulation techniques based on spring models are employed for

collision reaction.

• Recover Pass:

After a collision has occurred the plant cover will smoothly recover. Therefore, a tile of bill-

boards will stay active for a fixed amount of time after collision. A separate geometry shader

moves the grass blades back to their original position. After the recover time has elapsed, the

billboards will be again handled as simple quads.

• Runtime Tessellation:

Depending on the outcome of the collision test, a billboard is represented by a simple quad

or tessellated into a small mesh to account for possible deformations (collision or recovering

phase).

• Rendering: To integrate ground vegetation into a dynamic global lighting environment, a pre-

computed irradiance volume is employed. These technique is adapted for realistic rendering

of dynamic ground vegetation. To avoid expensive depth-sorting of the semi-transparent bill-

boards, Alpha-to-Coverage allows order-independent rendering on the GPU while maintaining

a consistent visual appearance.



Chapter 2

Related Work

Previous research in simulating interactive grass or plants tends to focus either on realistic rendering or

on real-time animation as cited in Section 2.1. The lack of grass-interaction makesit necessary to go

through a more general range. Therefore studies of hardware based collision detection are employed

as revealed in Section 2.2. Furthermore, the cloth models that have influenced the design of the grass

structure are outlined in Section 2.3.

2.1 Grass Simulation

In general, previous work on grass simulation deals with representation, real-time animation, and

illumination aspects. All three subjects which made up the research on grass are described throughout

this section.

2.1.1 Representation

As nature scenes often include a lot of plants (blades of grass, shrubs, trees etc.) the rendering of

a high number of them is still challenging. Furthermore, they cannot be displayed with complex

geometry in real time. Therefore two main strategies have been applied to solvethe problem:

Since vegetation is visible from near to very far distances, many of the approaches make use of

level of detail (LOD) techniques to preserve the real-time constraint. If plants are close to the camera,

lit and shadowed geometry [GPR+03, BPB06], a 3D volume representation [PC01], or a cluster of

billboards [BCF+05, FS04] are used to display them. If the distance increases, they are substituted by

vertical and horizontal slices of 2D textures. Bakay et al. [BH02] manage the complexity without any

LOD approach. They render displaced maps with semi-transparent shellsto generate the illusion of

grass. Even so it is not easy to apply collision detection or reaction in real-timeon grass blades that are

approximated by these volume rendering approaches. Guerraz et. al. , however, presented an approach

to tread on the grass layer. A primitive is moved along the character’s trajectory while affecting the

procedural animation process of the grass [GPR+03]. Nevertheless there still is no possibility to react

9
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to collision, based upon the object’s geometry. Additionally, depending on thearea where grass is

planted, a great amount of memory is consumed by such volume rendering approaches. Hence an

aperiodic tiling scheme is used to solve the problem [BCF+05, FS04, BPB06]. In such a scheme, the

vegetation is arranged by randomly repeated tiles which store the required LOD data for a chunk of

plants. Thus, the reuse of data amplifies the problem of collision response toa local tile.

Another approach to render complex geometry, especially grass with repetitive detail, is image

based rendering. Therefore, view-aligned quads with a semi-transparent 2D texture, so called bill-

boards, represent an amount of complex geometry [MH99]. Thus, the rendering based on images

is much more efficient than using classical geometry and accordingly, the collision response is even

easier to implement. Former suggestions use randomly distributed [IC02] and fixed aligned billboards

[PC01] in order to approximate grass blades, but this leads to a lack of parallax effect. They are

arranged view aligned [Wha05] and crossed [Pel04] in order to ensure a better volumetric illusion,

depending on the line of sight. All vertices are stored in one large buffer that can be rendered in one

single draw call [Wha05].

2.1.2 Animation

So far, there exist various techniques to animate grass billboards affected by wind on the GPU. Almost

all of them project the grass vertices onto a two dimensional grid. Afterwards, trigonometric functions

produce one or more positions depending on periodic values for each grid point. Ramraj [Ram05]

even extends the model by a wave propagation model, common for water surfaces. In addition to the

result determined by the function, each grid point is affected by its neighbours. The result is used

to either rotate or bend the stalk of grass. In [Pel04] the time and position of thesprite’s vertex are

taken into account as a parameter to the trigonometric function. Afterwards the function’s output is

used to translate the vertex along the wind direction. Additionally a blend weightis assigned to each

vertex premultiplied with the resulting bend value before the displacement in order to simulate the

grass being more or less rigid [Wha05, Bot06]. A further elaboration of the approach is delivered

by Tiago Sousa [Sou07]: A texture stores a bending sensitivity for eachvertex. To receive the final

displacement of a vertex, the shader sums up triangle waves to generate thedisplacement direction

which finally is multiplied by the per vertex stiffness as well.

2.1.3 Rendering

The rendering of vegetation is a complex task. The research affects all aspects of physically correct

illumination models namely the global illumination, the local reflection properties, andthe correct

simulation of the semi-transparent nature of grass as a part of the material.
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2.1.3.1 Global Illumination

Dynamic and global illuminations of natural sceneries are rather difficult without even considering the

great number of plants. The equation for global illumination [Kaj86, GTGB84] cannot be evaluated

for complex scenes in real-time. Nonetheless, many approximation techniques yield good results.

In [BCF+05] the vegetation is lit by precomputing the radiance transfer for each plant: As

spherical harmonics define an ortho-normal basis over the sphere, therendering equation, which is

parametrized over the hemisphere, can be projected onto the so called spherical harmonics near the

object’s surface. As a result, a transfer vector filled with lighting coefficients is determined. Such a

vector on the surface defines how the surface reacts to incident light atthat point and consequently can

be used for fast illumination during run-time: The lighting environment is projected onto the spherical

harmonics basis as well. In the diffuse case, a dot product of the two coefficient vectors results in a

realistic illumination based upon the current lighting situation [SKS02]. Behrendt et. al. [BCF+05]

note that natural environments are illuminated by a low-frequency lighting. Thus only two or three

bands are needed to pre-process their plants, which results in less coefficients per vertex.

Moreover, an approach called ambient occlusion is used to precompute occlusion information for

a static natural scene [BPB06]. ambient occlusion was first introduced by Hayden Landis [Lan02]. In

a preprocessing step, an accessibility value as well as an average incident light direction is computed

for each point of the model. The accessibility value describes the fraction of the hemisphere above the

point which is unoccluded by other parts of the model. At runtime an environment map is sampled

along the reflected average incident light direction and the resulting irradiance value then is attenu-

ated by the accessibility value. Ambient occlusion therefore is an extreme simplification of spherical

harmonics lighting, but is much easier to implement [PG04]. However, only rigidobjects are covered.

This may lead to artifacts in case grass billboards are deformed. Bunnell [Bun05] treats the polygon

mesh as a set of surface elements in order to apply dynamic ambient occlusion. In each frame the

rendering equation is performed over these elements, without testing for occluded directions. Instead

of this, a shadow approximation function is used to solve the elements accessibility. A certain number

of iteration passes over all surface elements are necessary in order to stabilize the results. An addi-

tional rendering of indirect lighting in real-time is possible, but the approachis too time-consuming

to apply it to all grass billboards. Instead of just computing an ambient occlusion map, Cadet and

Lécussan [CL07] precompute a static ambient occlusion Volume for the whole scene. The visibility

information for dynamic objects in the scene is then interpolated across the volume’s sample points

near the object. A similar volume based approach for approximating the irradiance is made by Oat

[Oat06].

2.1.3.2 Reflectance Model

In order to simulate reflection properties of grass applying the BRDF (Bidirectional Reflectance Dis-

tribution Function) model [MH99] is unsuitable. Boulanger et. al. [BPB06] used an approximation

to BRDFs, so called BTFs (Bidirectional Texture Function), for their volumebased approach to sim-
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ulate the varying conditions between view direction and incident direction. Rather than using one

semi-transparent image of the grass the texture includes more images each evaluated with another

constellation of view to the incident light direction. Green [Gre04] used an approach to overcome the

subsurface scattering problem of a light map shaded skin. Instead of using only one light map, an

additional diffused version is added. Applying both the scattered and the light map itself, an illusion

of scattering is produced. Kharlamov et. al. [KCS07] used a simple two-sided lighting model to illu-

minate leaves that are lit from behind. When the view direction and the light direction are opposing

a linear interpolation between the transmitted color and the material color produces the final shaded

color with respect to the angle between both directions. This model comes with no extra textures and

it works for grass as well as for leaves.

2.1.3.3 Blending

Without visual blending between more or less transparent grass billboards the natural appearance es-

pecially of the grass edges is unpleasant. Alpha blending is a common algorithmto blend between

semi-transparent objects, but due to the required depth sorting it is far from ideal. Instead, a more

elaborated algorithm, the so-called screen-door-transparency can beused to avoid sorting [Wha05].

The alpha channel of a semi-transparent grass texture is modulated with a noise texture. Then the

alpha test eliminates pixels from rendering and the human eye fills in the gaps between discrete sam-

ples. The Alpha-to-Coverage feature of modern graphics cards can be used to implement a similar

effect. The resulting alpha value is used in a multisample resolution of the render target to decide

how many subpixels will be written. Afterwards the blending occurs betweenthe subpixels during the

downsampling to the final resolution [Mye06].

2.2 Collision Detection

As the collision detection based on grass is less explored, collision detection algorithms on a wider

range are examined in order to simulate interactive reaction based on objectsmoving through the

scene. On a global scope many more or less specialized techniques come upwith the problems

of interference and collision detection. Several surveys to collision detection exist [LG98, Eri04,

TKZ+04]. The collision detection usually consists of two phases due to the complex nature of the

colliding set: The so-called ’broad phase’ to exclude non colliding objects on a coarser but also

much faster scale and a so-called ’narrow phase’ where pairs of objects are checked for collision.

Most of the latter techniques are using bounding volume hierarchies. Bounding volumes have been

proven to be very efficient in the case of rigid objects. Several of them have been explored, the most

appropriate ones are spheres [Hub96], axis aligned bounding boxes(AABB) [Ber97, LAM01], object

oriented bounding boxes [GLM96] and discrete orientation polytopes [KHM+98, Zac98]. In case of

deformable objects they have to be updated every frame. However, thereis a great number of grass

billboards which are stored and processed completely on the graphics memory and these cannot be
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transferred to the main memory each frame to be tested against such volumes. For that case GPU

accelerated techniques do solve the collision tests faster with bounding volumes. These are mainly

based either on render targets or occlusion culling. Consequently, their accuracy is limited to the

image resolution.

Sathe [Sat06] uses cube maps to approximate the shape of an object. In a preprocessing step the

cube map is filled with distance values. These are distances from the center of the mesh to the outer

shape in each direction. The vertices of one object are tested against thecube map distances of another

object and vice versa during run time. On the one hand, all the tests are preformed on the GPU; on

the other hand texture memory is heavily used. Both, the vertex buffers andthe cube maps, must be

available on graphics memory to be loaded in the shader process. Additionally, Sathe’s approach is

only useful for rigid objects.

In [KP03] the stencil buffer is used to test intersections. In the style of theshadow volume ap-

proach, at first, the penetrated object is rendered by writing the depth buffer. Then the penetrating

object is rendered twice, the first time with active front faces and incrementing the stencil buffer and

the second time the back faces are rendered while decrementing the stencil buffer. Subsequently, the

rendered stencil values are tested: if the stencil value is not zero, an interference has occurred. The

main drawback of this method is that each stencil buffer value needs to be checked and therefore a

GPU memory read-back is necessary every frame.

A further approach is given by Heidelberger et. al. [HTG03, HTG04].They perform the collision

test in three stages. In the first stage the axis aligned bounding boxes of the intersection of two or more

objects are computed. Furthermore, if an AABB exists the Layered Depth Images (LDI) for such a

box are evaluated. This is done in an iterative process which is determined by the depth complexity

of the object. Hence, a LDI is an array of depth-textures that represents the volume approximately. A

LDI consists of a number of sorted depth values where each one belongsto a fragment of the object

projected onto the texel. In a last step, the LDIs then can be used to determineif a vertex penetrates

an object or if two objects collide. However, they require some buffer read-backs: The first copy is

made to obtain the depth complexity and after generating the LDI there is anotherbuffer read-back to

sort the depth values.

Govindaraju et. al. evaluate a top down approach. Initially, they compute a potentially colliding

set of objects with the aid of the graphics hardware. At the beginning all objects belong to the colliding

set and then they are sequentially pruned away. The exclusion of one object is based upon hardware

accelerated occlusion queries against the rest of the current colliding set. If an object is fully visible

to one of the view directions along the world-space axes, it is not colliding and so will be pruned

away. Finally, an exact triangle to triangle intersection test is performed on the CPU for the remaining

objects to check whether collision occurs to them or not [GRLM03, GLM05]. However, the final

collision test in this approach is realized on the CPU which leads to performance losses.

Kolb et. al. [KLRS04] and Vassilev et. al. [VSC01] also offered an approach to collision detection

using depth maps which are fully generated and accessed on the GPU. Thenumber of depth maps are
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representing the outer shape of an object. At least each depth map storesdistance values and normals.

The collision test then is realized in the shader: At first the vertex position is transformed to the

projection space of the depth map. After that a lookup into all depth maps occurs. Afterwards the

depth of the transformed vertex is tested against the depth map distances to determine their position,

inside or outside of the object. Similar to Govindaraju et. al., the vertex is assumedto be outside if

at least one test is positive. The distance map approach seems to fit best for the very reason that all

computations, including the reaction, are done on the GPU.

2.3 Cloth Simulation

Techniques are necessary for simulating deformable objects in order to overcome the problems of

elongation on the trot of external forces which are applied to the grass billboards. Especially the cloth

models are of interest. Therefore, Hauth et. al. [HEE+02] give a good overview of the physical model

that underlies most cloth-based simulations. In addition, they weigh up the pros and cons of several

methods of numerical integration. They also offer a method to render cloth withcomplex materials.

The cloth model mostly consists of a spatial coined network of point masses. Each pair of adjacent

masses is linked by different stiff springs. These springs are elongatedor clinched with regard to the

existence of external forces like collision or wind. In dependence on thestiffness of the springs a

more or less strong reaction force tries to bring them back to an equilibrium. Allexternal and internal

forces are integrated over the time. In case of large time steps the stability of thesystem is determined

by the integration method applied.

Baraff and Witkin published a cloth simulation model based upon an implicit numerical method to

overcome the stability problems. A scalar energy function is used to accumulatethe forces. Then the

implicit Euler integration generates a linear system which is solved using the modified conjugate gra-

dients method [BW98]. Even if GPU accelerated methods exist to solve these equations [BFGS03],

the additional computational burden is unnecessary since other methods for interactive real-time ap-

plications are more practical.

Xavier Provot explicitly integrates the external and internal forces overtime with the aid of the

forward Euler method. He noticed a less realistic result in small regions of thecloth due to less stiff

springs. A post processing step is made to correct their length [Pro95] inorder to avoid an increase

of the stiffness of springs which would result in more costly iterations. Fuhrmann et. al. replace the

cloth forces by several length constraints along the connection of two particles in order to overcome

the problem of large time steps. Hence, only the post correction steps, introduced by Provot, are

needed. Then a few iterations over all constraints are performed, as thealteration of one of the springs

affects neighboring springs as well [FGL03]. Zellner simulates a similar approach to Fuhrmann et.

al.. He uses the stream output stage to recurse over the springs. As a result the constrained based cloth

simulation is entirely offloaded to the GPU [Zel07].



Chapter 3

Modern Graphics Hardware

Graphic Processing Units (GPUs) are highly efficient parallel data processors. They have major ad-

vantages compared to current Central Processing Units (CPUs) whenever massive data can be par-

allelized and flow control mechanisms are less frequently used. In addition,after many transitions

over the recent years, the Single Instruction Multiple Data processors ofthe graphics cards are now

offering many programming capabilities of current CPUs and the renderingpipeline architecture has

been evolved as well.

The techniques which are applied for the solving of responsive grass use the potentialities of the

fourth generation of graphics cards. A short summary of the innovationswith respect to the previous

generations is presented in this chapter.

3.1 Graphics Pipeline

The upper part of Figure 3.1 shows the rendering pipeline which is arranged in several subsequent

stages, with specific input and output restrictions. Following the prior pipeline (the yellow parts in

Figure 3.1) the input assembler gathers vertex data form several streamsand then the programmable

vertex shaders projects them to the so-called clip space. The rasterizer builds up fragments with regard

to the declared primitive type and the projected vertices. Afterwards these fragments are processed

in the programmable fragment shaders. Finally the output merger writes the resulting pixel values to

their frame buffer location, after passing several so-called fragment operations1.

Although the previous version of the rendering pipeline can still be used thenewly introduced

programmable geometry shader stage (see Section 3.1.1) and the stream output stage (see Figure 3.1)

both offer possibilities that are rather important especially for the implementationof the collision

system and the rendering system of the grass layer.

1 For a more detailed description of the previous graphics pipeline, have a look at [MH99, WNDS99, Gra03]

15
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Figure 3.1: The rendering pipeline. The yellow path shows the prior rendering pipeline and the green
parts are the newly added extensions. The geometry shader has the possibility to generate the final
topology. In addition, the number of vertices might be amplified. The primitives are directly written
to the graphics memory whenever the stream output stage is used.

3.1.1 Primitive Based Programming

The programmable geometry shader stage (see Figure 3.1) offers new programming possibilities based

on primitives. The whole primitive is passed to the shader as an input [Dog07] (see the line adjacent

primitive (LineAdj) in Figure 3.1). Moreover, the input assembler is expanded by new primitive types

in order to hand over adjacent information to the geometry shader for eachprimitive [Bly06, BL06].

The geometry shader has the ability to operate on its vertices and finally amplifying the number of

primitives by emitting more than one of them at each invocation [BL06]. This enables a handling of

six vertices (in the case of a triangle adjacency list) in one shader invocation. Within certain limits,

the geometry shader offers the possibility to create a multiple of the vertices [Bly06]. In addition, it

is possible to write out a primitive type differing from the one passed on the input at the same time.

This enables a creation of the final topology at this stage of the pipeline (notethe triangle strips in

Figure 3.1). This opens the possibility to refine mesh topologies during the rendering pipeline, for

instance.

Furthermore the geometry shader is able to distribute the primitives to eight render targets simul-

taneously when using the rasterizer back-end. This allows the projection of each primitive to eight

projection spaces in one single render call.

3.1.2 Streaming Architecture

Since the prior data flow does start with 1D vertex buffers and ends up bywriting to 2D textures,

a conversion is necessary due to the fact that the output and input formats are different from each
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other. Consequently the update of vertices or 1D data on the graphics memorywithout the expensive

read-back to the CPU has often been achieved by several renderable2D textures [Sch06] because

the internal processing was strictly bound to fragments. Furthermore, onlya small number of frame

buffers can be used as render targets at once which limits the size of eachdatum to one render call.

The stream output stage can be used in order to overcome these limitations forone-dimensional

data as for example vertex buffers: The vertices are written to a 1D vertexbuffer which resides on the

graphics memory. This can be done directly after they are processed by either the vertex shader or

the geometry shader without even using the rasterizer back-end [NX006]. Neither clipping, projec-

tion, primitive setup and rasterization nor the pixel operations take place. This shortens the updating

process and allows an efficient update of the vertex data which requiresonly a minimum of CPU

handling. The stream output stage supports much richer output formats than the output merger and

additionally, the stream output buffer is much more flexible and larger than frame buffers. However,

the streamed data is restricted to a size of sixteen tuples of one or four data items, for example float4

which means16× 4× 4 bytes [Bly06]. Furthermore, the so-called transform feedback [WC08] mode

records the streamed data which can be queried by the CPU or can be useddirectly to process the

streamed data in the next GPU pass without any extra CPU intervention. However, a buffer cannot be

bound to both the input assembler and the stream output stage at the same time.

The output merger, a common technique for the blending of semi-transparent objects based on the

fragment operations. Therefore an algorithm on the CPU has to sort all semi-transparent objects in

the scene before rendering them. In contrast to this alpha-to-coveragesolves the problem without ex-

pensive depth sorting [NX006]. Furthermore depth sorting algorithms canbe avoided if no absolutely

correct blending between semi-transparent objects is necessary. Thealpha value is used to determine

the number of subpixels that will be filled with the current pixel color. The blending between the sub-

pixels is performed while resolving the multisample resolution to the final image resolution [Mye06].

Even if alpha-to-coverage is a feature provided by the API it uses the multisampling capabilities of

todays graphics hardware.

3.2 Unified Shader Model

Prior programmable pipeline stages were built with a fixed number of stream processors which are

designed to operate either on vertices or pixels. Thus, there was a fixed amount of vertex pipelines

and a relatively large but although fixed number of pixel pipelines due to thefact that pixels are more

frequent than vertices. If the stages are fixed they can only attain as muchperformance as shader units

are available for the pipeline stage [NV006] as illustrated in Figure 3.2(a).

The GPUs dispatch logic of the least graphic card generation can assign vertex, geometry or pixel

tasks dynamically to the available general purpose streaming processors [Dog07]. That is possible

because all streaming processors have the same instruction set [Bly06] [NX006]. As a consequence,

the implemented unified shader model is useful in cases where a heavy workload is assigned to
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Figure 3.2: The advantage of a unified shader model. As can be seen in Figure 3.2(a), heavy workload
on one streaming processor can not be offloaded to the other type of processors. Instead when a unified
instruction set is offered the workload can be distributed over all availablestreaming processors as is
illustrated in Figure 3.2(b).

one certain programmable stage. The other programmable stages are used less frequently (see Fig-

ure 3.2(b)), for example while streaming a large number of vertices by usingthe stream output stage

as the back-end. In this case the fragment shader is not needed at all. Subsequently, the distribution

of the computation is dynamic [NV006] and thus, the balancing of the shader pipeline is displaced to

the dispatch unit.

In addition, the shader model supports texture arrays which yield more flexibility to the addressing

of the texture memory: Textures stored in a linear arranged array are dynamically indexable in the

shader [Bro08]. Rather important is the ability to bind each texture of a texture array as a render target

in the output merger. However, tri-linear interpolation is not supported forthem and in addition there

is the restriction that at up to1024 textures can be stored which have to be of the same resolution

[NX006].



Chapter 4

The Animated Grass Layer

This chapter focuses on structural aspects of how the waving grass over arbitrary terrains is realized on

the GPU. Therefore, four mayor topics have to be discussed: At first inSection 4.1, the grass billboards

which are the base element of the responsive grass layer are introduced. In the next step, the spatial

structure which divides the grass layer into more manageable tiles of grass billboards is presented

in Section 4.2. As it is not handy to model each clump of grass separately, a generation process is

applied which procedurally generates grass billboards in respect to the terrain’s shape and some user-

definable parameters. All this will be described in detail in Section 4.3. Finally,Section 4.4 describes

the animation process which treats a basic property of grass or meadows, namely the response to wind.

4.1 Grass Billboards

Since a large area of the terrain is covered by grass objects and since they appear quite frequently,

it is not convenient to model each blade of grass separately. Hence, clumps of grass are represented

by semi-transparent decal textures which are projected onto quadrilateral objects similar to [Pel04],

which results in the final look of the grass objects. Streaming respectively rendering each grass bill-

board in a separate render call overwhelms the CPU. That is why the grass billboards are stored across

two large point lists as the GPU works best on data that can be processed inparallel.

4.1.1 Grass Objects

Figure 4.1(a) illustrates that a grass object can have two mesh representations in order to account

for deformations which are caused by colliding scene objects. If no deformation has occurred, only

a single quad forms the grass object as it can be seen on the left side of Figure 4.1(a). This quad

consists of four edge verticesv0,0,v3,0,v0,2, andv3,2 [Pel04]. Whenever a collision occurs, the

deformed representation is necessary (for more information see Section 5). Therefore, the mesh is

subdivided into a3 × 4 grid of verticesvi,j ∈ R
3 with j ∈ {0, 1, 2} andi ∈ {0, ..., 3}, as shown on

the right side of Figure 4.1(a). In addition to the edge vertices the mesh includes inner vertices. It is

19
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Figure 4.1: The grass billboards. Figure 4.1(a) shows both representations of a grass billboard. In
Figure 4.1(b) their memory layout is shown. All billboards of the grass layerare stored across two
buffers on the graphics memory. A billboard only exists in one point list at a time.

important that all the verticesvi,j are defined in world coordinate system. Furthermore, the vertices

v0,0,v0,1 andv0,2 are fixed to the terrain. Consequently, only the vertices withi ∈ {1, 2, 3} are able

to respond to any type of force.

4.1.2 The Memory Layout

In general a vertex shader works on a single vertex at a time, and thus its output is also just a single

vertex. The goal is to retrieve a mesh which consists of the billboard’s vertex positions. The geometry

shader is used to create the final mesh of the grass object during the rendering. This means that the

complete grass layer is accessed by the graphics pipeline as a large point list1. Each point-element

contains the whole information of one single billboard which is defined by the vertices as well as

some state information described throughout the following sections. The structure of such an element

is shown in code sample 1.

As it is not allowed to bind a buffer to both the stream output stage and to the input assembler

during the same render call (see Section 3.1.2) a second buffer of the same size is necessary. Both

buffers are created on the graphics memory. If the collision system needsto update the billboard data,

one buffer is bound to the input assembler and the other is bound to the stream output stage. As a

consequence of the streaming process one billboard exists only in one of this two buffers at each point

in time. The other buffer contains obsolete data at the location of the billboard (see Figure 4.1(b)).

Moreover, the grass billboards are grouped into clusters which are called grass tiles due to the

spatial octree layout described in short.

1Other primitives than points are able to manage the data for each billboard aswell.
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// Billboard Data Definitions
struct BILLBOARD DATA
{

float3 Vtx00 : VERTEX0;
float3 Vtx01 : VERTEX1;
float3 Vtx02 : VERTEX2;
float3 Vtx10 : VERTEX3;
float3 Vtx11 : VERTEX4;
float3 Vtx12 : VERTEX5;
float3 Vtx20 : VERTEX6;
float3 Vtx21 : VERTEX7;
float3 Vtx22 : VERTEX8;
float3 Vtx30 : VERTEX9;
float3 Vtx31 : VERTEX10;
float3 Vtx32 : VERTEX11;
float3 GrowDir : GROWDIR;
float3 SpringLens : SPRINGLENGTH;
float RecTime : RECTIME;
float ImageId : IMAGEID;

};

Code Sample 1: The data layout. Vertex informationvi,j , grow directiondgrow, the initial spring
lengthss, recover timetrec of the billboard and an indexidimage addressing the decal texture are stored
in a single element. Two point lists which are filled with these elements are stored onthe graphics
memory. By using this structure the maximum spread (sixteen tuples of float data) is occupied for an
element which is bound to the stream output stage.

4.1.3 Grass Textures

(a)

Color Layer

Color Mask

Quadrilateral Mesh Final Grass Shape

(b)

Figure 4.2: The grass textures. Each grass object has an index into the texture array as displayed
in Figure 4.2(a). The semi-transparent decal images are randomly distributed over the grass layer.
Figure 4.2(b) shows how the final shape of the clump of grass is obtained.

A semi-transparent decal texture is planar projected onto the billboard’s quadrilateral mesh, in

order to yield the final apperance of a clump of grass. The 2D texture contains a number of grass
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blades. Therefore, the color layer provides the material properties of the grass whereas the alpha

layer is used as a mask during the blending process (see Section 6.3). Transparent parts of the texture

are used to cut off irrelevant areas of the color layer, as displayed in Figure 4.2(b). Several grass

textures are randomly repeated over all grass billboards of the plant cover in order to achieve a sort of

randomness. Thus, a texture array is applied (review Section 3.2) which provides an RGBA texture at

each level. Additionally, each of the grass objects stores an indexidimage into this texture array which

is used to address the final decal texture at run time (see Figure 4.2(a))

4.2 Grass Tiles

Due to the fact that some billboards are not affected by collisions or that they might be invisible, the

rendering of a entire array of the billboards turns out to be not efficient.Therefore, the grass billboards

are organized in tiles which are constituted by a spatial octree structure. The bounding box of a tile is

tested before the collision handling and rendering passes. This improves the performance enormously.

However, the batch size of grass tiles has to be taken into account.

4.2.1 The Octree Structure

Leaf Nodes

Buffer A

Buffer B

current billboard data

obsolete billboard data

Figure 4.3: The octree structure. The grass billboards are assigned to the octree’s leaf nodes.

It is important to process as many grass billboards as possible during eachpass on the GPU for

maximum efficiency. Thus, the grass layer is divided into disjunctive tiles of grass billboards by using

an axis aligned grid which encloses the grass layer. In detail, the grid is defined by a hierarchical

axis aligned octree structure [MH99]. Eachaxis aligned bounding box(AABB) of an octree level is

subdivided recursively into2 × 2 × 2 subsequent child AABBs in order to build the hierarchy. It is

important that each AABB of the tree, if it is not a leaf node, encloses its childAABBs. Each leaf

node has an index range addressing those billboard’s covered by the leaf node as shown in Figure 4.3.

That is why the grass billboards are sorted by a pre-process with regard to the octree’s structure.



CHAPTER 4. THE ANIMATED GRASS LAYER 23

All leaf nodes are stored in a linear memory structure to enable hash index computations [Eri04].

This octree hierarchy is necessary during the viewport culling of the render process (see Section 6.3).

Additionally, the leaf node’s size is restricted to be at least as large as the largest object handled by

the collision system including the grass billboards. This prevents the collision system from missing a

collision between the grass layer and the scene objects as described in Section 5.2.

4.2.2 Minimizing Render Calls

1 Render Call 0

Pointlist A

Pointlist B

2 Render Calls 0 1

Pointlist A

Pointlist B

current grass tiles

obsolete grass tiles

rendered grass tiles

rendered batches

Pointlist A

Pointlist B

4 Render Calls 0 1 2 3

Figure 4.4: The batching process of grass tiles. Grass tiles that are adjacent in graphics memory can
be combined to batches of greater size. As a result those batches are cause less system calls due to
the GPU based handling as each of them can be passed to the GPU in a single render call. The data
is spread over both buffers. In all cases there are less render calls ifbatches are passed to the GPU
instead of rendering each tile separately.

During runtime the octree structure is used to decide which of the grass tiles should be processed.

Furthermore, the billboard data is spread over both buffers as a result of the prior collision handling:

Some billboards do exist in the swap buffer while others exist in the other one. However, it is not

suitable to perform a single render call for each of the grass tiles. This maylead to a bottleneck

caused by too many render calls.

Subsequently, ranges of billboards which are adjacent in graphics memory are organized to batches

of grass tiles. These batches are passed to the GPU in a single driver callas shown in Figure 4.4. The

more grass tiles can be grouped, the less system calls occur. The grass tiles which cannot be arranged

to a coherent index range still have to be rendered in separate calls. Thisbatch-process is applied

whenever grass tiles should be handled by the GPU.
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4.3 Procedural Generation

The grass layer often covers a large area of the terrain. Consequently, it contains thousands of grass

billboards, each consisting of a simple geometry. It is thus obvious to apply a procedural technique

on the GPU to generate the grass layer. Differentinfluence mapsare used to control the procedural

technique to allow some user-defined design choices.

4.3.1 The Influence Maps

Grow Plan Grow Direction Map Messiness Map

Figure 4.5: The influence maps. The texture images for the grow-plan, the grow-direction and the
deviation, and the resulting plant cover.

Even if the grass layer is procedurally generated, though, it is necessary to control some local

visual properties while maintaining the generation as user-friendly as possible. Therefore, a set of

2D maps is used to manage some of the design goals. Unique texture coordinates are spread over the

vertices of the terrain’s mesh in order to provide a unique value for each of the terrain’s primitives.

These are used to sample the maps at the location of the mesh’s vertices.

The map which is applied first is called grow plan and as diplayed in the upper left of Figure 4.5.

The texture defines local scalar densities of the grass layer which work ina similar manner like the

density map used by Boulanger et. al.[BPB06] but without the restriction to beapplied at runtime.

The higher the density, the more grass billboards are planted on the tile of the terrain. Moreover,

the sampled values of the grow plan are used to fade out the amount of grass billboards in order

to simulate a crossing between fertile and barren ground. A second non-scalar map called grow-

direction map provides normalized 3D directions which define the orientation for each of the grass

billboards. Furthermore, another scalar map called messiness-map, is usedto provide an amount for
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the randomness in terms of the grow direction. This map influences the amount of rank growth. Since

the geometry shader creates the plant cover all the maps are coarsely sampled at the positions of the

terrain’s vertices. The resulting plant cover which is based on the maps is shown in Figure 4.5.

4.3.2 The Generation Pipeline

Grow Plan

Tiled Grow-Points

Messiness Map

Terrain Mesh Grow-Points

Octtree

Grass Billboards

Grow Direction Map

Figure 4.6: The generation pipeline. In the first pass the grow plan is usedto generate base points
on the terrain’s mesh. Next, the octree structure is set up. Finally, the grass billboards are planted on
each base point. Furthermore, the grow-direction map and the messiness-map are sampled in order to
align the crossed billboards.

The generation pipeline is shown in Figure 4.6. As the number of billboards is not known when

starting the procedural process the first step is the evaluation of the finalnumber of grass billboards

and their positions in respect to the user defined grow map. This set of base points is computed on

the GPU and finally read-back to the CPU after each primitive of the terrain is processed. Based on

this information the final hierarchical octree structure is build. The base points are distributed over

the octree’s leaf nodes. As a result each of these nodes contains a setof base points. Afterwards,

a geometry shader creates a set of crossed billboards on each of the leaf node’s base points. The

procedurally generated grass billboards are then streamed to the graphics memory.

4.3.2.1 Plant Cover Information

In a first step of the generation the final number of grass billboards as well as their positions are

obtained. Therefore, the grow plan is sampled for each triangle of the terrain’s mesh. According to

the sampled value a series of base points is randomly placed on each triangle by using barycentric

interpolation between the triangle’s edge vertices. Furthermore, a texture coordinate is interpolated

for each base point. The base points are streamed to the graphics memory. In addition, the number of

streamed points is recorded by the graphics hardware and can be obtained by a stream output query

(see Section 3.1.2). Since the final number of billboards is known, two pointlists which store the
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billboard data (view Section 4.2.2) are allocated on the graphics memory.

The size of the terrain’s primitives influences the density of the plant coveras the operation is

applied on the basis of triangles. As a consequence the grow plan has an indirect impact on the

density. This is because the same density value may result in a dense grass cover for a small primitive

and a sparse cover for a large primitive. However, the generation of theplant cover information yields

good results in case of planar areas where the size of the triangles is almostuniform.

4.3.2.2 Spatial Clustering

After the base points are read-back to the CPU the hierarchical octree structure is constructed. Each

leaf node of the tree should at least be as large as the largest object handled by the collision system.

Therefore, either the maximum size of the responsive grass billboards which is defined at startup

or the maximum size of the dynamic collision objects determines the size of the leaf nodes. As a

consequence, the size of the scene objects must be available at this point of the generation pipeline.

Furthermore, the size of the octree is determined by the number of nodes which are necessary to cover

the whole grass layer.

In the next step the base points are distributed over all the leaf nodes. Each leaf node receives

those base points that are covered by their bounding box. As a result each leaf node has a list filled

with the covered base points. Afterwards, each of those lists is again stored in a vertex buffer on the

graphics memory in order to generate the final billboards on the GPU. Furthermore, an index into the

billboard buffers is assigned to each leaf node. During runtime this index range makes it possible to

address the grass billboards that are covered by a node.

4.3.2.3 Procedural Grass Billboards

The final generation of the grass billboards is executed on the GPU. Eachgrass tile is generated in a

separate geometry shader pass. As a result a set of crossed grass billboards is built at each of the leaf

node’s base points. Figure 4.7 illustrates the required steps. Furthermore, the generated information

of each billboard is streamed directly to one of the point lists which are used during runtime.

For each of the base points the normalized directiondgrow in which the billboard should be ex-

tended is looked up into the grow-direction map. The messiness-map is also sampled in order to

obtain the deviation angle to the grow-direction. The higher the sampled messiness value is, the more

the grow-direction is rotated. Therefore, a randomized rotation axisdortho orthogonal to the grow

directiondgrow is determined. Both the new grow-direction and the orthogonal rotation axis define

the orientation of the billboard (see step three in Figure 4.7). The billboard’s edge vertices are com-

puted with regard to a randomly determined widthw and heighth (see step four in Figure 4.7). The

inner vertices are necessary to define the deformed representation andthey are not computed until

a deformation becomes possible (see section5.2.3). Nevertheless, the initialextent of a deformed

quad is stored in order to allow for shape preserving computations after a collision response (see

Section 5.2.3). Therefore the widths0, the heights1 and the diagonal lengths2 of a quad of the
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dortho

dgrowdgrow

V0 0,

V3 0,

V3 2,

dortho

dgrow

V0 2,

Figure 4.7: The procedural billboard generation. For each base pointa grow-direction is looked up in
the grow-direction map. The messiness value determines the deviation of the grow direction. Finally,
the crossed billboards are generated along the grow direction.

billboards deformed mesh are stored within the billboard data. As the final shape of the clump of

grass is achieved due to the projected semi-transparent decal texture, arandom texture indexidimage

addressing the texture array is also assigned (Please note the billboard’sdata layout shown in code

sample 1).

As the flat structure of the billboards is easy to estimate when viewing the billboards from their

side, for each plant position three grass billboards are generated and crossed [Pel04] as illustrated

in the last step of Figure 4.7. As a consequence the illusion of depth increases. However, for large

regions where only a small number of grass billboards is planted, the flat structure is still estimated.

After all three billboards are arranged their data is streamed through the point array stored on the

graphics memory.

4.4 Wind Animation

As it is the movement of the grass blades in the wind what gives grass its natural and vivid look,

a major key feature to all grass simulations is the way they react to wind forces. Keeping in mind

that thousands of billboards have to be animated, the animation technique shouldnot be too time

consuming. Therefore, a sum of sinus approximations along the wind direction yields a translation

vector which is applied to the upper vertices of each billboard. This results ina periodically movement

along the wind direction which takes local differences over the grass layer into account. Furthermore,

the wind animation is applied either during the collision handling or during the rendering process

which are described throughout the following chapters.

4.4.1 The Wind Translation

For the periodic movement an approximation to the sine function is used in orderto achieve a realistic

animation. The so-called smooth triangle wave function [Sou07] is used to produce a translation

vector which is applied to the upper vertices of the grass billboards.
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Figure 4.8: The periodic wind function. Figure 4.8(a) shows how the output of the triangle wave
function is redirected as an input to the smooth function to yield the final value.Figure 4.8(b) displays
the final wave functionλ(x) as the result of summarizing four of this concatenated functions.

The approximation of sine waves is achieved by concatenating two functionssmooth(x) ∈ [0, 1] ∈

R and triangle(x) ∈ [0, 1] ∈ R. The periodic property is satisfied by the triangle function as can be

seen in the upper left graph of Figure 4.8(a):

triangle(x) = |frac(f · x + 0.5) · 2− 1| , (4.1)

with x ∈ R as the time-dependent parameter. The frac(x) function returns the fractional part ofx and

f ∈ R is the frequency. The range of the periodic repetition is[z ∗ f, (z + 1) ∗ f ] with z ∈ Z. Even

if the function is periodic, though, the passage from high to low values and vice versa is not smooth

at all. Therefore, the returned value is used to look up the final value in a cubic function as shown in

Figure 4.8(a):

smooth(x) = 3x2 − 2x3 . (4.2)

As a result the gradient of the triangle function is smoothed. So, the smooth periodic function is

obtained by concatenating Equation 4.1 and Equation 4.2:

stw(x) = smooth(triwave(x)) .

Even if it is only an approximation to the sine function it is less time consuming[Sou07]. For a

better understanding the function is plotted in Figure 4.8(a).
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Summing up four of the smooth triangle wave functions, while providing four different static

frequenciesf ∈ {1.975, 0.793, 0.375, 0.193} to each of them, yields the final periodic wave function

provided by [Sou07] (see Figure 4.8(b)):

λ(x) =

3
∑

k=0

stwk(x) , (4.3)

wherex depends on several parameters:

x(t,w,p) = t · swind + dwind • p . (4.4)

As a first parameter the current timet ∈ R is passed. The second parameter is the wind forcew ∈

R
3 to account for the wind directiondwind = w

‖w‖ ∈ R
3 and the wind strengthswind = ‖w‖ ∈ R. So

far, using only these parameters leads to an identical animation over the entiregrass layer, since the

parameterst, dwind andswind are shared for all the grass billboards. The positionp ∈ R
3 is added in

order to incorporate local differences to the grass layer. The position differs for each billboard. There

is still a less noticeable symmetry along the wind direction. However, this can be neglected as it is

hard to identify.

Finally, the concatenation of Equation 4.3 and Equation 4.4 yields the translationstrength which

then in combination with the wind direction is used for the animation:

wind(t,p) = λ(x(t,w,p)) · dwind . (4.5)

4.4.2 The Billboard’s Animation

V0,0

V0,2

V3,2

V3,0
dgrow

Figure 4.9: The billboard’s wind animation. By using the grow direction the billboard’s upper edge
vertices are waving along the wind direction with respect to the translation strength. The directed
translation strength wind(t,v0,j) is shown in orange.

The animation is reduced to a translation of the billboard’s vertices along the wind direction.

Only the undeformed billboards are involved in the animation process. If a deformation occurs the

recovering process takes over the animation of the deformed billboards (see Section 5.2.3). Thus, if

no deformation happens just the verticesv3,0 andv3,2 are subject to wind forces, as the verticesvi,j

wherei = 0 are fixed to the ground.
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inline
float4 Smooth( float4 x )
{

return x * x * ( 3.0 - 2.0 * x );
}

inline
float4 Triangle( float4 x )
{

return abs( frac( x + 0.5 ) * 2.0 - 1.0 );
}

inline
float3 Wind( in float3 p )
{

// Compute the phase shift for the position p with respect to
// the current wind strength and direction
float phase = ( Time * WindStrength ) + dot( Wind, p );
// Compute the four translation strengths.
float4 ts = Smooth( Triangle( Frequencies * phase ) );
// Compute the mean of the four values and
// return the translation vector.
return Wind * dot(ts,0.25);

}

inline
void ApplyWindForce( inout float3 Vtx[VTX CNT], in float3 GrowDir )
{

// move the upper vertices of the undeformed billboard
Vtx[IDX 30] = Vtx[IDX 00] + GrowDir + Wind( Vtx[IDX 00] );
Vtx[IDX 32] = Vtx[IDX 02] + GrowDir + Wind( Vtx[IDX 02] );

}

Code Sample 2: The wind animation. The wind animation moves the upper two edge vertices along
the wind direction by summing up four translation strengths. The valuesWind , WindStrength, Time
andFrequenciesare constant for each frame.Frequenciesis a float4 which stores four different
frequencies.

In order to translate the upper two vertices of the undeformed representation of the billboard, the

initial grow directiondgrow of the billboard is required. The grow direction was stored for each bill-

board as an additional information due to the procedural generation process (see Section 4.3.2.3). The

grow direction and the fixed ground vertices enable the restoring of the initial mesh of the billboard.

The reconstructed mesh then is animated with regard to the current wind translation at the timet ∈ R

(see Figure 4.9):

v3,j = v0,j + dgrow + wind(t,v0,j) , (4.6)

with j ∈ {0, 2}. As a result different translations for both of the upper vertices are applied.

The code sample 2 shows the implementation of the wind animation. Note that the wind strength

used for function 4.5 has to be choosen carefully. A translation which is toostrong causes visual

unpleasant distortions. Length preserving constraints are applicable in order to overcome the problem

of distortions.
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As a result the animation varies over the time with regard to the wind force and thefixed lo-

cal ground positions of each billboard. Moreover the animation is independent to prior translations

applied to the upper vertices of each billboard. As a consequence this enables a reconstruction of

the billboard’s shape after a deformation (see Section 5.2.3). It should beremarked that the wind

animation is applied to each grass billboard separately without considering thecrossed alignment.



Chapter 5

The Collision System

The collision handling of the billboards is the key feature to enhance immersiveness. The grass should

yield a good reaction to dynamic collision objects. In addition, the process should also not be too time

consuming. The billboards are solely processed on the GPU as the grass layer does not affect any

scene object. Due to this fact the objects which cause the deformations haveto be stored on the GPU

as well. That is one of the reasons why implicit models are employed to represent the collider objects

during the collision handling as described in Section 5.1.

The collision system is a cooperation between a CPU based ”broad phase”working on the spatial

organized grass tiles and a GPU based ”narrow phase” working on the grass billboards whenever a

grass tile is affected. The leaf nodes of the octree structure are used to reduce the collision handling

based on the GPU side. In addition, a recovering process is controlled byboth phases as well. The

pipeline is describe in detail throughout Section 5.2.

The billboards are deformed by the collider object if a collision occurs. Subsequently, a recovering

process brings deformed billboards back to their original shape. The billboard quads which are not

affected by a collision can directly be rendered. In consequence, the overall performance of the

animated grass layer is preserved dependent on the current recovertime and the current collisions

occurred. The implementation of the billboard’s collision handling is describedin Section 5.2.3.

5.1 Implicit Collider Object Representations

The collision detection and its reaction based on the polygonal representations of complex objects

causes computations which are far from ideal. As a consequence the collider objects are represented

by implicit image based models as they are optimal to be handled on the GPU. Moreover, implicit

representations have the advantage that distances are directly given which speeds up the penetration

tests with the grass billboards.

Two different types of implicit objects are common: At first, bounding spheres are used to avoid

unnecessary collision tests. After pre-decision, subtle tests are made based upon so-called depth

cubes. These depth cubes consist of six maps which store relative distances as well as surface nor-

32
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mals of the collider object. The depth cubes are generated by applying a morecoarser polygonal

representation which is called collision mesh in order to prevent the grass billboards from unnatural

reactions.

5.1.1 Bounding Spheres

Bounding spheres completely enclose the object’s geometry which they represent. Thus, they are

used to speed up the collision handling. The efficiency is based upon their simple implicit formula

which can be used to check for collisions between objects [MH99]. Throughout the collision pipeline

they prevent further collision handling for grass billboards that are notpenetrated by any bounding

sphere (see Section 5.2.3). Furthermore, they are available to the GPU by using constant registers as

described in Section 5.2.1.1.

5.1.2 Depth Cubes

As the bounding spheres are only usable for coarse preclusions, a more subtler implicit representation

of the object is employed. The implicit representation is more efficient on graphics hardware due to

the high parallel architecture of the GPU. Therefore, a coarser mesh called collision mesh is used to

generate the implicit distances in order to overcome the problems which are caused by fine structures

of the dynamic collision object. The collision mesh is projected to each of the faces of its bounding

box. As a result a set of six maps is generated, each one providing relative distances from its near

plane to the surface of the collision mesh. In addition they store the surface normals of the projected

primitives. The information is required for a proper collision detection and collision response as

described in Section 5.2.3. This set of textures is called the depth cube of theobject [KLRS04].

Collision MeshScene Object

(a) (b)

Figure 5.1: The collision mesh. Figure 5.1(a) shows the scene object and the corresponding collision
mesh. On the left of Figure 5.1(b) the response with the mesh of the scene object is shown. The object
is moved away from the viewer. On the right the response is shown if the scene object is replaced by
its coarser collision mesh. Note the clearly perceptible reaction in contrast to the reaction which is
caused by the mesh of the scene object.
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5.1.2.1 The Collision Mesh

The deformed mesh of the billboard is still coarse in contrast to the fine structures of the collision

objects, for example, thin extremities of characters. Possibly, the collision handling based upon the

vertices of the billboard (see Section 5.2.3.4) computes an unnatural reaction. Therefore, the cube

map is created upon a coarser polygonal mesh, called collision mesh, as shown in Figure 5.1(a).

Although, the sphere-like mesh is much coarser the results of the collision response are more pleasant

as illustrated in Figure 5.1(b).

The depth cube of dynamic objects is updated in each frame. In case that ananimation is applied

to the scene object it is also necessary to animate the collision mesh. However,with the restriction

of a much higher memory usage these maps can be precomputed if the animation cycles are known

[VSC01].

5.1.2.2 The Distance Maps

(a) (b) (c)

Figure 5.2: The depth cube. The parameters to generate a distance map areshown in Figure 5.2(a)
for the projection directiondproj = (1, 0, 0). Figure 5.2(b) shows the resulting normal information
mapped to the RGB color range. The resulting distances are shown in Figure5.2(c). Darker areas are
closer to the projection planes than bright areas

The six distance maps of the depth cube are generated on the GPU by simply placing an orthogonal

camera to the center of each face of the object’s axis aligned bounding box. In detail, the distance

maps are the result of the projection of the mesh onto each face. The parameters which are necessary

to define the projection are shown in Figure 5.2(a). For each of the six 2D distance mapsDMm, m =

0, ..., 5 the projection plane is set to the near facenface. The near face is determined with regard
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to the distance map’s projection directions. In addition, the far clipping plane isset to the far face

fface. Each projection directiond is one of the six normalized directions along the world space axis.

Furthermore, width and height of the projection plane are set to the widthwface and heighthface of the

current bounding box face. The origin of the projection spacecface is located at the center of the near

plane. These parameters yield an orthographic projection transformationTWC→DM ∈ R
4×4 ( the

transformation is described in detail in appendix A.1) which is applied to the vertices of the collision

mesh:

v
′

= v TWC→DM .

As a result of the projection, the verticesv = (vx, vy, vz, 1) ∈ R
4 are transformed from the world

space to the projection space of the distance map. Thereafter, thev
′

z ∈ [0, 1] coordinate is the relative

distance of the vertexv
′

= (v
′

x , v
′

y , v
′

z , 1) to the face of the bounding box. The value is written to

the distance map in respect to the coordinates(v
′

x , v
′

y ) ∈ [−1, 1]2 (The projection of a single distance

map on the GPU is described in detail in appendix A.2). The distance maps of thedepth cube are

shown in Figure 5.2(c).

In addition to the relative distances which are important for an appropriate collision test, the

surface normals are stored for each distance map (see Figure 5.2(b)).These surface normals are used

to respond to collisions [KLRS04] (see Section 5.2.3). Defining the triangle primitives of the collision

mesh by their edge verticesv0, v1 andv2 the normaln for each primitive is computed by a cross

product between the triangle’s edges:

n = (v2 − v0)× (v1 − v0) ,

wherevi , i = 0, 1, 2 are the world coordinates of the primitive’s edge vertices. In addition,

they are normalized in order to avoid different lengths which may lead to unpredictable reactions.

Accordingly, a lookup at pixel coordinate(x, y) into a distance map of the depth cube returns a

surface normal with unit lengtĥn = n/ ‖n‖ ∈ [−1, 1]3.

The distance maps are updated every frame in order to account for possible animations or rotations

of the collider objects. As the geometry shader can distribute primitives to eightrender targets, one

single render call is sufficient to update the depth cube. The depth cube isstored using a texture array

which is bound as a render target during projection.

5.2 The Collision Pipeline

The collision pipeline is split into two phases which are working on different levels of the grass layer

as can be seen in Figure 5.3. Several processes divide the collision handling of the grass billboards

into subsequent passes. These avoid unnecessary computations on thebasis of each billboard. On the

top level the collision handling on the CPU is based on each leaf node of the octree structure (see the
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Figure 5.3: The collision pipeline. The collision handling is splitted into a CPU based part working
on grass tiles respectively octree’s leaf nodes and two GPU based partshandle collisions for the grass
billboards. The decisions made on the CPU affect the rendering of the billboards.

dark grey box in Figure 5.3).

The GPU handles collisions on the basis of each billboard. In detail this depends on the decisions

which are made by the CPU: The grass tiles which collide are updated by the collision pass high-

lighted by the left green box in Figure 5.3. Those tiles which still have to recover are updated by a

separate recover pass. The recover pass is highlighted by the dark green box on the right in Figure 5.3.

Both passes are covering the billboard’s collision handling as described inSection 5.2.3. The grass

billboards of the affected tiles are updated via the stream output stage. Those which are not updated

in any of the two GPU passes are directly rendered. In that case the collision system does not have

any effect on them.

5.2.1 CPU-Based Predecision

At the beginning of the collision pipeline, a coarse pre-test for the collision ispreformed on the CPU.

This test is highlighted by the dark grey box on the top in Figure 5.3. The grass layer is tiled by the

octree structure and thus, each leaf node is tested to be affected by a collider object (see Section 4.2).

According to the results of this test and the current remaining recover time, anode is marked either as

colliding, non-colliding or recovering. For the colliding nodes the recovertime is reset. Furthermore,

a detailed collision detection, reaction and recovering on the basis of the grass billboards is performed
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Figure 5.4: The CPU-based handling. Figure 5.4(a) shows the colliding (red) and recovering (green)
leaf nodes. The data of the corresponding grass billboards is updated via the stream output stage as
shown in Figure 5.4(b). Both buffers swap their affected grass billboards in two subsequent steps.
During the data streaming the billboards are updated via the geometry shader.

during the GPU based collision pass. Those non colliding leaf nodes which have some recover time

left are marked as recovering. As a consequence, some billboards of the leaf nodes might be deformed

and so still need to recover. These tiles are updated by the GPU based recover pass. If a leaf node is

not subject to any further collision handling, it can be directly rendered.

5.2.1.1 Colliding Grass Tiles

The spatial octree structure of the grass layer is used to avoid collision testsbased on the GPU. The

centroids of the collider objects are used to determine those grass tiles which might be influenced.

Due to the arrangement of the octree’s leaf nodes the search for affected nodes is reduced to a

single lookup in the octree. A hash index of the leaf node is computed with respect to the position

of the object’s centroids. The hashed leaf node is marked as colliding. Additionally, their adjacent

nodes are marked as colliding. These nodes are shown in Figure 5.4(a).Finally, a minimal set of

colliding grass billboards is found. This is explained by the fact that all the leaf nodes are created

in a size that leads back to the maximum size of either the collision object’s bounding spheres or the

maximum extent of the grass billboards (see Section 4.3.2.2). All gathered grass tiles are streamed

throughout the collision pass by using as few as possible render calls (review Section 4.2.1). Before
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they are updated, their recover time is reset.

During the collision pass the current scene object representations are required (see Section 5.1).

For each of the batches of colliding grass tiles the corresponding depth cubes and bounding spheres

are collected. Each depth cube as well as bounding sphere is passed to the GPU before the batch of

grass tiles is streamed. In addition, for each collider object the size of the axis aligned bounding box

and each of the six projection transformations are passed. The boundingbox size is used to map the

relative distances of the depth cubes to world space distances which are required at the time of the

collision response.

5.2.1.2 Recovering Grass Tiles

The grass tiles that have to be updated as well. As long as a grass tile has to recover and does not

collide any longer it will be streamed through an additional recovering passon the GPU. A recover

time is assigned to each leaf node in order to know which of them needs to be recovered. This time

is reset whenever a collision object intersects with the node or still is a neighbor of an affected node

as described in the previous section. Consequently, the recovering time ofthe leaf nodes is decreased

when no collision occurs. After the recovering time has elapsed it is estimated that each billboard

which is covered by that leaf node has been recovered as well. A recovering grass tile is illustrated in

Figure 5.4(a).

5.2.2 Updating Grass Tiles

The recovering and colliding grass tiles are updated via the stream output stage of the rendering

pipeline. The GPU receives data on the input and writes the results to a location in the graphics

memory. However, the input buffer has to be different from the output buffer (see Section 3.1.2). That

is why the update of a grass tile involves a transfer of the data from one buffer to another. The buffer

which contains the current grass tile is bound to the input assembler and the other buffer receives the

updated data via the stream output stage. The grass tiles are processed through two steps as displayed

in Figure 5.4(b). In each step the grass tiles are grouped to batches of greater size to minimize render

calls as already mentioned in Section 4.2. All covered billboards are streamedto their corresponding

location in the opposite buffer.

5.2.3 The Billboard’s Collision Handling

If a grass tile is subject to an intersection, its billboards are updated by a collision handling process

which performs different steps, as displayed in Figure 5.5. As long as nocollision occurs, nothing is

done. Whenever a collision becomes possible a refined mesh is applied to react to the collisions which

results in a deformed billboard. If the collision is finished the billboard completelyrecovers to the

undeformed shape. The transition of the unaffected mesh to the deformed mesh and finally returning

to the undeformed mesh is made by performance considerations. Thus, the collision handling allows
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Figure 5.5: The billboard’s states. Collision detection, reaction and recovering for a single billboard.

the grass to respond to collisions. It saves computation resources as recovered undeformed grass

billboards are not as time consuming as the deformed billboards. Furthermore, the CPU does not

have any information of the current billboards, thus, all these steps are processed by the GPU, which

uses the geometry shader and the stream output stage. Moreover, it is necessary to have the ability to

operate on a whole grass billboard at each invocation.

Two different types of grass tiles are handled. The tiles which are handled by the collision pass

have to go through the whole collision handling process. Those tiles that arestill have to recover

are handled by a separate pass on the GPU. This avoids computation overhead for the recovering

grass tiles which is caused by the collision tests. Only the parts which compute thecurrent shape are

executed in order to update the billboards (see Figure 5.3).

If collisions occur or the recovering of tiles is required, the quad mesh of the billboards is not

sufficient for an adequate reaction. The current3 × 4 vertices of the refined mesh is computed (see

the first transition in Figure 5.5). Two cases are possible: On the one hand, if the billboard has not

been involved in the collision process, the already wind animated quad is refined as described in

Section 5.2.3.1. On the other hand, if the billboard still recovers, an interpolation among the vertices

of the wind animated mesh and the vertices of the deformed mesh yields the current shape. The

recovering process is outlined in Section 5.2.3.2. The GPU recovering pass ends at this point of the

collision pipeline. Subsequently, the billboards are streamed to the graphics memory by using the

stream output stage.

The next steps are applied for those billboards that might be affected by acollision object (see

the collision handling and the collision response states in Figure 5.5). Please note the bright green

box on the left in Figure 5.3. The collision test is split into two subsequent parts. A pre-test for each

billboard shows if the grass billboard is influenced by a scene object. By testing distances among the

bounding spheres of the grass billboard and of the scene object, several of the grass billboards can

be excluded from subsequent handling as described in Section 5.2.3.3. The billboards, as long as no

collision affects them, are streamed via the stream output stage without further handling. Thus, for



CHAPTER 5. THE COLLISION SYSTEM 40

such obviously non-affected billboards only the wind animation and the recovering is applied during

the collision handling.

Whenever the pre-test is passed an index is returned which specifies thecollision object whose

bounding sphere intersects the bounding sphere of the grass billboard.The refined mesh of the bill-

board is then tested for collisions with the depth cube of the indexed collider object. Each vertex of

the billboard is tested separately, as described in detail in Section 5.2.3.4. If one of its vertices is found

to be inside of the collision mesh, the vertex is translated along the surface normal of the mesh. This

normal is stored in the depth cube in order to resolve the penetration as described in Section 5.2.3.5.

However, moving each vertex of the billboard separately may lead to visually unpleasant distortions.

Thereby, a cloth model based on spring constraints (see the collision reaction in Figure 5.5) is evalu-

ated in order to preserve the overall shape of the clump of grass as described in Section 5.2.3.6.

Whenever a collision occurs, the recover time will be reset. As long as the billboard is penetrated

it is not allowed to recover completely. The undeformed state which is solely affected by the wind

animation is restored when the penetration has finished (see last transition in Figure 5.5). After the

collision handling, the updated data of the billboard is streamed as a point primitivevia the stream

output stage. As a result, the tile’s billboards exist in the buffer which is bound to the stream output

stage, and thus, they are obsolete in the input buffer.

5.2.3.1 Refinement

inline
void Refine( inout float3 Vtx[VERTEX COUNT] )
{

float3 intVtx[2];
float horVal, verVal;
float horStep = 1.0/ float(VTX CNT HORIZONTAL-1);
float verStep = 1.0/ float(VTX CNT VERTICAL-1);
// refine mesh
int idx = 0;
for( float v=0; v<VTX CNT VERTICAL; v+=1.0 )
{

verVal = v * verStep;
for( float h=0; h<VTX CNT HORIZONTAL; h+=1.0 )
{

horVal = h * horStep;
//Interpolate among the horizontal edge
intVtx[0] = lerp(Vtx[IDX 00], Vtx[IDX 02], horVal);
intVtx[1] = lerp(Vtx[IDX 30], Vtx[IDX 32], horVal);
//Interpolate among the vertical edge
Vtx[idx++] = lerp(intVtx[0], intVtx[1], verVal);

}
}

}

Code Sample 3: The refinement. The positions of the mesh’s inner vertices are interpolated bilinear
among the mesh’s edge vertices.

Each time a collision becomes possible (see Section 5.2.3.4) or the billboard still recovers (see
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Section 5.2.3.2), the refinement mesh of the billboard is necessary. As the animation is a stateless

process (see Section 4.4), it is possible to compute the original shape defined by the wind, without

considering the current state which might be deformed by previous collisions. So, at first the wind

animation described in Section 4.4.2 computes the current upper edge vertices. The resulting vertices

v0,0,v0,2 andv3,0,v3,2 (see Equation 4.6) are bilinear interpolated to obtain the refined mesh:

vi,j = (1− β)((1− α)v0,0 + αv0,2) + β((1− α)v3,0 + αv3,2) ,

wherej ∈ {0, 1, 2} andi ∈ {1, ..., 3}. The blending termsα = j/2 andβ = i/3 preserve the network

structure of the refined mesh. The interpolation is shown in Code Sample 3. Asa result, the3 × 4

mesh is obtained as needed throughout the subsequent stages of the collision handling.

5.2.3.2 Recovering

deformed

wind animatedcurrent

Figure 5.6: The billboard’s recovering. The linear interpolation between the vertices of the deformed
mesh and the vertices of the wind animated mesh results in the representation of the billboard with
respect to the recover time left.

After a collision has occured, the grass billboard from now on will smoothly recover as long as

there is recover time left. The refined mesh which is affected by the wind as well as the previously

deformed mesh forms the basis of the recovering phase. The linear interpolation between the deformed

vertices and their wind animated positions with respect to the recover timetrec left results in the current

shape of the grass clump (see Figure 5.6):

vi,j ← (1− t3rec)wi,j + t3recvi,j , (5.1)

wherei ∈ {1, ..., 3} andj ∈ {0, ..., 2}. Furthermore,wi,j ∈ R
3 are the vertices obtained by the

previously described refinement step andvi,j ∈ R
3 the last respectively the current recovered vertices

of the billboard. The recover timetrec ∈ [0, 1] is handled as a relative recover time in respect to a

constant defined maximum time for recoveringtmax ∈ R which maps to the relative time1. Instead

of the linear decreased recover time the cubic functiont3rec ∈ [0, 1] is used for the interpolation in

order to yield a smoother recovering which starts slow and then recovers fast. The recovering of a

billboard is shown in Code Sample 4
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inline
void Recover(

inout float3 Vtx[VTX CNT],
in float3 Wtx[VTX CNT],
in float RecTime )

{
// Cubic transfer function to yield a smoother recovering
float CubRecTime = RecTime * RecTime * RecTime;
// Interpolate all vertices
for( int idx=VTX CNT HORIZONTAL; idx<VTX CNT; ++idx )

Vtx[idx] = lerp(Vtx[idx],Wtx[idx], CubRecTime);
}

Code Sample 4: The recovering. A linear interpolation among the previously deformed mesh and the
current subdivided mesh affected solely by the wind animation yields the current shape of the grass
billboard in respect to the current remaining recover time. To smooth the recovering process a cubic
transfer function is applied to the recover time.

After each recover step the recover time is linearly decreased with respect to the elapsed timetelap
which has passed since the last recovering process:

trec ← trec −
telap
tmax

(5.2)

If the recover time falls below zero and no collision occurs the animation of the grass billboard at that

time will again be handled solely based upon the wind animation. The complete recovering is very

important for the overall performance.

After each recovering step a collision test (see Section 5.2.3.4) with the current billboard’s vertices

vi,j is made. As already mentioned, whenever a collision occurs the recover time of the affected

billboard is reset to the previous defined recover timetmax, which yieldstrec = 1.

5.2.3.3 Bounding Sphere Based Preclusion

Only for a small number of the grass billboards penetrations take place. A fast preclusion step prevents

computation for the major part of the grass billboards. The bounding sphere test returns the index of

the first object a collision is detected with. If no valid index is returned it is assumed that no penetration

takes place.

Based on the current deformed or undeformed mesh of the billboard, the average position of the

mesh’s edge vertices is assumed to be the centercbill of the sphere that encloses the current shape of

the billboard:

cbill =
1

4
(v0,0 + v0,2 + v3,0 + v3,2) .

Even if only the edge vertices are used without considering the inner vertices of the billboard, their

mean point is accurate enough to test for collisions. Therefore, the lengthof the initial undeformed

billboard‖dgrow‖ is used as the sphere’s radius. Although the billboard’s length is an approximation
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to the exact current bounding sphere’s radius it still encloses the grass billboard as it is important.

That is why in the undeformed state the span of the billboard is enlarged to its maximum length.

A billboard is not colliding if(‖cbill − cobj‖)
2 > (‖dgrow‖ + robj)

2 [Eri04]. cobj is the center

androbj is the radius of the scene object’s bounding sphere.

5.2.3.4 Collision Detection

0

0 1 2

1

2

Collision Mesh

Figure 5.7: The depth cube based collision detection. For each of the orange inner vertices a collision
is detected. (Left) The collision mesh penetrates the grass billboard. (Middleto Right) The depth
tests for the billboard’s vertices are shown in the depth map’s projection space. Each of the three
depth constellations represents the depth cube at a different height. Please note that only the orange
vertices are occluded from all sides of the depth cube.

Since a collision is likely to come after the BS test is passed, the refined (deformed or undeformed)

mesh of the billboard goes through a more exact collision test similar to the particlebased detection

described by [KLRS04]. Therefore, each vertex is tested separately.

A collision occurs if the vertex is occluded by the collision mesh along all six projection directions

of the depth cube. The test for the penetration is performed in each of the six projection spaces. Thus,

the vertexv = (vx, vy, vz, 1) of the grass billboard is transformed:

v
′

= v TWC→DM , (5.3)

wherev
′

= (v
′

x , v
′

y , v
′

z , 1) is the transformed vertex of the billboard.TWC→DM is a transformation

from the world coordinate space to the projection space of the current distance map (see Section 5.1.2).

The transformation is done for all the six distance maps.1

After the transformation the coordinatev
′

z of the billboard’s vertex is the distance to the projection

plane of the current distance map. The coordinatesv
′

x andv
′

y are used to look up the distanced into

the distances map. The vertex is not penetrating along the projection directionif the sampled value

d of the current distance map is greater than the relative distancev
′

z (see appendix A.3 for a detailed

1A single transformation to the normalized view volume of the depth cube is possible as well. In that case the tests are
performed in respect to the collider object’s coordinate system [KLRS04].
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uniform float4x4 DepthMapProj[6];
uniform float3 DepthCubeBoxSize;
Texture2DArray DepthCube;

inline
bool TestCollision( inout float3 Vtx[VTX CNT] )
{

bool Intersects = false;
float4 MapValue[6];
float4 VtxProjSpace;
// for each moveable vertex...
for( int v=VTX CNT HORIZONTAL; v<VTX CNT; ++v )
{ // for each depth map...

for( int m=0; m<6; ++m )
{ // Transformation to the depth map’s projection space.

// Please note that the vertices of the billboard are
// defined in world space coordinates
VtxProjSpace = mul(float4(Vtx[v],1), DepthMapProj[m]);
// Map the xy coordinate from [-1,1] to the range [0,1].
VtxProjSpace.xy *= 0.5;
VtxProjSpace.xy += float2( 0.5, 0.5 );
// Sample the cube map to receive the depth value in
// the w coordinate and the normal in the xyz coordinate.
MapValue[m] =

DepthCube.SampleLevel( NearestWrapSampler,
float3(VtxProjSpace.xy,float(m)),
0 ).xyzw;

// Test the vertex to be closer to the near plane
// as the object’s shape. Therefore compute the
// relative distance between both positions.
MapValue[m].w = VtxProjSpace.z - MapValue[m].w;
if( MapValue[m].w < 0 )

break; // no collision so break the loop here
}
// The vertex penetrates the object if all six depth maps
// are yield the vertex to collide.
if( m == 6 )
{ // react to intersection

Intersects = true;
ResolveCollision(Vtx[v], DepthCubeBoxSize, MapValue);

}
}
return Intersects;

}

Code Sample 5: The collision detection. The depth cube based collision detection of the billboard.
The HLSL code fragment shows the collision handling for the billboard’s mesh. The collision test is
based upon a distance comparison between the transformed vertex and thedistance which is looked
up into the distance maps. For each of the scene objects a separate method is implemented as the
dynamic assignment of texture slots to samplers at runtime is not supported by the GPU.

description of distance comparisons). If so, the other distance maps are not tested. An collision occurs

if all distance values are smaller thanv
′

z . In formal terms the following computations are made:

r = v
′

z − d , (5.4)

wherer ∈ [0, 1] is the distance between the collision mesh’s shape and the billboard vertexv in the

distance map’s projection space. Ifr > 0 the vertex is occluded along the projection direction. The
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vertex collides if all distance mapsm report the vertex to be occluded as shown in Figure 5.7:

rm > 0 ∀m , (5.5)

whererm is the result of Equation 5.4 for themth distance mapDMm , m = 0, ..., 5.

The Equation 5.5 is applied for each vertex of the billboard. For each of thecollider objects the

six depth cube transformations as well as the depth cube texture are passed to the shader. As texture

slots are not interchangeable after the compilation of the shader code the collision detection is divided

into separate function calls, one for each scene object. The index which isreturned by the bounding

sphere test is used to identify the correct branch. The shader fragment concerning the depth test for a

single object is outlined in Code Sample 5.

5.2.3.5 Resolving Collisions

1 2 3 4

Collision MeshProjection Space World Space local AABB

Figure 5.8: The collision response. First the distances of the projection space are transformed to world
space distances which form the local AABB of the collision mesh. The reaction direction is looked up
into that distance map which stores the smallest distance between the vertex andthe collision mesh’s
surface. Then, all world space distances along the reaction direction are summed up in order to yield
the reaction strength. Finally, the vertex is translated along the reaction direction.

If a collision has been detected for a vertex of the grass billboard, its position is moved in the

direction of the shortest way out of the object’s shape. The direction of the reaction depends on the

normal information which is stored in the distance maps of the depth cube [KLRS04]. In addition, the

reaction strength is obtained in respect to the local bounding box of the vertex. The local bounding

box is formed by the six distances along each of the world space axis an thusalong each of the distance

maps projection directionsdm.

At first, the relative distancesrm ∈ [0, 1] , m = 0, ..., 5 (see Equation 5.4) are weighted with the

sizes = (sx, sy, sz) ∈ R
3 of the depth cube’s axis aligned bounding box in order to map them to

their corresponding world space distances:

wm = rm · (dm • s) , (5.6)

wherewm is the world space distance from the vertex to the collision mesh’s surface in respect to
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the projection directiondm , m = {0, ..., 5}. Those values then form the local axis aligned bounding

box of the collision mesh in respect to the position of the billboard’s vertexv. Please note the second

image of Figure 5.8.

The vertex is translated along the normal vectornreact ∈ R
3 of the surface. Therefore, the normal

information of the distance mapk is used which provides the shortest distance of the vertex to the

collision mesh’s surface:

wk ≤ wm ∀ m ∈ {0, ..., 5} ∧m 6= k . (5.7)

inline
void ResolveCollision( inout float3 Vtx,

in float3 BoxSize,
in float4 MapValue[6] )

{
// Find the minimal distance between the vertex and
// the collision mesh’s surface in order to receive the
// normal which directs along the shortest way out of the
// object.
float WorldDist[6];
WorldDist[0] = (MapValue[0].w * BoxSize.x);
WorldDist[1] = (MapValue[1].w * BoxSize.x);
WorldDist[2] = (MapValue[2].w * BoxSize.y);
WorldDist[3] = (MapValue[3].w * BoxSize.y);
WorldDist[4] = (MapValue[4].w * BoxSize.z);
WorldDist[5] = (MapValue[5].w * BoxSize.z);

int NormIdx = 0;
for( int m=1; m<6; ++m )

if( WorldDist[m] < WorldDist[NormIdx] )
NormIdx = m;

// Compute the reaction strength. Therefore sum up the
// distances along the normal with respect to
// the six axis aligned projection directions.
float ReactStrength = 0.0;
ReactStrength += max( WorldDist[0] * MapValue[NormIdx].x, 0);
ReactStrength += max( -WorldDist[1] * MapValue[NormIdx].x, 0);
ReactStrength += max( WorldDist[2] * MapValue[NormIdx].y, 0);
ReactStrength += max( -WorldDist[3] * MapValue[NormIdx].y, 0);
ReactStrength += max( WorldDist[4] * MapValue[NormIdx].z, 0);
ReactStrength += max( -WorldDist[5] * MapValue[NormIdx].z, 0);
ReactStrength *= 0.5;

// Translate vertex along the surface normal with respect to
// the reaction strength.
Vtx += MapValue[NormIdx].xyz * ReactStrength;

}

Code Sample 6: The collision response. The collision reaction for each vertex. First the shortest of
the world space distances is found and then the reaction strength is computedin order to translate the
vertex in respect to the surface normal.

In simple terms, the distance mapk is identified by the distance which is smaller than the distances

obtained by the other mapsm. The normalnreact of the distance mapk is looked up by using the

pixel coordinates(v
′

x, v
′

y) of the vertex in the distance map’s projection space which were computed
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during the collision detection.

As the normals all have unit length (see Section 5.1.2.2), the reaction strengthwhich means the

magnitude of the translation is evaluated, as also illustrated in the third step in Figure 5.8:

sreact =

5
∑

m=0

max(nreact • (dm · wm), 0) . (5.8)

The reaction strengthsreact ∈ R is the total of all the world space distances projected to the surface

normal. As opposite directed vectors yield negative values they are precluded from the computation.

For this purpose themax() function prevents the reaction strength from being influenced by negative

distances that are directed contrary to the surface normal.

Finally, the vertexv is translated along the surface normal with respect to the reaction strength

(see function 5.8) as shown in the last step of Figure 5.8:

v← v + sreact nreact . (5.9)

However, the computation does not translate the vertex to the edge of the local bounding box since

no quadratic function of the world space distances is applied in function 5.8.Instead of this it is just

guaranteed that the vertex is translated out of the local bounding box as itis intended. The information

of the collision response is shown in Code Sample 6.

5.2.3.6 Preserving the Grass Shape

Structural Springs Shear Springs

Figure 5.9: The spring relaxation. After a collision response two types of springs are used to preserve
the distances between linked vertices. In Figure 5.9 a single recursion is shown for the upper right
quad which has been distorted. Please note that if the reponsiveness ofthe vertices are equal each
spring translates both of the connected vertices along the direction of their linkage.

Since the translation of the vertices is done separately, the shape of the grass has to be taken into
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consideration. Therefore, a post correction step is applied. This step preserves the overall shape of the

grass billboard [FGL03, Zel07]. In contrast to the previous collision handling steps, this correction

step accounts the billboard as a network of3× 4 vertices. Moreover, the network is expanded by a set

of virtual linear springs. Each of the springs takes care of the distance between two vertices. Whenever

such a spring is compressed or stretched, which means the connected vertices diverge or converge, the

resulting spring force affects their vertices. The vertices are moved along their connected direction in

respect to the spring’s stiffness.

Thus, the spring forcefi,j,k,l ∈ R
3 between two verticesvi,j andvk,l with i, k ∈ {0, ..., 3} ∧ j, l ∈

{0, ..., 2} is defined as:

fi,j,k,l = ki,j,k,l(‖di,j,k,l‖ − d0
i,j,k,l)

di,j,k,l

‖di,j,k,l‖
, (5.10)

wheredi,j,k,l = vk,l − vi,j is the direction of the connection between both vertices,d0
i,j,k,l is the

natural length between the both billboard vertices. The natural length depends on the type of spring.

Furthermore,ki,j,k,l ∈ [0, 1] is the stiffness of the spring. A value of1 results in a conservative spring

in contrast to a value of0 which has no effect.

The evolution of the force between the two vertices that have been connected by a spring results

in a translation for each of the vertices. The linear spring constraints are directly applied to each of

the two connected vertices [Zel07] instead of summing up all spring forces for each vertex and finally

adjusting the vertex position [Pro95]. The formula for the adjustment of bothvertex positions is:

vi,j ← vi,j + ri,j fi,j,k,l and

vk,l ← vk,l − rk,l fi,j,k,l ,

whereri,j is the responsiveness for vertexvi,j and rk,l is the responsiveness for vertexvk,l. The

responsiveness is added in order to distinguish between fixed and movable vertices. In addition, the

restrictionri,j + rk,l = 1 is made to preserve the strength of the spring force. As a fixed vertex

should not be moved the responsiveness is set to zero, whereas the movable vertex then is completely

responsive. If both vertices are not fixed they have the same responsiveness and thus,ri,j = rk,l = 0.5.

An example of this type of constrained based forces is given in Code Sample7

As the linkage through springs is built up between neighboring vertices, twotypes of springs are

applied for that purpose. Referring to [Pro95], the first type is a so-called structural springwhich

takes care of the compression and stretching of the grass billboard. In formal terms, the vertices

vi,j andvi+1,j are connected with a verticalstructural springand the verticesvi,j andvi,j+1 are

connected by a horizontal structural spring. Their natural length isd0
i,j,k,l = s0 for the horizontal

aligned spring and isd0
i,j,k,l = s1 for the vertical aligned spring.s0 is the width ands1 is the height of

the billboard’s refined quads. Both lengths in addition with a diagonal lengths2 are stored during the

procedural generation process (see Section 4.3). As the ground verticesv0,j are fixed the horizontal

structural springs are not applied among them. The second type is calledshear springand takes care
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inline
void LenConstraint( inout float3 Vtx0,

in float Resp0,
inout float3 Vtx1,
in float SpringLen,
in float SpringStiff )

{
// Compute the distance information
float3 DistVec = Vtx1 - Vtx0;
float Distance = length(DistVec);
// Compute the spring force
float3 SpringForce =

(SpringStiff * (Distance - SpringLen) * (DistVec/Distance));
// Apply the spring force
Vtx0 += Resp0 * SpringForce;
Vtx1 -= (1-Resp0) * SpringForce;

}

Code Sample 7: The length constraints. The length constraint function preserves the distances be-
tween two vertices with respect to the stiffness of a spring and the stress which occurs to the spring.
The produced stress then is solved by translating both vertices.

of shear stresses affecting the grass billboards. These springs link theverticesvi,j andvi+1,j+1 and

the verticesvi+1,j andvi,j+1. Their natural length is equal to the diagonal lengths2 of the refined

billboard quad. Both types of springs are shown in Figure 5.9.

Since the execution of one spring force affects the neighbouring springs as well, more iterations

over all springs have to be applied to get a good result due to the strong effect of stiff springs. For less

stiff springs a single iteration also yields visually pleasant results due to the small number of vertices.

The implementation is shown in Code Sample 8.
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uniform float3 SpringStiff;

void SatisfySpringConstraints( inout float3 Vtx[VTX CNT],
in float3 SpringLens )

{
for( int r=0; r<NUM RECURSIONS; ++r )
{

// 1. satisfy the vertical structural springs of the fixed
// ground vertices
LenConstraint(Vtx[IDX 00],0,Vtx[VTX CNT HORIZONTAL],SpringLens.x,SpringStiff.x);
LenConstraint(Vtx[IDX 01],0,Vtx[VTX CNT HORIZONTAL+1],SpringLens.x,SpringStiff.x);
LenConstraint(Vtx[IDX 02],0,Vtx[VTX CNT HORIZONTAL+2],SpringLens.x,SpringStiff.x);
// 2. satisfy the shear springs of the fixed ground vertices
LenConstraint(Vtx[IDX 00],0,Vtx[VTX CNT HORIZONTAL+1],SpringLens.z,SpringStiff.z);
LenConstraint(Vtx[IDX 01],0,Vtx[VTX CNT HORIZONTAL],SpringLens.z,SpringStiff.z);
LenConstraint(Vtx[IDX 01],0,Vtx[VTX CNT HORIZONTAL+2],SpringLens.z,SpringStiff.z );
LenConstraint(Vtx[IDX 02],0,Vtx[VTX CNT HORIZONTAL+1],SpringLens.z,SpringStiff.z );
// 3. satisfy the vertical structural springs of the movable
// vertices
int v, h;
int curIdx;
for( v=1; v<(VTX CNT VERTICAL-1); ++v )
{

for( h=0; h<VTX CNT HORIZONTAL; ++h )
{

curIdx = (v*VTX CNT HORIZONTAL)+h;
LenConstraint( Vtx[curIdx],0.5,Vtx[curIdx+VTX CNT HORIZONTAL],

SpringLens.x,SpringStiff.x);
}

}
// 4. satisfy the horizontal structural springs of the movable
// vertices
// ...
// 5. satisfy the shear springs of the movable vertices
// ...

}
}

Code Sample 8: The spring network. The HLSL code shows how the vertex-spring network is satisfied
in order to preserve the grass shape after collisions. First the springs of the fixed ground vertices are
resolved. Afterwards the springs among the movable vertices are relaxed. The stiffnessSpringStiff
of the springs therefore is passed as a constant to the shader. Note thatthe stiffer the springs the more
recursions over all springs have to be executed because each springaffects neighboring springs as
well.



Chapter 6

The Rendering System

Rendering of natural sceneries is a complicated subject especially if realistic global illumination is

applied. In addition the process should take as little time as possible and offer ahigh degree of detail.

Nevertheless, lighting quality has a high influence on the performance. Many techniques are often

working together to create a convincing illusion of grassy fields, for example shadow mapping, local

illumination model and screen door transparency [Wha05]. The rendering of natural environments

respectively grass turns out to be an arrangement of approximations to physical phenomena. The

rendering dealt with in this chapter applies a more physically based global illumination technique to

the grass layer. However, the approximation used is still coarse: A pre-process computes irradiance

information affected by static scene objects. At runtime this information is used toilluminate each

vertex of the two sided grass billboards. Finally, the alpha channel of the semi-transparent decal

texture which covers the billboard is giving the clump of grass its correct shape.

6.1 The Billboard’s Rendering Equation

p

n

io

Figure 6.1: The global illumination. The rendering equation is approximated for each vertex of the
billboard. Scene geometry absorbs some of the environmental light. As a result, smooth shadows are
cast on the grass billboards. The light that reaches the billboards is reflected to the viewer.
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For real-time rendering local illumination based upon the object’s surface is often applied. Effects

like transparency, reflections and shadows caused by other objects are usually not covered. These

effects come with their costs. Global illumination which is applied among scene objects is compu-

tationally expensive. Thus, objects are lit by approaches which approximate global environmental

lighting in order to improve the realism of the scene. Such a technique is used toilluminate the grass

billboards.

Before the detailed rendering techniques are handled, the rendering equation which is approxi-

mated by the render process is explained in short. The equation is derivedfrom the global illumination

model introduced by [GTGB84] and [Kaj86]:

Lo(p, ωo) =

∫

Ω

ρ(p, ωi, ωo) g(p, ωi) Li(p, ωi) dωi , (6.1)

whereLo(p, ωo) is the radiance at pointp traveling in directionωo. Li(p, ωi) is the light directed

alongωi to pointp. ρ(p, ωi, ωo) is the reflectance term defining the relationship between incoming

and outgoing light relating to the surface at pointp. Finally, the occlusion termg(p, ωi) ∈ {0, 1}

defines whether or not the point is reachable for the incoming lightLi(p, ωi). When it is not obscured

the term returns one and otherwise zero. The Equation 6.1 computes the energy flow between the

surfaces of all scene objects. In other words, the total amount of incoming light intensity at a point of

a surface depends upon the sum of all light intensity reaching that point from other surfaces.

Besides, the equation applied to the grass billboards is less complex and doesnot account for

indirect light transport. As a consequence the incoming light is always environmental lighting. As the

environment is assumed to be far away, the incoming light for each location inside the grass layer only

depends on the direction. ThereforeLi(p, ωi) is rewritten asLenv(ωi) which is the environmental

light coming from directionωi. However, the equation still covers the second major aspect of global

illumination. That is the occlusion of the environment caused by scene geometry:

Lo(p, ωo) =

∫

Ω

ρ(p, ωi, ωo) g(p, ωi) Lenv(ωi) dωi . (6.2)

The influence caused by other objects is reduced to the occlusion term as can be seen in Figure 6.1.

In a pre-process the irradiance is integrated for a fixed set of points within the grass layer’s bounding

volume (see Section 6.2). The irradiance is defined as:

E(p) =

∫

Ω

g(p, ωi) Lenv(ωi) dωi . (6.3)

The only term which is missing compared with Equation 6.2 is the reflectance term which cannot

be pre-computed as the vertex normal is required for the reflectance computation. During runtime

Equation 6.2 is approximated for the billboard’s vertices by sampling the pre-computed irradiance

and computing the reflectance as described in Section 6.3.2.
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6.2 The Irradiance Volume

As the integration of Equation 6.2 on the basis of polygonal objects cannot be done in real-time,

the parts which account for interobject occlusion must be pre-processed. Therefore, dynamic global

illumination throughout the grass layer is achieved by pre-computing irradiance information within

a volume. This approach is similar to the ambient occlusion volume presented by [CL07]. The

irradiance for each voxel is determined by sampling an environment map with the aid of additional

ambient occlusion information. The captured irradiance samples are storedin two texture arrays.

Shifting the irradiance computation into a relatively expensive pre-processing allows fast dynamic

global illumination. The irradiance volume is used to dynamically shade the grassbillboards in a

static scene at runtime.

6.2.1 Volume Set-Up

0

2

1

3

4

zaxis

yaxis

xaxis

Ambient Occlusion Information

Irradiance Information

Figure 6.2: The setup of the irradiance volume. The scene is covered by 5texture slices along the y
axis. Each slice stores ambient occlusion quantities as well as irradiance information for each voxel.

The irradiance volume covers the whole grass layer. Therefore it has the same extent as the

grass layer’s bounding volume. The volumetric data is distributed in two texturearrays: The ambient

occlusion quantities and the irradiance information are stored in different textures. Each array contains

ntex ∈ N layers (with the restriction thatntex < 1024 as described in Section 3.2). Each of the two

dimensional layers summarizes a slice of voxels in thexz plane of the world coordinate system. The

slices are oriented along the world spacey axis as is shown in Figure 6.2. The number of slicesntex as

well as the resolution of the volume has an influence on the accuracy of the dynamically interpolated

data.

6.2.2 Ambient Occlusion Information

Ambient occlusion indicates how much of the positive hemisphere is occluded at a point in the scene.

Additionally, the average incoming light direction is provided. The information of visibility is ob-

tained by employing hardware-based shadow maps. Each of these shadow maps is generated in re-
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spect to a random light direction pointing to the hemisphere above the grass layer. The iteration over

all shadow maps respectively light directions finally results in the accumulatedambient occlusion

information stored for each voxel of the volume.

6.2.2.1 Occlusion Term

The occlusion termg(p, ωi), being a part of Equation 6.2, returns whether a point in the scene is

occluded along a directionωi or not. Conceptually, in order to test for occlusion, a ray starts at the

pointp ∈ R
3 for which the occlusion has to be determined and is directed to the positive hemisphere

above the grass layer. If the ray hits a static scene object the direction is occluded and as a consequence

g(p, ωi) returns the value zero. If no object is hit, the returned value is one:

g(p, ωi) =







0 if p occluded alongωi

1 else
(6.4)

Casting a ray for each point respectively voxel inside the volume is too expensive. Therefore

GPU based distance maps respectively shadow maps [Wil78] are employed [PG04]. Such a distance

map stores distances of all shadow emitters with respect of the light direction.The distance of the

shadow emitters is received as a consequence of the transformation of theobject to the distance map’s

projection space. The projection space is determined by the projection direction ωi and the extent

of the scene’s axis aligned bounding box. So the distance map is covering the whole scene. This

enables to determine occlusion for all voxels of the ambient occlusion volume without recomputing

the distance map for each voxel: A distance comparison in the distance map’s projection space is used

to determine if a voxel is occluded or not (see appendix A for a more detaileddescription of distance

maps).

Distance maps therefore are very efficient to test occlusion along a direction. It should be remarked

that the resolution of the maps and the grass layer’s extremities determine the accuracy of the test.

6.2.2.2 Occlusion Quantities

Ambient occlusion is a technique which is often used for real-time environmentlighting of diffuse

surfaces[Lan02, PG04]. In general the ambient occlusion data of a point provides two quantities:

First it supplies how much of the environment is visible at that point. This information is called the

accessibilitya ∈ [0, 1] of a point. Second, the average direction of incoming light so called bend

normalb ∈ R
3 is provided [PG04]. Both are used to approximate global illumination effects that can

otherwise only be attained by costly computations.

The ambient occlusion quantities for the volume are obtained by an iterative process over all light

directions. Each light direction is randomly oriented towards the positive hemisphere above the grass

layer. The key part of the computation is the visibility testg(p, ωi). Therefore, a distance map for

each light directionωi ∈ R
3 is employed (see the previous Section 6.2.2.1). After projecting all
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Figure 6.3: The ambient occlusion information. Each voxel of the irradiance volume is tested to
be visible along each light direction. The occlusion test is based upon distance maps. As a result,
the average unoccluded light directionb is determined for each voxel. In addition, the quantity of
unoccluded directionsa is retrieved.

scene objects a lookup with respect to the voxel position determines if the voxel is obscured or not

along the projection direction (see appendix A.3). Whenever the direction isunoccluded it affects the

bend normal as well as the accessibility value for that voxel. More formal, for each voxel at position

p ∈ R
3 the accessibility is averaged over all directions:

a =
1

n

n
∑

i=1

g(p, ωi) (6.5)

wheren is the number of random directions andg(p, ωi) is the distance map based occlusion term

from Equation 6.4. In addition, for each voxel the bent normal is calculated:

b =
n

∑

i=1

g(p, ωi) · ωi (6.6)

The distance maps, each of which summarizes occlusion information for the scene along a random

direction, are iteratively applied to the voxels of the volume. This process is displayed in Figure 6.3.

As only eight render targets can be bound in one single render call, the volume is refined in batches

of eight slices. Each of these batches then is updated separately by a pixel shader. As a result for each

voxel of the volume the average amount of the unoccluded area with respect to the positive hemisphere

and the bent normal is computed.

The objects serving as occluders must be static. Whenever the constellationbetween them and the

grass layer is modified the ambient occlusion quantities have to be recomputed for the whole volume.1

1Another useful approach is described by [CL07]: The occlusion information is stored by using a spatial tree structure
over the scene. The ambient occlusion quantities are dynamically recomputed whenever a scene object has moved out of a
tree’s node.
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6.2.3 Irradiance Information

a
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(a)
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Figure 6.4: The irradiance information. The hemisphere above the grass layer is covered by an en-
vironment map. The map is sampled by employing a spherical parameterization ofthe bent normal
b. The number of unoccluded light directionsa determines the sampled area of the map (see Fig-
ure 6.4(a)). Both quantities define the cone of incoming light for each voxel of the irradiance volume
(see Figure 6.4(b)).

For each voxel of the volume the incoming irradiance is approximated by usingthe ambient oc-

clusion information of the voxel. As mentioned in Section 6.1, the irradiance is reduced to environ-

mental lighting. Therefore,Lenv(ωi) is represented by a single environment map which covers the

whole hemisphere over the grass layer (see Figure 6.4). A blurred lookup from the environment map

approximates the irradiance for a point [PG04] within the bounding volume ofthe grass layer. This re-

sults in a coarse approximation to the irradiance function 6.3 but it is evaluatedmuch faster and can be

computed on modern graphics hardware. The ambient occlusion quantities of each voxel determines

the irradianceE (see Figure 6.4(b)):

E(b, a) = a · env(t, dtx, dty) , (6.7)

wheredtx = dty = a4 ∈ [0, 1] are the derivatives in each direction of the texture. The derivatives

are determining the area respectively the mip-map level of the environment mapin which texture

filtering occurs (see Figure 6.4(a)). The greater the derivatives are, the higher is the interpolated mip-

map level and the more blurred is the returned value. In addition, the sampled value is multiplied

by the accessibilitya in order to darken areas that are more occluded than others. The derivative

based sampling function env() bi-linearely interpolates among the texels at coordinatest ∈ [0, 1]2

of the mip-map. The environment map is defined in the latitude longitude format. Thebent normal

b = (bx, by, bz) ∈ R
3 is used to address a point in the environment map (see Figure 6.4(a)). The

mapping to the environment coordinate space is handled by spherical parameterization:
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t =

(

1

2π
(arctan(

by

bx

) + π),
1

π
arccos(bz)

)

. (6.8)

Similary to the creation of the ambient occlusion information a pixel shader computes eight texture

levels of the irradiance volume in one single render call. The precomputed irradiance does not account

for dynamic lighting environments. In that case the computation of the irradiance information has to

be done during runtime as described by [PG04]. However, this causes far more computations for each

fragment of the grass billboards.

6.3 The Rendering Process
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Figure 6.5: The render process. The process is divided into two passes in order to speed up rendering
for those grass tiles that are not affected. Beforehand invisible clusters are culled.

The rendering process is split into two separate render passes with regard to the outcome of the

collision pipeline as can be seen in Figure 6.5. Some grass tiles might have beenaffected by collisions

while others have not been updated yet. Before rendering a culling of invisible grass tiles takes place.

The main difference between both render passes is that the billboards which have not been updated by

the collision system still have to be animated during the rendering. The grass tiles which are updated

by the collision pipeline might contain deformed billboards. Those deformed billboards go through a

finer tessellation.
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6.3.1 Culling Grass Tiles

Octree Hierachy

culled grass tiles

visible grass tiles

View Frustrum

(a)

Occluded
Grass Tiles

(b)

Figure 6.6: The culling techniques. Each node which is not covered by theview-frustrum (see Fig-
ure 6.6(a)) or is occluded by other geometry (see Figure 6.6(b)) is culledfrom rendering.

Often only a small portion of the grass layer is visible. The majority of grass billboards can be

omitted from rendering. Two culling techniques are applied on the CPU as is displayed in Figure 6.6.

The visible set of grass tiles is determined by an intersection calculation basedon the bounding boxes

of the hierarchical octree structure and the view frustrum. Afterwards,the viewed leaf nodes are

further tested for occlusion by employing GPU based occlusion queries. After both culling techniques

have been applied the remaining set of grass tiles is rendered.

6.3.1.1 Viewport Culling

As the grass clusters which are outside of the view-frustrum are clipped during the rasterizer stage of

the rendering pipeline (see Section 3.1), they can be culled beforehand [MH99]. The occlusion test

is based upon the hierarchical octree structure of the grass layer. As each of the nodes encloses its

children, the tree can be efficiently traversed in order to cull the invisible nodes. Starting at the root

node all eight child nodes are tested to be outside of the view frustrum. Eachof the child nodes which

are at least partially visible is traversed. Then its eight child nodes are further tested for intersection

with the view-frustrum. A branch of the recursion ends if a leaf node is reached or a node is completely

outside or inside of the view-frustrum. All the visible leaf nodes which are containing grass tiles are

further tested for occlusion as described in the next section.

Before computation it is important to enlarge each bounding box by the maximum extensions of

the grass billboards. That is necessary as wind animation as well as collisionresponse might have

moved the billboards out of the bounding box. This situation especially occurs for billboards which

are planted near to the boxes border.
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6.3.1.2 Occlusion Queries

The axis aligned bounding boxes of the leaf nodes are used to test whether grass tiles are occluded.

Therefore, the hardware based occlusion query [Sek04] is useful:An occlusion query returns the

number of pixels of the render target influenced by the mesh’s rasterizedfragments [CG03]. Whenever

no pixel is influenced the object is fully occluded, as is the case if all fragments failed the depth test.

Therefore, as a first step the occluders, for example the terrain, are rendered to the depth buffer which

as a result fills the depth buffer with the depth values of the occluders. Foreach bounding box that

encloses grass billboards and has passed the viewport culling an occlusion query is performed. Again,

each box is extended by the maximum size of a grass billboard. All grass tiles whose bounding box

influences at least one pixel of the final image are still rendered.

6.3.2 Shading Grass Billboards

n

o

Irradiance
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Per Vertex
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Primitive
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Final Shape
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b

Figure 6.7: The billboards shading. The process is splitted into a per vertexillumination and a pixel
based shape generation. The rasterized primitives are assembled duringthe rendering.

The shading process of the grass billboard uses a series of subsequent steps to generate the visual

appearance of grass as shown in Figure 6.7. As a first step, the normalof each vertex is derived to

allow for illumination computations: The irradiance at each vertex is combined withthe reflection

properties of the grass material. Then the billboard’s primitives are assembled. Finally, the material

color and the shape of the corresponding clump of grass are applied foreach rasterized fragment. The

shaded semi-transparent appearance is a result of the blending process based on multi-sampling.

6.3.2.1 Dynamic Irradiance Sampling

In case the collision system did not update the grass tile before the rendering, the wind animation

described through Section 4.4 is applied to each of the undeformed billboards. Ultimately, during the

dynamic sampling, the vertices of the billboard have to be up to date regardlessof whether they are

handled through the collision system or not.
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si

si+1 w

Figure 6.8: The dynamic sampling. The irradianceE as well as the bent normalb are interpolated
for each vertex of the billboards within the irradiance volume. The two closest texture slices are
interpolated bi-linearily. Afterwards, a shader based linear interpolation yields the final samplew.

For each vertexv of the deformed or undeformed billboard the global illumination information

is sampled within the pre-computed irradiance volume. A tri-linear combination of the eight clos-

est voxels of the volume yields the desired information. As texture arrays are used, only bilinear

interpolation among the slices is supported (see Section 3.1.2). That is the reason why the tri-linear

interpolation is done in the shader. The information is interpolated between the samples of the closest

texture slices as shown in Figure 6.8. Furthermore, the slices must be indexed directly. As the array

is spanned along the y axis, the indices of the upper slicesi+1 ∈ N and the lower slicesi ∈ N are:

si = floor(cy · ntex) and

si+1 = ceil(cy · ntex) ,

wherentex ∈ N is the number of texture slices of the volume.c = (cx, cy, cz) ∈ [0, 1]3 is the

relative position of the vertex within the volume.2 As the interpolation is done in the shader, the

interpolation factor between both slices is defined as:

α = ntex · cy − si .

The implementation is shown in Code Sample 9.

Finally, the tri-linear interpolation within the volume turns out to be:

w = (1− α) vol(cx, cz, si+1) + α vol(cx, cz, si) , (6.9)

wherew is the tri-linear sampled volume data. Vol(x, y, s) is the bilinear sampling function among

the slices. For each vertex both the irradianceE and the bent normalb are interpolated within the

2As the volume covers the whole grass layer the vertex of the billboard is always located within the volume.
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inline
float4 GetRelativeCoord( in float3 Vtx )
{

float4 c;
// Compute the relative coordinate within the volume
c = (Vtx - VolumeMinPos) * 1.0/VolumeSize;
// Compute the index of the lower slice
float LowerSlice = floor( NumSlices * c.y );
// Compute the interpolation factor between both slices
c.w = (c.y * NumSlices - LowerSlice);
// Alter the relative coordinate to the index of the lower slice
c.y = LowerSlice;

return c;
}

Code Sample 9: The relative coordinate. The valuesVolumeMinPos andVolumeSizeare passed to
the shader. They define the bounding volume of the grass layer. Please note that only the index of the
lower slice is computed. The adjacent slice is found at the following index.

volume (see Section 6.2). As the interpolation of unit length vectors does notnecessarily yield a unit

length vector the interpolated bent normal is normalized after interpolation. The implementation of the

irradiance information is shown in Code Sample 10. As a result the sampling allows to dynamically

obtain global illumination information per vertex.

inline
float3 GetIrradiance( in float4 c )
{

float3 irradiance[2];
// receive the bi-linearly interpolated irradiance value of both slices
irradiance[0] = IrradianceArray.SampleLevel( LinearMirrorSam, c.xzy, 0 );
c.z += 1.0;
irradiance[1] = IrradianceArray.SampleLevel( LinearMirrorSam, c.xzy, 0 );
// return the value received by tri-linear interpolation
// between the two closest slices
return lerp( irradiance[0], irradiance[1], c.w );

}

Code Sample 10: The irradiance sampling. The relative coordinate inside theirradiance volume is
used to sample the irradiance information. The closest slices of the texture array are addressed by the
y-coordinate. For the sampling of the ambient occlusion information another function is called.

As the irradianceE approximates all the incoming light relating to the amount of occlusion and

with respect to the cone of incoming light the last term which is missing in Equation 6.2 is the re-

flectance termρ(p, ωi, ωo). The illumination computation is based upon this information.

6.3.2.2 Per-Vertex Illumination

Due to the complex illumination computations and the massive amount of grass billboards per pixel

lighting is avoided. Instead of this, Gouraud shading is implemented which shiftsthe work to the

geometry shader. Each normaln is set up with regard to all adjacent facets of the vertexv. All the
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Figure 6.9: The per vertex illumination. In Figure 6.9(a) the assembly of the vertex normals is shown.
Each vertex normal is setup with regard to the adjacent triangles of the vertex. From Figure 6.9(b) up
to Figure 6.9(d) the components of the billboard’s reflectance term are illustrated.

normalsnt of the triangle primitives that contribute to the normal are integrated as can be seen in

Figure 6.9(a):

n =

∑k
t=0 nt

∥

∥

∥

∑k
t=0 nt

∥

∥

∥

, (6.10)

wherek is the number of the triangles that surround the vertexv. The resulting normals lead to a

smooth Gouraud shading all over the surface.

Within this step, the reflectance term can be computed as the irradianceE and the bent normalb

are obtained for each vertexv. The term constitutes the local reflection properties of grass and is split

into several components as presented in Figure 6.9:

ρ = ρdiff + ρspec + ρrefr . (6.11)

The first component is the diffuse term which is affected by the normaln and the sampled average

incoming light directionb (see Figure 6.9(b)):

ρdiff = (|n • b| · 0.7 + 0.3) · (1, 1, 1) ,

whereρdiff ∈ [0.3, 1]3 is the amount of diffuse reflection for all channels RGB. It is constituted by

the angle between the incoming light direction and the normal of the vertexv. The more the directions

differ, the smaller the value of the diffuse term. If both directions are perpendicular respectively the

surfaces faces away from the light the contribution is minimal. As the billboardsare flat the backfaces

are visible as well. Therefore, the absolute value of the diffuse term is computed in order not to darken

the back faces by mistake. The quad of the billboard should also not turn to black if it is being viewed
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from the side as this causes an unnatural appearance. Therefore, the range of the diffuse term[0, 1] is

mapped to the range[0.3, 1] by an additional ambient amount.

The specular term adds highlights in respect to the view direction (see Figure 6.9(c)):

ρspec = (1− f) max(n • h, 0)4 · (1, 1, 1) ,

whereρspec ∈ [0, 1]3 is the amount of specular reflection for all channels RGB.h = ωo+b

‖ωo+b‖ is the

normalized halfway vector between the view directionωo and the average light directionb. The effect

of this so-called Blinn-Phong lighting is that brighter highlights are added where the view direction

and the light direction are closely aligned. The maximum is reached if both vectors coincide. Because

grass tends to have great highlights over its surface the exponent is kept small. The interpolation factor

f ∈ [0, 0.5] which accounts for the semi-transparent nature of grass blades signifies the percentage of

refracted light described in short: The more refracted light affects the billboard, the more reduced is

the contribution of the specular component and the higher is the value off . In cases where the grass

billboards are lit from behind and viewed from ahead the refracted light contributes to illumination.

Therefore the termf is determined relating to the angle between the halfway vector and the average

incoming light directionb:

f = max(h • −b, 0) · 0.5 .

The max() function prevents the term from falling below zero and the factor reducesthe influence

of back face lighting. This term is similar to the Fresnel Term [MH99].

The more the refracted light affects the illumination the more the material color turns to yellow as

is for plants modeled through a color shiftsrefr = (1.0, 0.9, 0.3) [KCS07]:

ρrefr = f · srefr ,

whereρrefr ∈ [0, 0.5]3 is the refracted light.

Combining all components as a result yields the reflectance termρ ∈ R
3. ρ is a variation of

the so-called Blinn-Phong model common to computer graphic applications [MH99]. As a result of

combining both, the global irradiance and the local reflectance properties, a coarse approximation to

function 6.2 is computed. However, the final color is evaluated per pixel. The reason for the divided

process is that the surface materialcmat ∈ [0, 1]3 is stored in the semi-transparent decal texture which

is necessary for the final shape generation. So, the reflectance term ismultiplied with the irradiance

in order to interpolate as few parameters as possible throughout the rasterizer stage:

erefl = ρ ⊗ e .

The implementation is shown in Code Sample 11. After all illumination computations eachof the

quad primitives are assembled as described next.
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inline
float3 Illuminate( in float3 Vtx, in float3 Norm )
{

// Compute the relative coordinates.
float4 c = GetRelativeCoord( Vtx );

// Sample the bend normal and the irradiance
// for the vertex
float3 b = GetBendNormal( c );
float3 E = GetIrradiance( c );
float3 viewDir = EyePos - Vtx;
float3 h = normalize( viewDir + b );
// How much of the light is transmitted?
float f = saturate( dot(h,-b) ) * 0.5;

// Evaluate the diffuse term
float diff = abs(dot(Norm,b)) * (1-AMBIENT AMOUNT) + AMBIENT AMOUNT;
float3 diffColor = diff;

// Evaluate the specular term
float spec = saturate( dot(Norm,h) );
spec *= spec;
spec *= spec;
float3 specColor = (1-f) * spec;

// Evaluate the color shift which simulates transmitted light
float3 refrColor = f*ColorShift;

// Return the reflected irradiance
return E * (diffColor + specColor + refrColor);

}

Code Sample 11: The illumination. The illumination function is called for each vertexwhich is part
of an assembled quad primitive. The valuesColorShift andEyePosare constant for each frame.

6.3.2.3 Primitive Assembly

As the grass billboards are stored in a single point list the final triangle primitives are created during

the geometry shader. Either the deformed or the undeformed representation of the billboard exists

depending on whether recovering time is left or not. For each billboard up tosix quadrilaterals are

created depending on its deformation state. When the undeformed state is rendered a single quad

Q(v0,0,v3,0,v0,2,v3,2) is streamed. Six quads are streamed in case that recover time is left:

Q(vv,h,vv+1,h,vv,h+1,vv+1,h+1) ∀ v = {0, 1, 2} ∧ h = {0, 1} .

The primitive assembly is shown in Code Sample 12.

After that, each of the vertices receives a texture coordinate. This coordinate is used for projecting

the decal image onto the assembled primitives respectively rasterized fragments. As the whole image

is addressed through the texture coordinate range[0, 1]2, the coordinates are equidistantly distributed

over the billboard’s verticesvi,j :

ti,j = (
i

3
,

j

2
, idimage) ∈ R

3 ,
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whereidimage is the procedural assigned index into the texture array containing the semi-transparent

images (see Section 4.3.2.3 and Section 4.1.3). Streaming the previously computed erefl value and

the texture coordinates per vertex allows to compute the final appearance on a per pixel level.

inline
void StreamDeformedBillboardQuads(

inout TriangleStream<BILLBOARD VTX> BillVtxStream,
in float3 Vtx[VTX CNT],
in float ImageId )

{
BILLBOARD VTX BillVtx[4];
// 1.)... Compute the texture array coordinates
// into the decal image (imageId is used)
// 2.)... Compute the illumination for each vertex
// 3.) Assemble and stream each quad of the deformed
// billboard
int Idx[4];
for( int v = 0; v<(VTX CNT VERTICAL-1); v+=1 )
{

for( int h = 0; h<(VTX CNT HORIZONTAL-1); h+=1 )
{ // Select the current vertices

Idx[0] = v *(VTX CNT HORIZONTAL) + h;
Idx[1] = (v+1) *(VTX CNT HORIZONTAL) + h;
Idx[2] = v *(VTX CNT HORIZONTAL) + (h+1);
Idx[3] = (v+1) *(VTX CNT HORIZONTAL) + (h+1);

// Compute the projection space coordinates.
for( int q=0; q<4; ++q )

billVtx[q].ndcPos = mul( float4(Vtx[Idx[q]], 1),
ViewProjection );

// Stream the quad
BillVtxStream.Append( BillVtx[0] );
BillVtxStream.Append( BillVtx[1] );
BillVtxStream.Append( BillVtx[2] );
BillVtxStream.Append( BillVtx[3] );
BillVtxStream.RestartStrip();

}
}

}

Code Sample 12: The primitive assembly. The illumination is computed and the texturecoordinates
are assigned for each vertex. Afterwards, the function assembles the quad primitives of the deformed
billboards. These quads are passed through the rasterizer as a seriesof triangle strips. In case the
undeformed billboard is rendered, another function is called which only streams the quad made up by
the edge vertices.

6.3.2.4 The Final Shape

Even then all the work done so far is based on vertices the final shape ofthe grass as well as the

application of the illumination is done on the base of each pixel: As each clump of grass blades is

represented by a semi-transparent decal texture, as mentioned in Section4.1.3, now for each pixel

of the quadrilateral primitives the decal texture is sampled. The texture coordinates and the reflected

irradiance are computed for each vertex throughout the primitive assemblydescribed in the previous
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2xMSAA 8xMSAAAlpha Layer

Figure 6.10: The edge smoothing. The edges of the grass billboards are smoothed by a slight transi-
tion between opaque alpha values and transparent alpha values. Pleasenote that the multi sampling
resolution determines the final image quality (compare the result of 2xMSAA withthe result achieved
by 8xMSAA).

section. As a result of the sampling the material colorcmat ∈ [0, 1]3 as well as the transparency

amat ∈ [0, 1] are obtained. The final colorcfinal for each pixel is computed by multiplying the

material color with the reflected irradiance:

cfinal = cmat ⊗ erefl

The pixel shader is outlined in Code Sample 13.

float4 FinalShape( BILLBOARD VTX Pix ) : SV TARGET
{

// Sample the decal texture
float4 DecalColor = DecalTextures.Sample( AnisotropWrapSam, Pix.Texcoord );
// Combine the grass color with the reflected irradiance
DecalColor.xyz *= Pix.ERefl;

return DecalColor;
}

Code Sample 13: The final shape. The sampled color for each pixel is modulated with the reflected
irradiance. This results in the final color for the pixel. The alpha value of the sampled color is returned
in order to allow for blending.

The thin surface of grass blades does also provide the ability to look through them. That is noticed

best if the viewer is near the grass blade. This semi-transparent nature of the grass is simulated with

the aid of the alpha-to-coverage feature (see Section 3.1.2). The blending between billboards is done

without the necessity of performing expensive depth-sorting wheneverthe viewer’s position changes.

Sub pixels are filled by grass billboards with respect to the transparency valueamat. The higher the

value of the grass billboard’s pixel the more sub pixels of the render target are filled with the pixel’s
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color. The blending occurs during downsampling of the multisample resolution tothe final image

resolution [Mye06]: All subpixels are summed up to the final pixel color. Asa restriction only the

most recently rendered grass billboards affect the sub pixels which determine the final image. But due

to the chaotic nature of grass this is not easy to notice and thus, does not have an effect on the visual

results.

The shape of the final grass is also set up by the alpha layer of the decalimage. At every pixel of

the quad where the sampled transparency is zero no pixel is rendered. Furthermore, the edges of the

grass billboards are smoothed. This is a consequence of the slight transition between transparent areas

where no blades are placed and opaque areas where blades define theshape of the clump of grass as

shown in Figure 6.10.



Chapter 7

Results

This chapter presents the results of GPU-Based Responsive Grass. After outlining the visual quality

of the collision system and the rendering system, the performance of both is discussed. Furthermore,

the application to modern real-time engines is expressed.

7.1 Visual Quality

Throughout this section the visual results of the collision handling and the rendering process are

described. Example images of different scenes are used to illustrate several components of this system.

In addition, some unpleasant side-effects of the techniques are pointed out.

7.1.1 The Collision Handling

The collision response has the most important influence on the perception ofthe responsive grass

layer. Therefore this section shows some example images concerning the visual results of the collision

response and recovering.

The first images Figure 7.1(a) and Figure 7.1(b) show the response of the grass after the scene

object has moved through the meadow. The scene is rendered with 60 frames per second by using

fourfold multi sampling anti aliasing (4xMSAA). The grass layer contains 46000 grass billboards.

The whole grass on the line of movement is pushed to the side or stamped down (Note Figure 7.1(a)).

The space between the legs of the collision mesh has left a trail in the tramped grass as can be seen in

Figure 7.1(b). Figure 7.1(c) shows the scene object which is resting in themiddle of the meadow. As

can be seen by observing Figure 7.1(d) the object has left a clearly noticeable imprint on the grass.

The collision mesh’s shape is easy to estimate within the grass. The results of therecovering process

are presented in Figure 7.2: The scene object is moved along a straight line(of motion) in the dense

meadow. After the collision has taken place, until the shape is not fully recovered the flattened grass

billboards smoothly rise back to their original form. The response and the recovering yield nice results

in case of chaotic and dense meadows.

68
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(a) (b)

(c) (d)

Figure 7.1: The collision response in a dense meadow. The images show the result of the collision
handling in a dense field of grass. In Figure 7.1(a) and Figure 7.1(b) thecollision mesh has left a
clearly visible track in the grass. In Figure 7.1(c) and Figure 7.1(d) the imprint of the scene object is
shown.

The collision response provoked in areas of sparsely planted grass billboards is displayed in Fig-

ure 7.3. The images show the scene object which is slowly grabbing somethingin the grass. The

arm which collides first produces an undesired response: Instead ofpushing the grass in the direction

of the movement the grass is being pushed to the sides. That situation occursbecause the arm of the

collision mesh has not a sphere-like but rather a longish shape. For non sphere-like shapes, sometimes

the wrong reaction direction is looked up in the depth cube. This results in an unexpected response.

The scene object has to be approximated by a series of coarser sphere-like meshes in order to avoid

such unnaturally reactions. In addition, the angular appearance of deformed grass billboards is clearly
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(a) (b) (c)

Figure 7.2: The recovering of tramped grass. In this figure the processof the recovering is shown.
The scene object has left a clearly visible line of movement in the meadow. After a while the grass
smoothly recovers. Note that the grass is darkening when it is tramped down.

(a) (b) (c)

Figure 7.3: The squared look. The figures show a sparsely planted region. From the left Figure 7.3(a)
to the right Figure 7.3(c) the object is moved toward the grass clumps on the right (Please note that the
object is in a unnatural way beyond the terrain in order to make the movement possible). The longish
shape of the arm causes an unnatural reaction: The billboards are pushed to the side of the arm instead
of being pushed in the direction of the movement. In addition, the squared lookof deformed billboards
is easy to estimate.

visible. However, these unpleasant reactions are only noticeable in thoseregions of the grass layer

where grass billboards are sparsely planted.

7.1.2 The Rendering System

The visual appearance of the grass billboards is very important. This aspect is determined by closely

planted grass and realistic illumination. In this section the results of each component of the rendering

process are shown.

In Figure 7.4(a) all components of the reflectance term are visible at the same time. On the left
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(a) (b)

(c) (d)

Figure 7.4: The visual results of the rendering process. In Figure 7.4(a) the grass is shown from the top
view. The results of the reflectance term are visible: from the left to the right the specular term is re-
placed by the refraction term. In Figure 7.4(b) the scene object shimmers through the semi-transparent
grass billboard. In Figure 7.4(c) and in Figure 7.4(d) the outcome of the global illumination applied
to the grass layer is visible.

the specular term is visible. Please note the bright highlights in contrast to the grass shown in the

middle of the figure. On the right side the effect of the transmitted light is shown. The grass is slightly

shifted to a more yellowish color. The semi-transparent nature of the grassbillboards is visible in

Figure 7.4(b). The viewer is close to a grass blade and the scene object shimmers through it as a result

of the Alpha-to-Coverage feature.

In both, Figure 7.4(c) and Figure 7.4(d), the global illumination becomes visible. The random

directions used to create the occlusion information for the grass layer are mainly concentrated along
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a single direction. The smooth transition between shadowed and lit areas of the grass layer creates

an idea of the overall illumination of the scene. In the left half of Figure 7.4(c) the grass is darkened

by a hill which is located in front of it. From the left to the right side the grass ismore and more

illuminated. This makes it easy to identify the light direction. In Figure 7.4(d) the light is directed to

the viewer. The rock in front of the viewer casts smooth shadows to the right half of the grass area.

The dynamic illumination is visible if the grass is pushed down as can be seen by comparing the

images shown in Figure 7.2. Whenever the scene object moves through the grass, the grass tramped

down is darker as can be seen in Figure 7.2(a). That is because the dynamic sampling described in

Section 6.3.2.1 interpolates values between the closest slices of the irradiance volume. The more the

grass is tramped down, the more raise the influence of the lower slice. The lowest slice in general is

occluded by the terrain. Hence, a grass billboard receives less irradiance if it is tramped down. That

simulates the shadow which is caused by neighboring blades. The more the grass recovers the less

it is affected by the lowest slice of the volume. However, this effect relatesonly to those billboards

which are located on the lowest level of the grass layer.

7.2 Performance Analysis

Achieving a high performance is one of the major aims of real-time applications. All parts concerning

the grass layer are designed to reduce the workload of the CPU as much aspossible. Therefore the

handling of the billboards is almost completely shifted to the GPU. That is why in thissection the

performance of responsive grass is analyzed with aid of the NVidia PerfHUD1 tool. This tool helps to

identify performance bottlenecks on the GPU. All the tests are made on a AMD Athlon 64 3500+ 2.2

GHz processor and a GeForce 8800 GTX graphics card with 768 MB DDR3 memory.

7.2.1 Collision Handling

The performance analysis of the collision handling is done by observing thesame scene with different

collision conditions. Only a single collision object is used during the tests. Figure 7.5 shows the four

constellations of the same scene running at 30-80 frames per second. Figure 7.6 shows how much

time is consumed in each GPU pass (of either the collision pipeline or the rendering process). The

scene contains approximately 37000 billboards which requires 12 MByte ofgraphics memory. Each

time the image is rendered with Alpha-to-Coverage enabled and 4xMSAA. Bothculling techniques

prune away all grass tiles that can not be seen at all.

In Figure 7.5(a) the grass layer which smoothly waves in the wind is rendered with 80 frames per

second. Referring to the diagram 7.6(a) the only pass that causes computations, is the rendering pass of

the unaffected grass tiles (RN). The scene is pixel bound as can be noticed by observing the utilization

graph in Figure 7.5(a). The graph shows the workload balancing of the programmable stages of the

1The NVIDIA performance monitor tool is a copyright of the Nvidia Cooperation and comes for free with the restriction
of usage only for the NVidia products. The tool makes it possible to analyze the video cards performance at real-time.
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(a) (b)

(c) (d)

Figure 7.5: The collision conditions. The figure shows four images with a increasing number of
deformed grass billboards. In addition, the colliding (green) and recovering (red) leaf nodes of the
octree are displayed in the scene. In Figure 7.5(a) no deformation has occurred at all. From Fig-
ure 7.5(b) to Figure 7.5(d) the number of deformed billboards increases.The graph on the left corner
in all the figures displays the shader utilization. Each bar shows the percentage of workload caused by
the corresponding shader unit during the last frames: The blue bar shows the utilization of the pixel
shader unit and the green bar shows the utilization of the geometry shader unit. Accordingly a red bar
determines the workload caused by the vertex shader.

rendering pipeline: The unified streaming processors are utilized to work on pixels with about 75 per

cent (the blue bar) whereas the geometry shader unit of the pipeline is active by approximately ten

per cent (the green bar). As the vertex shader (red colored) only passes the points to the geometry

shader it has no influence on the performance at all. Hence, the vertex shader does not even demand

the streaming processors. The remaining workload is caused by frame buffer operations. In all scenes

approximately 16 million pixels are processed within the fragment shader resulting in many read as

well as write accesses to the frame buffer. These are amplified by the Alpha-to-Coverage feature

which requires a multisample resolution that in this case is four times higher as the image resolution.
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Figure 7.6: The performance of the collision handling. The series of diagrams show the time con-
sumed throughout the different scenes of Figure 7.5. Figure 7.6(a) upto Figure 7.6(d) show the
performance consumed throughout the scenes shown from Figure 7.5(a) up to Figure 7.5(d). For each
GPU pass a performance bar is shown. These are the update of the recovering grass tiles (R), the
update of the colliding grass tiles (C), the rendering of the affected grasstiles (RD), and the rendering
of the unaffected grass tiles (RN). Each duration is given in milli-seconds.

In the second constellation shown in Figure 7.5(b) the grass layer is affected by the collision

object. The nine grass tiles respectively leaf nodes that are tested through the collision pass are

displayed by red wireframe boxes. Hardly any of the grass billboards are affected except those that

are near the collision object. The utilization graph in Figure 7.5(b) shows thatmore workload is

caused by other parts of the pipeline as the percentage of the pixel shader is reduced in contrast to

the previous case (note the 20 per cent decrease of the blue bar compared with Figure 7.5(a)). This

time is consumed in the stream output stage which is the back-end of the collision pass. As can be

noticed by looking at the diagramm 7.6(b) three passes are executed on theGPU. The nine grass tiles

are processed by the collision pass (C) which takes the least of all computational time. In the second

pass (RD) those tiles are rendered. The rendering of the rest of the grass layer (RN) is consuming the

most time as it envolves most of the grass billboards. The scene is renderedat 50 frames per second.

In Figure 7.5(c) more leaf nodes of the octree are affected. The greenboxes show the recovering

grass tiles which are updated by the recover pass. In addition, more grass billboards are deformed.

Consequently, the performance of the render pass which covers the updated grass tiles (RD) is de-

creased. As shown in diagram 7.6(c) the consumed time for rendering those affected billboards is

much higher than the time which is necessary to render the undeformed ones (RN). This time over-

head is caused by the primitive generation in the geometry shader as well as by the rendering of the
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high count of primitives. The collision pass (C) in this case stays nearly constant because only one

single collision object effects the grass layer. The number of collision tests does not increase. The

overall performance is still pixel bound.

The last constellation which is shown in Figure 7.5(d) comes up with nearly the same number of

grass tiles that are updated during the collision handling. But almost every billboard which is part of

the recovering tiles (the green boxes) is deformed. As a result there is a performance loss because the

geometry shader has to assemble much more quad primitives (Note the increased percentage of the

green bar of the utilization graph in respect to the prior cases). In addition, the deformed billboards

cause more workload on the geometry shader as more primitives are created.This can be discovered

by observing the high duration of the render pass (RD) of the collided andrecovering grass tiles in

the diagram 7.6(d). Furthermore, the primitives are cached on graphics memory which leads to many

read and write operations. In such cases where a great amount of billboards is deformed the frame

rate decreases to 30 frames per second.

To summarize, the performance of collision handling depends on the number of primitives that

are generated and passed through the rasterizer back-end. Both, thememory operations as well as

the work that has to be done in the geometry shader stage, are affected during the rendering. Con-

sequently it is necessary to setup a low recovering time in order to preservethe overall performance.

The computational time which is necessary for the collision handling remains constant (compare the

diagrams in Figure 7.6) and depends on the number of scene objects. However, the performance is

still bound by the rasterizer back-end and the frame buffer accesses as referred to in the following

section.

7.2.2 Rendering Process

The rendering system is designed to obtain good global illumination at minimal computational costs.

Therefore the global illumination is done in a preprocessing step. During runtime the computation

is reduced to the dynamic sampling described in Section 6.3.2.1. In this section it should be shown

that the illumination does not have significant influence on the overall performance. Furthermore,

the performance bottleneck is pointed out. Therefore, a scene containingmore than 46000 grass

billboards is regarded with different settings.

In Figure 7.7(a) this scene is rendered with global illumination and 8xMSAA. 50 frames per sec-

ond are rendered. The raster operations as well as the frame buffer accesses are as busy as the shader

units. This can be noticed by observing the utilization diagram 7.8(a) which shows how busy each

unit of the rasterizer back-end was during a single draw call. In addition,the total frame time (FT)

is displayed (50 frames per second). In cases where global illumination and 8xMSAA are enabled,

the billboards cause a great amount of workload in the rasterizer back-end. The streaming processors

(which in total require the time of the USH bar in the diagrams of Figure 7.8) almostcompletely work

on the pixel level as displayed by the blue bar of the utilization graph in Figure7.7(a). Consequently,

it is absolutely necessary to implement a per vertex illumination due to the high amount of pixel work-
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Figure 7.7: The results of different settings. In Figure 7.7(a) the sceneis rendered with global illu-
mination and 8xMSAA antialiasing. In Figure 7.7(b) the illumination model is replacedby a simple
diffuse term. In Figure 7.7(c) the multisample resolution is reduced to 4xMSAA and in Figure 7.7(d)
the resolution is further reduced to 2xMSAA. The utilization of the programmable units is shown in
the lower left of the figures. The blue bar represents the utilization of the pixel shader. The green bar
shows the utilization of the geometry shader.

load. In Figure 7.7(b) the illumination model is reduced to a simple diffuse term which replaces the

global illumination model described in Section 6.3.2.2. This has no affect on theoverall performance

as can be made out by comparing diagram 7.8(a) with diagram 7.8(b). The diagram 7.8(b) displays

the utilization of the units while the diffuse term is used. The span of time consumedin the shader

unit (USH) as well as the time which is spent on the per pixel operations (ROP+ FB) remains almost

unchanged. Since illumination is implemented on a per vertex level and the main time is consumed in

the rasterizer back-end the performance (see the frame time) is not influenced.

The pixel shader code of the render process is kept as short as possible (see Section 6.3.2.4). As

the pixel operations are utilized with almost the same amount as the pixel shader, the multisample res-

olution of the Alpha-to-Coverage feature is reduced next: In Figure 7.7(c) the scene is rendered with
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Figure 7.8: The utilization of the rendering pipeline units. The diagrams show the time consumed
by the most utilized units during the rendering of Figure 7.8(a) (8xMSAA), Figure 7.8(b)(Local Illu-
mination), Figure 7.8(c) (4xMSAA) and Figure 7.8(d) (2xMSAA). In each diagram the utilization of
the unified shader (USH), the raster operations (ROP) (for example the depth test), the frame buffer
accesses (FB) and the overall frame time (FT) are displayed in milli-seconds.As can be noticed,
the frame time significantly depends on the multisample resolution instead of which theillumination
model does not have an effect on the overall performance (compare Figure 7.8(a) with Figure 7.8(b)).

4xMSAA which results in an increased frame rate (FT) (80 frames per second). Both the rasterizer

operations (ROP) and the frame buffer accesses (FB) are reduced as can be seen in diagram 7.8(c).

In addition, the multisample resolution is further reduced which results in an additional performance

enhancement of 20 frames (Note the diagram 7.8(d)).

As already shown throughout the diagrams in Figure 7.8 the workload significantly depends on

the multisample resolution whenever a great amount of billboards is rendered. With respect to the

multisample resolution, the performance can be significantly improved. However, the multisampling

determines the visual quality of the blending process as already describedin Section 6.3.2.4.

7.3 Embedding

Most real-time applications employ scene graph engines in order to manage thecomplexity of large

scenes. The grass layer is embedded in such an engine to improve the usability of the presented

techniques. A DirectX 10 version of the Nebula 2 engine therefore has been extended.2 The engine

consists of different layers each of which builds an abstraction to its subjacent level. This is a common

way to build up a manageable structure on the top of the graphics API as illustrated in Figure 7.9(a).

All components of the scene graph are modularly built. Objects respectivelyentities are managed by

2The nebula engine is a copyright of Radon Labs GmbH.
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Figure 7.9: The scene graph layout. In Figure 7.9(a) the common layout ofa engine is shown. The
scene graph structure into which the grass layer is embedded is presentedin Figure 7.9(b).

a scene graph hierarchy. Each of those entities is represented by a scene graph node.

As illustrated in Figure 7.9(b) the grass layer is implemented as a scene graph node as well. This

node comprises all parts which are required by the grass system. Using a scene graph enables to dy-

namically extend or replace components of the system. The leaf nodes of the octree are implemented

in form of independent child nodes of the grass layer. These child nodes are also part of the scene

graph. This structure allows the leaf nodes to be looked up within the scene graph. In addition, scene

objects that are able to influence the grass layer are easily referenced throughout the scene graph tree

as well. All the interfaces are well-defined. This makes it possible to offer ahigher abstraction of the

supported functionality. The modularity of the components is further increased due to the distributed

implementation. The CPU makes predecisions on the base of the octree nodes and the GPU handles

each grass billboard (see Section 5.2 and Section 6.3).



Chapter 8

Conclusion

This chapter is a conclusion of the provided diploma thesis concerning GPU based responsive grass

containing a short summary and further considerations. Some limitations and future enhancements

are finally presented.

8.1 Summary

Real-time applications such as computer games do more and more simulate large natural scenes. Aside

from the need of real-time rendered trees, bushes and water there always is a demand for responding

grass. To be able to meet the demands thousands of billboards are used to create an illusion of

dense grass vegetation. In combination with wind animation nice visual results are achieved. But

the visual perception is compromised by lack of interactivity: Objects are moving through the grass

without leaving a trace. Due to prior hardware constraints a visually pleasing collision reaction for a

large area of grass was unachievable. However, exploiting the potentialsof todays GPUs, real-time

collision reaction can be achieved as presented in this diploma thesis.

The results of the research in grass simulation are used in order to composea grass layer on the

base of simple quadrilaterals. During the procedural generation process of the grass billboards they

are tiled to allow a better handling during runtime. Those billboards are made available to the GPU

as point lists. Furthermore, an animation technique for vegetation is employed tothe grass layer in

order to simulate wind movement. The resulting animated grass layer is presentedin chapter four of

this diploma thesis.

Since prior research based on the simulation of grass is limited to rendering and animation aspects

implementation strategies from other fields of research are consulted. Approaches concerning particle

based collision handling as well as real-time cloth simulations are employed in order to implement

a collision system as introduced in chapter five. The collision pipeline is split intotwo subsequent

passes: A CPU-based process excludes grass tiles that are obviouslynot affected by any object colli-

sion. Within the geometry shader, implicit object representations are employedto detect penetrations

and compute a collision response on the base of each vertex. As the separate processing of individual
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vertices may lead to visually unpleasant distortions, a cloth model is evaluated topreserve the overall

shape of the grass. After a collision has taken place, the GPU-based collision handling recovers the

simple quad shape of the deformed billboards. The restrictions of the streamoutput stage make it

necessary to spread out the billboards data over two point lists.

Illumination as a major element of every realistic landscape-imitation was presented in chapter 6.

To integrate the grass layer into a dynamic global lighting environment, precomputed irradiance vol-

umes are employed. Tri-linear interpolation inside the volume allows a computation of incident light

for each vertex of the grass billboards approximating global illumination for each vertex. The Gouraud

shading is applied during the assembly of the quad primitives. Semi-transparent shaded pixels are

accomplished by multiplying the decal color with the reflected incident light. Alpha-to-Coverage

blending concludes the process.

The results presented in chapter seven proof that the generation of GPU-based responsive grass

(in real-time) is no longer an insolvable challenge. The visual quality in case of dense vegetation and

the good performance achieved give a proof of the great suitability of theimplementation strategies

for achieving large responsive grass layers in todays real-time applications.

8.2 Further Considerations

This diploma thesis presents a collision pipeline which swaps data from one buffer to another while

responding to collisions. The collision test as well as the response is basedupon each vertex. A

subsequent step restores the shape of the mesh. This process can easily be extended as described in

the following section. Additionally, the used techniques might be applicable forother plants such as

bushes, herbs and crop.

The clearly separated and modular design allows the techniques to be integrated into a large range

of real-time applications. Furthermore, as the billboard-based approach isa common way to model

grass layers in todays computer games, these implementations can easily be adjusted. However, ap-

plications that are already GPU bound will not profit from this approach.

8.3 Limitations and Future Work

The approach presented throughout this diploma thesis grants the availabilityof responsive grass for

dense covered landscapes. The results are demonstrating that collision response works fine for regions

where the flat structure of the grass billboards is hardly made out (see Section 7.1.1). However, in

areas where grass is planted sparsely, for example at the borders of the grass layer, due to the coarse

tessellated mesh of the billboard the visual impression of the deformed billboards is insufficient. Two

different approaches, which might also be combinable, might be promising when trying to solve this

problem: On the one hand the collision handling could be made independent ofthe data available

for a single primitive. In that case the collision handling for each billboard would be distributed over
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several streaming passes which allow for more refined meshes. On the other hand the quad mesh of

the deformed billboard can be improved by using an interpolation of a higher degree.

8.3.1 Distributed Spring Relaxation

The billboard’s collision response essentially works on each vertex. If acollision occurs, the topology

information is absolutely necessary in order to preserve the shape of the grass (see Section 5.2.3.6).

However, as a spring affects only neighboring vertices, the collision response can be distributed to

several passes:

Initially, the collisions are resolved during a vertex shader pass.1 As a result of the per vertex based

collision response unpleasant distortions of the shape may occur. Subsequently, the cloth simulation

model is applied similar to [Zel07]:

Figure 8.1: The primitive independent spring relaxation. The figure shows the relaxation steps for
the quads of a billboard. During a shader pass no relaxed quad may share a vertex with it’s adjacent
quads. As a consequence four relaxation steps for a billboard are needed.

Four index lists are covering all spring constraints of a billboard as shownin Figure 8.1. The

spring mesh of a billboard is relaxed in four streaming passes based on quads. During a geometry

shader pass a vertex is only subject to a single quad (one line with adjacency). In other words, those

quads are relaxed in a render call that does not share a vertex. Consequently, the springs are relaxed

in four steps covering disjunctive quads. After the application of each relaxation pass the unaffected

vertices have to be streamed in order to avoid a distribution of the current billboard vertices over both

vertex buffers. Finally, the collisions are resolved and the shape of the grass billboard is preserved.

It needs to be pointed out that this process causes some additional work on the CPU. The index lists

have to cover all distorted grass billboards in order to avoid a separate relaxation for each billboard.

Thus, the lists have to be created dynamically as the amount of collided billboards varies. Moreover,

the number of system calls is enlarged.
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Figure 8.2: The curve based assembly. The figure shows the interpolationscheme for an B́ezier
surface adopted for the grass billboard. The grass billboard requiresdifferent degrees of interpolation
along different directions: First each of the six quads is interpolated bi-linearily. The two resulting
quads are interpolated bi-linearly as well. A linear interpolation between the resulting points yields
the final interpolated vertex.

8.3.2 Curve based Primitive Interpolation

The billboard’s deformed mesh consists of six quads (see Section 6.3.2.3).If the assembled primitives

are rendered directly, the billboard’s shape looks unnaturally angular.A Bézier interpolation between

the mesh’s vertices might obtain smoother results, as is shown in Figure 8.2: The4× 3 control points

require different degrees of interpolation among each of the billboard’sdimensions [MH99]. The

parameter range is partitioned into numbers of quads which are necessaryfor the resolution desired.

As a result the mesh regarding to the number of quads is much smoother. Texture coordinates and

irradiance information are interpolated as well.

As the angular look of the deformed billboards is only visible from a very close position, an

additional distance based level of detail technique should be applied in oder to avoid interpolation of

the billboards further away from the viewer.

1Note that some information has to be stored per vertex. E.g. the index of the vertex is needed in order to compute the
wind animation with respect of the vertex location in the mesh.



Appendix A

GPU-Based Distance Maps

As GPU-Based distance maps, sometimes called depth maps, are used for boththe collision test as

well as for the occlusion term during the generation of the occlusion volume,in this section a short

overview of them is presented. Further information can be found in [KLRS04] or [VSC01]. Implicit

representations like distance maps provide distances to any point within the distance maps unit view

volume. Hence, the distance information can directly be used for penetrationtests respectively oc-

clusion tests among objects. Moreover distance maps are especially of importance for GPU based

computations. On the one hand the GPU offers the advantage to easily generate them during one

single render call; On the other hand the GPU is optimized for texture lookups.

As a first step the projection space is defined as described in section A.1. The distance values

are obtained by transforming objects to the distance map’s projection space (see section A.2). The

distance map then allows for distance comparisons as described in the closingsection A.3.

A.1 The Projection Transformation

For the generation of the distance map a projection matrixTWC→DM ∈ R
4×4 is required which

transforms world space positions into the distance map’s projection space. Therefore, the near and far

clipping plane, the width and height of the projection as well as the origin of theNDC space are com-

puted in world coordinates in order to build the transformation matrix. Initially, theprojection basis is

specified in world space coordinatesx = (x0, x1, x2) andy = (y0, y1, y2) andz = (z0, z1, z2) with

the restriction that all vectors have unit length and yield an orthonormal basis. Often almost one single

projection directionz is specified. The setup is shown for a random basis in figure A.1. Afterwards,

the center of the projection planec has to be defined in world space coordinates. If the whole object

or scene is covered, the center then is the closest point to them with respect to the projection direction

z and can be determined using bounding volumes. As no point is closer to the projection plane, in

that case the near plane value is set to zero1. Accordingly the far clipping planef then is equal to the

distance of the projection center to the farthest point of the object respectively scene. The far plane is

1Note that orthographic projection is necessary to do so. Perspective projection expects a value greater zero
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Figure A.1: The distance map setup. The transformation for the orthographic projection is setup by
the bounding volume and the projection directionz. The generated map then stores relative distances
to the scene geometry with regard to the projection space.

set in order to account for the accuracy of the distance values [MH99]. Furthermore the widthw and

heighth of the projection plane is computed. This can be done on the basis of a bounding volume as

well, e.g. a bounding box, and is necessary when the whole mesh or scenehas to be covered as it is

done normally. By using all parameters, the projection matrix is set up (as it is for DirectX):
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
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
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, (A.1)

whereTWC→DM can be thought of as a concatenation of two matrices, a viewing matrix and a

orthographic projection matrix.2 Both then define a view volume in the world space which encloses

the object respectively scene.

A.2 The Projection

After the projection transformationTWC→DM is computed, as is described throughout the prior sec-

tion, the verticesv = (x, y, z, 1) of the objects then are projected by employing the graphics hardware.

Each vertex of those meshes that should be contained in the distance map therefore is transformed us-

ing the following transformations:

v
′

= v TOC→WC TWC→DM , (A.2)

2refer to [MH99] for a overview of viewing matrices and projections
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wherev
′

= (v
′

x , v
′

y , v
′

z , 1) is the vertex which is transformed from the mesh’s object space to the

world space by usingTOC→WC and then transformed to the depth map’s projection space using the

transformationTWC→DM .

In the depth map’s NDC space thev
′

z coordinate of the transformed vertex then corresponds to

the relative distance of the vertex to the projection plane. Thus, the smaller thevalue ofz
′

the smaller

the distance of the vertex is to the projection plane. Next, the verticesv
′

transformed to the unit cube

are rasterized. The resulting fragments then are used to assign relative distances to each pixel of the

2D distance map at the end of the rendering process. Thereafter, the distance map can be used to read

relative distance valuesdist(x, y) ∈ R at the pixel coordinates(x, y) as used during the distance tests

as described in the following section.

A.3 The Distance Comparison

After the distance map is filled, the map in combination with the orthographic projection transfor-

mation can be used to test for occlusion respectively penetration. The distance information is looked

up using the(x, y) ∈ [0, 1]2 coordinates in the distance map’s projection space. Therefore, the point

which should be tested either for collision or occlusion is transformed using the same projection trans-

formation applied during the creation:

p
′

= p TWC→DM , (A.3)

wherep
′

= (p
′

x, p
′

y , p
′

z , 1) is the projected point andTWC→DM is a transformation from the world

coordinate space to the projection space with respect of the projection direction. Please note that

the point already has to be defined in world space coordinates. Now eachpoint can be tested for

penetration: The point penetrates or is occluded whenever the following condition turns out to be

true:

p
′

z > dist(p
′

x, p
′

y) . (A.4)

Before the lookup, the coordinates of the transformed point(p
′

x, p
′

y ) ∈ [−1, 1]2 has to be mapped to

the distance map’s coordinate space[0, 1]2.

Besides, each point that is inside the view volume of the distance maps projection space (see

section A.1) after transformation is located in the unit cube[−1, 1]3 of the distance map’s projection

space.3 Points that are outside of the view volume before projection mapped to the distance map’s

border. Sampling the border returns an initial background value. This background value is an extreme

large value which does not satisfy equation A.4, thus, the point is not occluded.

3Note that DirectX maps the coordinatep
′

z
to [0, 1] instead of[−1, 1]
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