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Abstract

The diploma thesis at hand presents a survey on the development
of terrain rendering algorithms during the past ten years and exam-
ines to which extent Shader model 4 can contribute to terrain render-
ing algorithms. Therefore, a new approach based on the features of
Shader model 4 named RAG is introduced. RAG is a purely GPU-
based terrain rendering algorithm which refines a coarse input mesh
by recursively employing the new geometry shader stage introduced
with Shader model 4. Each triangle is directly tesselated within the
rendering pipeline, depending on how well it approximates the given
height map texture. RAG provides fast CPU-independent terrain re-
finement, but guarantees to the mesh’s accuracy can only be given to
a certain extent. This is due to the purely edge-based refinement de-
cisions which are applied to each triangle and guarantee a consistent
mesh topology.

Zusammenfassung

Die vorliegende Diplomarbeit veranschaulicht die Entwicklung von
Terrain Rendering Algorithmen innerhalb der vergangenen zehn Jahre
und untersucht inwiefern Shader Modell 4 für das Terrain Rendering
verwendet werden kann. Dazu wird ein neuer, auf den Möglichkeiten
von Shader Modell 4 basierender Algorithmus names RAG vorgestellt.
RAG ist ein vollständig GPU-basierter Algorithmus, der ein grobes
Mesh rekursiv verfeinert, indem er die mit Shader Modell 4 eingeführte
Geometry Shader Stage ausnutzt. Jedes Dreieck wird direkt inner-
halb der Rendering Pipeline abhängig davon, wie gut es die gegebene
Höhentextur bereits approximiert, tesseliert. RAG stellt eine schnelle
und CPU unabhängige Terrain Verfeinerungstechnik dar, kann aber
nur begrenzt Garantien über die Exaktheit der Höhentextur-Appro-
ximation geben. Dies liegt daran, dass rein kantenbasierte Verfeine-
rungsentscheidungen getroffen werden müssen, um eine konsistente
Meshtopologie zu garantieren.
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1 Introduction

Since the early 90’s, terrain rendering has been one of the intensely developed
subjects in the domain of computer graphics. New algorithms to perform-
antly display digital landscapes have emerged with every new generation of
hardware in general and graphic cards in particular.

The desire to display more and more detailed landscapes is the central
reason that this topic is far from being ultimately explored. The fields of
application are numerous and versatile. For example, an exactly rendered
surface can help a pilot to safely land an airplane in a situation of poor
visibility. Landscape measurements can be conducted at the computer rather
than on location. Finally, virtual reality projects and video games are able
to arouse a higher state of immersion for the user.

But with improved presentation, higher demands for computer develop.
More detail means more complexity for the processor, the graphic card and
the system memory. Each new generation of hardware increases the perform-
ance and functional range of these components, but it takes more than mere
hardware improvements to compensate today’s fast-growing data sizes and
increasing demands to detail and accuracy. Therefore, algorithms that ex-
haust the full potential of every available computer component are required
to fulfil a user’s demands.

During the past ten years, many terrain rendering technologies have been
developed and tested. Some of them are outdated in the meantime, some
others are still used and improved. To provide an overview of the research
that has been done so far, I present some of the most important algorithms
in the following section 2 of this work. The first two presented approaches
in that chapter are not GPU-based, but are yet important to illustrate the
development of terrain rendering during the past years.

As implied by the title, this thesis deals with the display of terrain using
GPU features, which are introduced along with Shader models. Section 3
reviews what such a Shader model is, and which features are supported by
the newest Shader model with the version number 4 in comparison to its
predecessor.

Section 4 begins by discussing the problems of adapting a classical CPU-
based terrain rendering algorithm to a GPU implementation. This reveals
some of the limitations of GPU-based approaches. Following this, a new
algorithm, based on Shader model 4, named Recursive Adaptive Geometry
Shader (RAG) is developed and its workflow is described in detail. The main
objectives of RAG are to be fast, accurate and efficient and to avoid the waste
of resources.

This approach transports almost all work traditionally conducted by the
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CPU to the GPU, exploiting the new geometry shader stage. Following a
discussion of problems caused by the new approach, I will compare RAG
to an algorithm that has been developed in parallel to it in the last part
section 4.

The following section 5 first details my implementation of RAG. All im-
portant aspects will be covered to clarify how an implementation can look
like and which points are to be considered. Following this, performance
measurements recorded with this implementation are presented.

An evaluation of this thesis follows in the final section 6. I will discuss
the extent to which my set goals have been reached and which improvements
can be pursued in future research.
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2 Terrain rendering algorithms

This section presents a selection of terrain rendering algorithms from the past
15 years. Summarising all the algorithms that have been developed during
that time is by far beyond the scope of this work, however the selected
algorithms presented here give a good overview of the technological history
of terrain rendering.

Each algorithm has very different characteristics. For instance, the first
algorithm (ROAM) has no support for the features of programmable graphic
hardware, due to such hardware not being available at the time of its de-
velopment. On the other side, Geometric Clipmaps makes vast use of those
possibilites, to the degree that the processor is hardly stressed at all.

Bearing this in mind, a comparative evaluation of the presented ap-
proaches is very difficult. Nevertheless, my summary of each algorithm will
attempt to rate it according to the following criteria:
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Input data

Older algorithms are often based on a fine triangle mesh
which is then reduced for better display performance, while
new approaches mostly take a texture with encoded height
values as an input.

{
if( elem[i].val < elem
{

for( int i=0; i<elements

elements::value_type temp
elem[i].val = elem[i
elem[i+1].val = elem[i

elements::value_type*

}
}

Programming considerations

Each algorithm – be it new or old – bears certain challenges,
either for its implementation or for its runtime stability. The
ones with the largest impact will be enlistet here.
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CPU / GPU load

This criterion describes how stressed both the computer’s
processor and graphic card are while the respective al-
gorithm runs.

RAM usage / bus transfer

Under this point, the amount of system RAM needed as well
as the data transfer from system RAM to the graphic card
will be subsumed. Especially the latter one is crucial for a
fast working algorithm, as the more data that needs to be
transferred, the longer the graphic card has to wait before
it can render a new image.
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Accuracy of the rendered terrain

Finally, the quality of the resulting mesh is examined here.
For many applications it is satisfactory to have a nice look-
ing terrain. Nevertheless will I specify the peculiarities of
each resulting mesh here.

As will be demonstrated at the end of this section, none of the detailed
approaches is perfect and each is better suited for certain fields of application
and worse for others.

2.1 Real-time Optimally Adapting Meshes (ROAM)

The first ROAM approach – which has evoked many pursuing and improving
algorithms – was introduced by M. Duchaineau et al. in 1997 [9]. ROAM
optimises the display of terrain by rendering regions of little local detail (flat
regions), and regions far away from the point of view, with less polygons.
Thus, the overall number of polygons is reduced to maintain high rendering
performance while the error that is introduced is being kept as small as
possible.

Preprocessing

The declared input for the algorithm is a pre-defined multiresolution terrain
representation. The algorithm however, operates on a triangle binary tree
(bintree) structure, which needs to be generated beforehand.

The root triangle of this triangle bintree is defined right-isosceles. Each
finer level of subdivision is recursively generated by splitting its respective
root along an edge formed from its apex vertex to the midpoint of its base
egde. Thus, all triangles created become right-isosceles as well. Figure 1.a
shows the first six levels of the triangle bintree described.

A concrete mesh in world space is created by assigning world-space posi-
tions from the input multiresolution terrain to each bintree vertex throughout
all recursion levels. The input data can be discarded afterwards.

After the triangle bintree has been created, the next step of the prepro-
cessing is to calculate a view-independent error value for each triangle in the
finest bintree level. Then, error bounds for chunks of triangles are recursively
evaluated by traversing the bintree bottom-up. These error bounds will be
used later on to determine the necessity for each triangle to gain more detail.
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l = 0 l = 1

l = 2 l = 3

l = 4 l = 5

(1.a) The first 6 recursion levels of a tri-
angle bintree.

split

T

(1.b) A split-operation throughout four
bintree levels induced by triangle T .

Frame-wise updates

The authors of the paper emphasise a key fact about bintree triangulations,
that assures the mesh’s continuity during split- and merge-operations: The
neighbours of a given triangle T are always either from the same, the next or
the previous subdivision level, depending on the edge on which they overlap
with T .

Due to this characteristic, split- and merge-operations will not break the
continuity of the mesh as long as they are done recursively for neighbouring
triangles in the respective cases. Figure 1.b shows an example in which
a split-operation is done recursively throughout four levels of the triangle
bintree.

Each frame, the algorithm iteratively optimises the triangle mesh from
the previous frame according to the viewer’s position and orientation. This
is done by two priority queues, one for splitting triangles to increase detail
and another one for merging them to reduce their quantity. Both queues
must be updated with each frame adjusting to the viewer’s movement.

To determine the priority of each triangle, a wide range of metrics can be
applied, predominantly it will be an error metric like the visible screen area,
the local curvature or the face orientation of a triangle. The authors, however,
have chosen the maximum geometric distortion in screen-space as a base
metric for the two queues. To make the calculation of the screen-space error
as efficient as possible, the authors use the precalculated view-independant
error bounds from the preprocessing and convert them to screen-space errors
during priority calculations.

The only requirement for the queues’ priorities is that they are strictly
monotonic, meaning that a given triangle always has a smaller priority to be
split than its parent triangle. In the author’s case, this positions the triangle
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with the highest screen-space distortion on the top of the split-list after each
update.

Beginning with this highest priority triangle, the splitting queue adds
detail to the mesh by splitting triangles and avoids cracks by recursively
splitting neighbouring triangles. Each step reduces the maximum priority
of all triangles and – at the same time – the maximum error of the whole
mesh. This is due to the triangle with the highest priority being the one that
delivers most detail gain.

As already mentioned, all mergeable triangle pairs are kept in a second
queue, which is processed to remove detail from the mesh if it is too accurate
or too large. In such cases, the triangle pair with the lowest priority is
merged, thus reducing the number of polygons in the mesh bottom-up. In
the author’s case, this processing merges the triangles with the lowest screen-
space error to ensure that the performance does not suffer from too many
triangles being handled.

The frame-wise update is aborted whenever one of the following occurs:
The available frame-time expires, the mesh has gained an acceptable detail,
the desired number of triangles has been reached or the highest screen-space
error in the bintree has been reduced sufficiently. Finally, the calculated
mesh is rendered.

Summary
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• Pre-defined multiresolution terrain representation

{
if( elem[i].val < elem
{

for( int i=0; i<elements

elements::value_type temp
elem[i].val = elem[i
elem[i+1].val = elem[i

elements::value_type*

}
}

• No special efforts needed to preserve continuous triangula-
tions and prevent “thin” triangles

• Algorithm expects priorities to change smoothly from frame
to frame, quick turnarounds or similar actions are not sup-
ported
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• Preprocessing step needed to create initial mesh

• High CPU load during runtime, GPU not programmed

• The triangle bintree must reside in memory

• A complete mesh is transferred to the graphic card each
frame
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• Algorithm produces guaranteed bounds on geometric
screen-space distortions when used with the respective error
metric

• The number of triangles in the mesh can be directly chosen

2.2 Batched Dynamic Adaptive Meshes (BDAM)

The basic goals of the BDAM algorithm are to relieve the processor from
the complicated mechanics of manipulating an existing mesh at runtime and
avoiding unnecessary transfers of data to the graphic card. Cignoni, Ganov-
elli, Gobbetti, Marton, Ponchio and Scopigno introduced this algorithm in
2003 [3], writing follow-up papers in the same year and in 2006.

In contradiction to the previously presented ROAM algorithm, the smal-
lest entity that is transferred to the graphic card is not a single triangle,
but a small surface patch. Transferring these small patches is considered
more effective by the authors than transferring single triangles or complete
recalculated meshes.

The algorithm claims to combine the best characteristics of Triangulated
Irregular Networks (TINs – with Networks meaning meshes in the domain of
computer graphics) and meshes based on right triangle hierarchies. Instead
of iteratively adjusting an existing mesh from frame to frame like ROAM,
BDAM precalculates right-isosceles triangle shaped TINs (in the following
referred to as triangular patches) in different levels of detail and assembles
them to a complete representation of the terrain during runtime.

Preprocessing

The preprocessing consists of three parts, each of which constructs a hierarchy
that is needed during the runtime of the algorithm. The three hierarchies
are:

1. A binary tree, whose nodes are triangular patches

2. A texture quadtree

3. A binary tree of bounding volumes for the triangular patches

The most complex construction algorithm is the one for the binary tree
of triangular patches. In the paper, the authors build the tree through a
simplification rather than a refinement process. However, they note that
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l l

mark mark simplifysimplify split split

l456

Figure 2: The iterative simplification illustrated for the refinement levels l6 to
l4. Edges containing unmodifiable vertices are marked (red), gener-
ating square-shaped sub-meshes. These are then simplified and split
afterwards, generating the triangular patches for the next level. Inter-
mediate states are shown in blue.

their algorithm can be replaced by an equivalent one which suits the re-
quired premises and produces the structure as a refinement. The iterative
simplification process is illustrated in figure 2.

Starting from the highest detail refinement level, a triangular patch is
created for each node of the bintree. The algorithm must make sure that no
vertices lying on the contour of a triangular patch are modified. Otherwise,
this would introduce cracks when two triangular patches are placed next to
each other. The authors use a modified version of quadric error metrics [11]
to create the triangular patches from the input dataset.

Based on the existing finest bintree level, each coarser level li+1 is recurs-
ively built bottom-up from level li. First, all vertices lying on the hypotenuse
of each triangular patch’s contour are marked as unmodifiable, so that they
persist in level li+1. This proceeding avoids cracks in the mesh when trian-
gular patches from different bintree levels are placed next to each other. The
marking creates a set of square-shaped sub-meshes, each of which cover the
area of four triangular patches from level li.

The square-shaped sub-meshes are then simplified in the same manner as
the triangular patches from the highest detail refinement level. Additionally
to the vertices lying on the contour of the sub-meshes, the ones located on
a diagonal now need to be locked as well, so that the sub-mesh can be split
into two triangles during the next step without introducing cracks. These
very triangles represent the triangular patches for level li+1.

The second preprocessing step creates a quadtree structure of textures.
The highest detail quadtree level contains the tiled original image. Each
tile covers the size of two triangular patches within the respective bintree.
Coarser levels are obtained by filtering the original image with a factor of two
to adapt to the larger area that is covered by the corresponding triangular
patches.
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While creating hierarchies for triangular patches and textures, an ob-
ject space error is calculated for each surface and texture element. These
view-independent errors are calculated bottom-up by using the respective
previous level and represent a measure for how exact the approximation of
the original – not simplified – surface or texture is.

For geometry, the error is the maximum height difference between the
simplified mesh and the original. For simplicity, the authors use the magni-
fication factor of a filtered texture as its object-space error, noting that there
are better estimation methods for texture error.

The last action of preprocessing is to build a hierarchy of bounding
volumes for the triangular patches. Each bounding volume of a patch must
include all children bounding volumes. Furthermore, two triangular patches
adjacent along their hypotenuses share the same bounding volume which en-
closes both of them. This hierarchy is used to calculate view-frustum culling
and estimate screen-space errors during runtime.

Frame-wise Updates

At runtime, the geometry and texture hierarchies are traversed until a desired
screen space error is reached. A screen-space error is calculated by applying
a monotonic projective transformation to a patch’s bounding volume and
combining its corresponding object-space geometry and texture errors.

The algorithm starts at the top level of the texture and geometry trees
and visits the texture nodes recursively. While descending the texture hier-
archy, the corresponding elements of the geometry trees need to be identified.
Whenever the texture screen space error has reached an acceptable bound,
its refinement part is stopped and the texture is bound. The algorithm then
continues to refine the geometry by traversing the geometry bintrees until
the geometry screen-space error becomes acceptable as well. The patches are
then sent to the graphic pipeline and rendered.

When refining, it has to be kept in mind that one step in the texture
quadtree corresponds to two steps in the geometry bintrees. Otherwise, the
textures could not be exactly assigned to triangular patches. Figure 3, which
has been taken from the author’s paper, illustrates this characteristic.

In relation to this, all evenly numbered levels in the geometry hierarchy
are skipped, while the texture quadtree is traversed. As a result, when the
algorithm starts the geometry refinement, it does not begin with the nodes
in the geometry hierarchy that were identified to match the texture, but with
the parent nodes.

This must be done as the matching level of detail for geometry might
have been missed while skipping every second level. If a parent node meets
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Figure 3: The left side shows one refinement step in the texture quadtree, while
on the right two refinement steps in the triangle bintrees are displayed.
Both a texture element and its associated triangles are hightlighted in
red.

the error criterion, it has to be clipped to the region of the texture that has
already been bound.

Summary
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IN • Not specifically mentioned in the author’s paper, but it
must be possible to create a TIN from the input data

{
if( elem[i].val < elem
{

for( int i=0; i<elements

elements::value_type temp
elem[i].val = elem[i
elem[i+1].val = elem[i

elements::value_type*

}
}

• The algorithm is very complex

• A culling technique is virtually free, because bounding
volumes need to be calculated anyway
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• Very complex preprocessing step including the generation of
hierarchies for terrain patches, textures, object space errors
and bounding volumes

• Compared to similar algorithms (e.g. ROAM), relatively
little CPU load at runtime

• All terrain must fit in RAM; calculating additional patches
would take too much time

• Reduced transfer to the graphic card (e.g. compared to
ROAM)

• Better terrain approximation with similar number of tri-
angles than purely right triangle based approaches, because
the patches are TINs
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2.3 Geometry clipmaps

Geometry Clipmaps were originally introduced by Losasso and Hoppe in 2004
[15]. The algorithm presented in this chapter is a follow-on paper by Asir-
vatham and Hoppe providing a GPU-based implementation [1] based on the
original work. This approach is very different from the ones presented before
and is one of the first terrain rendering algorithms based on programmable
graphic hardware.

ROAM and BDAM both create TINs approximating a given terrain as ex-
actly as possible while using as few vertices as possible. Geometry Clipmaps
however focus less on accuracy but more on relieving the CPU by calculating
as much of the landscape to be rendered by using the GPU.

The algorithm renders a fine rectangular, constant, uniform grid (referred
to as clipmap level l0) with its center at the x- and y-coordinates of the
camera. Around this grid, ring-shaped meshes (referred to as clipmap levels
l1 to lL−1) with increasing spatial extent and a fixed number of vertices
in width and height are constructed. All L clipmap levels receive the z-
coordinates for their vertices with the help of a vertex shader program that
interpolates them from a given height map texture.

Preprocessing

The height information of the terrain is prefiltered into a single channel
mipmap pyramid with L levels, corresponding to the same number of clipmap
levels. A method of how to determine L is not given by the authors, but I
assume that it depends on the desired viewing distance combined with the
selected number of vertices n that each clipmap level has along its edges (see
below).

Because the complete pyramid is likely to exceed the available graphic
memory for huge terrains, the algorithm caches a square window of n × n
samples within each mipmap level. The authors note that for the algorithm
to work properly, n must be an odd number. They decide to define it by
n = 2k − 1 to support hardware that is optimised for power of two texture
sizes. The complete pyramid is stored in graphic memory.

The main task of the preprocessing though, is to construct a small set
of constant vertex- and index-buffers (referred to as footprints) which will
construct the clipmap levels during runtime. The authors note that this
approach has been taken to reduce memory requirements for the vertex- and
index-buffers as well as to enable view-frustum culling, which would be more
difficult with complete ring-shaped meshes.

There are three types of footprints, as depicted on the right side of figure 4:
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m x m Block

Interior trim Block

m x 3 Block

2D footprints:

Camera

Outer Degenerate Triangles

Figure 4: The construction of a mesh with geometry clipmaps, with example
values of n = 15 and m = 4 vertices.

A block of m×m vertices, a block of m× 3 vertices and a so-called “Interior
trim” block, with m being defined as m = (n + 1)/4. A concrete clipmap
level is constructed by arranging and scaling these footprints at runtime.
The “Interior trim” block would be the only footprint to need rotation, so it
is split up into four separate vertex- and index-buffers which can be reused
without rotation.

As the footprints will obtain the height values for their vertices from
a height map, it is sufficient to generate them with x- and y-coordinates
only and store them in graphic card memory. The complex structure of the
footprints is induced by the choice of n, which causes each clipmap level Li

not to be exactly centered to level Li+1.
As each of the L clipmap levels has a fixed number of n vertices along its

edges, an almost constant triangle size in screen-space is provided due to the
increasing distance from the viewer.

The left side of figure 4 shows two exemplary cascaded clipmap levels
that construct a terrain mesh. For each use, the footprints are transformed
to the right position and scale, depending on the current clipmap level. It
should be noted that the values of n and m would be more in the region of
n = 255 and m = 64 in a real application.

Whenever the camera is moving, the clipmap levels move correspondingly
and are updated with new data. Additionally to interpolating the correct
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height for each vertex from the clipmap pyramid, vertex and pixel shaders
take care of smoothing the transitions between the different grid levels.

These transitions suffer from T-junctions, which are fixed by inserting
strings of degenerate (zero area) triangles (marked as red lines in figure 4)
on the outer perimeter of each clipmap level.

Regular Updates

As opposed to the earlier presented algorithms, Geometry Clipmaps does
not need to perform updates every frame, but merely when the viewer moves
enough. Even then, the coarser a clipmap level is, the fewer updates it needs,
as the relative viewer movement within the levels decreases exponentially
with the size of the grids.

If an update has to be performed, it involves two steps: The first one is
to update the mipmap pyramid. This is performed by applying a fragment
shader which first predicts the height from a coarser level of detail and then
adds residuals. This approach allows the addition of terrain detail through
different sources, like compressed detail information of the actual terrain or
a synthesis algorithm (e.g. based on a gaussian noise function). For each
clipmap level, the height information of the next coarser level and the signed
difference to the detailed height are stored in a single texture to reduce
texture lookups in the shaders.

The second part is the creation of a normal map for the terrain. The
authors choose this map to have twice the resolution as the height map
because they found it to be too blurry otherwise. For performance reasons,
the normal map contains the normals of the current level of detail as well
as the ones of the next coarser level. This is accomplished by choosing the
map to be a 4 channel, 8 bit per channel texture, rescaling both normals so
that their z-value is 1 and then writing only x- and y-values to the texture.
Before being used in a shader, these values obviously require decompression.

Rendering

During rendering, the vertex shader smoothes the transitions between two
different clipmap levels by linearly blending the terrain height at the borders.
The required information is not interpolated during rendering, as it would
take too much time due to the many required texture fetches. Instead, the
needed height information is efficiently stored in the height map (as stated
in the previous subsection). The factor calculated for blending the fine and
coarse heights is then passed on to the fragment shader.

In the fragment shader itself, the coarse and fine normals of each point are
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unpacked from the normal map (again, stated in the previous subsection) and
blended with the blending factor from the vertex shader. Afterwards, they
are used to shade the terrain. The colour of the terrain is merely interpolated
from a z-based 1D colour texture, which of course might be replaced by a
common color texture.

Optimisations

The authors of the paper introduced many optimisations which additionally
increase the performance. Some of these optimisations, such as the building
of the clipmap levels from footprints and the extraordinary storage of height
values and normals in textures have already been mentioned. As the sheer
number of optimisations presented in the paper concludes, they seem to be
crucial for the algorithm. I will touch upon two more of them that are also
presented in covered paper:

Depending on the height of the camera above the terrain, not all clipmap
levels are drawn because the detail of those levels would not be recognisable
anyway and might even lead to aliasing effects. As all of the terrain data
resides in video memory, one readback from the graphic pipeline has to be
done once in a while to decide which levels to draw. If clipmap levels are
omitted, the one with the highest detail needs to be rendered as a full square
instead of a ring-shaped mesh.

When updating the normal and geometry textures, the authors use wrap-
around adressing. This way, they avoid translating existing data and it is
sufficient to change small parts of the textures during the regular updates
instead of recalculating them completely.

Summary
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{
if( elem[i].val < elem
{

for( int i=0; i<elements

elements::value_type temp
elem[i].val = elem[i
elem[i+1].val = elem[i

elements::value_type*

}
}

• Terrain structure is simple and constant, thus easy to un-
derstand and create

• No need for modifications during runtime

• Transitions between different clipmap levels bear T-junc-
tions which have to be concealed
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• Almost no precalculations required

• Heavy utilisation of the GPU, relieving the CPU

• Irregular updates can be accelerated utilising the GPU

• View-frustum culling is possible

• The original height map is stored in system RAM

• A window of the height map including a mipmap pyramid
and the 2D footprints need to be stored in graphic memory

• Optimisations reduce accuracy

• Level of detail depends only on the distance to the viewer

2.4 Geometry Image Warping

Similar to Geometry Clipmaps, the approach of Geometry Image Warping
by Dachsbacher and Stamminger [7] uses a height map texture as the data
source. Instead of rendering constant meshes, however, this algorithm warps
quad meshes to enforce geometry detail where it is needed while keeping
topology constant and rendering as simple as possible, thus increasing per-
formance.

Unlike the other presented algorithms, this one only gathers rough geo-
metry information from the height map and adds procedural detail during
runtime. Acutally, the height map needs to be coarse, because the CPU will
operate on its values every frame. As this thesis is about terrain rendering,
rather than terrain synthesis, this section will mainly present the rendering
part of the algorithm.

To enable the warping process and high-performance rendering, Geometry
Image Warping makes use of geometry images. These are textures whose
pixels can be directly interpreted as vertex coordinates, implicitly defining
a square-shaped mesh. The advantage of this approach is that classically
image-based operations such as up- and down-filtering can be applied to a
mesh without the need of conversions.

Geometry images can be efficiently rendered using graphic hardware by
directly interpreting the texture as a quad mesh. The authors note that
an OpenGL extension is required to enable this interpretation. Unfortu-
nately, they do not mention which extension it is, but it is likely to be
ARB_pixel_buffer_object [10], which has become part of the standardised
OpenGL extensions in December 2004.

16



uniform
importance

view distance
importance

view-frustum
importance

orientation
importance

combined
importance

Figure 5: Different important maps (bottom row) and their influence on an ex-
ample quad mesh (top row).

Preprocessing

Much as for Geometry Clipmaps, the preprocessing part of the algorithm is
rather simple. Basically all that needs to be done is to read the height map
into system RAM from which the frame-wise updates can read. The authors
call this texture sketch atlas.

Frame-wise Updates

The frame-wise update is separated into several steps, most of them are done
on the CPU. The first action in every update is to copy a square region from
the sketch atlas which encloses the current view-frustum. This region is
called the sketch map.

After that, another texture is created, which indicates how important
every region of the sketch map is. The importance encoded in this im-
portance map depends on certain surface characteristics, namely the surface
orientation, the distance of the surface to the viewer and the location of
the surface compared to the view-frustum. For each point of the geometry, it
defines an approximate value for how many grid points should be around that
point. Figure 5 demonstrates how such importance maps and the resulting
quad meshes can look like.

The geometry image for the current frame is constructed by writing world
x- and y-coordinates to the R- and G-channels of a new texture and writing
the height from the sketch map to the B-channel.
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The geometry image is then warped according to the importance map,
so that regions with a high importance are enlarged and regions with low
importance shrink. Calculating this physically correct would include iterat-
ively solving a spring-mass system, with the geometry image’s pixels being
the masses and their respective importances representing the springs.

However, the authors choose an alternative, yet less accurate approach:
They interpret the geometry image as piece-wise linear functions, first for the
rows, then for the columns of the image. Their warping algorithm operates
on each of these linear functions, moving the control points depending on
their calculated importance. Afterwards, the warped functions are uniformly
resampled.

The authors claim that the described warping algorithm delivers accept-
able results – even when not applied iteratively – which enables a frame-wise
recalculation on the CPU, at least for coarse input maps. To allow for meshes
with higher resolution than the geometry image, the warping algorithm can
be adapted to output an up-sampled geometry image.

The resulting geometry image is rendered directly, being interpreted as
a quad mesh. Procedural detail is added in the fragment shader during
rendering through an adjusted bump-mapping technique. Due to the fixed
topology of the mesh, no error bounds whatsoever are given by the authors.
Additionally, the original terrain data is resampled twice, which introduces
even more inaccuracy.

Summary

11010001

01101001
10100110
00011010

10100110
00011010
11010001

01101001

00011010

01101001
10100110

11010001

IN

• 2D height map

{
if( elem[i].val < elem
{

for( int i=0; i<elements

elements::value_type temp
elem[i].val = elem[i
elem[i+1].val = elem[i

elements::value_type*

}
}

• Collision detection is difficult to implement

• Because the original height data is resampled during ren-
dering, swimming artifacts can occur
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• Almost no precalculations required

• CPU / GPU load almost balanced, CPU is not stressed too
much as calculations are linear

• Update calculations can be performed using the GPU
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• RAM must only hold the input height map, a small window
of it, the importance map and the geometry image

• Geometry image (quad mesh) is transferred to the graphic
card each frame

• Although visually appealing, the correctness of the rendered
terrain cannot be guaranteed, even error bounds are not
given by the authors

2.5 Generic Adaptive Mesh Refinement (GAMeR)

The last presented algorithm is detailed in an article entitled “Generic Ad-
aptive Mesh Refinement” [2] and is authored by T. Boubekeur and C. Schlick.
Unlike the other approaches, this is not specifically a terrain rendering al-
gorithm, but – as the title denotes – a generic approach to refine meshes. As
it can be applied to any kind of meshes, this algorithm still suits the topic
of this thesis.

The algorithm accepts a mesh of coarse triangles and replaces each tri-
angle with an Adaptive Refinement Pattern (ARP – A finer approximation
of the original triangle) depending on the triangle’s required level of detail.
This is achieved by exploiting the features of Shader model 4 in cooperation
with a set of precalculated fine meshes that are stored in graphic memory.

Preprocessing

Because the calculation of the ARPs is too complex to solve within a shader,
it has to be solved in a preprocessing step. Given a maximum refinement
depth l for each of the triangle’s edges, a three dimensional matrix of l3 ARPs
is required to cover all possible combinations of refinement within a triangle.
This matrix is called the ARP pool.

To conserve video memory, a single vertex buffer of the highest refine-
ment ARP can be created, while all other ARPs are encoded as index buffers
for that vertex buffer. The vertices within the vertex buffer are encoded in
barycentric coordinates. These are used to interpolate information (like the
world-space position) from the original triangles prior to rendering. Addition-
ally, utilising barycentric coordinates makes worrying about the orientation
of a triangle unnecessary.

Each element {i, j, k} in the ARP pool corresponds to a triangle whose
refinement configuration is as follows: Edge 1 has refinement depth i, edge
2 has refinement depth j and edge 3 has a refinement depth of k. An edge
with refinement depth i will be split i times, resulting in 2i vertices. The
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interior of the triangle must contain a valid tesselation, respecting the given
number of vertices for each edge.

The authors note that creating ARP ele-

Figure 6: Detail of the ARP
pool.

ments with refinement depths i 6= j 6= k is
rather difficult. One approach noted by the
authors is to uniformely refine a basic tri-
angle mesh until the minimum level of detail
of the three edges is reached. Then, the tri-
angles at the other edges are split until the
required refinement depth has been reached.
In unfavourable cases, this simple approach
results in many oblique (non-right) triangles
at the mesh’s border.

This described effect can be avoided by

Figure 7: 2 refinement topo-
logies for the same
depth configuration.

applying better algorithms for the ARP cre-
ation, which on the other hand leads to a
higher primitive count and – depending on
the algorithm – a longer preprocessing time.
Figure 7 shows two refinement topologies
featuring the same depth-tag configuration
{3, 4, 5}, generated by different algorithms.
Note that the right version consists of less oblique triangles while using more
triangles than the left version. Both images shown in this section are taken
from the discussed paper.

Frame-wise Updates

The algorithm only needs frame-wise recalculations if the refinement depths
change dynamically. In that case, the refinement depth tag of each vertex
needs recalculation. This tag measures how fine the mesh should be tes-
selated in the vicinity of the corresponding vertex. Amongst others, the
authors name camera-to-vertex distance, local curvature and the semantic
importance of the vertex as applicable metrics for calculating the depth tag.

The depth tags of two adjacent vertices are interpolated to gain the depth
configuration for the edge they span. Thus, a crack-free mesh topology is
implicitly ensured because triangles sharing an edge will compute the same
depth configuration for their common edge.

From the CPU’s point of view, the rendering loop can be described with
this short pseudo-code:
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GLuint ARPPool[MaxDepth][MaxDepth][MaxDepth];

void render(Mesh M)

{

if(dynamic)

for each Vertex V of M do

V.depthTag = computeRefinementDepth(V);

for each CoarseTriangle T of M do

{

sendToGPU(T.attributes);

bind(ARPPool[T.V0.depthTag][T.V1.depthTag][T.V2.depthTag]);

drawElement();

}

}

Note that the attributes of each vertex need to be explicitly transferred
to the GPU (e.g. via uniform variables) as the original coarse triangle is
not drawn. Instead, only an index to the ARP pool is selected and the
corresponding fine mesh is drawn. The metrics for the depth tag computation
can be selected freely and are even dynamically exchangeable during runtime.

The vertex shader consists of three parts: The tesselation, which uses
the barycentric coordinates of the ARP to interpolate the attributes of the
coarse input triangle, a user-defined displacement function and the shading
as a last step. The following pseudo-code outlines these operations:

const uniform vec3 p0, p1, p2; // the triangle’s vertices

const uniform vec3 n0, n1, n2; // the triangle’s normals

void main()

{

// tesselation by barycentric interpolation

float u = gl_Vertex.y, v = gl_Vertex.z, w = gl_Vertex.x;

gl_Vertex = vec4(p0*w + p1*u + p2*v, gl_Vertex.w);

gl_Normal = n0*w + n1*u + n2*v;

// apply displacement function

float d = displace(gl_Vertex.xyz);

gl_Vertex += d*gl_Normal;

// shading and output

...

}
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The fragment shader is completely unused by the algorithm itself, so any
kind of shading can be applied.

Summary
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{
if( elem[i].val < elem
{

for( int i=0; i<elements

elements::value_type temp
elem[i].val = elem[i
elem[i+1].val = elem[i

elements::value_type*

}
}

• Vertex attributes (including position) need to be transferred
separately from the mesh topology
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• CPU needs to determine ARP pool index for every triangle

• If refinement depths change dynamically, per-frame updates
must be performed by the CPU

• Only vertex shader is stressed, no fragment operations are
needed

• The ARP pool needs to be stored in video RAM

• Per triangle, an index into the ARP and the triangle’s at-
tributes are transferred to the GPU each frame

• No error bounds are discussed in the article

2.6 Recapitulation

This chapter has presented a review of the development of terrain rendering
algorithms in the past 15 years. A significant change in newly emerging
approaches can be observed when graphic cards with programmable vertex
and fragment processors became available for the first time. These gave
computer engineers the possibility of handling big amounts of calculations
on an extra processor that purely focuses on graphic matters, thus relieving
the CPU.

Early algorithms take meshes that constitute the finest available approx-
imation of the terrain as input. This approach is derived from classic land sur-
veying techniques: Positional information is stored in trigonometric meshes.
Such a mesh can be seen in figure 8 which is taken from [4]. Algorithms like
ROAM or BDAM strive to maintain a steady rendering rate while keeping
the input mesh as detailed as possible.
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Nowadays, height information is also gathered with distance sensors and
high resolution color cameras mounted on airplanes or even satellites. While
the first of these can gather height information directly, images taken with
colour cameras can reveal height information by utilising interferometry. Two
images of the same target area are taken from slightly shifted points of view.
From the differing colour information of these two images, height information
can be computed, which is basically how human eyes procede.

Both of these approaches deliver their

Figure 8: A geodetic mesh

results as maps, which not only contain more
detail than classical surveying techniques,
but are also more intuitive to handle. Yet,
these new data sources call for new ren-
dering techniques. Such algorithms have
to solve different problems than the classic
mesh-based approaches. They often have
plenty of available height information, but
they need to generate meshes on their own
to illustrate this information.

The three presented algorithms based on height maps have different ap-
proaches to visualise such maps: Geometry clipmaps uses static meshes which
are finer in detail the closer they are to the viewer. Geometry Image Warping
warps a constant quad mesh to allow for enough detail in respective areas.
And finally, GAMeR refines triangles with precomputed meshes to increase
mesh detail.

The development of terrain rendering algorithms tends towards constantly
relieving the CPU and increasingly reducing bus transfer to a minimum. Like
this, the processor has more time to perform other necessary calculations (e.g.
like physical ones) and a steady rendering rate can be achieved.

In the next chapter, I present the new features of Shader model 4, which
include new options to improve terrain rendering.
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Figure 9: The simplified OpenGL rendering pipeline with Shader model 4.

3 Shader model 4

Before presenting the features of Shader model 4, I will detail what a Shader
model is. The following quote from [5] summarises the term accurately:

“A shader in the field of computer graphics is a set of software
instructions, which is used by the graphic resources primarily
to perform rendering effects. Shaders are used to allow a 3D
application designer to program the GPU (Graphics Processing
Unit) programmable pipeline, which has mostly superseded the
older fixed-function pipeline, allowing more flexibility in making
use of advanced GPU programmability features.”

Due to constant and on-going development, each new generation of gra-
phic cards provides new features to program the GPU. These new features,
such as the set of available instructions, the hardware definitions and the
supported data formats are combined in the term Shader model.

Beginning with the release of Shader model 1 in November 2000 (as part
of Microsoft’s DirectX 8.0), more and more of the fixed-function pipeline has
been abandoned and replaced with a programmable complement. The first
release already supported vertex and pixel shaders, replacing the fixed vertex
and fragment processing stages. Since then, each new Shader model has
featured new instructions and fewer restrictions, extending the functionality
of the previous Shader models (for more details, see [6]).

Shader model 4 was introduced along with DirectX 10.0 in November
2006. Just like previous revisions, it mainly features improvements to pre-
existing functionalities and reduced restrictions for programming the GPU.
As this section is concentrating on the new possibilites of Shader model 4, it
should be noted that these minor enhancements can be reviewed further on
the internet, for instance at [6].

Having said that, Shader model 4 offers completely new features to GPU
programmers. Firstly, Shader model 4 programs now support a full set of
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IEEE-compliant 32-bit integer and bitwise operations. In Shader model 3, all
integers were inefficiently converted to floats, while the new model allows for
algorithms such as compression or packing techniques and bitfield program-
flow control. The bitwise C-style operations include negation, shift, AND, OR
and comparison operators. All previously available functions like abs, sign,
min, max and clamp functions now support signed and unsigned integers.

Texture arrays allow complex texture blending operations to be done in
one draw call through indexing of textures. The special case of using 6
textures in an array to construct a texture cube can be utilised to easily
construct a cube map (see [16]). Also, values from textures can now be
interpolated as integers instead of them being converted to floats ranging
from 0 to 1.

Instanced rendering supports the repeated rendering of the same mesh
without having to re-transfer it to the graphic card. A vertex shader can
decide how to transform each instance into world space depending on the
given instance ID, thus reducing bus load.

The most promising feature of Shader model 4 concerning this work is
the introduction of a new shader stage: the geometry shader. This new stage
is settled after the primitive assembly, but before clipping and rasterisation
(the location within the pipeline is illustrated in figure 9). It is called for
every primitive rendered, enabling the programmer not only to manipulate
the primitive, but also to skip it completely or insert new ones on the fly.

Geometry shaders work on complete primitives1 and can emit either
points, line- or triangle-strips. The data output of a geometry shader must
not exceed a certain hardware limit, which is 1024 floats for modern graphic
cards, such as those from nVidia’s GeForce 8 series.

Another new feature of Shadel model 4 is the capturing of output from
vertex and geometry shader stages. Intercepting their emitted vertices allows
them to be reused in later passes. The rendering pipeline can optionally be
stopped at these points, avoiding possibly unnecessary fragment stage passes.
For HLSL, this technique is called draw-auto, while the name for GLSL is
transform feedback.

Finally, it should be noted that all shader units on graphic cards sup-
porting Shader model 4 are dynamically utilised as vertex-, geometry- or
fragment-shaders as necessary. As the graphic driver controls the utilisation
depending on the respective load distribution, programmers do not need to
worry about equally distributing computations to the different shader types.

1As for now: points, lines and triangles, the latter two with or without the also newly
introduced adjacency information
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4 Recursive Adaptive Geometry shader

This section introduces a new approach called Recursive Adaptive Geometry
shader (RAG) to render terrain data with the features of Shader model 4.

The basic concept is to calculate an edge-based refinement for each tri-
angle in a geometry shader and tesselate the triangle directly within the
rendering pipeline. This can be done recursively by rendering the results of
the geometry stage into a vertex buffer and refeeding them into the pipeline.

I begin by summarising the motivation for the new approach. After that,
the successive subsection “Realisation” details on how RAG refines triangles
and how it is applied recursively. The “Preprocessing” and “Frame-wise up-
dates” subsections describe run-time proceedings of the algorithm, clarifying
them with some pseudo-code. Following this, problems evoked by RAG are
discussed in detail.

After having covered the new approach itself, a simultaneously developed
algorithm that employs a process similar to RAG’s is presented and compared
to RAG.

4.1 Motivation

The primal intention of the thesis is to find out to which extent the features
of Shader model 4 can be utilised for terrain rendering. It is specifically
expected that employing the geometry shader stage can transport dynamic
mesh refinement completely to the GPU, thus relieving the CPU. Having the
latter relatively idle is considered an advantage, because other calculations
like complex physic simulations often strive for CPU time simultaneously.

Basically, there are three characteristics of terrain rendering algorithms
that need to be met: accuracy, speed and mesh topology. For the user, what
counts is that the resulting 3D rendering approximates the input data as ac-
curately as possible and has an appealing look, while still being interactive.
Naturally, an algorithm always has to compromise between these properties
to some extent, as higher accuracy and a better look require more computa-
tions, which in turn need more time.

Concerning terrain rendering, the characteristic of accuracy is usually
measured by the screen-space error. This metric is determined by computing
the screen-space distance of a rendered pixel to the point where it should have
been placed in an optimal case (hence the name). How much screen-space
error is acceptable depends on the application and it is therefore advisable
to have this property configurable.

The speed of a terrain rendering algorithm is usually measured in frames
per second. The time it takes to calculate one frame is the sum of the CPU
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calculation time, the time it takes to transport necessary information from
RAM over the system bus to the graphic card and finally the GPU time.
Each of the three can be optimised in different ways. For instance, the CPU
can provide all necessary information to the GPU and then start calculating
the next frame without waiting for the result.

A bad mesh topology can have several forms of negative impact on the
resulting image. Meshes bearing T-junctions can reveal gaps in the terrain,
which either show the scene’s background colour (typically black) or objects
located underneath the terrain which should otherwise be hidden. Degen-
erate triangles are oblique ones with (almost) zero area and can also cause
rendering artifacts. These artifacts are often not as noticable as gaps, but
can still impair the visual quality of the rendered terrain.

4.2 Realisation

As motivated by the previous section, the goal of this thesis is to find out
how the features of Shader model 4 can be utilised to obtain a performant
terrain rendering algorithm. The geometry shader stage introduced with
Shader model 4 can operate on incoming triangles and is able to generate new
geometry dynamically within the rendering pipeline. These characteristics let
the geometry shader perform refinement operations which in other algorithms
would have to be computed by the CPU.

A classical CPU-based mesh refinement algorithm that refines meshes on
a triangle basis was introduced in an article named “Continuous LOD Terrain
Meshing Using Adaptive Quadtrees” [17] by Thatcher Ulrich in the year 2000.
It recursively iterates over all triangles in a uniform mesh of right-isosceles
triangles, splitting each triangle edge once at maximum per recursion. The
resulting sub-triangles are always right-isosceles as well, which constitutes a
good property for rendering. As the refinement decisions applied are edge-
based, T-vertices are implicitly avoided.

Because this approach delivers refined triangle meshes with good topo-
logy, mimicking its proceeding in a GPU implementation is basically a good
idea. I therefore split up this algorithm into two basic parts – tesselation
and recursion – and discuss how each part can be adapted to suit a geometry
shader based realisation.

Both parts are discussed in the remainder of this section. The result
is a new terrain rendering algorithm entitled Recursive Adaptive Geometry
Shader, referred to as RAG.

Ulrich’s algorithm requires a triangle data structure like winged-edge or
half-edge to operate. Unfortunately, no algorithm is known yet that imple-
ments such structures to be used in a shader program. As I will show in the
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following subsection, this averts an exact adaption of Ulrich’s algorithm in a
GPU-based implementation.

4.2.1 Tesselation

The goal of the tesselation is to split triangles that do not approximate the
input height map exactly enough into smaller ones. To maintain a continu-
ous mesh topology at the same time, neighbouring triangles must share the
same tesselation along their common edge. As triangle-based refinement de-
cisions can result in a differing refinement for the common edge of adjacent
triangles, refinement decisions must be taken purely edge-based to guarantee
a continuous topology.

Consequently, the first step to refine a triangle is to decide which of its
edges need to be split. This refinement decision basically depends on the ap-
plication, but predominately various error metrics are applied. Possible error
metrics include the height difference between an edge’s spanning vertices as
well as estimated object- and screen-space errors between the coarse and the
refined edge.

Depending on the outcome of the refinement decision, a new vertex is
inserted at the midpoint of each respective edge. This binary decision results
in 23 = 8 possible tesselations for each triangle. There are several reasons
for not inserting more than one vertex along each edge, the most important
of which are:

Simplicity:
The most important reason is that 8 cases of tesselation can be handled
quite comfortably. Increasing the number of splits by one per edge
already yields 33 = 27 different cases for each triangle, including com-
plicated refinement configurations.

Expensive conditionals:
More cases of tesselation require more conditional statements within
the geometry shader, which are still very time-consuming on current
graphic hardware.

Geometry shader output limit:
The output of the geometry shader stage is currently limited to 1024
floats per call. With one split per triangle edge, this limit is never
exceeded, avoiding problematic cases of incomplete refinements.

After the edges which are to be refined have been determined, a valid
tesselation for the triangle must be generated. Ulrich’s algorithm forwards
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Figure 10: An edge split in triangle A (blue) enforces an edge split in triangle B
(green) to avoid a T-vertex.

Figure 11: A needed split on edge A (blue) enforces a split on edge B (green).

the splitting of an edge to the adjacent triangle sharing the edge, just as
shown in figure 10: Triangle A needs a split at its hypotenuse to add necessary
detail, creating a T-vertex (circled in red) which is likely to evoke a crack
in the mesh. To avoid this, an edge split is enforced in the neighbouring
triangle B.

As already noted, no algorithm is yet known to implement triangle data
structures such as winged-edge or half-edge in a shader program. This con-
cludes that it is not possible for RAG to communicate a split to a neigh-
bouring triangle. In most cases, this is not problematic: As RAG makes
edge-based refinement decisions anyway, neighbouring triangles compute the
same refinement for their common edge.
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Problems only arise in cases where edges that do not need refinement are
split nonetheless in order to maintain a right triangulation. Such a situation
is illustrated in figure 11. The split on edge B is merely performed to keep the
triangulation right-angled and the split is communicated to the neighbouring
triangle to avoid a crack in the terrain.

As RAG cannot enforce a triangle split in the triangle sharing edge B
and that triangle will not split edge B unless one of its other edges needs
refinement by chance, a T-vertex is most likely being created. There are two
ways to deal with this problem, both of which conclude a restriction for the
algorithm.

One way is to maintain a right-angled tesselation and abandon possibil-
ities concerning the splitting decisions. The other way is to drop the purely
right-angled tesselations and have freedom in choosing the splitting decisions.
Both approaches are discussed below, followed by a rating conclusion.

Right-angled tesselations

Though it is not possible to communicate a split to another call of a
shader, RAG can still produce right-angled triangulations, but at a cost.
The idea is to intentionally insert invisible T-vertices on the hypotenuse in
problematic cases. If the hypotenuse does not need an edge split, but one or
both of the triangle legs do, then an additional vertex is inserted in to the
hypotenuse just as in Ulrich’s algorithm, so that a right-angled tesselation is
formed.

The difference is that instead of the height value of this vertex being in-
terpolated from the height map, it is linearly interpolated from the positions
of its adjacent vertices. That way, the vertex will not create a gap in the ter-
rain, as the vertex lies exactly on the edge between the two original vertices,
but the triangulation will still remain right-angled.

This approach demands an additional prerequisite to work and results in a
disadvantage concerning the refinement decisions. The prerequisite is that all
height values entering the recursion loop must remain constant. Otherwise,
the inserted invisible T-vertices would become visible as soon as they have
their “real” height value from the height map assigned to them.

To avoid this, the basic mesh sent to the graphic card must be initialised
with height values from the map before it enters the recursion loop. This has
the positive side-effect that the shader can perform faster as it has to conduct
texture lookups only for newly generated vertices as opposed to looking up
a height value for every output vertex.

At the same time, this implies the denoted disadvantage:
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(12.b) Second recursion

Figure 12: An example for problems emerging from an enforced right-angled tri-
angulation with RAG. The current triangle has a blue background,
vertices inducing a split are circled in red.

When using the right-angled approach, the refinement decisions
for a triangle edge must be strictly monotonic. This means that
any edges resulting from the split of an edge that did not require
refinement must never require refinement themselves.

To clarify this restriction, consider the situation displayed in figure 12.a:
RAG is using the screen-space error of not inserting a vertex in the middle
of edge e as the refinement decision. In this situation, one leg of the blue
triangle needs refinement (red circle), its hypotenuse e, however, does not.
To achieve a right-angled tesselation, RAG inserts the invisible T-vertex v′

in to the hypotenuse, as explained above.
During the next recursion step (figure 12.b), the same refinement metric

is applied to edge e′. If e′ is split2, the newly inserted vertex v′′ is very likely
to become a visible T-vertex as the neighbouring triangle has not performed
the first split and thus cannot insert v′′ as well.

Partially-oblique tesselations

Abandoning purely right-angled tesselations, edge-based splitting decisions
can be taken without constraints to the applied error metrics. The reason
is that all tesselations can be performed without applying a split to an edge
that principally does not need one. Following this, T-vertices are implicitly
avoided as neighbouring triangles will always perform the same refinement
for their common edge.

Figure 13 displays all possible tesselations for Ulrich’s approach (left) and
RAG (right). Note that five out of the eight tesselations are identical for both
algorithms, only the ones including a split on one or both of the triangle legs
that do not include a split on the hypotenuse differ.

2If there is a local rise in the terrain, like a tower or a hill, for instance
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Figure 13: Possible triangulations in Ulrich’s algorithm (left) and RAG (right).
Edges forcing a split are marked with blue circles, oblique tesselations
are shown in red.

(14.a) No refinement (14.b) Right-angled tes-
selation

(14.c) Oblique tessela-
tion

Figure 14: The images show the same scene with colour-coded screen-space er-
ror, green representing no error, red 10 pixels or more. Images 14.b
and 14.c show the respective tesselation approaches with 3 recursions
applied.

These differing tesselations can evoke degenerated triangles, a problem
which is discussed in section 4.5.2.

Conclusion

The constraint to the refinement decisions introduced by the right-angled
tesselation approach can have severe impacts on the accuracy of the rendered
terrain, which is illustrated in figure 14. Figures 14.a to 14.c show the same
perspective view into a terrain with colour-coded screen-space error. The
leftmost image shows the scene without any refinement applied, the others
apply a purely right-angled tesselation (center image) and a partially-oblique

32



tesselation (right image) with three recursion steps each.
In figure 14.b, RAG uses the monotonic refinement decision of the height

difference between two edge-spanning vertices to decide whether to split an
edge. The height difference that causes an edge to be split is set to 0.01, with
heights of the terrain ranging from 0.0 to 0.5. After three recursion steps,
the algorithm outputs 4332 visible triangles and requires 761 µs to finish.

In the right figure 14.c, a non-monotinic splitting decision is employed,
namely the screen-space error of not inserting a midpoint vertex on an edge.
The screen-space error enforcing an edge to be split is set to 2 pixels, with an
OpenGL canvas size of 1024 × 768 pixels. After three passes, the algorithm
outputs 3163 visible triangles, requiring 882 µs to finish.

As expected, the results of this comparison reveal that the version based
on non-monotonic decisions creates a more accurate approximation of the
terrain with less triangles while requiring some more time to calculate. The
increased calculation time is due to the more exact error estimation metric
applied. It should be noted, that all images have been taken with a research
implementation of RAG, that can most likely be further improved to yield
better results for both approaches.

My conclusion from the presented tesselation approaches is that the right-
angled approach should only be applied if mesh topology is far more import-
ant than the terrain’s accuracy. The oblique tesselations do not require a
constraint to the refinement decisions and are therefore favourable in most
applications.

4.2.2 Recursion

Until now, I have only discussed one refinement step. Ulrich’s algorithm
however is a recursive one that increases the mesh resolution iteratively.
Shader programs however, cannot use recursion, not even statically. The
only way to apply a shader recursively is to employ multiple render passes,
only asserting that the data format does not change in between the calls.

Therefore, the output of a geometry shader pass must be captured in a
buffer to be reused in a consecutive pass. A technique that provides this func-
tionality for OpenGL is transform feedback [13]. To increase performance,
the rendering pipeline can be aborted after the application of the geometry
shader if more than one pass is scheduled.

The special advantage of this course of action is that the fragment stage
needs to be passed only once even if the approach employs several rendering
passes. This becomes very important when complex fragment shaders are
applied to decorate the terrain surface, as their costs remain constant with
this proceeding.
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Only two pieces of information need to be stored in the transform feed-
back buffer: the vertex positions and the texture coordinates. The vertex
positions are interpolated while tesselating triangles and are passed to the
fragment shader on the last recursion step. The texture coordinates are used
to interpolate height values for new vertices from the height map.

After a rendering pass is complete, the transform feedback buffer is bound
as a vertex buffer for the next rendering pass. To allow for more than one
pass, a second buffer is used as transform feedback buffer for the second pass.
These two buffers take turns in operating as source vertex buffer and target
transform feedback buffer. More than these two buffers are never required.

The described proceeding can be used as a dynamic level of detail al-
gorithm. As RAG purely operates on the GPU, the CPU merely has to
start it each frame and can then concentrate on other calculations. If the
CPU regularly checks whether the transform feedback buffer is ready (e.g.
by checking if the GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN_NV query
is ready) and there is enough time left for the current frame, it can reapply
RAG to the result of the previous frame to further improve terrain detail.

4.3 Preprocessing

Only very few preprocessing steps need to be performed for this algorithm.
The most important step is the creation of a uniform triangle mesh that will
serve as a basis for refinement during rendering. This mesh is provided with
texture coordinates and is uploaded to graphic memory along with the height
map texture.

The mesh need not have a high resolution, as it will be refined anyway,
but it should be noted that – depending on the refinement decisions applied –
mesh artifacts can occur in unfavourable situations. This can happen if the
coarse mesh does not have enough vertices or – speaking from another point
of view – the height map features too high frequencies. More detail on these
problems can be found in section 4.5.

If early clipping is to be used – which is highly advisable to reduce
the polygon count for later recursions – necessary information, such as the
modelview-projection matrix for view-frustum culling, need to be updated
whenever they change. The variables can be sent to the shaders by using
uniform variables.

4.4 Frame-wise updates

The following pseudo-code sums up the basic advancement of the CPU-side
rendering loop:
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VertexBuffer VB0, VB1;

void render() {

numPasses = calculateNeededPasses();

if( numPasses > 1 )

discardFragmentStage(true);

setVertexBufferTarget( VB0 );

renderCoarseMesh();

for( i=1; i<numPasses; i++ ) {

if( isLastPass(i) )

discardFragmentStage(false);

if( isOdd(i) ) {

setVertexBufferTarget( VB1 );

renderVertexBuffer( VB0 ); }

else {

setVertexBufferTarget( VB0 );

renderVertexBuffer( VB1 ); }

}

}

The calculateNeededPasses method determines the recursion depth of
the algorithm. This can be a fixed number or a dynamically calculated one
that depends on situational circumstances such as the viewer’s distance to
the terrain. Furthermore, the refinement loop can be aborted early if no
additional detail is needed.

One method to determine such a situation would be to compare the out-
put triangle count of the geometry shader from two consecutive passes. If the
difference is too small, the refinement can be stopped and the mesh rendered.
Another method is presented in section 4.5.2.

After the number of passes has been computed, the coarse mesh is rendered
and the resulting mesh is stored in the first vertex buffer. If only one pass
is rendered, the algorithm finishes here, otherwise it alternately renders the
contents of one vertex buffer and stores the results in the other. This way
it never needs more than two buffers, no matter how many loops are ac-
tually passed. Before applying the last pass, the fragment shader stage is
reactivated in order to be applied to the refined mesh.

The essential workflow of the algorithm in the graphic pipeline is illus-
trated in figure 15 while the pseudo-code below outlines the advancement of
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Figure 15: Outline of the RAG algorithm. Pink boxes mark application depend-
ant parts.

the geometry shader:

uniform Triangle T;

function main()

{

if( T.isInvisible() )

return;

int tess = 0;

if( edgeNeedsRefinement( T.edge0 ) )

tess |= 1;

if( edgeNeedsRefinement( T.edge1 ) )

tess |= 2;

if( edgeNeedsRefinement( T.edge2 ) )

tess |= 4;

outputTriangles( tess );

}

In each call, the geometry shader first checks if the triangle is visible at all
and skips it completely if not, thus reducing the polygon count for subsequent
recursions. Such a check can be done by applying the modelview-projection
matrix to each of the triangle’s vertices and checking whether they are located
inside the clipping space or not.
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This particular visibility check, however, does not account for partialy
visible triangles, whose vertices are all located outside the clipping space.
Therefore, I would like to refer to well-known view-frustum culling techniques
at this point, regarding the given algorithm as an example.

When the visibility test has been passed, each edge’s refinement is cal-
culated depending on the applied refinement decisions. The tesselation that
will be performed is stored in the integer variable tess by utilising Shader
model 4’s integer operations. Depending on which edges need to be refined,
the outputTriangles method creates a refined tesselation of the input tri-
angle.

More detail on how to implement a geometry shader for RAG is presented
in section 5.1.

4.5 Problems

As already denoted in section 4.3, RAG can produce terrain and rendering
artifacts in certain situations, especially if the coarse mesh has too few ver-
tices. This chapter will present problems caused by RAG, their origins and
suggestions to minimise them.

The first two detailed problems are typical for most terrain rendering al-
gorithms taking height maps as input and derive from the applied refinement
decisions. The last problem of oblique triangles is common to GPU-based
approaches and specifically pronounced for RAG.

4.5.1 Under-refined triangles

This is a problem known to most terrain rendering algorithms that rely on
a height map texture as input data and derives from the resampling of the
height data. This usually leads to triangles which would need further refine-
ment but will not receive it because the vertices that the refinement depends
on share similar attributes.

For example, consider a height map with high frequencies and refinement
decisions depending on the height difference between two adjacent vertices
of the coarse mesh. In that case, two adjacent vertices might share a similar
height, which concludes no refinement for the algorithm. The height map,
however, can still bear height differences between the vertices, resulting in
an under-refined mesh. An example is provided in figure 16.

To avoid this problem, the height map can be scanned before rendering,
checking its frequencies and adjusting the mesh resolution accordingly. How-
ever, it is commonly sufficient to adjust the applied refinement decisions. In
the above example, the heights of two triangle vertices are compared with
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v0 v1

Figure 16: v0 and v1 share similar height values from the height map and height
map detail between them will remain ignored.

each other. If, instead, the heights between the triangle vertices and the
according edge midpoint had been compared, the problem would not have
arisen in this example.

Generally speaking, inserting more samples along a triangle’s edges im-
proves error estimation, further suppressing the described effects. The issue,
in this case, is just how much time the user is willing to invest into the error
estimation and how exactly the error of an edge is estimated.

The worst case scenario for this type of issue would be a mesh whose
vertices all happen to share similar height values, with all terrain detail
located between them. In that situation, the coarse input mesh would not
be refined at all.

4.5.2 Over-refined triangles

Over-refined triangles occur whenever RAG tries to compensate high height
differences in the height map. If the refinement metric decides to split an
edge, the situation shown in figure 17 could occur.

The refinement decision applied in figure 17 is based on the world-space
height difference between the edge-spanning vectors. RAG attempts to min-
imise the height difference between the vertices v0 and v1 by inserting more
vertices on their spanned edge. Because the height map resolution is rather
low in this example, there is no new data to be gathered from it and the re-
finement does not stop until both checked vertices receive their height from
the very same height map pixel.

As the problem evolves from height map textures with too little resolution
rt, the best solution is to stop the refinement when no new information can
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v0 v1

1st split
2nd split
3rd split

Figure 17: The height difference between v0 and v1 causes their common edge
to be split three times.

be gathered from it. With each recursion step, the initial resolution of the
mesh rm is doubled as the distance between two adjacent vertices is halved.
Thus, the maximum number of recursions n can be calculated as follows:

2n · rm = rt (1)

2n =
rt

rm

(2)

n = log2 (
rt

rm

) (3)

If n becomes greater than the right hand side of equation 3, the mesh
resolution has exceeded the texture resolution and no further refinement is
necessary.

There is, however, one scenario of over-refined triangles that cannot be
fixed that easily. Terrain features like cliffs and other almost vertical faces
tend to generate over-refined triangles a lot. This fact emerges from the
nature of commonly applied edge-based refinement decisions: They decide
whether to insert a new vertex along an edge based upon the error it would
evoke not to insert it.
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Figure 18: An example of an over-refinement induced by a cliff: Current vertices
are shown in red for the (correct) position if inserted, and in white
for the (interpolated) position if not inserted.

Given a position function p : R
2 7→ R

3 that translates vertex positions
of the coarse mesh into world space3, two edge spanning vertices v0, v1 ∈ R

2

and a constant height error ε, the decision is usually based on the following
equation:

∥

∥

∥

∥

p(v0) + p(v1)

2
− p(

v0 + v1

2
)

∥

∥

∥

∥

< ε (4)

If the vertex to be inserted does not decrease the terrain approximation
error about at least ε, it is not inserted. This approach works very well
except for (near) vertical faces. Consider the situation in figure 18: In this
example, the vertices v′

c and v′′

c are correctly inserted into the mesh to more
exactly approximate the given terrain (solid black line).

The problem in this example is that the error measured by equation 4
hardly converges, resulting in more and more vertices being inserted in each
recursion step. In the worst scenario, the refinement never stops, creating
degenerated triangles.

There are two ways to avoid degenerated triangles in cliff areas: Instead
of measuring the difference between the correct and interpolated vertex pos-
itions, it would be more exact to estimate the area between the coarse mesh
and the mesh containing the newly inserted vertex. The area before inserting
v′

c is shown as the streaked area to the left side of figure 18, while the one
after the insertion is shown to the right. Applying this refinement decision
results in a converging error, even in cliff areas.

To even estimate this area in practice, it is necessary to calculate many
height values along each triangle’s edges, which would result in a drastic
performance loss.

3 In the most simple case, this function merely reads the height from a map, uses it as
z-value for the vertex and leaves the x and y coordinates untouched
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Thus, if performance is important for an application, it can be more
appropriate to simply reduce ε, or the number of recursions for height maps
causing problems. This constitutes the second way of avoiding degenerate
triangles in areas with near vertical faces.

4.5.3 Oblique triangles

As described in section 4.2.1, RAG can perform local tesselation decisions
for every triangle while maintaining a free choice of the refinement decision
being applied. This is bought dearly for the guarantee of receiving only
right-angled triangles as in Thatcher Ulrich’s algorithm. As already stated,
oblique triangles can not be prevented without restrictions to the accuracy
of the rendered terrain. However, for many applications, accuracy is the
most important characteristic of a terrain rendering algorithm. Therefore,
this section describes the effects of oblique triangles and how to reduce their
number.

Right-isosceles triangles have the advantage that their area linearly de-
creases with the length of their edges. The oblique triangles generated by
RAG do not feature this property, especially when an already oblique triangle
is split along its shortest edge repeatedly, making it a degenerate triangle.
Such degenerate triangles (having immensely differing edge lengths and very
little to no area) often induce rendering artifacts as textures cannot be cor-
rectly interpolated along them.

Figure 13 on page 32 presents all possible tesselations of RAG and Ulrich’s
algorithm, with the problematic ones coloured red. This concludes that three
out of eight possible tesselations result in oblique triangles. Unfortunately,
it is not possible to give an exact estimation of how many oblique triangles
will occur as the number of oblique triangles generated mainly depends on
the given height map and how it is refined.

If it is desired that degenerated triangles (and thus rendering artifacts)
are prevented as good as possible, RAG should be configured so that it
needs very few recursion steps only. This way, each triangle is refined more
seldomly, making oblique triangles degenerate more seldom.

The number of required recursions for a given accuracy depends on several
settings for the RAG algorithm. The most obvious approach is to manually
reduce the number of recursions applied to a mesh. However, this also reduces
the accuracy of the resulting terrain, eliminating this approach for many
applications.

Another approach to reduce the number of recursions, that does not have
an impact on the mesh’s accuracy, is to increase the resolution of the basic
mesh that is fed into the pipeline. For example, increasing the number of
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vertices along the sides of the coarse mesh by the factor 2 corresponds to
doubling the number of refinement tests along each edge.

The most important way to reduce the number of degenerated triangles,
however, lies in the error estimation algorithm that is applied to decide
whether to split an edge. Scenarios such as detailed in the previous sec-
tion 4.5.2 tend to be the most common reason for degenerate triangles. Em-
ploying a more accurate error estimation algorithm generally results in the
refinement of each edge finishing earlier. Thus, edges are split less often,
simultaneously reducing the number of degenerate triangles.

4.6 Error metrics

In the domain of terrain rendering, error metrics describe how exactly a
rendered terrain approximates its given input data. For algorithms based on
height maps, the reference data is a mesh that consists of one mesh vertex per
pixel in the map. Such a mesh would extract every possible bit of information
from the map, but would quickly exceed the available graphic memory even
of modern graphic cards, not to mention the additional time it would take
to apply a vertex shader to so many vertices.

RAG approaches this problem by creating a coarse mesh that can be
performantly set up, stored and displayed. It then recursively splits the
edges between the vertices. To decide whether to split an edge, it tests if
inserting a new vertex in the middle of the respective edge would decrease
the pixel placement error in that position about, at least, a given threshold
ε.

All vertices belonging to the initial coarse mesh and all additionally ad-
ded vertices receive their height from the input height map. To ensure that
no vertex erroneously receives a wrong height, texture minification and mag-
nification operations must be set to nearest neighbour interpolation. That
way, the height of every vertex is reliably the one from the height map.

Based on this perception, the only errors that can occur with RAG are
the ones between the mesh vertices and inside the triangles themselves. The
latter errors can only be addressed indirectly with RAG, by increasing the
coarse mesh’s resolution. To reduce error between edge vertices, exacter error
approximation algorithms – such as the one introduced in section 4.5.2 – must
be applied.

An explorative approach to configure RAG to one’s desire is to visualise
the screen-space error by colour-coding the terrain. It is then possible to
monitor the screen-space error directly while adjusting variables such as the
input mesh’s resolution, ε or even the refinement metric.

My implementation of RAG features this visualisation, as can be seen in
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(19.a) 128x128, 0 passes,
height map

(19.b) 128x128, 0 passes,
pixel error

(19.c) 128x128, 0 passes,
wireframe

(19.d) 20x20, 2 passes,
pixel error

(19.e) 20x20, 2 passes,
wireframe

Figure 19: 19.a is decorated with the underlying height map, all others show
the screen-space error between 0 (green) and 10 or more (red) pixels.
Upper row: Meshes with 128x128 vertices and no refinement applied.
Bottom row: Basic mesh with 20x20 vertices and two recursions ap-
plied.
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figure 19. Additionally, this figure demonstrates with how many passes RAG
can approximate a given terrain. The height map in this example (with which
the terrain is decorated in figure 19.a) is consciously chosen to be very coarse
(128×128 pixels). That way, it is possible to create a reference mesh with the
same resolution, representing the best possible terrain approximation (shown
in figure 19.b).

Regions colored red mark high pixel-space errors. As already noted, the
height map in this example is very coarse. Combined with the values of the
height map being interpolated by the nearest neighbour method, red areas
are even visible in the rendering of the reference mesh.

Figure 19.d shows a rendering of the same scene based on a coarse mesh
of merely 20 × 20 vertices that is refined with RAG in two recursion steps.
Note that this version achieves a similar screen-space error as the reference
mesh, with much fewer triangles (visible in the wireframe renderings of the
respective images).

4.7 Parallel research

In February 2008, a paper entitled “Dynamic Mesh Refinement on GPU using
Geometry Shaders” [14] was released as work in progress by Haik Lorenz and
Jürgen Döllner of the University of Potsdam. Their work is based on the
GAMeR approach [2] that was detailed in section 2.5. Unlike GAMeR, it
utilises the features of geometry shaders to further reduce CPU load.

Similar to the process of its predecessor, this new approach relies on pre-
calculated patterns encoded in barycentric coordinates that are stored in the
graphic card’s memory. During runtime, they replace coarse triangles with a
fine mesh covering the same area. Instead of only rendering a single pattern
at once, the whole coarse mesh is initially stored in graphic memory. Then, it
is recursively refined using the said patterns directly in the graphic pipeline.

A difference to GAMeR concerning the patterns is that with this al-
gorithm their storage cannot be optimised by indexing. GAMeR always
renders one pattern that replaces exactly one triangle at a time. As Lorenz
and Döllner’s approach stores and renders an entire mesh at once, using
indices on the pre-calculated patterns can result in conflicts with wrongly
reused cached vertex shader results.

Preprocessing

Additional to the patterns, there are more preparations that must be met
until the actual algorithm starts. First off, the vertex buffer with the pat-
tern vertices needs an additional access table supporting addresses into the
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Figure 20: Outline of Lorenz and Döllner’s algorithm. The pink boxes mark
application dependant parts.

pattern buffer as the patterns have differing sizes.
Four buffers need to be set up that will be used as transform feedback

targets. Two of them are intended for the first pass, the other two for the
second pass. The buffers for each pass will be used alternately as input and
output for the corresponding geometry shaders.

As a last step, the initial mesh needs to be converted to the format of the
second pass results and stored as a buffer in graphic memory. Each vertex
needs to consist of barycentic coordinates, the ID of the triangle and a sub-
triangle ID. The latter one is redundant in this initialisation step, but still
necessary for the geometry shader to work properly.

Frame-wise updates

The purely GPU-based refinement process is divided in three passes that
are outlined in figure 20, which is directly taken from the paper. Pass 1 –
the “Pattern Selection” – is in charge of selecting a pattern for each coarse
triangle. As for GAMeR and RAG, it is important for this algorithm to
keep the refinement decisions edge based, thus avoiding cracks in the mesh.
Being fed with the needed vertex attributes, such as vertex position and nor-
mal, a geometry shader emits the tesselation information with three values:
The index of the selected pattern p, the number of required sub-triangles
sr and the number of available sub-triangles sp from the previous frame.
The geometry shader’s output is captured via transform feedback and the
rasterisation stage is discarded.

Pass 2, called “Intermediate Mesh Update”, takes the previous pass’es
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triangles as input. In the first recursion, this coincides with the initial con-
verted mesh that has been copied to graphic memory. By using 1D buffer
textures, the geometry shader reads the results of the first pass with the help
of each triangle’s ID. Then, it emits the vertices from the pattern pool –
again encoded in barycentric coordinates – and augments them with the ori-
ginal mesh’s triangle ID and a new sub-triangle ID. The results are either
captured in a vertex buffer with the help of transform feedback and further
refined by another loop of pass 2 or they are fed to the next pass.

The last pass named “Rendering” essentially does what its name indicates
and is mostly application dependant. All that is left to do is to convert the
barycentric coordinates of the intermediate mesh from pass 2 into cartesian
coordinates so that they can be applied as usual. This is done by using the
triangle IDs that are encoded in the intermediate mesh to access the original
mesh and interpolate its values. After that, any valid combination of shaders
can be applied to the refined mesh.

4.7.1 Comparison

Lorenz and Döllner’s approach is very similar to mine, RAG. Both algorithms
perform recursive triangle refinement on the GPU using geometry shaders
with the restriction that tesselation decisions must always be kept edge-based
to avoid cracks in the mesh. Yet, there are some differences that favour one
or the other depending on the requirements of the application.

Probably the most essential difference between the two approaches is
that Lorenz and Döllner’s algorithm can be configured as to the maximum
number of output refined triangles tr per coarse triangle tc. RAG however
only supports a fixed refinement ratio of tr

tc
= 4. Interestingly, Lorenz and

Döllner report in their paper that they chose a value of tr = 4 to achieve the
best performance and allow for a fast pattern growth.

The following shows the advantages and disadvantages that RAG has in
comparison to Lorenz and Döllner’s algorithm:

Disadvantages of RAG

• Meshes refined with RAG potentially feature more oblique triangles.
The reason is that the refinement patterns used in Lorenz and Döll-
ner’s approach can be precalculated to include as few oblique triangles
as possible. Depending on the combination of refinement depths within
a pattern, they are not completely avoidable, but as their algorithm po-
tentially needs less recursions to reach the same refinement, the oblique
triangles degenerate more seldomly.
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• Lorenz and Döllner’s approach needs less refinement calculations, be-
cause it can have a higher tr

tc
ratio than RAG, thus producing more

refined triangles per refinement calculation. This leaves more time to
calculate the refinement in a more complex and exact way, like sampling
more height values along each edge.

• RAG does not operate on barycentric coordinates, but directly on the
coarse mesh. To support terrain synthesis, texture interpolation or sim-
ilar, texture coordinates must be supplied to the mesh. In Lorenz and
Döllner’s approach, texture coordinates can be generated on the fly by
interpolating the barycentric coordinates of each vertex. However, this
only works for certain applications that need local texture coordinates
for each triangle, as barycentric coordinates can only generate triangle-
relative information.

• RAG needs an input mesh with sorted vertices. Otherwise, the vertices
need to be ordered within the shader, which is possible, but slows the
process down tremendously. For most applications, this is not really
a disadvantage but more of an inconvenience as the vertices can be
generated in any order initially, reducing the work to merely adapting
the construction method of the coarse mesh.

Advantages of RAG

• RAG uses less buffers than Lorenz and Döllner’s algorithm. It only
needs two transform feedback buffers, as opposed to four, and it does
not need a pattern vertex buffer or access table. This also results in an
easier understanding of the algorithm and less required management
regarding the correctly bound buffers and shaders.

• If a value of tr = 4 is used for Lorenz and Döllner’s approach, RAG
reaches the same refinement with less passes because no additional
pattern selection pass is required. This saves a lot of time for the
graphic card and minimises load on graphic card memory transfer.

• RAG requires less preparations before it can be applied. The creation
of the refinement patterns for the other algorithm is a one time job, but
it still needs to be done once. Also, RAG does not require a conversion
of the input mesh to barycentric coordinates, it just operates directly
on the coarse mesh.

• A very important advantage of RAG is that it is actually capable of
discarding triangles completely. Lorenz and Döllner’s approach merely
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keeps a coarse triangle as it is, but it can never remove it from the
pipeline. RAG, however, can skip hidden triangles and reduce the
number of triangles that need to be handled in subsequent passes. Ad-
ditionally, the required size of the transform feedback buffers shrinks
with this proceeding.

• When using a high tr
tc

ratio, Lorenz and Döllner’s approach can come
across a situation in which the hardware limit of 1024 floats of output is
exceeded. In that case, their algorithm can introduce temporary cracks
which require attention. RAG however does not face such problems,
as it always has a maximum output of four refined triangles per coarse
triangle which never exceeds this hardware limit. This is probably
a rather insignificant disadvantage as the hardware limit is potentially
raised in one of the next generations of graphic cards, while Lorenz and
Döllner state that a smaller tr

tc
ratio improves performance anyway.

4.7.2 Conclusion

If Lorenz and Döllner’s results are truly correct and the ideal number of
emitted triangles per coarse triangle is four, then RAG is most probably the
better solution for all applications that require speed over minimally better
mesh topology because it reaches the same results with less rendering passes
and less GPU memory consumption.

On the other hand, the greater tr is chosen, the slower oblique triangles
degenerate, resulting in a better mesh topology, because less recursions are
needed. If an application requires good mesh topology with as few degener-
ated triangles as possible, Lorenz and Döllner’s approach might be favourable
because triangles can degenerate faster with RAG.

It should be noted that the chosen value of tr = 4 in Lorenz and Döllner’s
approach might not be the best choice for future graphic cards or even graphic
card drivers. In their paper, they remark that keeping the output of each
geometry shader implication as small as possible increases the algorithm’s
performance. If this should change with future graphic cards or even drivers,
their algorithm could prove to be better than RAG as it would produce less
oblique triangles while requiring less recursions to create an equally refined
mesh.
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5 Results

This section demonstrates the practical results of my research. Firstly, my
implementation of the introduced RAG algorithm is presented, followed by
accuracy and performance measurements recorded with this very implement-
ation.

5.1 Implementation

The program discussed in this and the following section, has been implemen-
ted on a PC with an AMD Athlon 64 X2 Dual Core 4200+ processor, 1 Gb
of main memory and a GeForce 8800 GTX graphic adapter. The operating
system was Gentoo linux and programming was done using C++ (gcc 4.1.2)
and OpenGL. I always updated to the newest nVidia drivers as soon as they
were available. The latest version applied was 169.12.

Before going into detail on my implementation, it should be noted that the
program is only intended for research purposes to test RAG’s characteristics
and is not a full-featured application. No automatic adjustment of RAG’s
settings is performed and the program still contains inconveniences which
should not persist in a non-scientific environment.

For instance, navigating within the terrain is circumstantially done by
adjusting combox box and slider values instead of employing a mouse inter-
action. There is no handling for large textures yet, so only a single height
map can be rendered at once and must fit completely into graphic memory.
Also, depending on RAG’s settings and the number of recursions applied, it
can happen that the transform feedback buffers incur an overflow as the size
of these buffers is not dynamically adjusted.

Both tesselation approaches introduced in section 4.2.1 are supported
by my RAG implementation. They will be referred to as “shader variant
1” for the shader that outputs only right-isosceles triangles while sacrificing
accuracy and “shader variant 2” for the shader that outputs partially-oblique
topology.

5.1.1 Graphical user interface

Qt serves as a window toolkit to configure the rendering settings during
runtime. My implementation supports two different views on the terrain:
Initially, the viewer sees the whole terrain from a distance and can move,
zoom and rotate the terrain with the mouse. In addition to the terrain,
a perspective view-frustum and a viewer position are drawn, which both
are separately adjustable by the graphical user interface. When using a
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Figure 21: A screenshot of my RAG implementation with a height map of Siegen.

switch, the view changes so that the terrain is displayed as seen through the
configured view-frustum.

The rendered terrain has four different colouring options. As a default,
each pixel is coloured with its screen-space height error ranging from green,
for no error, to red which indicates a height error of 20 or more pixels. The
other options are to show the underlying height map the terrain is created
from, the normal map that is generated from it, or a separately eligible colour
map. Of course, the height map is also selectable through the user interface.

Three toggles select whether to show the terrain as wireframe, to render
it flat (by ignoring the height values from the height map and setting all
heights to 0) and to enable or disable shading, respectively. A dialog offers
options to configure the terrain grid: The number of vertices in width and
height of the coarse mesh is adjustable as well as the distance between the
vertices.

The last parameter is a constant factor for the heights interpolated from
the height map. With these parameters, it is possible to scale the rendered
terrain to the wishes of the viewer. This is especially important as all heights
interpolated from the height map are transformed so that they range from
0 to 1, which allows for a unified processing of all height maps. With the
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options itemised above, it is still possible to receive a correct width-height
ratio for the terrain, while always getting an immediate display of the terrain
data.

5.1.2 Internals

When switching between shader variants 1 and 2, just a different geometry
shader is bound. The shaders take the same input and are handled completely
the same from the point of view of the CPU. The number of passes applied
can be selected directly in the user interface. If a number of zero passes is
selected, a shader without a geometry part is bound so that the initial mesh
is rendered without being tesselated at all.

The two shaders have different precision settings that can be set during
runtime. Shader variant 2 determines the tesselation of each triangle based
on equation 4 on page 40. The only difference is that for my implementation
p : R

2 7→ R
2 holds, as it determines the error in screen-space. This screen-

space error can be adjusted with a unit of pixels during runtime.
Being based on pure height differences, shader variant 1 uses two other

variables: The first determines the height difference in object space between
two adjacent vertices that enforces an edge to be split. Ranging between
values 0 and 1, the depth detail describes the diminishing weight of the
height difference with growing distance to the viewer. A value of 0 means
that the height difference is linearly reduced from its set value at the near
clipping plane to 0 at the far clipping plane, while a value of 1 implies that
the height difference setting is equal anywhere on the terrain.

When the rendering routine is called, the viewing transformations are
calculated first, then the needed vertex and texture coordinate buffers are
bound. As already stated in section 4.2.1, the vertices sent to the graphic
card must either be assumed constant or variable, a mixture of both is very
difficult to implement while keeping the mesh topology consistant. I have
chosen to see them as constant, so the vertex buffer I bind is a pre-created
one with the vertex heights already interpolated from the height map.

With each pass, the vertices for the active shader are alternately read
from one vertex buffer and stored in another with the help of transform feed-
back. Except for the last one, all passes are aborted before the rasterisation
stage. Object- and viewing-transformations are only applied to the last pass,
otherwise they would accumulate.

To guarantee right triangulations (for shader variant 2 at least in 5 of 8
cases), the geometry shader needs to know which edge represents the hypo-
tenuse of the currently processed triangle. Otherwise, the order in which the
triangulation needs to be built is not definite. Figure 22 demonstrates such

51



v0

v1

v2 v1

v0

v2

Figure 22: Two different triangulations for the same triangle. Both are created
with the same triangle strip {v1, v0, v1+v2

2
, v0+v2

2
, v2} but resulting

in different tesselations due to a differing vertex order. The edges
enforcing splits are marked with red circles.

a situation. Both presented tesselations are valid and emerge from the same
triangle and vertex order. The difference lies merely in the order of the ver-
tices, resulting in an oblique triangulation although a right-angled one can
be performed.

I solved this problem by sorting the triangle vertices in advance: When the
coarse mesh is created, it is assured that the vertex order is always clockwise
and the hypotenuse is located between the second and third vertex of each
triangle. Because the geometry shader does not accept triangle strips, only
triangles, this is not a performance issue.

With the algorithm being recursive, the geometry shader needs to main-
tain this rule of triangulation so that the intermediate meshes always remain
consistent. Principally, this is unfavourable because a geometry shader is cap-
able of emitting triangle strips which are more efficient than a plain triangle
structure. But as transform feedback converts triangle strips to triangles
anyway, this is only a disadvantage against non-recursive algorithms, which
can output a final tesselation in one step. Such algorithms, however, suffer
from the limited output size of geometry shaders.

The two shader variants share common vertex and fragment shader parts
and operate very similarly. On each call, the geometry shader first checks
the current triangle’s visibility by projecting each of its vertices into nor-
malised device coordinates. If all three vertices triangle are located outside
the normalised device cube, the triangle is discarded completely, occasionally
resulting in a small gap in the corner of the rendering area.
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After the visibility test has been passed, the triangulation is calculated
as an OR-combined integer using the GLSL step4 function which proved to
compute faster during my tests.

The following pseudo-code illustrates the proceeding of shader variant 2,
which determines the triangle tesselation by the screen-space error:

uniform float pixelEdge;

vec2 screenPos( vec3 pos ) {...}

int calculateScreenSpaceErrorTesselation()

{

float error0 = length(

screenPos( (PositionIn[0] - PositionIn[1]) / 2 ) -

screenPos( PositionIn[0] ) - screenPos( PositionIn[1] )

);

float error1 = length( ... // PositionIn[1] + PositionIn[2];

float error2 = length( ... // PositionIn[0] + PositionIn[2];

return 0 |

int(step( pixelEdge, error0 )) |

int(step( pixelEdge, error1 )) * 2 |

int(step( pixelEdge, error2 )) * 4;

}

The function computes the pixel distance between a possibly inserted
point in the middle of an edge and the linearly interpolated position that
is used if no vertex is inserted. The screen-space difference arises from the
height being set for the new vertex: It would be a height interpolated from
the height map instead of the linear interpolation of the adjoining vertices’
heights.

Having decided how to tesselate the triangle, the remaining part of the
geometry shader needs to realise the actual tesselation. To do this with as
little performance loss as possible, it is advisable to abstain from switch-
case constructs as they are converted to if-else statements and cost a severe
amount of calculation time. Instead, I used if statements combined with
early returns to avoid all else statements.

4Quote from [12]: genType step (float edge, genType x ): Returns 0.0 if x < edge,
otherwise it returns 1.0.
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Figure 23: A scene rendered with 0, 1 and 2 recursion steps.

Figure 24: A scene rendered with RAG set to split an edge on a screen-space
error of 20, 10 and 5 pixels.

5.2 Measurements

The following images have been produced with the RAG implementation
introduced in section 5.1, using the oblique tesselation approach. These
visualise the impact that the most important RAG settings have on the
accuracy of the terrain. These settings are the number of recursions applied,
the set screen-space error on which an edge is split and the resolution of the
coarse input mesh.

All of these images show the same scene, with the terrain being colour-
coded in green for little to no screen-space error and red for 20 pixels of
screen-space error and more.

The sequence of images in figure 23 shows renderings with RAG set to
split an edge on a screen-space error of 10 pixels for the midpoint of an edge.
0, 1 and 2 recursion steps are applied to a coarse mesh of 20 × 20 vertices,

Figure 25: A scene rendered with a coase mesh of 20 × 20, 40 × 40 and 80 × 80
vertices.
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Figure 26: Performance measurements with the same settings as in figure 23.

respectively.
The image series in figure 24 displays the same scene with a fixed number

of two recursion steps. The screenshots have been taken with RAG set to
split an edge on a screen-space error of 20, 10 and 5 pixels, respectively.

The last image series in figure 25 again shows the same scene with a fixed
number of two recursions and RAG set to split an edge on a screen-space
error of 10 pixels. The coarse mesh has a resolution of 20 × 20, 40 × 40 and
80 × 80 vertices, respectively.

Now that I have visualised the impact of the most important settings
on the accuracy of the algorithm, I will examine which influence they have
on the algorithm’s performance. To measure the performance, my RAG
implementation supports a simple test: After selecting an option from the
menu and a file to which the results of the test should be written, it rotates the
camera around its current position in 360 steps with each step representing
a turn of one degree.

For each step, the scene is rendered and the program waits until the
rendering is complete. Then, it stores the time the rendering has taken
(measured with an OpenGL query) and the number of visible triangles. After
the test is complete, the collected results are written to the given file.

For the upcoming measurements, the camera is placed at the center of
the map, just slightly above 0 on the z-axis. The far clipping plane is set
up to always exceed the terrain’s extents. A height map of Siegen is loaded
with an associated colour map and shading is activated. The other settings
correspond to the ones of the figures from the accuracy tests. The figures 26
to 28 illustrate the rendering times and number of rendered triangles of the
figures 23 to 25, respectively.

Analysing the measurements, some estimations about the typical beha-
viour of RAG can be made. Note that these hold for the applied refinement
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Figure 27: Performance measurements with the same settings as in figure 24.
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Figure 28: Performance measurements with the same settings as in figure 25.

decision of an edge midpoint’s screen-space error and can differ for other
error approximations:

• Settings improving the mesh’s accuracy always result in higher compu-
tation time and a higher number of visible triangles.

• Increasing the number of passes and reducing the screen-space error
which forces an edge to be split quickly increases the mesh’s accuracy
while only requiring insignificantly longer to compute. Unfortunately,
these settings stop adding necessary detail to the mesh just as quickly.
Some areas with high inaccuracy remain even after more recursion steps
and a very small screen-space error set to split an edge.

• As expected, increasing the coarse mesh’s resolution reduces the mesh’s
error constantly, while quickly increasing the rendering time and the
number of visible triangles.
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6 Conclusions

During this work, I have reviewed some of the most important terrain ren-
dering algorithms that have been developed during the past years and have
detailed the new features of Shader model 4. Employing these new features,
I have developed a new GPU-based refinement algorithm named RAG and
have detailed on its requirements, proceedings and restrictions.

Analysing RAG, I have discussed problems which occur when using this
algorithm and have compared it to a similar approach that has been de-
veloped in parallel. Finally, I have presented my research implementation of
RAG as well as accuracy and performance measurements recorded with the
implementation.

Especially the comparison to Lorenz and Döllner’s approach has revealed
that RAG can compete with current refinement algorithms. However, RAG
only offers a certain tradeoff between accuracy, performance and visual qual-
ity.

As section 4.5.2 has shown, better error estimation algorithms improve
the resulting mesh’s accuracy while increasing calculation time. Nonetheless,
only errors along an edge can be considered for any error approximation
applied, as cracks in the terrain would be introduced by considering triangle-
based information. This is a common characteristic of GPU-based refinement
algorithms, making these approaches inferior for applications that require
accuracy above anything else.

Applying a faster and less accurate error approximation, the algorithm
gains speed, but generates many oblique and oftentimes even degenerate
triangles. These induce rendering artifacts if too many recursions are applied,
thus decreasing visual quality.

Following the conclusions of the previous section, I recommend RAG for
applications predominately requiring an interactive terrain rendering, such
as video games and virtual reality environments. Due to its high perform-
ance and the possibility to increase detail independently from the CPU (as
described in section 4.2.2), it is perfectly suited for delivering steady frame
rates for these kinds of application.

Environments such as digital land surveying applications or similar, that
rely on perfectly approximated height maps would probably not accept any
detail being missed. For these, other approaches should most probably be
favoured.

In the introduction, I noted that the development of terrain rendering
algorithms is far from being utlimately explored. Even with the introduction
of Shader model 4 and its new geometry shader stage, this statement still
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holds. Shader model 4 offers the refinement of terrain data directly in the
rendering pipeline, even enabling completely CPU-independent refinement
approaches such as RAG.

However, with the current state of development, the desire for exactly
approximated terrain surfaces can not be fulfilled as refinement decisions for
triangles are too restricted and thus respecting all detail cannot be guaran-
teed.

6.1 Future work

RAG is fast, easy to understand and implement, but it still produces adverse
topology in certain situations. That is why the most important target for
an improvement of RAG should be to produce right-angled triangles only.
This seems to be one of the biggest problems of all shader-based refinement
algorithms at present, so I am excited how and when this problem is going
to be solved.

Another nice feature would be to find a way of increasing the ratio tr
tc

of refined triangles per coarse triangle without having to use patterns like
GAMeR or Lorenz and Döllner’s approach. If there was an algorithm that
could produce a refined triangulation without an access table and a pattern
buffer, it would be very interesting to see whether the performance of RAG
would increase through less refinement passes. However, Lorenz and Döllner
have reported a decreasing performance for their algorithm with increasing
refinement ratio, leaving the results of this feature less promising.

Finally, it would be interesting to observe how RAG behaves with better
refinement metrics. The first modification to my proposition would be to
add more sample points on each edge, thus improving the error estimation.
Maybe it would make sense to move the inserted vertex along the edge, to
the sample point with the highest error. It would be exciting to see which
impact on the mesh topology such an adjustment would have.
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