
Time-Adaptive Lines for the Interactive Visualization of

Unsteady Flow Data Sets

Nicolas Cuntz1, Albert Pritzkau1, Andreas Kolb1

1University of Siegen, Germany

Abstract

The quest for the ideal flow visualization reveals two major challenges: interactivity and accuracy. Interactivity

stands for explorative capabilities and real-time control. Accuracy is a prerequisite for every professional visu-

alization in order to provide a reliable base for analysis of a data set. Geometric flow visualization has a long

tradition and comes in very different flavors. Among these, stream, path and streak lines are known to be very

useful for both 2D and 3D flows. Despite their importance in practice, appropriate algorithms suited for con-

temporary hardware are rare. In particular, the adaptive construction of the different line types is not sufficiently

studied. This work provides a profound representation and discussion of stream, path and streak lines. Two algo-

rithms are proposed for efficiently and accurately generating these lines using modern graphics hardware. Each

includes a scheme for adaptive time-stepping. The adaptivity for stream and path lines is achieved through a new

processing idea we call “selective transform feedback”. The adaptivity for streak lines combines adaptive time-

stepping and a geometric refinement of the curve itself. Our visualization is applied, amongst others, to a data set

representing a simulated typhoon. The storage as a set of 3D textures requires special attention. Both algorithms

explicitly support this storage, as well as the use of precomputed adaptivity information.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion, I.3.1 [Computer Graphics]: Parallel Processing

1. Introduction

Flow visualization has the potential to greatly enhance the
understanding of complex flow data sets in a wide range of
disciplines. Mostly, flow data is generated by numerical sim-
ulation (i.e. computational fluid dynamics) or by experimen-
tal techniques such as particle imaging velocimetry. Visual
exploration is an important tool for analyzing the results.
Typical application areas include climate research, where
general circulation models are used to describe atmospheric
and oceanic phenomena, as well as the aerospace, automo-
tive industries, and chemical engineering.

State-of-the-art flow visualization can be classified in
three main categories: Direct, texture-based and geomet-
ric visualization [Lar04]. Direct visualization typically uses
glyphs, e.g. arrows, which cover an overall picture of the
flow. Flow information can be coded as a color or shape at-
tribute. Texture-based visualization offers a dense represen-
tation of the flow by advecting planar or volumetric grids.
A widely used example is line integral convolution (LIC)

Figure 1: Time-adaptive stream, path and streak lines (from

left to right) in an unsteady typhoon flow (data set: courtesy

of DKRZ Hamburg). All images are taken at same time. The

rainbow colors stand for the velocity magnitude (red: high

velocity).

[CL93], which applies convolution kernels to noise textures.
Geometric visualization evolves geometric objects like par-
ticles, lines, surfaces and volumes by integration along the

c© 2009 The Authors

N. Cuntz, A. Pritzkau & A. Kolb / Time-Adaptive Lines for the Interactive Visualization of Unsteady Flow Data Sets

a) ∆ = 0.2 b) ∆ ≈ 0.143 c) adaptive

1© 1©

2©2©

Figure 2: Five path lines without adaptive time-stepping: time step ∆ = 0.2, 66.22 FPS, 385 segments (a), ∆ ≈ 0.143, 63.96
FPS, 540 segments (b), and with adaptive time-stepping: 66.23 FPS, 355 segments (c). The gray ground-truth curve has been

generated using time step ∆ = 0.02.

flow field. Stream lines consist of the paths formed by par-
ticles traced while halting the flow, thus reflecting the flow
at one fixed point in time. A path line shows how the flow is
changing in time by tracing particles within an unsteady ve-
locity field. Streak lines differ from the other line types in the
fact that the whole line is moved instead of tracing one par-
ticle. They are natural in the sense that they frequently occur
in the real world. For example, injecting a medium within a
fluid (smoke in the wind) yields a streak line.

Typically, the flow line equations are solved by apply-
ing a high order integration like Runge-Kutta 2 or 4 (RK).
This kind of numerical computation is based on discrete time
steps. Simple strategies use a constant time step (see Fig. 2a
& b), more sophisticated ones choose a time step that adapts
to local flow characteristics (Fig. 2c). The objective of adap-
tive time-stepping is a reduction and adjustment of the trun-
cation error of the integration. Ideally, this results in a finer
sampling of intricate regions (Fig. 2: 1©) and a coarser sam-
pling in problem-free regions (Fig. 2: 2©). Flow lines visu-
alized by connecting linear segments eminently benefit from
time-adaptivity, as sharp bends can be avoided.

Adaptive time-stepping can be applied directly to stream
and path lines. Unfortunately, streak lines suffer from an-
other problem: Discrete sampling is emphasized during evo-
lution. This means that injected points will diverge according
to flow divergence, resulting in sharp bends and overpopu-
lated regions like in Fig. 3a.

In the recent past, graphics hardware has evolved to a plat-
form that provides powerful capabilities not only in game in-
dustry but also in scientific areas. The extended programma-
bility and parallel architecture of modern graphics process-
ing units (GPUs) is especially useful for computationally ex-
pensive applications. Today, the trend goes from a special-
ized graphics processor to a general parallel co-processor.
This development is called general purpose GPU (GPGPU)
[OLG∗05, Buc05, Har05], and it makes the GPU the ideal
hardware for visualization systems which require a heavy
computational background.

a)

b)

Figure 3: Stop-motion of a streak line without (a) and with

refinement (b). Frequency of the injection: ∆ = 0.2, both >

400 FPS. The gray ground-truth curve has been generated

using time step ∆ = 0.02.

This paper discusses the visualization of adaptive flow
lines using up-to-date graphics hardware. The presented ap-
proach includes the following contributions:

• A discussion of stream, path and streak lines is provided.
• Two algorithms are proposed for efficiently generating

lines using geometry shaders. In this context, we present a
new processing idea we call selective transform feedback.
Our approach includes direct support for time-adaptive
stream and path lines.

• A refinement scheme for geometrically adaptive streak
lines is proposed. It avoids the divergence problems
shown in Fig. 3a by adding or removing points during evo-
lution (Fig. 3b). The introduction of new points helps to
maintain a balanced curve progression.

• The asynchronous flow data access required by the par-
allel time-adaptive particle tracing is explicitly addressed

c© 2009 The Authors

N. Cuntz, A. Pritzkau & A. Kolb / Time-Adaptive Lines for the Interactive Visualization of Unsteady Flow Data Sets

in our algorithms. Consequently, our approach supports
texture-based unsteady flow data sets.

• A qualitative evaluation of both a complex data set and
analytical examples is provided.

• The approach is applied to flow data sets which do not fit
entirely into GPU memory. We show that asynchronous
texture transfer results in interactive frame rates even for
those data sets.

2. Related Work

Flow-vis – Flow visualization is a well-studied topic (see
[LHD∗04] for one of several extensive overviews). Most of
the literature is related to dense representations, particularly
LIC and similar texture-based techniques. Often, the visual
output is designed to reveal as many characteristics of the
flow as possible, e.g. using multi-dimensional transfer func-
tions (MDTF) [PBL∗04]. Accordingly, feature-based visual-
ization [PVH∗03] extracts and visualizes flow features.

Geometric methods, on the other side, are typically based
on particle traces, which involves a numerical integration
of the flow field. In the last years, a lot of effort has been
made to exploit graphics hardware for real-time visual-
ization. GPU-based particle systems are designed to pro-
cess a very large number of particles in real-time [KSW04,
KLRS04]. This idea was extended to 3D flow visualiza-
tion by Krüger et al. [KKKW05], including the generation
of stream lines and ribbons. No adaptive time-stepping is
provided, however a visual feedback of the truncation error
marks difficult areas. GPU-based particle flow has been ap-
plied to climate visualization [CKL∗07]. Here, the handling
of large data is made possible by asynchronously transfer-
ring subsets of the flow data to graphics memory.

Flow lines – The work by Park et al. [PBL∗05] discusses
dense seeding of stream and path lines in steady and un-
steady flows. Their technique supports MDTFs, and it is
suited to graphics hardware. However, no streak lines are
generated, and the algorithm requires one render pass per
segment. Finally, adaptive time-stepping is not handled in
this work. In contrast to pure geometric approaches, Theisel
visualizes the curvature of stream, path and streak lines in
unsteady flows without the need of any numerical integra-
tion [The98]. This is a nice method for avoiding the difficul-
ties in the parametrization of streak lines. Liu et al. present
a strategy for 2D stream line placement [LMG06] featur-
ing loop detection and adaptive distance control. The results
show clear images where flow patterns can be easily recog-
nized by the viewer.

Rendering – The rendering of flow lines using graphics
hardware is very efficient. Zöckler et al. present a technique
for real-time illumination that uses texture mapping capabil-
ities of the GPU [ZSH96]. Stoll et al. propose a hybrid CPU-
GPU algorithm for a stylized line rendering, that combines
piecewise-quadrilateral approximations with exact tube ge-
ometries [SGS05].

Adaptive time-stepping – The Runge-Kutta method
is a widely used high order integration scheme that is
known to produce numerically stable traces [Stö95]. An
extensive survey on Runge-Kutta methods is given by
Cartwright et al. [CP92], including a discussion of adap-
tive time-stepping. Advanced state-of-the-art techniques us-
ing the theory of automatic control for the design of adap-
tive numerical time-stepping are surveyed by Söderlind
[Söd02]. An analysis of the truncation error (due to dis-
crete time-stepping) and the interpolation error (due to dis-
crete flow data) for particle tracing methods is provided by
Teitzel et al. [TGE97].

A different interpretation of adaptivity is used by
Sanna et al. [SMA00]. They create a dense texture-based
representation by adaptively seeding streak lines into the
problem domain.

Graphics hardware – Since the shader model 4, the
graphics pipeline of the GPU supports a new stage called the
geometry shader. This instance transforms each input primi-
tive (i.e. a point, line or triangle) by adding or removing ver-
tices. The output can be a variable number of reassembled
primitives. This number, however, is limited by the hardware
implementation. The geometry shader applies well to algo-
rithms which dynamically alter or create a geometry, e.g.
subdivision, marching cubes, etc.

The output primitives are then propagated to the raster-
ization stage, or they can be redirected to a specific buffer
using the so-called transform feedback (TF) extension. This
transform feedback records all output primitives without the
possibility to select a subset.

3. Theoretical Background

Assume an unsteady flow given by a 3-dimensional velocity
field~v : R

3×R → R
3 which maps a spatial location x and

a point in time t to a velocity vector~v(x, t). We first intro-
duce the notions of stream, path and streak lines. Then, the
step-doubling approach for the adaptive time-stepping in the
Runge-Kutta 4 method is discussed briefly.

3.1. Stream, Path and Streak Lines

The stream line, starting at x0, is defined as the trace of a
particle moved in the flow at a fixed time t:

x
sm
t (s) = x0 +

s
Z

0

~v
(

x
sm
t (σ), t

)

dσ (1)

The path line, starting at x0 and t, is defined as the trace of
a particle moved in the flow which is changing in time:

x
p
t (s) = x0 +

s
Z

0

~v
(

x
p
t (σ), t +σ

)

dσ (2)

The streak line in x0 and t is defined as the line built by

c© 2009 The Authors

N. Cuntz, A. Pritzkau & A. Kolb / Time-Adaptive Lines for the Interactive Visualization of Unsteady Flow Data Sets

individual traces of particles which were injected at succes-
sive points in time. These individual traces can be described
by using the path line representation:

x
sk
t (s) = x

p
t−s(s)

= x0 +

s
Z

0

~v
(

x
p
t−s(σ), t− s+σ

)

dσ (3)

Fig. 4 provides a schematic illustration of this relation be-
tween a streak and a path line. According to [WTS∗07], the
term generalized streak line applies to a streak line that is
built using a starting point x0 that changes in time.

streak line path line

xskt (3)
xskt (2)

x
p
t−4(3)

xskt (1)

x
p
t−4(1)

x
p
t−4(2)

x
p
t−4(4)

= xskt (4)= xskt (0)
x
p
t−4(0)

Figure 4: Visual comparison of path lines and streak

lines. Note that a streak line consists of the ending points

of different path lines and vice versa. Flow: ~v(x, t) =
(cos t,−sin t,0).

Both stream and path lines (Eq. 1 and 2) can be generated
in one pass. Consider a Runge-Kutta operator RK4

(

x, t, ∆
)

which calculates a new location according to a given start-
ing point x, a point in time t and a time step ∆. Then the
following recursion provides an approximation of xsmt :

x
sm
t (0) = x0

x
sm
t (s+∆) = x

sm
t (s)+

s+∆
Z

s

~v
(

x
sm
t (σ), t

)

dσ

≈ x
sm
t (s)+RK

4(
x
sm
t (s), t, ∆

)

(4)

(For xpt , modify the time parameter according to Eq. 2.) Un-
fortunately, streak lines cannot be constructed this way due
to the dependence on the integral bound s in Eq. 3. How-
ever, it is possible to deduce a location xskt+∆

(s+∆) from the

previous line location xskt (s):

x
sk
t (0) = x0

x
sk
t+∆(s+∆) = x

p

(t+∆)−(s+∆)
(s+∆) = x

p
t−s(s+∆)

= x
p
t−s(s)+

s+∆
Z

s

~v
(

x
p
t−s(σ), t− s+σ

)

dσ

= x
sk
t (s)+

s+∆
Z

s

~v
(

x
p
t−s(σ), t− s+σ

)

dσ

≈ x
sk
t (s)+RK

4(
x
sk
t (s), t, ∆

)

(5)

3.2. Adaptive Time-Stepping

Adaptive time-stepping aims for reducing the truncation er-
ror and the round-off error. The first occurs when discretiz-
ing time using a fixed step-size, the latter is due to finite
floating-point arithmetic and increases proportionally to the
number of integration steps. Thus, a good adaptive time step
is small enough to avoid truncation and large enough to
avoid round-off. For the Runge-Kutta 4 method, one of the
most common schemes is step-doubling. Step-doubling de-
termines a numerically sound time step ∆

′ as follows:

x1 = RK
4(
x, t, ∆

)

x2 = RK
4(
RK

4(
x, t,

∆

2

)

, t +
∆

2
,

∆

2

)

∆
′ = ∆ ·

(

d

‖x2−x1‖

)
1
5

The distance ‖x2−x1‖ is an error estimation which is
asymptotically bounded by ∆

5. The target distance d must
be chosen to produce smooth results (i.e. no sharp bends). It
is advisable to avoid a denominator near zero. Also, in our
implementation, ∆

′ is clamped to be within a reasonable in-
terval: ∆

′ ∈ [10−3,103].

4. Time-Adaptive Lines

This section discusses the construction of stream, path and
streak lines. The according algorithms are presented in GPU
specific terms, because the applicability to parallel graphics
hardware is one major aspect of our approach.

4.1. Line Construction

Our line generator relies on the geometry shader (see Sec. 2).
This shader unit is able to process a stream by adding and
removing elements. The stream is variable in size, thus it is
ideal for representing adaptive line data.

4.1.1. Stream and Path Lines

From a theoretical point of view, Eq. 4 can be used to gener-
ate stream and path lines in one pass. The input of this pass
consists of a set of line seeds which is processed in parallel.

Unfortunately, the number of elements that can be gener-
ated in the geometry shader is limited to a constant number.
Thus, in order to get a line of arbitrary length, we have to
break the creation into several passes. This idea is sketched
in Fig. 5. The selective transform feedback shown in the di-
agram is explained in the next paragraph.

Selective transform feedback – Breaking the geometry
pass implies a splitting of 1. the line data used for rendering
and 2. the seed information (i.e. the last point generated for
each line) used as input for consecutive sub-passes. Note that
the seed information is not located at the end of the overall
line data, because parts of different lines are generated and

c© 2009 The Authors

N. Cuntz, A. Pritzkau & A. Kolb / Time-Adaptive Lines for the Interactive Visualization of Unsteady Flow Data Sets

GP
TF

VBO

rendering

seed points

selective

TF

clipping

F
B

O
 t

o
 V

B
O

p
o

in
ts

end points &

end times
line data

Figure 5: Generating a stream (or path) line. GP: geometry

program, TF: transform feedback, VBO/FBO: vertex/frag-

ment buffer object.

stored in an interlocked way. The geometry shader does not
directly support the output into two different streams. How-
ever, it is possible to generate a transform feedback stream
while simultaneously rendering primitives into the current
frame buffer. The ID of the current input seed (given by
gl_PrimitveID) determines the line that is generated in
the current shader instance. Using this ID, it is possible to
write the last point on a per-line basis into the frame buffer.
The frame buffer content is then interpreted as new seed in-
put for the next sub-pass. Superfluous points rendered when
pushing elements into the TF are discarded by moving them
outside the clipping area.

Alg. 1 lists the complete algorithm in pseudo code. In each
frame, the whole line is generated. The iteration stops when
no more elements are generated in the geometry shader, i.e.
if the desired line length has been reached in the previous
pass. Querying the number of generated elements is a sub-
feature of OpenGL’s transform feedback.

Algorithm 1 (stream/path line algorithm)

1 for each frame {
2 emit seeds p1, . . . ,pn // chosen by user interaction
3 while query 6= 0 {
4 query = 0
5 process each seed p ∈ {p1, . . . ,pn}:
6 geometry shader + TF:
7 s = p.s // using time stamp p.s

8 while s < line_length {
9 emit line point p

10 p = RK4
(

p, t, ∆
)

// with adaptive ∆

11 s += ∆

12 query++
13 }
14 emit new seeds p1, . . . ,pn // using selective TF
15 }
16 }

For path lines, replace the time parameter of the RK4 oper-

seed points

line data

GP

VBO

rendering

texture

fetch

tr
a

n
s
fo

rm
 f

e
e

d
b

a
c
k

Figure 6: Generating a streak line.

ator by t + s. Note that the number of iterations of the in-
ner while loop is bounded by a constant limit specific to the
hardware. The adaptive time step ∆ is determined using the
step-doubling approach (see Sec. 3.2) or it is read from the
data set. See Sec. 4.2 for a discussion of data set specific
aspects, including texture synchronization.

4.1.2. Streak Lines

Streak lines are generated according to Eq. 5. The line data
of the previous frame forms the input of the next frame. As
the line data is used for processing, a time stamp is added
to each point so that the length of the line can be controlled.
The streak line approach is sketched in Fig. 6.

The main idea of the algorithm is to add new points
(fetched from a seed texture) at the beginning of each line
and to remove points at the end according to the desired line
length. Thus, the geometry processor must distinguish be-
tween starting, inner and end points of the line. Our imple-
mentation uses special markers in the line data, which are
also motivated by the rendering process. The exact structure
of the line data is discussed in Sec. 5.1.

The streak line algorithm scans the stream for markers and
writes the new line data directly through transform feedback:

Algorithm 2 (streak line algorithm)

1 initialize line data
2 for each frame {
3 process each line data segment (p1,p2):
4 geometry shader + TF:
5 if p2 is a starting point (p1 is marker):
6 emit new seed by texture fetching
7 if p1 is an end point (p2 is marker):
8 if t−p1.s > line_length: remove p1
9 emit p1 = RK4

(

p1, t, ∆
)

// possibly adaptive
10 if p1 and p2 are inner points:
11 emit p1 = RK4

(

p1, t, ∆
)

// possibly adaptive
12 perform refinement
13 }

Alg. 2 has to fulfill a fixed time step ∆ in order to ensure
the correct line output (see Eq. 5). In other words, when
computing a point xskt+∆

(s+ ∆), the time step ∆ is not only
a time step for numerical integration but also the time step

c© 2009 The Authors

N. Cuntz, A. Pritzkau & A. Kolb / Time-Adaptive Lines for the Interactive Visualization of Unsteady Flow Data Sets

controlling the injection of new seeds. Consequently, adap-
tive time-stepping cannot be applied directly to our streak
line approach. Our interpretation of adaptive streak lines in-
volves two strategies:

1. Time adaptivity: The time step ∆ can be divided into sev-
eral adaptive sub-steps in order to achieve a more accurate
result for individual points.

2. Geometric adaptivity: In order to avoid sharp bends and
oversampling (see Fig. 3a), a refinement scheme is sup-
ported in our algorithm (line 12 in Alg. 2).

The refinement step compares the distance between two
adjacent points p1,p2 as processed in Alg. 2. If the distance
is larger than a user specified threshold, then a new point is
added in-between by linear interpolation of p1 and p2. If the
distance is smaller than half the threshold, the point p1 is
removed. This simple scheme has shown to be very efficient
and essential for generating reasonably smooth streak lines.

4.2. Flow Data Set Storage & Synchronization

The data set is partitioned into several time records. Each of
them is stored in a 3D texture holding the velocity data. In
addition, an adaptive time step is stored at each location of
each time record. This time step is computed according to
the step-doubling approach (see Sec. 3.2) for every texture
location within a separate pre-processing.

Binding several textures in a shader program can have a
large impact on the performance: Conditional texture selec-
tion (using if) is significantly more expensive than fetching
one single texture. This has been verified on a GeForce 8
graphics card: In an experiment, a single conditional fetch
among 4 textures is about 3 times faster than among 16. The
texture array extension supports a presumably faster solu-
tion, however it does not support arrays of 3D textures. Thus,
it is essential to bind only a few 3D textures in each render
pass. This restriction affects the generation of path lines.

The restriction to a small set of flow textures yields a syn-
chronization problem: Only a limited time interval can be
covered by a path line part generated in one render pass. It
turns out that this restriction can be fulfilled by just adding
an additional stop criterion in line 8 of Alg. 1 which ensures
the right time interval. When query signals that no more
vertices have been output, it is safe to increment the data set
time interval to different textures. This adds a surrounding
loop incrementing the interval until query remains 0 in two
subsequent render passes. Note that this approach is efficient
because a render pass with query= 0 is inexpensive.

4.3. Flow Data Sets Exceeding GPU Memory

The handling of data sets which are too large to be entirely
stored in GPU memory is a task that requires special inter-
est. Only those parts of the flow data which are momentarily
necessary should be present in graphics memory. While a

spatial division into bricks is rather hard to achieve for arbi-
trary lines, the idea of lazily transferring time records maps
well to our line generator: The synchronization method pre-
sented in Sec. 4.2 ensures that the generator breaks whenever
a necessary time record is missing. Before the next iteration,
the framework can upload appropriate time records so that
line generation is continued in the next pass.

In order to speed-up this scheme, the pixel buffer object
(PBO) extension is used for asynchronously transferring the
texture data using intermediate system memory. Addition-
ally, multiple textures can be used to cache time records
which are likely to be used in subsequent iterations. For
path line generation involving several time records during
the generation of one line, this can be of great benefit as one
can see in the results (Sec. 6.3).

5. Line Storage and Rendering

The line renderer requires a specific storage of the line data
stream. More precisely, each rendered segment (p1,p2) is
provided with its adjacent points, such that normals can be
computed for both p1 and p2. These normals can be used
for lighting and for a sophisticated rendering of tube-like
geometries. Additionally, our storage layout is designed to
support the splitting of lines into distinct parts (Alg. 1) and
it supports end point markers (Alg. 2).

5.1. Line Storage

A special BREAK symbol identifies line parts generated by
Alg. 1. This break element also contains an adjacent point
used for rendering. The SEP symbol marks the end points of
each line. It tells the renderer to terminate the geometry ap-
propriately. The following list is an example of how a stream
or path line can be represented. The + operator specifies a
combination of vertex and marker information.

SEP, x1, . . . , x5 +BREAK,

SEP, y1, . . . , y7 +BREAK,

x3 +BREAK, x4, . . . , x6, SEP,

y5 +BREAK, y6, . . . , y9, SEP

Fig. 7 shows how the line parts SEP, x1, . . . , x5+BREAK

and x3 + BREAK, x4, . . . , x6, SEP are combined to one
geometry during rendering.

Separator elements (BREAK and SEP) are marked by set-
ting the fourth component of the according vertex to a pre-
defined large constant number. Streak lines require an addi-
tional identifier for distinguishing lines (see Alg. 2, line 6).
This ID is stored in the starting and ending separator of each
line. Streak line data also includes time stamps for all points,
which are stored in a separate (texture coordinate) buffer.

Note: The exact generation of the line data requires minor
modifications to Alg. 1 and Alg. 2 in order to produce a cor-
rect sequence of points, BREAKs and SEPs. This aspect has
been omitted due to its implementation specific nature.

c© 2009 The Authors

N. Cuntz, A. Pritzkau & A. Kolb / Time-Adaptive Lines for the Interactive Visualization of Unsteady Flow Data Sets

B
R
E
A
K

x6
S
E
P

x5x4

x3

B
R
E
A
K

S
E
P

x5x4

x3x2

x1

a)

x6
S
E
P

x1

x2 x3

x4 x5

S
E
P

b)

Figure 7: How the renderer combines two line parts (a)

to one single line (b). Due to adjacent points stored in the

BREAK elements, the renderer can compute proper normals.

In total, the memory consumption for the line data is
asymptotically bounded by the number of segments neces-
sary for visualizing all lines. In the implementation, a fixed
limit must be given to transform feedback, which is 262,144
in our configuration. An overflow can be detected by using
an OpenGL query. So the algorithm could be designed to dy-
namically reinstantiate the buffer if more segments are pro-
duced.

5.2. Rendering

The renderer directly visualizes the line data as described in
Sec. 5.1. A geometry shader functionality called line adja-
cency is used to compute normal information. This can be
used for lighting and for a non-trivial rendering of the lines.
We have chosen the approach by [SGS05] which produces
quadrilateral tube approximations. These quads are directly
generated in the geometry shader. The shader is even able
to generate explicit tube geometries in intricate situations
where the view vector coincides with the tangent of a seg-
ment (see Fig. 12).

6. Results

In the following, our line-based flow visualization system
is evaluated by presenting performance and accuracy results
for different examples. The hardware used for testing is a PC
with a GeForce 8800 GTX graphics card, except for the tests
in Sec. 6.3. The latter have been performed on a PC with 2
GB RAM and a GeForce 9600 GT graphics card. This com-
puter has been chosen because of its very stable multi-disk
setup which was crucial for memory swapping purposes.

Our main example, the typhoon, is an unsteady flow data
set (courtesy of DKRZ Hamburg) consisting of 32 time
records, each stored in a 106× 53× 39 texture. Since 2 dif-
ferent adaptive time steps, namely one for stream and one for
path and streak lines, are stored, the total size of the data set
adds up to 106 ·53 ·39 ·5 ·4 bytes = 134 MB (5 components
and 4 byte large floats). Slices are arranged in a non-uniform
way. We solve this problem by performing a binary search

Figure 8: The typhoon flow visualized using adaptive

stream, path and streak lines and stylized rendering, num-

ber of lines: 64, frame rates (in FPS): 74.89, 37.38, 96.22,

segments (approx.): 3780, 5900, 9500.

in the shader in order to find the correct slice when sampling
the data. Fig. 8 shows the entire visualization including an
underground height field and line shadows. These Shadows
have shown to improve 3D perception in practice.

Performance evaluation (see figure captions) reveals that
the streak line generator is faster than the stream/path line
generator when comparing the number of segments pro-
duced. This happens because the streak approach processes
several segments in parallel while the stream/path approach
processes several lines in parallel. Obviously, the number of
segments is much higher than the number of lines. In or-
der to get an impression of the quality of our approach, the
typhoon example has been evaluated both visually and sta-
tistically (Sec. 6.1).

6.1. The Typhoon Data Set

Fig. 9 visualizes the local error provided by the step-
doubling approach (compare with Sec. 3.2), i.e. a measure
for the truncation error during a single integration step. It
shows an interesting relation between speed and accuracy:
the non-adaptive path lines are slower than the adaptive
counterpart (with texture-fetched time step), yet exhibiting
a much larger error in the difficult twirl region. This advan-
tage of the time-adaptive version in both speed and accuracy
is due to the number of segments, which is balanced by the
time-adaptivity.

Fig. 9 also shows that in comparison to real-time step-
doubling, texture-fetching the time step produces a small but
visible error due to trilinear interpolation of the time step.
The pre-processing storing the adaptive time-step into the

c© 2009 The Authors

N. Cuntz, A. Pritzkau & A. Kolb / Time-Adaptive Lines for the Interactive Visualization of Unsteady Flow Data Sets

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 10 20 30 40 50 60 70 80 90

e
rr

o
r

*
1

e
6

FPS

stream non-adp avg
stream adp avg

stream non-adp dev
stream adp dev

 0

 20

 40

 60

 80

 100

 120

 10 15 20 25 30 35

e
rr

o
r

*
1

e
6

FPS

path non-adp avg
path adp avg

path non-adp dev
path adp dev

Figure 10: Frame rate versus local error for the example

shown in Fig. 2, with 256 stream/path lines instead of five

path lines. “adp”: adaptive, “avg”: average, “dev”: stan-

dard deviation. The error has been multiplied by 106.

textures takes 30 minutes on the CPU and approx. 10 sec-
onds in our GPU implementation. By using our long double-
based CPU pre-processor, a slight improvement in accuracy
can be obtained.

In Fig. 10, the local step-doubling error is plotted for dif-
ferent frame rates and line types. For the non-adaptive lines,
different values have been measured by varying the integra-
tion time step. For the adaptive lines, the step-doubling ac-
curacy has been varied using our GPU-based pre-processor
before each measurement. Both diagrams show in a very
clear way that adaptive stream and path lines produce both
a smaller average error as well as a smaller standard devi-
ation of the error compared to non-adaptive counterparts at
same frame rate. This result coincides with the visual anal-
ysis in Fig. 9. For streak lines, a similar analysis is hard to
provide because of the different nature of adaptivity. Pure
time-adaptivity (i.e. without geometric refinement) is insuf-
ficient for increasing both speed and accuracy. This is due
to the fact that the performance of the streak line generator
is less sensitive to a high number of line segments than for
stream or path lines.

a)

b)

Figure 11: The global error for a cubic B-spline function

(marked in red). a) non-adaptive, 47.38 FPS, 776 segments,

b) time-adaptive 62.16 FPS, 445 segments.

6.2. Analytical Flows

In order to provide further results, two analytical flows have
been evaluated. Sampling an analytical function avoids the
bottle neck of texture fetching, resulting in much higher
frame rates. We first consider a flow defined by the func-
tion~v(x, t) = (1,sin(t) · cos(xx),0). While the adaptive line
generator produces approx. 10,000 texture-fetched segments
in real-time (stream: 10,076 @ 22.64 FPS, path: 10,023
@ 18.66 FPS, streak: 10,079 @ 91.15 FPS), it can pro-
duce more than 10 times more segments when evaluating
the analytical function (stream: 115,840 @ 30.99 FPS, path:
103,637 @ 29 FPS, streak: 100,057 @ 126.81 FPS).

In order to get a better idea of the benefit of time-
adaptivity, we have evaluated another analytical flow pro-
duced by a repetitive cubic B-spline (see Fig. 11), which
can be integrated analytically in order to provide an exact
path line representation. Velocities are normalized in order
to sharpen the difficulty near the curved extrema. A global
error has been evaluated by taking the distance to exact line
locations according to the time parameter of the computed
line. The top (non-adaptive) line shows a large error despite
the fact that more segments are rendered than in the bot-
tom line, which adapts well to the characteristics of the flow.
Note that the periodic nature of the function causes interfer-
ences in the error, thus canceling the error in certain regions.

6.3. Larger Flow Data Sets

In practice, one might be interested in visualizing larger flow
data sets than the one presented in Sec. 6.1. In order to test
the applicability of our approach to this task, various data
sets of different size have been generated, all representing
the same flow defined by the function ~v(x, t) = (1,sin(t) ·
cos(xx),0).

c© 2009 The Authors

N. Cuntz, A. Pritzkau & A. Kolb / Time-Adaptive Lines for the Interactive Visualization of Unsteady Flow Data Sets

a) non-adaptive b) real-time adaptive c) tex-based adaptive

Figure 9: The local step-doubling error (marked in red) for the typhoon example. Frame rates (in FPS, without error computa-

tion): 37.28, 11.94, 37.83, number of segments: 11776, 13886, 10505

Figure 12: The stylized rendering combines quadrilateral

segments with explicit tube geometries (approx. 20 FPS).

Table 1 shows the timings for all tested data sets. During
visualization, one time record covers ten frames. All three
types of lines have been tested in different memory configu-
rations: Besides three textures representing the current time
records needed for one sinlge Runge-Kutta integration step,
texture transfer has been accelerated by dedicating a PBO for
asynchronous transfer (second column of the FPS results). A
third configuration has been tested using a stack of 8 cached
textures. This number has been chosen because eight 1503

textures plus PBO and the line data (approx. 32 MB in this
configuration) amounts to nearly 512 MB of memory, which
is the limit of the graphics card used for the tests.

The results show two interesting aspects: First, texture
transfer is fairly fast for stream and streak lines. Path lines
require multiple switches of the textures during one frame,
as lines are covering several time records. Thus, path lines
highly benefit from asynchronous transfer and caching of

Table 1: Runtime for stream/path/streak lines in a flow data

set of varying resolution. In all tests, 512 lines cover nearly

the whole flow volume and at least 4 time records.

res. steps size FPS (stream/path/streak)
normal async async &

cached
503 100 238M 40/26/44 39/38/44 39/93/44
503 250 596M 40/26/44 40/39/45 39/83/45
503 500 1.2G 40/27/44 39/37/45 39/92/44

1003 50 954M 55/5/44 59/8/48 53/79/48
1003 100 1.9G 58/3/44 74/8/47 69/42/47
1003 200 3.7G 6/5/13 18/5/15 10/11/11
1503 10 644M 37/1/34 48/3/40 23/55/31
1503 50 3.1G 5/1/7 4/3/8 6/5/11

Notation: res.: resolution of one time record, steps: number of time
records, size: file size of the data set (containing 2 different adap-
tive time-steps for stream and path/streak lines), normal: no use of
PBOs, async: asynchronous texture transfer using PBOs, async &

cached: 1 PBO and 8 instead of 3 textures in GPU memory.

subsequent records. This yields interactive frame rates even
for data sets which do not fit entirely in GPU memory. How-
ever, one can see that system memory is a bottleneck as
soon as disk swapping is involved. While the larger data sets
(> 3 GB) can still be visualized with few frames per sec-
ond in average, fetching necessary time records from hard
disk results in unpleasant delays disturbing the animation.
For handling such data sets, a more elaborate memory man-
agement or a special hardware for fast memory access would
be necessary so that a smooth visualization is ensured.

7. Conclusion and Future Work

A method for efficiently generating and visualizing adaptive
stream, path and streak lines using modern graphics hard-

c© 2009 The Authors

N. Cuntz, A. Pritzkau & A. Kolb / Time-Adaptive Lines for the Interactive Visualization of Unsteady Flow Data Sets

ware has been presented. The adaptive time-stepping con-
trols the truncation error, and thus a reliable visualization is
obtained. The use of graphics hardware results in an interac-
tive visualization. Due to the generic nature of the presented
line generators, it should be possible to incorporate more
sophisticated adaptive time-stepping methods that replace
step-doubling. Similarly, streak line refinement could be im-
proved without changing the algorithmic idea. Together with
support of new graphics hardware for double precision arith-
metic, this could expand the applicability of our method to
areas where an even higher accuracy is necessary.

Acknowledgements – We would like to acknowledge the
German Climate Computing Centre Hamburg (DKRZ) for
providing the typhoon data set and useful advices.

References

[Buc05] BUCK I.: Taking the plunge into GPU computing.
In GPU Gems 2, Pharr M., (Ed.). Addison Wesley, 2005,
ch. 32, pp. 509–519.

[CKL∗07] CUNTZ N., KOLB A., LEIDL M., REZK-
SALAMA C., BÖTTINGER M.: GPU-based dynamic flow
visualization for climate research applications. In Proc.

SimVis (2007), pp. 371–384.

[CL93] CABRAL B., LEEDOM L. C.: Imaging vector
fields using line integral convolution. In ACM Proc. SIG-

GRAPH (1993), pp. 263–270.

[CP92] CARTWRIGHT J. H. E., PIRO O.: The dynamics
of runge-kutta methods. Int. J. of Bifurcation and Chaos

2, 3 (1992), 427–449.

[Har05] HARRIS M.: Mapping computational concepts to
GPUs. In GPU Gems 2. Addison Wesley, 2005, ch. 31,
pp. 493–508.

[KKKW05] KRÜGER J., KIPFER P., KONDRATIEVA P.,
WESTERMANN R.: A particle system for interactive vi-
sualization of 3d flows. IEEE Trans. on Visualization and

Computer Graphics11, 6 (2005).

[KLRS04] KOLB A., LATTA L., REZK-SALAMA C.:
Hardware-based simulation and collision detection for
large particle systems. In Proc. Graphics Hardware

(2004), ACM/Eurographics, pp. 123–131.

[KSW04] KIPFER P., SEGAL M., WESTERMANN R.:
Uberflow: A GPU-based particle engine. In Proc. Graph-
ics Hardware (2004), ACM/Eurographics, pp. 115–122.

[Lar04] LARAMEE R. S.: Interactive 3D Flow Visualiza-

tion Based on Textures and Geometric Primitives. PhD
thesis, Institute of Computer Graphics and Algorithms,
Vienna University of Technology, 2004.

[LHD∗04] LARAMEE R. S., HAUSER H., DOLEISCH H.,
VROLIJK B., POST F. H., WEISKOPF D.: The state of the
art in flow visualization: Dense and texture-based tech-
niques. Computer Graphics Forum 23 (2004), 203–222.

[LMG06] LIU Z., MOORHEAD R. J., GRONER J.: An
advanced evenly-spaced streamline placement algorithm.
IEEE Trans. on Visualization and Computer Graphics 12,
5 (2006), 965–972.

[OLG∗05] OWENS J., LUEBKE D., GOVINDARAJU N.,
HARRIS M., KRUEGER J., LEFOHN A., PURCELL T.: A
survey of general-purpose computation on graphics hard-
ware. In Proc. Eurographics (State of the Art Report)

(2005), pp. 21–51.

[PBL∗04] PARK S. W., BUDGE B., LINSEN L.,
HAMANN B., JOY K. I.: Multi-dimensional transfer
functions for interactive 3D flow visualization. In Proc.

Pacific Graphics (2004), pp. 1–8.

[PBL∗05] PARK S. W., BUDGE B., LINSEN L.,
HAMANN B., JOY K. I.: Dense geometric flow visual-
ization. In Proc. EG/IEEE VGTC Symp. on Visualization

(2005), pp. 177–185.

[PVH∗03] POST F. H., VROLIJK B., HAUSER H.,
LARAMEE R. S., DOLEISCH H.: The state of the art in
flow visualisation: Feature extraction and tracking. Com-
puter Graphics Forum 22, 4 (2003), 775–792.

[SGS05] STOLL C., GUMHOLD S., SEIDEL H.-P.: Vi-
sualization with stylized line primitives. In Proc. IEEE

Conf. on Visualization (2005), pp. 659–702.

[SMA00] SANNA A., MONTRUCCHIO B., ARINAZ R.:
Visualizing unsteady flows by adaptive streaklines. In
Proc. WSCG (2000).

[Söd02] SÖDERLIND G.: Automatic control and adap-
tive time-stepping. Numerical Algorithms 31, 1–4 (2002),
281–310.

[Stö95] STÖCKER H.: Taschenbuch mathematischer

Formeln und moderner Verfahren. Verlag Harri Deutsch,
1995, ch. 18.12 Numerische Integration von Differential-
gleichungen, pp. 635–ff.

[TGE97] TEITZEL C., GROSSO R., ERTL T.: Efficient
and reliable integration methods for particle tracing in
unsteady flows on discrete meshes. In 8th Eurograph-

ics Workshop on Visualization in Scientific Computing

(1997), Lefer W., Grave M., (Eds.), pp. 49–56.

[The98] THEISEL H.: Visualizing the curvature of un-
steady 2d flow fields. In Proc. 9. Eurographics Workshop

on Visualization in Scientific Computing (1998), pp. 47–
56.

[WTS∗07] WIEBEL A., TRICOCHE X., SCHNEIDER D.,
JAENICKE H., SCHEUERMANN G.: Generalized streak
lines: Analysis and visualization of boundary induced vor-
tices. IEEE Trans. on Visualization and Computer Graph-

ics13, 6 (2007), 1735–1742.

[ZSH96] ZÖCKLER M., STALLING D., HEGE H.-C.: In-
teractive visualization of 3d-vector fields using illumi-
nated stream lines. In Proc. IEEE Conf. on Visualization

(1996), pp. 107–ff.

c© 2009 The Authors

