
GPU-BASED FRAMEWORK FOR DISTRIBUTED INTERACTIVE
3D VISUALIZATION OF MULTIMODAL REMOTE SENSING DATA

Martin Lambers and Andreas Kolb

Institute for Vision and Graphics, University of Siegen, Germany
{lambers,kolb}@fb12.uni-siegen.de

ABSTRACT

Interactive visualization of remote sensing data allows the
user to explore the full scope of the data sets. Combining and
comparing different modalities can give additional insight.

In this paper, we present a 3D visualization framework
for interactive exploration of remote sensing data. Data from
different modalities can be combined into a single view. The
visualization can be distributed across multiple graphics pro-
cessing units and/or hosts, allowing interactive exploration of
remote sensing data in virtual reality systems.

Index Terms— Visualization, Virtual Reality

1. INTRODUCTION

Interactive visualization of remote sensing data encompasses
both interactive navigation in very large data sets and inter-
active adjustment of visualization parameters. For example,
interactive adjustment of dynamic range reduction methods
for Synthetic Aperture Radar (SAR) amplitude images can
reveal or accentuate details that might otherwise be over-
looked [1]. Furthermore, interactive combination of multiple
data sets from different sensors facilitates tasks such as com-
parison, interpretation, and quality assessment.

The programmable graphics processing units (GPUs) of
today’s commodity graphics hardware provide the computa-
tional power that is necessary to interactively process, com-
bine, and render remote sensing data [2].

In this paper, we present a framework for GPU-based in-
teractive 3D visualization of remote sensing data that allows
interactive navigation, interactive adjustment of visualization
parameters, and interactive combination of multimodal data
sets. Geometry information for terrain visualization is ex-
tracted from digital elevation models (DEMs). The terrain
is textured using an interactively defined combination of data
sets from different sensors, e.g. aerial photographs or SAR
amplitude images. The framework can be used on a wide va-
riety of systems, from desktop computers with modern graph-
ics cards and visualization workstations with stereo displays
to high resolution display walls and virtual reality systems
driven by render clusters.

2. DATA MANAGEMENT

To handle the large amount of data generated by high-
resolution remote sensing techniques, it is essential to use
hierarchical data structures.

Since remote sensing data sets are often representable as
2D rectangles that span a subset of the World Geodetic Sys-
tem 1984 (WGS84) map (e.g. aerial photographs, DEMs, or
SAR images), variants of quadtrees are commonly used for
this task [3].

2.1. Quadtree Variant

In our framework, we use a quadtree variant with the follow-
ing properties:

The single quad in the lowest level 0 of the tree spans the
whole globe in WGS84 coordinates (latitude from +90◦ to
−90◦ and longitude from−180◦ to +180◦). This ensures that
all data sets can be managed from one combined hierarchy, so
that it is not necessary to match and fit different hierarchies
during visualization. Since the number of quads in both lat-
itude and longitude direction is 2l for a level l in a quadtree,
each quad represents a rectangular area of the WGS84 map
that is two times wider than high.

The quadtree is restricted, i.e. the levels of two neigh-
boring quads differ by not more than one. A quadtree with
this property can easily be transformed into a mesh consist-
ing of isosceles right-angled triangles [3]. The quadtree levels
are contiguous at their left and right borders, to allow seam-
less visualization at the −180◦/+ 180◦ longitude transition.
Each quad carries an additional border of data around its rep-
resented area. This data is omitted in visualization, but allows
data processing techniques to work on local neighborhoods
without expensive data fetches from neighboring quads.

This quadtree variant is a generalization of the tiling pyra-
mid used in [2].

This choice of data hierarchy results in non-optimal be-
haviour at the north and south pole, because one side of the
quads at the poles will be reduced to a point when projecting
WGS84 to cartesian coordinates. However, this drawback is
outweighed by the benefits provided by working on rectangu-
lar areas in WGS84 coordinates.



Level 0

Level 1

Level 2

Level 3

Fig. 1. Quadtree for a data set. The original data set is marked
green. Quads that contain relevant data are marked blue.

Each quad in a quadtree has the same fixed size in pixels
(or, more general, data samples) for its represented area and
the border. Since each level halves the represented area in
latitude and longitude direction, this means that each higher
level doubles the data resolution.

With a fixed size of 512× 256 pixels, quads in level 16
provide a ground coverage of around 1 m2 per pixel, and
quads in level 26 provide around 1 mm2 per pixel (at the equa-
tor).

The resolution of a given data set will lie between two
quadtree levels, as shown in Fig. 1. To build the quadtree, the
original data set is first resampled to the next higher quadtree
level, using a magnification factor between 1 and 2. The re-
quired quads of a lower level in the quadtree can be computed
by combining quads from the next higher level. Areas of a
quad which are not covered by the given data set are marked
with a special value.

Some processing methods might need more information
about a data set than what is provided by the currently pro-
cessed quad. Therefore, the quadtree may be extended with
global data set properties, e.g. the average amplitude for a
SAR image, and per-quad properties, e.g. the minimum and
maximum altitude for a DEM data set.

2.2. Data Storage and Cache Hierarchy

A data set quadtree is stored on disk in a directory hierar-
chy. The top level directory contains a file that provides in-
formation about that data set (type, area, global properties of
the data, etc.) and, if applicable, a file that contains per-quad
properties of the data set.

The quad data is then stored in subdirectories with names
of the form l/x/y, where l is the quadtree level and x and y are
the coordinates of the quad within this level. The data itself is
stored in a file format that allows good lossless compression

Fig. 2. Triangulation of the quadtree variant used in our
framework.

of the specific type of data.
This directory hierarchy allows easy access to a data set

both from local storage and using common network protocols
such as HTTP or FTP.

To allow interactive visualization of multiple large data
sets, a caching hierarchy must be used. The first level of this
cache hierarchy is the local disk, where data set quads are
stored in the same directory structure as the original data set,
but uncompressed. This cache level is not limited in size.
The second cache level is a main memory cache with a fixed
maximum size. Quads are replaced on a least recently used
(LRU) basis. The third cache level is a GPU memory cache.
It is similar to the main memory cache in that it has a fixed
maximum size and replaces quads on an LRU basis, but it is
typically both smaller and faster.

The transfer of a quad from the original data set to the first
cache level and then to each higher cache level up to GPU
memory has to be done asynchronously in separate threads,
in order to provide fully interactive visualization at all times.
The cost of this is that the visualization system must use ap-
proximations of quads that are not yet available in GPU mem-
ory, based on the nearest available match from lower quadtree
levels, until all required data is in GPU memory. This typi-
cally only takes fractions of a second for data sets on local
storage, but can take longer when transferring data over net-
work links.

3. RENDERING

Only a relatively small number of quads needs to be displayed
at one time. If a large part of the globe is visible, lower level
quads with a low resolution will be displayed. If a small area
is visible in detail, higher level quads with a high resolution
will be displayed.

3.1. Rendering Quadtree

The subset of quads of the global hierarchy that needs to be
rendered is represented by a rendering quadtree. The render-



ing quadtree is constructed from scratch for each new frame.
This construction starts from quadtree level 0 which contains
a single quad that represents the whole globe. For each quad,
a bounding volume that is projected to screen space is used
to determine whether the quad would occupy a larger area
on screen than it provides data for, i.e. whether the on-screen
area contains more pixels than the quad. If that is the case,
the quad is split into four quads on the next higher quadtree
level. This splitting process is done in a way keeps ensures
that the levels of neighboring quads do not differ by more
than one. The leaves (childless quads) of the resulting render-
ing quadtree are the quads that need to be rendered.

To avoid overestimating the screen space area occupied by
a quad, it is important to know the minimum and maximum
altitude value for each quad. These can be stored with the
relevant altitude data sets as described above.

3.2. Data Processing

From the visualization point of view, there are two types of
data sets: those that influence geometry, i.e. data sets that pro-
vide altitude information, and those that provide texturing in-
formation, i.e. aerial photographs, SAR images, multispectral
images, or data from any other imaging technique.

For each leaf of the rendering quadtree, the subset of data
sets that provide data for the represented area of that leaf is
determined. The data from each data set is then transformed
using a GPU-based processing chain that is fast enough to be
used interactively. Interactive adjustment of processing pa-
rameters is especially useful for data sets that cannot be trans-
formed to a single RGB image without loss of information.
For SAR images, such a processing chain is described in [2].
Similar processing chains can be built for other modalities.

The result of this data processing step is a collection of
quads with altitude information and a collection of quads with
texture information, depending on the available data sets.

This information is then combined on the GPU into a sin-
gle quad with altitude information and a single quad with tex-
ture information per leaf. This combination can be a simple
weighted blending of data sets, but more sophisticated meth-
ods can also be implemented.

3.3. Creating a Mesh

When all required data is available for all leaves of the ren-
dering quadtree, a single triangle mesh is computed from the
leaves. This mesh is free of cracks and T-junctions, and all
triangles are isosceles and right-angled in quad space. These
properties are important to avoid degenerated triangles in ter-
rain rendering.

There are many methods to produce such meshes from
restricted quadtrees; two are summarized in [3]. In our ap-
proach, each leaf should produce a mesh with two times more
triangles in longitude than in latitude direction, to account for

Fig. 3. The area around Rome, Italy, viewed in an overlay
of a TerraSAR-X image and the NASA Blue Marble Next
Generation data set for June 2004.

the rectangular area covered by our quads. Therefore, we use
the following method (see Fig. 2): Every leaf is divided into
2n× n subquads. Every subquad is divided into four isosce-
les right-angled triangles. The border triangles are further di-
vided into two triangles if the neighboring leaf has a higher
level than the current leaf.

Since the core mesh is of the same form for each leaf and
there are only 16 possibilities of border triangle setups (each
of the four sides of the quad may or may not require subdi-
vision), the necessary data can be precomputed and stored in
graphics memory. For each leaf, the appropriate mesh can
then be chosen and transformed to world coordinates.

All leaves are numbered sequentially, and the leaf number
is stored as an attribute for each triangle. Using this infor-
mation, following steps can work with properties of the leaf,
such as quadtree level, coordinate, and neighboring leaves and
their properties.

When working with cartesian coordinates on a global
scale, the single precision floating point data type is prob-
lematic since it does not provide enough precision for sub-
centimeter or sub-millimeter accuracy of the terrain, resulting
in spatial jitter and other artifacts. This problem can be solved
by rendering the scene relative to the viewer, i.e. with viewer
coordinates (0,0,0). This makes sure that inaccuracy and loss
of precision occur where it does not matter: far away from
the viewer, where they do not result in a visible screen space
error [4]. In our framework, we need to compute cartesian
coordinates on the GPU and then subtract the viewer coordi-
nates. These two steps must be performed using the double
precision floating point data type available on current GPUs.
The result can then again be stored using a single precision
data type.

3.4. Texturing

Each triangle of the mesh stores its leaf number and its orig-
inal quad space coordinates. This allows to access the quad



Fig. 4. The framework running in the Virtual Reality Lab at
University of Siegen, Germany. The displayed data set is the
NASA Blue Marble Next Generation data set for June 2004.

that provides the relevant texture information from the data
processing step and to set the right texture coordinates. To
allow seamless texturing of the leaves and avoid interpolation
artifacts at leaf borders, it is necessary that the combined tex-
ture quad contains an additional border of at least one pixel.

3.5. Distributed Rendering

To allow distributed rendering, the visualization framework
encapsulates the render state, which mainly consists of the
viewer position and orientation and the list of active data sets
and their processing parameters. The main application pro-
cess manages the master render state and may distribute it
over a network.

In a common desktop environment, there is only one ren-
der state, and only a single view of the scene is rendered. For
high resolution display walls or virtual reality systems, mul-
tiple synchronized render states can exist for multiple GPUs
(e.g. on visualization workstations) and/or on multiple hosts
(e.g. the nodes of a render cluster), allowing different views
of the scene to be rendered.

The construction of the rendering quadtree based on
screen space metrics, and thus the decision which quads are
processed and displayed, depends only on the render state
and the current view frustum. Each process or thread with
a render state can decide which parts of the data are needed
to render its view of the scene, and only these parts need to
be fetched and processed. The disk cache can either reside
on a local storage system, or on a shared cluster file system,
to reduce the number of data fetches from the (potentially
remote and slow) data set server.

4. RESULTS

Our visualization framework implements the techniques de-
scribed in the previous sections and is based on OpenGL.
Since double precision is not yet available in traditional

OpenGL shaders, we implemented the relevant steps in
CUDA. The Equalizer Parallel Rendering Framework [5]
is used for distributed rendering.

Fig. 3 shows a view that combines a high resolution SAR
image and a lower resolution aerial image, demonstrating the
ability to display data sets of different modality at the same
time.

Fig. 4 shows our framework running in the virtual reality
lab of the University of Siegen. There are six display areas:
four on the curved screen, and two on the floor. Each of the
stereo display areas is driven by one render node with two
graphics cards, one for the left eye view and one for the right
eye view. The six render nodes share a single disk cache di-
rectory on a shared file system.

5. CONCLUSION

We have presented a GPU-based framework for interactive vi-
sualization of remote sensing data. In contrast to existing sys-
tems, the presented framework allows interactive adjustment
of visualization parameters for different modalities, and inter-
active combination of different data sets into a single view.
Additionally, the framework can be used in distributed visu-
alization systems with multiple GPUs and/or render nodes,
such as display walls or virtual reality installations.

Acknowledgements
This project is partially funded by grant KO-2960-3/1 from
the German Research Foundation (DFG). The NASA Blue
Marble Next Generation data sets were produced by NASA
Earth Observatory (NASA Goddard Space Flight Center).
TerraSAR-X data sets c© Infoterra GmbH.

6. REFERENCES

[1] M. Lambers, H. Nies, and A. Kolb, “Interactive Dynamic
Range Reduction for SAR Images,” Geoscience and Re-
mote Sensing Letters, vol. 5, no. 3, pp. 507–511, 2008.

[2] M. Lambers, A. Kolb, H. Nies, and M. Kalkuhl, “GPU-
based framework for interactive visualization of SAR
data,” in Proc. Int. IEEE Geoscience and Remote Sensing
Symposium (IGARSS), July 2007, pp. 4076–4079.

[3] R. Pajarola and E. Gobbetti, “Survey of semi-regular
multiresolution models for interactive terrain rendering,”
Vis. Comput., vol. 23, no. 8, pp. 583–605, 2007.

[4] C. Thorne, “Using a floating origin to improve fidelity
and performance of large, distributed virtual worlds,” in
Proc. Int. Conf. on Cyberworlds, Nov. 2005, pp. 263–270.

[5] S. Eilemann, “The Equalizer parallel rendering frame-
work,” http://www.equalizergraphics.com/.


