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ABSTRACT

Large natural environments are often essential for todays computer games. Interaction with the environment is widely imple-
mented in order to satisfy the player’s expectations of a living scenery and to help increasing the immersion of the player.
Within this context our work describes an efficient way to simulate a responsive grass layer with todays graphics cards in
real-time. Clumps of grass are approximated by two billboard representations. GPU-based distance maps of scene objects are
employed to test for penetrations and for resolving them. Adaptive refinement is necessary to preserve the shape of deformed
billboards. A recovering process is applied after the deformation which restores the original that is to say the undeformed and
efficient shape. The primitives of each billboard are assembled duringthe rendering process. Their vertices are dynamically lit
within an ambient occlusion based irradiance volume. Alpha-to-Coverage completes the illusion as it is used to simulate the
semitransparent nature of grass.
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1 INTRODUCTION

State-of-the-art 3D games and realtime simulations
demonstrate the power of currently available graphics
hardware for rendering exciting natural sceneries in
real-time. As nature scenes often include a lot of plants
(blades of grass, shrubs, trees etc.) the rendering of a
large number of them is still challenging. Furthermore,
they cannot be displayed with complex geometry
in real time. Many of the approaches make use of
billboard representations to preserve the real-time
constraint while leaving out user interaction.

In general, static level design is more and more re-
placed by dynamic environments that can be modified
in real-time throughout the gaming process. Due to the
fact that natural phenomena are better approximated in
the game, the player feels a higher immersion while
playing [McM03]. Consequently, the dynamic environ-
ment is becoming a part of the game logic: Trees are
chopped to clear the path and objects need to be moved
in order to fulfill quests. The more the realism of the
scene is enhanced the more of the player’s expectations
are satisfied.

Following this trend, our paper takes dynamic en-
vironments one step further by integrating responsive
real-time simulation of ground vegetation. We propose
a highly efficient technique for GPU-based simulation
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of responsive grass billboards. Our implementation tar-
gets Shader Model 4 graphics boards, including geom-
etry shaders and stream output. The collision detection
with dynamic scene objects, the response and the re-
covering are directly simulated on the GPU. An adap-
tive geometrical representation of the grass guarantes
a pleasing visual rendering in conjunction with a high
performance. Thus, the responsive grass approach has
the potential to significantly improve the challenges in
game play of modern games and may lead to a better
perception of interactive environments.

The structure of this paper is as follows: in Section 2,
an overview of the related work on grass simulation is
given, followed by a overview of the responsive grass
system in Section 3. Section 4 proposes the procedu-
ral generation process of the grass layer. In Section 5,
the realization of the collision system is described. The
rendering of the grass layer is presented in Section 6
and the results and performance of our technique is dis-
cussed in Section 7. Finally, Section 8 concludes the
presented responsive grass approach.

2 RELATED WORK
In recent years, most research applied to natural
sceneries focuses on the rendering and animation of
a great number of plants. For volumetric represen-
tations, as proposed in [BCF+05, BPB06], collision
detection and reaction is awkward to handle. Guerraz
et al. [GPR+03], however, presented an approach
which allows an object to tramp on the grass layer.
A primitive is moved along the character’s trajectory
while affecting the procedural animation process of the
grass. Nevertheless there still is no possibility to react
to collision, based upon the object’s geometry. The
reuse of grass tiles amplifies the problem of collision
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Figure 1: The system for responsive grass.

response. Billboards which represent a number of grass
blades as a semi-transparent 2D texture are more suit-
able in that case. The billboard representations stored
in a single vertex buffer [Wha05] are efficiently ani-
mated [Pel04, Bot06, Sou07] and rendered [BCF+05]
on the GPU.

As the collision detection for grass is less explored,
related algorithms on a wider range are examined. In
case large dynamic geometry is stored and processed
completely on the graphics memory, image-based
techniques [VSC01, KP03, HTG04, KLRS04, GLM05,
Sat06] are proven to solve the collision tests very
fast. Kolb et al. [KLRS04] offered an approach to
collision detection using distance maps which are
fully generated and accessed on the GPU. A lookup
into each distance map is used to decide whether a
vertex lies inside or outside of a object. Using the
normal information the vertex can be translated in the
direction of the shortest way out of the object. Their
approach fits best in case all computations, including
the collision reaction, are done on the GPU.

Cloth models [Pro95, FGL03, Zel07] are applied in
order to overcome the problems in the context of the
collision reaction. Fuhrmann et al. [FGL03] replace
the cloth forces [Pro95] by several length constraints
along the connection of two particles in order to avoid
problems which are caused by large time steps. Zell-
ner [Zel07] entirely offloads the model to the GPU and
handles the recursion via the stream output stage.

Regarding high quality rendering of massive ma-
terial scenery a precomputed irradiance volume is
employed [Oat06, CL07]. The volume stores the
irradiance information of the whole static scene.
Interpolation within the volume allows us to dynam-
ically lit the grass billboards at runtime similar to
the two-sided lighting proposed by Kharlamov et
al. [KCS07]. The Alpha-To-Coverage feature of todays
graphic cards [Mye06] avoids expensive depth-sorting
of the semi-transparent billboards while maintaining a
consistent visual appearance similar to David Whatleys
procedure [Wha05].

3 SYSTEM OVERVIEW

The pipeline for responsive grass comprises the follow-
ing components as shown in Figure 1:

• Procedural Generation:
For a given terrain mesh, a geometry shader auto-
matically generates billboards for grass blades. This
geometry shader is executed once for each tile of ter-
rain, and the results are stored in local video mem-
ory using the stream-out capabilities. We describe
the process in detail in Section 4.

• Dynamic Response:
A CPU-based broad phase working on the spatial or-
ganized grass tiles and a GPU-based narrow phase
working on the generated grass billboards consti-
tute the responsive component. During this stage the
grass layer will be adapted whenever external forces
like colliding scene objects make it necessary. This
process which is implemented within the collision
system is outlined in Section 5.

• Rendering:
Deformed or undeformed billboards are rendered
based on the output of the collision system. Pre-
computed occlusion volumes respectively irradiance
volumes may be employed to integrate ground veg-
etation into a dynamic global lighting environment.
We adapt such techniques for realistic rendering
of dynamic ground vegetation as described in Sec-
tion 6.

Figure 2: The top row shows the texture images for the
extent, direction and messiness and underneath the re-
sulting plant cover is displayed.
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Figure 3: Flow diagram for collision detection, reaction and recovering.

4 PROCEDURAL GENERATION OF
THE BILLBOARDS

A clump of grass is represented by a semi-transparent
textured quad. The individual billboards are created in
a pre-processing step performed by the GPU. A set of
texture images provides the information of the global
layout of the grass layer as shown in Figure 2. These
textures are in detail:

• a grayscale texture map which defines the regions of
the plant cover (extent),

• a RGB texture which defines the direction to which
the grass blades grow (for simplicity the direction is
chosen to be the same for all grass blades),

• a grayscalemessiness texture which defines the
amount of randomness for the blades.

The geometry shader creates a randomized set of
billboards representing the grass blades. Each billboard
stores an orientation, a position, a collision state,
and a texture index, addressing a 2D texture array,
which stores different semi-transparent images of
grass clumps. Each billboard is passed through the
pipeline as a point primitive, which allows the different
geometry shaders to handle its information en bloc
during the collision handling and rendering. When the
billboards are generated, they are streamed to one large
vertex buffer [Wha05] to minimize subsequent render

calls. For a coarse collision detection on the CPU,
the terrain mesh is used to divide the set of billboards
into an octree hierarchy. Each leaf node of the octree
stores a range of indices into the vertex buffer of the
billboards and state information described throughout
the next section.

5 COLLISION SYSTEM
The pipeline of the collision system is outlined in Fig-
ure 3. Without collision, the billboard quads can di-
rectly be rendered. The upper two vertices of each bill-
board quad are transformed with a procedural wind ani-
mation based on a weighted sum of trigonometric func-
tions with different frequencies [Pel04, Wha05, Bot06,
Sou07]. The collision system is split into a CPU-based
coarse handling and two GPU-based procedures, one
for executing the collision test and response and one
for performing the recovering. The different steps of
the GPU-based collision handling are outlined in Fig-
ure 4.

5.1 Coarse Handling on the CPU
At each frame, the bounding volumes of all dynamic
collision meshes are tested for collision with the axis
aligned bounding boxes (AABB) of the octree contain-
ing the grass blades. According to the current state in-
formation and the results of the collision test, each node
is marked as eitherpossibly colliding, non-colliding or
recovering. The geometry assigned to each octree node



Figure 4: Collision detection, reaction and recovering fora single billboard.

marked aspossibly colliding is streamed through a col-
lision pass on the GPU. A tile marked asrecovering will
stay active for a fixed amount of time after the collision
when the object has left the AABB of the octree node.
During that time a separate geometry shader recovers
the original shape of the grass blades.

5.2 Collision Detection
In the collision pass, a geometry shader receives all the
vertex information of a potentially colliding billboard
at once. The geometry shader computes the bound-
ing sphere of the animated billboard and performs a
collision test against the bounding spheres of the dy-
namic objects. These bounding spheres are managed
in a dynamic texture resource, which is updated every
frame. If the collision test is passed on the bounding
sphere level, a second and more exact collision test is
performed on a subdivided mesh of the billboard. The
geometry shader determines for each vertex whether it
lies inside or outside the dynamic collision object by
performing lookups into the depth cube map [KLRS04]
of the object. Dynamic objects capable of colliding
with the plant cover are represented by depth cube maps
for efficiency. These cube maps are computed by pro-
jecting the object’s mesh onto the faces of a bounding
cube and store the distance to the cube plane and the re-
spective object normal in the four texture components.
They are updated for each frame to account for ani-
mated objects. Thus, to perform the test each vertex
v = (vx,vy,vz,1)T is transformed to each of the six pro-
jection spaces:

v i = Ti
OC→DM v , i = 1, ..,6 , (1)

wherev i = (v i
x ,v

i
y ,v

i
z ,1)T is the transformed vertex

of the billboard.Ti
OC→DM is a transformation from the

object coordinate space to thei-th projection space from
where the current distance map was computed. Along
the projection direction the vertex lies within the object
if

di(v) = dmi(v i
x ,v

i
y)− v i

z < 0 , (2)

wheredmi(x,y) is the distance looked up within the dis-
tance mapdmi at pixel position(x,y). If the distances
for all the six facesi of the cube do not yield a dis-
tance valuedi(v) less than zero a collision with the bill-
board has been detected. Identifying the distanced(v)
between the closest surface point in the corresponding
depth cube face for a given pointv, the following for-
mula is used (for details see [KLRS04]):

d(v) =

{

max{di(v)} if di(v) < 0∀i

min{di(v) : di(v) > 0} else
(3)

5.3 Collision Response
If a collision has been detected, the vertex is moved out
of the object’s shape. Its position is translated along a
normal vectorn obtained from the depth cube map:

v← v+ s n , (4)

wheren is taken from the depth cube map facedmi pro-
viding the smallest distance.s is the reaction strength
that is to say the surface normaln multiplied with the
smallest distances to the surfaced(v):

s = d(v)
n
‖n‖

. (5)

In order to remember the collision, the data-structure of
the billboard is expanded by an additional value storing
its recover time. In case of a collision the recover time
is reset.

5.4 Shape Preservation
As the separate processing of individual vertices may
lead to visually unpleasant distortions, a cloth model
based on spring constraints [Pro95, FGL03, Zel07], is
applied to preserve the overall shape of the grass clump.
A network of structural and shear springs takes care of
the billboard mesh. Whenever such a spring is com-
pressed or stretched, which means the connected ver-
tices diverge or converge, the resulting spring force
translates the connected vertices.



Figure 5: The interpolation between the vertices of the current mesh (deformed mesh) and the vertices solely
affected by the wind animation results in a smooth recovering over time.

Referring to Provot et al. [Pro95], a spring forcef ∈
R3 between two billboard verticesv1 andv2 is defined
as:

f = k(‖l‖− l0)
l
‖l‖

, (6)

wherel = v1−v2 is the direction of the connection be-
tween both vertices.l0 is the initial length of the spring
andk ∈ [0,1] is the stiffness of the spring. A stiffness of
1 results in a conservative spring in contrast to a value
of 0 which has no effect. Each spring force directly af-
fects the two connected vertices [FGL03, Zel07]:

v1← v1− r1 ∆t f
v2← v2 + r2 ∆t f ,

(7)

wherer1 is the responsiveness for vertexv1 andr2 is the
responsiveness for vertexv2 with r1+r2 = 1. We added
the responsiveness in order to distinguish between fixed
ground vertices and movable vertices. As a fixed vertex
should not be moved, the responsiveness is set to zero
whereas the other vertex then is completely responsive.
If both vertices are not fixed they are equal responsive
and thusr1 = r2 = 0.5.

As the relaxation of one spring affects the neighbour-
ing springs as well, in general more iterations over all
springs have to be applied to get a good result. In our
case two iterations yield visually pleasant results due to
the small number of vertices.

5.5 Recovering
The recovering is processed on each billboard that has
some recover time left. Since the animation is a state-
less process, solely based upon the position of the fixed
ground vertices and the current time [Sou07], it is pos-
sible to compute the original shape defined by the wind
without considering the current collision state. The lin-
ear interpolation between the deformed vertex and its
original position, with respect to the recover time left,
results in the current shape of the grass clump as shown
in Figure 5:

v← (1− t3)w + t3v , (8)

wheret ∈ [0,1] is the recover time left,w is the ver-
tex position obtained by the wind function andv is the
current respectively last recovered vertex position.

Collision tests are required in case that there are still
collision objects inside the AABB of the respective oc-
tree node. At every time without any collision, the re-
cover time will be decreased. After the recover time has
elapsed, the billboards will be handled again as simple
quads. However, the recovering does not preserve the
length of the billboards.

6 RENDERING
On the CPU level, grass tiles which previously have
been streamed and others that have not been affected
by neither collisions nor wind exist. The tiles run
through separate render passes: Collided billboards are
rendered using their current refined mesh whereas the
unaffected ones are animated and rendered using their
simple quad-representation. Furthermore, to overcome
problems caused by too much render calls, only batches
of visible tiles, which have not been culled by view or
occlusion queries, are rendered.

6.1 Global Illumination

si

si+1 v

Figure 6: The irradiance for each vertexv of the bill-
board is interpolated within the two closest texture
slicessi andsi+1.

Dynamic global illumination is achieved by
pre-computing a volume, with each voxel storing
ambient occlusion information for its location in
the scene [CL07]. The whole volume is then stored



Figure 7: The result of the collision handling in a dense fieldof grass.

as an 2D texture array to allow linear interpolation
based on mip-mapping. In addition, a second volume
which covers the same space provides pre-computed
irradiance information for each point. The irradiance
is determined by sampling an environment map by
using the previously computed ambient occlusion
information [PG04].

The texture coordinate for the volume texture can
easily be obtained from the billboard’s vertex positions
in the geometry shader. Ambient occlusion and irradi-
ance information is trilinear interpolated between adja-
cent texture slices, and the incident light is evaluated
per vertex during the geometry shader process as il-
lustrated in Figure 6. Finally, the pixel shader uses
the texture index into the semi-transparent texture ar-
ray to receive the decal color and transparency of the
grass clump. Multiplying this decal value with the inci-
dent two-sided light [KCS07] results in the final semi-
transparent pixel color.

6.2 Alpha-To-Coverage

Since grass has a semi-transparent nature a feature of
modern cards, so-called Alpha-to-Coverage, is used to
blend the billboards without the necessity to perform
expensive depth-sorting. The alpha value is used to de-
termine the number of subpixels, that will be filled with
the current pixel color. Then, blending between the
subpixels is performed while resolving the multisample
resolution to the final image resolution [Mye06].

7 RESULTS AND PERFORMANCE

Achieving a high performance is one of the major aims
to real-time applications. All components concerning
the grass layer are designed to reduce the workload of
the CPU as much as possible. Thus, the simulation is
almost completely shifted to the GPU. All the tests are
performed on an AMD Athlon 64 3500+ 2.2 GHz pro-
cessor including a GeForce 8800 GTX graphics card
with 768 MB DDR3 memory. Figure 7 shows the re-
sponse of the grass after the scene object has moved
through the meadow. The scene, presented in Fig-
ure 2, is running at 40-80 frames per second by using

DirectX 10 and fourfold multi sampling anti aliasing
(4xMSAA). The grass layer contains 60000 grass bill-
boards requiring 12 MByte of graphics memory. All
invisible grass tiles are culled. The grass is pushed to
the side or is stamped down on the line of movement.
The object has left a clearly noticeable imprint on the
grass. We analyzed the performance of the scene with
the aid of the NVidia PerfHUD tool. In Figure 8 the
number of colliding grass tiles (red boxes) respectively
recovering grass tiles (green boxes) increases from top
down. The lower left overlay displayed in each im-
age shows the workload balancing of the programmable
render pipeline stages: The unified streaming proces-
sors are utilized to work on pixels with about 50 to
60 percent (the blue bar) whereas the geometry shader
unit of the pipeline is active by approximately ten per-
cent (the green bar). The remaining workload is caused
by frame buffer operations. Approximately 16 million
pixels are processed within the fragment shader result-
ing in many read as well as write accesses to the frame
buffer. Those are amplified by the Alpha-to-Coverage
feature which in that case requires a multisample res-
olution that is four times higher than the image resolu-
tion. The diagrams located at the right hand side of each
image in Figure 8 present the amount of time which is
consumed within each GPU pass: Please note that the
time spent within the recover process (R) and the colli-
sion pass (C) varies only by small amounts. In contrast,
the more grass billboards are deformed the more time is
spent rendering the collided and recovering grass tiles
(RA). This performance loss is caused by the primitive
generation as well as the rendering of the high number
of primitives. Referring to the utilization graph and the
time measurements the performance of the system de-
pends on the number of assembled primitives which are
passed through the rasterizer back-end. Thus, both the
memory operations as well as the workload shifted to
the fragment shader stage, are influenced by the num-
ber of colliding grass billboards. Consequently, it is
necessary to set up a low recover time and to provide
a low multi-sampling rate for the Alpha-to-Coverage
process to preserve the overall performance. In con-
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trast, the time spent within the collision handling de-
pends mainly on the number of scene objects moving
through the grass layer.

8 CONCLUSION AND FUTURE
WORK

In the past thousands of billboards were successfully
used to create an illusion of dense grass vegetation. In

combination with wind animation nice visual results
were achieved. But the visual perception was often
compromised by lack of interactivity: Objects are mov-
ing through the grass without leaving a trace. Due to
prior hardware constraints a visually pleasing collision
reaction for a large area of grass was unachievable. The
visual quality of dense vegetation and the good perfor-
mance give a proof of the great suitability of our imple-



mentation strategies for large responsive grass layers in
todays real-time applications.

The results are demonstrating that collision response
works fine for regions where the flat structure of the
grass billboards is hardly recognized. However, in ar-
eas where grass is planted sparsely, for example at the
borders of the grass layer, due to the coarse mesh of
the billboards the visual impression could be improved.
Two different approaches might be promising when try-
ing to solve this problem: On the one hand the collision
handling for each billboard could be distributed over
several streaming passes which allows the spring con-
straints to work on a higher subdivided mesh. On the
other hand the displayed primitives could be assembled
by a higher order interpolation during rendering.
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