
Integrating GPGPU Functionality into Scene Graphs

Jens Orthmann, Maik Keller, Andreas Kolb

Computer Graphics Group, Institute for Vision and Graphics, Universityof Siegen
Email: {Jens.Orthmann,Maik.Keller,Andreas.Kolb}@uni-siegen.de

Abstract

The concept of scene graphs is widely used in com-
puter graphics to structure graphics-related entities,
e.g. geometry, visual attributes as well as abstract
data related to certain application requirements like
object identifiers or manufacturing details.
This paper presents a new method to incorpo-
rateGeneral Purpose Graphics Programming Unit
(GPGPU)-functionality into scene graph APIs. We
define specific scene graph nodes in order to realize
a flexible integration of GPU functionality at vari-
ous levels of granularity without violating the pro-
gramming paradigm inherent to scene graphs. We
focus on current and upcomingcompute APIslike
CUDA, which are designed for GPGPU purposes.
We further present theosgCompute framework
that implements our concept and is based on the
OpenSceneGraph API. CUDA is integrated into
osgCompute via osgCuda. Our method is flex-
ible in the sense that other compute APIs could be
used instead. The advantages of our concept and
of osgCuda are demonstrated by presenting exam-
ples with different processing requirements.

1 Introduction

Scene graphs have constituted the platform for
many applications in the last two decades. Their
ability to employ standard graphics functionality as
well as their power to encapsulate complex graph-
ics operations is the reason why scene graphs be-
came an industry standard. Over the years, different
improvements like multi-threading have been inte-
grated into scene graph-APIs, making architectures
more and more complex. Still, scene graphs provide
a good abstraction for developers who are no ex-
perts with regard to all technological details. Many
hybrid applications like computer games or simu-
lations have incorporated scene graphs in order to
split up problems to smaller hierarchical structures.

Apart from scene graphs, General-Purpose Paral-
lel Computing on GPUs has attracted great atten-
tion in recent years. The rapid increase of GPUs
performance and the parallel architecture designed
for streaming computations have convinced many
developers to port their algorithms for graphics
hardware even though the standard GPU program-
ming paradigm is rather non-intuitive and closely
constrained by the underlying graphics pipeline.
Currently, so-calledcompute APIslike NVIDIA’s
Compute Unified Device Architecture (CUDA) [10]
have been developed, making the implementation of
data parallel algorithms on GPUs much more com-
fortable.

Both aspects give rise to design a new type of in-
terface for hybrid applications which combines the
power of the hierarchical structure of scene graphs
with the flexibility offered by new compute APIs
like CUDA, OpenCL or DirectX Compute. Incor-
porating compute APIs into scene graph-APIs has a
high potential to leverage GPGPU functionality to
new areas, e.g. to industrial applications. A generic
integration concept should simplify the program-
ming of parallel algorithms for hierarchically orga-
nized data structures. Furthermore, it should follow
the intended extension mechanisms of current scene
graph APIs and preserve the scene graph’s model
of abstraction and usability. Our generic concept
makes the following contributions:

• We introduce a generic framework concept to
integrate data parallel algorithms into current
scene graphs. The framework concept mini-
mizes restrictions on both the computation and
the rendering API. The approach is integrated
seamlessly into the scene graph programming
paradigms and allows various levels of granu-
larity regarding the utilization of the GPU.

• We compare our implementation concept to
other, already existing, approaches and derive
application patterns for our framework con-
cept.

VMV 2009 M. Magnor, B. Rosenhahn, H. Theisel (Editors)

• We present an implementation of our
concept by combining the multi-threaded
OpenSceneGraph-API with NVidia’s CUDA-
API. Due to the flexible implementation
future compute APIs like OpenCL could
easily replace CUDA.

• To show the feasibility of the design we
have implemented three example applications
which capture some of the most common use
cases including a simple ray tracer, a particle
simulation and an image processing algorithm.

The structure of this paper is as follows: In Sec. 2,
an overview of related concepts and work is pre-
sented, while Sec. 3 proposes our sub-traversal ap-
proach as the basic concept on an abstract level. In
Sec. 4, we describe the implementation of our con-
cept combining OpenSceneGraph and CUDA. Re-
sults and sample applications based on our frame-
work are presented in Sec. 5. Finally, in Sec. 6 we
conclude with future work.

2 Related Work

This section states the essential concepts of scene
graphs (Sec. 2.1) and discusses the existing integra-
tions of compute APIs into scene graphs based on
callbacks [8] or scene graph engines [6] (Sec. 2.2
and 2.3). However, both concepts violate the scene
graph paradigms to a considerable extent.

2.1 Scene Graphs and Compute APIs

The scene graph concept was first introduced
by Strauss et al. [14]. Widely used scene
graph APIs are Performer [13], OpenInventor [16],
OpenSG [12], NVSG [11], and OpenScene-
Graph [3]. Scene graphs generally organize render-
ing objects in a hierarchical way, usually in a di-
rected acyclic graph (DAG), by using a composition
of nodes. Scene graphs are evaluated by a traver-
sal sequence. During these traversals each node is
visited and either an action is performed on the ob-
jects or each object is inspected. Doellner et al. [4]
propose a generic rendering system which decou-
ples the scene graphs structure from the underlying
rendering API. As in most scene graph APIs, they
use a pre-order traversal method, which they denote
asevaluation traversal. We follow this concept in

our design by employing additional design patterns
from Gamma et al.[5].

It has to be noted that multi-threading concepts
strongly differ, making an abstraction of multi-
threaded scene graph APIs de facto impossible.

CUDA [10] and OpenCL [7] are the most preva-
lent compute APIs; new APIs like Microsoft’s Di-
rectX compute [1] will be launched in near fu-
ture. NVSG [11] is a new scene graph API from
NVIDIA, which is a closed source project. NVSG
is built on top of shader-based graphics APIs. Cur-
rent developments are also touching upon the usage
of compute APIs like CUDA [11] in order to im-
prove ray tracing techniques. However, the switch
to NVSG requires the complete replacement of the
scene graph API for existing applications.

2.2 Callback Approach

One way to integrate a compute API, as presented
by Mercury Systems [8] in the context of their Vol-
umeViz project, is to encapsulate data parallel algo-
rithms within callbacks which are attached to a spe-
cialized type of leaf node. Callbacks are designed
to redirect the execution to some user-defined func-
tion during traversal of the graph. They are usu-
ally self-contained structures which should gain ac-
cess only to their attached nodes. In their simplest
form they interact with one dedicated node of the
scene graph only and they are completely invisible
to the other parts of the graph. In the graph struc-
ture presented in Fig. 1 (A) two CUDA-based com-
putation functions generate two procedural texture
resources. The resulting scene is shown in Fig. 8.
Even this simple graph structure introduces fixed
references between the callback functions and their
resources. The computation resources located in the
graph must be directly addressed by the applica-
tion. This requires additional application dependent
logics in order to resolve dependencies. Compu-
tations cannot be arranged hierachically or cannot
share data easily without intransparent software in-
directions which connect parts of a scene in order to
exchange resources.

Fixed
Reference

Callback &
Comp. Funct.

Input
Resource

Output
Resource

Pipeline
Engine

Mapping
Node

Legend

(A)

(B)

Figure 1: The graph structure introduced by the callback approach (A)and the engine approach (B) repre-
senting the scene shown in Fig. 8. Both approaches require four fixed references to resolve their resource
dependencies.

2.3 Engine Approach

Another option for the integration of CUDA has
been introduced by Giden et al. [6]. They have im-
plemented computations as OpenInventor engines.
Engines are designed to constrain one part of the
scene to another and provide inputs and outputs of a
fixed type [16]. Internally, the so-called pipeline en-
gines are set up by one or more modules which can
be arranged in a complex recursive pipeline struc-
ture. Each of these nodes implements a single and
isolated data parallel algorithm.
Giden et.al. [6] introduced additional node classes
to map data between the rendering and the compu-
tation context, which can be connected to the en-
gine. In their case, the interface comprises the en-
gine and the mapping nodes. In addition, they have
to introduce a new kind of context which executes
the computations as they do not apply any traversal
mechanism which usually defines a context. Dif-
ferent engines can share the same computation con-
text. The parts of the scene graph affected by the
engine cannot be identified by observing the graphs
structure only. Even worse, the engine nodes can be
connected to arbitrary parts of the scene graph and
thus do not reflect any hierachies. The graph of the
scene related to Fig. 8 is outlined in Fig. 1 (B).

3 Subtraversal Approach

The two design variants presented in Sec. 2 of-
fer well defined interfaces for specialized applica-
tion domains. However, they both do not fit into
the abstract object-oriented design patterns of scene
graphs. The major motivation for our design is
to overcome their limitations. Thus, we introduce
computation nodeswhich traverse their own sub-
graph. The idea is similar to the concept of cam-
era nodes: Camera nodes are usually connected to a
render target. A camera defines the parameters for
rendering and provides the result of the rendering in
form of render targets to its ancestors. For each ge-
ometry object found in their subgraph the rendering
pipeline is triggered.
In contrast to camera nodes, computation nodes
gather information from their sub-graph during
traversal, execute data parallel computations and
offer the result to their parent nodes. Fig. 2 (C)
shows the graph structure to build up the simple
example already realized for the callback and en-
gine approach. The input and output resources are
collected from the subgraph. This approach main-
tains most of the programming paradigms of scene
graphs. To be precise, we aim at the following three
designs goals:

• Computation nodes minimize the number of
fixed references to scene nodes because all
necessary resources for the computation are
located in their subgraph. In contrast to the

Input
Resource

Output
Resource

Computation
Node

Legend (A) (B) (C)

Figure 2: (A): A single computation node with an arbitrary sub-graph. (B): Multiple computation nodes
in a pipeline structure. (C): Multiple disjoint computation nodes. The graphsdo not show the structures
required for rendering.

callback or engine approach, resources and
computations are detached and modular ob-
jects which can be easily exchanged. This pro-
vides a seamless abstraction for developers.

• The common scene graph traversal mechanism
is utilized in order to select resources for the
computation. Resources may be directly ap-
plied to the respective computation node as
well. The subgraph of a computation node can
be replaced or rescaled dynamically. This is an
advantage over the previous approaches, since
they need to introduce new logics in order to
make a dynamical exchange of resources pos-
sible.

• Hierarchies between computation nodes are
described by the graph’s structure and do not
introduce any invisible dependencies. This
also allows developers to interlace computa-
tions with camera nodes. However, recursive
structures are not directly supported as scene
graphs are acyclic by nature.

The subtraversal approach requirescomputation
contexts, which manage the resources for one or
more computation nodes even in multi-threaded en-
vironments. One or more computation contexts
manage computation resources, e.g. input and out-
put buffers or modules of one computation graph.
Since computation nodes are designed as a special-
ized group node, they demand their own traversal
schemes to keep resources up-to-date.
One can utilize computation nodes to construct sev-
eral structures in the scene graph as discussed in the
following Section.

3.1 Utilization

Computation nodes can be inserted at any place
within the scene graph. Regarding the requirements
for the context handling, three application types can
be distinguished, which are examined in the follow-
ing paragraphs. Corresponding examples are pre-
sented in Sec. 5.

3.1.1 Single Computation Context

In this case only one computation node is present.
This is the simplest possible scene graph structure
containing computation nodes. A single computa-
tion context is necessary which does not need to be
shared between different computation nodes. The
traversal only has to collect and filter required re-
sources from the subgraph. Note that the subgraph
of the computation node can be of arbitrary struc-
ture containing any standard scene graph nodes (see
Fig. 2 (A)). This heterogeneous structure requires
mapping of memory between the computation and
the rendering context. For example a ray tracer may
use this kind of structure which does not require the
introduction of a hierarchy. However, more com-
plex approaches may utilize ray tracing in distinct
parts of the scene graph. This would require one or
more additional contexts.

3.1.2 Shared Computation Context

If a scene graph has a hierarchy of two or more com-
putation nodes, the computation context is shared
among these nodes, which requires an optimized

mapping of resources. Additionally, hierarchical
computation nodes and camera nodes affect the
traversal mechanism. Nodes may belinked, i.e. in-
put and output resources get connected, if the out-
put resource of successive computation nodes is an
input of the current computation node. The top-
most computation node starts an update traversal
and receives resources from its successor nodes (see
Sec. 3.3.1 for details on resource handling). Similar
to the single context case, resources from render-
ing and computation contexts need to be mapped.
This typically introduces a computational overhead.
Afterwards the structure is executed in a bottom-up
approach, as explained in Sec. 3.3.2. Nodes are or-
ganized hierarchically in a directed acyclic structure
(see Fig. 2 (B)), thus more complex structures like
recursions need to be realized within a single com-
putation node (see also Giden et al. [6]).

3.1.3 Multiple Computation Contexts

Placing several computation nodes in a scene graph
in a non-hierarchical manner, i.e. in different dis-
joint subtrees, introduces a new level of complex-
ity since several computation contexts exist. Here,
resources may have to be attached to one or more
computation contexts, providing resources to differ-
ent computation nodes. Similar to multi-threading,
this might require multiple and synchronized in-
stances of shared resources, i.e. a specificresource
mapping. Fig. 2 (C) gives an example of a graph
layout employing multiple computation contexts.

3.2 Computation Contexts

In compute APIs like CUDA, developers have to
deal only with two things, i.e. the kernels or pro-
grams which implement the algorithms written in
the language of the respective compute API and the
required memory. All resources and actions are as-
signed to acomputation context. Consequently, a
computation context must be active in order to ex-
ecute data parallel code accessing context depen-
dent memory [7, 9, 10]. In scene graphs, on the
other hand, a rendering context [4] or rendering
state [2, 13, 14] provides resources which are cur-
rently active according to the rendering traversal
state. Both context types handle resources poten-
tially required by specific computation nodes.

Compute::Resource

+ addHandle(string&)

+ isAdressedBy(string&) : bool

Compute::Module

+ launch()

+ accept()Compute::Resource&

Compute::Buffer

+ map() : void*

+ alloc()

+ free()

Compute::Context
1..*

1..*

1..*

«type»«type»

«type»«type»

+ register()Compute::Resource&

+ unregister()Compute::Resource&

Cuda::Buffer

+ map() : void*

+ alloc()

+ free()

Cuda::Array

+ map() : void*

+ alloc()

+ free()

Cuda::Geometry

+ map() : void*

+ alloc()

+ free()

Cuda::Texture

+ map() : void*

+ alloc()

+ free()

Cuda::Module

+ launch()

Cuda::Context

+ register()Compute::Resource&

+ unregister()Compute::Resource&

COMPUTE INTERFACES

CUDA IMPLEMENTATION

+ unmap()

+ unmap()+ unmap()

Figure 3: The class diagram showing the major
components for the abstractCompute interface
and theirCuda implementation, focusing on com-
putation contexts and resource handling.

In our concept, thecomputation context, (see
Fig. 3 classCompute::Context) manages all
resources required by any data parallel algorithm.
We utilize a generic common interface class (class
Compute::Resource) to handle modules and
buffers (data streams or arrays). This interface al-
lows developers to address computation resources
within the graph on an abstract level. Such an inter-
face based class structure is frequently used by cur-
rent scene graph APIs in order to abstract from ren-
dering API specific implementations [3]. An alter-
native concept would be a 2D handler table to make
the implementation more generic and independent
from the respective functionality and resources [4].

The main advantage of this interface is the transpar-
ent mapping of resources, especially between dif-
ferent contexts. The topmost computation node will
create a computation context object which is shared
via traversal with further computation nodes that are
possibly located in its subtree.

3.2.1 Modules

A module executes a kernel function and is directly
attached to a computation node. This allows devel-
opers to vary the algorithm of a computation node
in order to provide different behaviors for the same
subgraph. Thus, the communication between the
computation node and the respective module is de-
fined by a so-called strategy pattern which is de-
scribed in Gamma et al. [5].
Modules accept resources of interest which are col-
lected by the gathering traversal. These resources
are passed through the computation node to the
module. Prior to program execution each module
maps its buffers each of which returns a pointer to
its context dependent memory. A module has to
specify a regular array of threads in order to exe-
cute a program in parallel on the GPU [1, 7, 10].
However, the organization of the array is crucial for
achieving high performance. It depends on the pro-
cessed resources and can therefore not be general-
ized. For each module the layout of the so-called
thread-blocks must be explicitly specified in order
to expose enough fine-grained parallelism to exploit
the massively multi-threaded GPU hardware.

3.2.2 Buffers

Buffers abstract memory which can be allocated in
different contexts. Memory is allocated lazily when
the first mapping of a buffer is requested. At this
point a buffer is registered in the active computa-
tion context. The mapping function then returns a
handle to the related memory. Whenever a compu-
tation context is removed, all registered buffers are
notified to release their memory. Finally, the mem-
ory is freed when the reference count reaches zero.
Buffers which also exist in the rendering context,
so-called interoperability buffers, need to map the
internal rendering objects to the respective com-
pute context before launching a module. Usu-
ally, this mapping causes some computational over-
head [10, 1]. After a module has been executed
the unmap function of each buffer is called
which maps the memory back to the rendering con-
text in order to be available for rendering purposes.
Buffers which only exist in the compute context do
not implement this function.
In general, two types of rendering resources are

of interest: textures and geometry objects (provid-
ing vertex buffers). The scene graph API must
grant developers access to the underlying graphics
API of those objects in order to make mapping for
such buffers possible. In our design, classes like
Cuda::Geometry andCuda::Texture act as
mediators [5] between the different contexts: A
buffer as well as other resources can be attached
to several contexts at the same time and so need to
replicate their data as long as the contexts do not
share the same memory space. I.e. multiple CPU
threads evaluate independent computation nodes in
parallel. Systems which utilize only a single mem-
ory space for computations do not require such
replication mechanisms. In this case the attach-
ment to contexts is unnecessary and each buffer can
handle its memory allocation and deallocation in-
ternally.
The API dependent implementation of the allo-
cation and mapping functionalities are defined in
the classes which implement the interface, e.g. in
Cuda::Texture, and thus is completely trans-
parent for modules.

3.3 Graph Evaluation

The evaluation of the scene graph requires two
traversals. The gathering process which collects
the required resources whenever the subgraph has
changed and the execution traversal which launches
the computation nodes in bottom-up order, since in-
put resources may be output resources of a succes-
sor node.
Both traversals are implemented in a pre-order-like
scheme [12], i.e. first nodes, starting from the root
of the subgraph, are processed before their succes-
sors are visited. In the context of the generic ren-
dering systems this is calledevaluation traversal
(see Doellner et.al. [4]) which is the most common
traversal type found in scene graphs and is avail-
able in OpenSceneGraph [3], OpenInventor [16],
OpenSG [12], Performer [13] and NVSG [11].

3.3.1 The Gathering Traversal

Since computation nodes have flexible input and
output resources which solely depend on the imple-
mented algorithm, the standard fixed-function state

”A”

”B” ”C”

M0:”A”
M1:”A”

M2:

”A”

”B” ”C”

M0:
M1:

M2:

”A”

”B” ”C”

M0:”A”
M1:

M2:”B,C”

”A,B”

(1) (2) (3)

Figure 4: The gathering traversal. The topmost computation node creates a computation context and starts
the traversal (1). The buffer ’A’ located in the subgraph is forwarded to the modules M0 and M1 (2). The
traversal hands over the context to the child computation which requests itsresources ’B, C’ (3). The buffer
labeled with ’B’ is accepted by modules of both computations.

approach used for rendering scene graphs is insuffi-
cient. The gathering traversal identifies the required
resources in the subgraph of each computation node
and establishes a link between hierarchically orga-
nized computations. This is necessary since data
parallel computations on the GPU require input and
output streams in a very flexible way, which means
that the required resources cannot be easily identi-
fied.
Our approach uses name-identifiers to locate re-
spective resources in the subtree. Collected re-
sources are inspected by the modules and bound
to the respective computation node. Alternatively,
a module may request all resources of a specific
type, e.g. all geometry resources. Each computation
node located in the subtree of a topmost computa-
tion node will share this context with the topmost
node. Thus, if the gathering traversal visits a child
computation, the context is handed over. Fig. 4 ex-
plains the gathering process for the pipeline struc-
ture which has already been introduced.
Note that moving computation nodes possibly
changes the node’s computation context. This
might force an expensive reallocation of all memory
if memory spaces differ among computation con-
texts. After the traversal the resources are ready for
being utilized by the parallel programs during the
execution traversal.

3.3.2 The Execution Traversal

The execution of the computation nodes is straight
forward. In case of a single computation node, each
attached module maps all the relevant buffers, exe-

(1)

. (); .map();
.launch();

. (); .unmap();

. ();
.launch();

. ();

. (); .map();
.launch();

. (); .unmap();

.render();

.render();

C B
M2
C B

A
M0
A

A B
M1
A B

C

A

map

unmap

map

unmap

map

unmap

. (); .map();
.launch();

. ();
.launch();

.map(); .map();
.launch();

. ();

.render();

. ();

.render();

C B
M2

A
M0

A B
M1

C
C

A
A

map

map

unmap

unmap

(2)

Figure 5: Pseudo code showing the function calls
during the computation of the graph outlined in
Fig. 4. ’A’ and ’C’ are interoperability buffers
whereas ’B’ is accessed only within the compu-
tation context. If the interoperability buffers are
mapped back to the render context directly after the
modules are launched (1) then more expensive con-
text switches (orange) are necessary as if the buffers
are mapped back during the rendering operation (2).

cutes the parallel programs and unmaps the buffers.
Calling the mapping functions in this order is abso-
lutely necessary since interoperability buffers might
be rendered after or before the computation.
For a shared computation context this procedure im-
plies several context switches. Resource data has
to be mapped more often between the computation
context and the rendering context. Fig. 5(1) shows

the involved function calls for our pipeline exam-
ple. The modules of a computation are launched
after the respective subgraph has been traversed, be-
cause the outputs of successor nodes might be used
during execution. This also is the case for inter-
laced rendering operations. If it is possible to call
the unmap function directly before the rendering
function of an interoperability buffer the number of
mappings is reduced as shown in Fig. 5 (2). Note
that this does not influence the rendering action for
any interlaced non-computation node. If required,
intermediate results are still available through in-
teroperability buffers. Similar to the approach of
Giden et al, one can introduce more complex and
recursive structures into a single computation node.

4 Implementation Aspects

By implementing the subtraversal approach within
OpenSceneGraph we have to deal with the fol-
lowing API specific aspects: First, computation
resources providing interoperability between the
computation API and the rendering API have to fit
seamlessly into the rendering state concept of the
respective scene graph. Second, resources need to
support the provided threading model.

4.1 Interoperability

OpenSceneGraph provides full access to the in-
ternal OpenGL structures of texture and geom-
etry resources. For each of these rendering
resources we designed a resource class, e.g.
osgCuda::Texture, which on the one hand
inherits functionality from the respective Open-
SceneGraph class, e.g.osg::Texture, and on
the other hand implements the interface class, e.g.
Compute::Buffer (see Fig. 3). This allows
us to address the related memory in both contexts
by implementing CUDA related mapping functions
within a single specialized class. However, doing so
introduces multiple inheritance into our framework
design which is a commonly used design principle
in OpenSceneGraph.
Another CUDA related aspect is the different han-
dling of the interoperability functions concerning
texture objects. Texture objects currently cause
some additional synchronization workload as tex-

ture memory internally requires to be copied into
or from an OpenGL pixel buffer object in order to
make mapping to CUDA possible [10]. Since map-
ping between contexts always comes with some per-
formance penalty, especially for large textures, we
only map resources on demand by employing the
optimized mapping strategy shown in Fig. 5(2).

4.2 Thread Synchronization

OpenSceneGraph utilizes multiple threads to ren-
der a single representation of a scene to multi-
ple displays e.g. for virtual reality applications.
Burns et al. have implemented a fixed sequence of
subsequent traversals (update-cull-render) of which
each might run in its own thread. Burns et al. define
which visitor traverses the graph at which point in
time and so are able to clearly synchronize traver-
sals. However, it is still possible that two threads
are rendering the same scene for multiple displays
as it is not an unusual case for virtual reality appli-
cations.
With multi-threading the problem of synchroniza-
tion between multiple reader-writer threads is intro-
duced. One solution is to replicate data of scene
objects for each active thread in order to avoid syn-
chronization calls [15]. Because we perform the
computations within the rendering traversal, each
computation resource must be aware of multiple
threads accessing it during rendering. OpenScene-
Graph avoids conflicts in such situations by repli-
cating the private GPU memory of each rendering
resource and constraining each rendering thread to
render only within a single rendering context. Re-
sources have to manage one copy for each active
compute context. Additionally we constrain one
CPU thread to operate only on a single compute
context in order to be thread-safe in the sense of
OpenSceneGraph. The selection of the respective
data is encapsulated within the mapping function
and so is transparent for modules.

5 Results

We have presented a concept and implementation
for the integration of modern compute APIs into
existing scene graph APIs. Our approach ensures
a high flexibility, i.e. there are no severe restrictions

inserted into any of the APIs. Furthermore, our ap-
proach establishes methodologies to integrate com-
putation nodes into scene graphs based on extended
scene graph concepts, i.e. an additional identifica-
tion of computational resources is introduced. Our
method makes different levels of granularity possi-
ble. The concept does not enforce restrictions on
how computational tasks are integrated in the scene
graphs. A general and transparent interface model
is designed for resource handling with scene graphs.
We have implemented three simple example appli-
cations in order to show the feasibility of our frame-
work. Each example utilizes one of the tree struc-
tures discussed in Sec. 3.1.

5.1 Ray Tracing

Fig. 6 shows a ray tracing example which utilizes
the atomic graph structure of Fig. 2 (A). Three
sphere geometries of which each has a different
level of detail are located in the subtree of the com-
putation node launching a ray tracing program. The
left spheres are accepted as inputs for the com-
putation. Whereas the last sphere node is not
labeled and is omitted by the ray tracing mod-
ule but is rendered using the raster-based graphics
pipeline. The ray traced results are written into
a Cuda::Texture resource which afterwards is
blended with the rendered image containing the
rightmost sphere.

Figure 6: Ray Tracing Example. The scene is ren-
dered in two steps. The two spheres on the left are
ray traced while the last one is rendered using the
rendering pipeline. The scene graph is organized
similar to Fig. 2 (A)

5.2 Particle Simulation

The graph used to render the particle simulation
example (see Fig. 7) is arranged by two computa-
tion nodes: the topmost node computes the parti-
cle movement and emits particles at specific seed
points. The child computation recomputes these
seed points whenever the box is moved. Seed points
(Cuda::Buffer) as well as the box geometry
(Cuda::Geometry) are located in the sub-graph
of the child computation whereas the particle geom-
etry (Cuda::Geometry) is attached to its parent
computation. In each frame the particles are moved
towards a specific direction and are reseeded when
they leave the box.

Figure 7: The particle simulation example. The
scene graph is composed of two hierachically or-
ganized computation nodes. The computation of
the particle movement and the update of the seed
points are consecutive operations described by the
graph shown in Fig. 2 (B).

5.3 Image Processing

The graph of Fig. 2 (C) employs two independent
computation nodes to realize the scene shown in
Fig. 8. Each node performs a different operation on
the same input resource of typeCuda::Texture
which is added to both subgraphs. The result of
each CUDA program is written into an output tex-
ture (Cuda::Texture) of which each is also lo-
cated in the respective sub-graph. Both nodes cre-
ate their own computation context which share the
same memory space.

Figure 8: Two textures, each of which is generated
by a CUDA program and projected onto a quad.

6 Future Work

With regard to future work we would like to im-
prove the resource identification which currently in-
duces a rather hard-link between computation nodes
and resources. Furthermore, we will extend our im-
plementation to support distributed rendering and
computations across several rendering nodes in a
cluster.

Acknowledgments

This work is partially funded by the Siegener Grad-
uate School “Development of Integral Heterosensor
Architectures for the n-Dimensional (Bio)chemical
Analysis”.

References

[1] Chas Boyd. Direct3D 11 compute shader –
more generality for advanced techniques. Pre-
sented at Gamefest, Microsoft Game Technol-
ogy Conference, 2008.

[2] Grigore Burdea. Introduction to VR technol-
ogy. Proc. IEEE Virtual Reality Conference
(Tutorial), page 265, 2004.

[3] Don Burns and Robert Osfield. Open Scene
Graph: Introduction (part A), examples and
applications (part B).Proc. IEEE Virtual Re-
ality Conference, page 265, 2004.

[4] J. Döllner and K. Hinrichs. A generic ren-
dering system.IEEE Transactions on Visual-
ization and Computer Graphics, 8(2):99–118,
2002.

[5] Erich Gamma, Richard Helm, Ralph John-
son, and John Vlissides.Design Patterns.
Addison-Wesley, Boston, MA, 1995.

[6] V. Giden, T. Moeller, P. Ljung, and G. Pal-
adini. Scene graph-based construction of
CUDA kernel pipelines for XIP. InProc.
High-Performance Medical Image Computing
and Computer Aided Intervention, 2008.

[7] Khronos. The OpenCL specification. Decem-
ber 2008.

[8] Mercury Computer Systems. Mercury com-
puter systems, visualization sciences group,
and NVIDIA to provide combined high-
performance computing and visualization to
make oil and gas exploration more efficient.
Mercury Computer Systems Press Release,
2008.

[9] Microsoft Corp. Introduction to the Direct3D
11 graphics pipeline. 2008.

[10] NVIDIA. NVIDIA CUDA Programming
Guide 2.0. 2008.

[11] NVIDIA. NVSG – nvidia scene graph. Pre-
sented at NVISION – The World of Visual
Computing, 2008.

[12] D. Reiners. OpenSG: A scene graph sys-
tem for flexible and efficient realtime render-
ing for virtual and augmented reality applica-
tions. PhD thesis, Fraunhofer IGD, Germany,
2002.

[13] John Rohlf and James Helman. IRIS per-
former: a high performance multiprocess-
ing toolkit for real-time 3D graphics. In
Proc. SIGGRAPH, volume 28, pages 381–
394, 1994.

[14] Paul S. Strauss and Rikk Carey. An object-
oriented 3D graphics toolkit. Proc. SIG-
GRAPH, 26(2):341–349, 1992.

[15] G. Voß, J. Behr, D. Reiners, and M. Roth. A
multi-thread safe foundation for scene graphs
and its extension to clusters. InProc Euro-
graphics Workshop on Parallel Graphics and
Visualization (EGPGV), pages 33–37, 2002.

[16] Josie Wernecke.The Inventor Mentor: Pro-
gramming Object-Oriented 3D Graphics with
Open Inventor. Addison-Wesley, 1994.

